WorldWideScience

Sample records for geobacillus stearothermophilus kinb

  1. How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus Stearothermophilus KinB with the Inhibitor Sda

    Energy Technology Data Exchange (ETDEWEB)

    Bick, M.; Lamour, V; Rajashankar, K; Gordiyenko, Y; Robinson, C; Darst, S

    2009-01-01

    Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.

  2. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  3. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  4. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  5. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus.

    Science.gov (United States)

    Tabachnikov, Orly; Shoham, Yuval

    2013-02-01

    Type I galactan is a pectic polysaccharide composed of β-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 β-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular β-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803. © 2012 The Authors Journal compilation © 2012 FEBS.

  6. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris

    OpenAIRE

    Sivasangkary Gandhi; Abu Bakar Salleh; Raja Noor Zaliha Raja Abd. Rahman; Thean Chor Leow; Siti Nurbaya Oslan

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Met...

  7. Rekombinante Herstellung und Charakterisierung phenoloxidierender Enzyme aus Geobacillus stearothermophilus zur Evaluierung einer biosensorischen Anwendung

    OpenAIRE

    Jäntges, Uwe Konrad

    2006-01-01

    In the current thesis the genetic structure of the phenol hydroxylase of Geobacillus stearothermophilus has been clarified. The single components Phe A1 (oxygenase component), Phe A2 (Flavin reductase component) and a tandem construct consisting of both components were successfully produced with an E. coli host strain. Due to hexahistidin residue, with which all components were provided, all enzymes could be expressed and purified to homogeneity for the first time. The highest specific activi...

  8. Crystal Structure of the Geobacillus stearothermophilus Carboxylesterase Est55 and Its Activation of Prodrug CPT-11

    OpenAIRE

    Liu, Ping; Ewis, Hosam E.; Tai, Phang C.; Lu, Chung-Dar; Weber, Irene T.

    2006-01-01

    Several mammalian carboxylesterases were shown to activate the prodrug irinotecan (CPT-11) to produce SN-38, a topoisomerase inhibitor used in cancer therapy. However, the potential use of bacterial carboxylesterases, which have the advantage of high stability, has not been explored. We present the crystal structure of the carboxyesterase Est55 from Geobacillus stearothermophilus and evaluation of its enzyme activity on CPT-11. Crystal structures were determined at pH 6.2 and 6.8 and resoluti...

  9. Isolation of Glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a

    Science.gov (United States)

    Schäffer, Christina; Beckedorf, Anke I.; Scheberl, Andrea; Zayni, Sonja; Peter-Katalinić, Jasna; Messner, Paul

    2002-01-01

    Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C15:0 and anteiso-C17:0 prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PMID:12426359

  10. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    Science.gov (United States)

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 μM). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria. PMID:16751511

  11. Cultivo de Geobacillus stearothermophilus ATCC 7953 en un biorreactor de 2.5 litros bajo el sistema “batch”.

    OpenAIRE

    Alvarenga-Venutolo, Silvana; Rivas-Solano, Olga

    2012-01-01

    Informe Final de Proyecto de Investigación. El uso de indicadores biológicos proporciona un medio para examinar directamente la muerte de microorganismos, lo que permite asegurar la calidad y validar procesos de esterilización. El indicador biológico más utilizado contiene endosporas bacterianas de Geobacillus stearothermophilus. En este estudio se cultivó la cepa Geobacillus stearothermophilus ATCC 7953 en medio líquido bajo el sistema de fermentación en lote, para obtener endosporas erm...

  12. Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus.

    Science.gov (United States)

    Watsuji, Tomo-O; Takano, Hideaki; Yamabe, Tomoya; Tamazawa, Satoshi; Ikemura, Hiroka; Ohishi, Takanori; Matsuda, Tohyo; Shiratori-Takano, Hatsumi; Beppu, Teruhiko; Ueda, Kenji

    2014-12-01

    The tryptophanase-positive Symbiobacterium thermophilum is a free-living syntrophic bacterium that grows effectively in a coculture with Geobacillus stearothermophilus. Our studies have shown that S. thermophilum growth depends on the high CO2 and low O2 condition established by the precedent growth of G. stearothermophilus. The use of an anoxic atmosphere containing high CO2 allows S. thermophilum to grow independently of G. stearothermophilus, but the cellular yield is ten times lower than that achieved in the coculture. In this study, we characterized the coculture-dependent expression and activity of tryptophanase in S. thermophilum. S. thermophilum cells accumulated a marked amount of indole in a coculture with G. stearothermophilus, but not in the bacterium's pure culture irrespective of the addition of tryptophan. S. thermophilum cells accumulated indole in its pure culture consisting of conditioned medium (medium supplied with culture supernatant of G. stearothermophilus). Proteomic analysis identified the protein specifically produced in the S. thermophilum cells grown in conditioned medium, which was a tryptophanase encoded by tna2 (STH439). An attempt to isolate the tryptophanase-inducing component from the culture supernatant of G. stearothermophilus was unsuccessful, but we did discover that the indole accumulation occurs when 10 mM bicarbonate is added to the medium. RT-PCR analysis showed that the addition of bicarbonate stimulated transcription of tna2. The transcriptional start site, identified within the tna2 promoter, was preceded by the -24 and -12 consensus sequences specified by an alternative sigma factor, σ(54). The evidence suggests that the transcription of some genes involved in amino acid metabolism is σ(54)-dependent, and that a bacterial enhancer-binding protein containing a PAS domain controls the transcription under the presence of high levels of bicarbonate.

  13. Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms.

    Science.gov (United States)

    Morris, Angela D; McCombs, Gayle B; Akan, Tamer; Hynes, Wayne; Laroussi, Mounir; Tolle, Susan L

    2009-01-01

    Cold plasma, also known as Low Temperature Atmospheric Pressure Plasma (LTAPP) is a novel technology consisting of neutral and charged particles, including free radicals, which can be used to destroy or inactivate microorganisms. Research has been conducted regarding the effect of cold plasma on gram-positive bacteria; however, there is limited research regarding its ability to inactivate the spore-formers Geobacillus stearothermophilus and Bacillus cereus. The purpose of this study was to determine if cold plasma inactivates G. stearothermophilus and B. cereus vegetative cells and spores. Nine hundred eighty-one samples were included in this study (762 experimental and 219 controls). Experimental samples were exposed indirectly or directly to cold plasma, before plating and incubating for 16 hours. Control samples were not exposed to cold plasma. The percentage-kill and cell number reductions were calculated from Colony Forming Units (CFU). Data were statistically analyzed at the .05 level using one-way ANOVA, Kruskal Wallis and Tukey's tests. There was a statistically significant difference in the inactivation of G. stearothermophilus vegetative cells receiving indirect and direct exposure (p=0.0001 and p=0.0013, respectively), as well as for B. cereus vegetative cells and spores (p=0.0001 for direct and indirect). There was no statistically significant difference in the inactivation of G. stearothermophilus spores receiving indirect exposure (p=0.7208) or direct exposure (p=0.0835). Results demonstrate that cold plasma exposure effectively kills G. stearothermophilus vegetative cells and B. cereus vegetative cells and spores; however, G. stearothermophilus spores were not significantly inactivated.

  14. Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus.

    Science.gov (United States)

    De Benedetti, Eliana C; Rivero, Cintia W; Britos, Claudia N; Lozano, Mario E; Trelles, Jorge A

    2012-01-01

    An efficient and green bioprocess to obtain 2,6-diaminopurine nucleosides using thermophilic bacteria is herein reported. Geobacillus stearothermophilus CECT 43 showed a conversion rate of 90 and 83% at 2 h to obtain 2,6-diaminopurine-2'-deoxyriboside and 2,6-diaminopurine riboside, respectively. The selected biocatalyst was successfully stabilized in an agarose matrix and used to produce up to 23.4 g of 2,6-diaminopurine-2'-deoxyriboside in 240 h of process. These nucleoside analogues can be used as prodrug precursors or in antisense oligonucleotide synthesis.

  15. Structural Analysis of Xylanase from Marine Thermophilic Geobacillus stearothermophilus in Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    BUDI SAKSONO

    2010-12-01

    Full Text Available A xylanase gene, xynA, has been cloned from thermophilic strain Geobacillus stearothermophilus, which was isolated from marine Tanjung Api, Indonesia. The polymerase chain reaction product of 1266 bp of xynA gene consisted of 1221 bp open reading frame and encoded 407 amino acids including 30 residues of signal peptide. The sequence exhibited highest identity of 98.7% in the level of amino acid, with an extracellular endo-1,4-β-xylanase from G. stearothermophilus T-6 (E-GSX T-6 of the glycoside hydrolase family 10 (GH10. A comparative study between the local strain G. stearothermophilus (GSX L and E-GSX T-6 on homology of amino acid sequence indicated five differents amino acids in the gene. They were Threonine/Alanine (T/A, Asparagine/Aspartate (N/D, Lysine/Asparagine (K/N, Isoleucine/Methionine (I/M, Serine/Threonine (S/T at the position 220, 227, 228, 233, and 245, respectively. Protein structural analysis of those differences suggested that those amino acids may play role in biochemical properties such as enzyme stability, in particular its thermostability.

  16. Kinetics of germination of individual spores of Geobacillus stearothermophilus as measured by raman spectroscopy and differential interference contrast microscopy.

    Directory of Open Access Journals (Sweden)

    Tingting Zhou

    Full Text Available Geobacillus stearothermophilus is a gram-positive, thermophilic bacterium, spores of which are very heat resistant. Raman spectroscopy and differential interference contrast microscopy were used to monitor the kinetics of germination of individual spores of G. stearothermophilus at different temperatures, and major conclusions from this work were as follows. 1 The CaDPA level of individual G. stearothermophilus spores was similar to that of Bacillus spores. However, the Raman spectra of protein amide bands suggested there are differences in protein structure in spores of G. stearothermophilus and Bacillus species. 2 During nutrient germination of G. stearothermophilus spores, CaDPA was released beginning after a lag time (T(lag between addition of nutrient germinants and initiation of CaDPA release. CaDPA release was complete at T(release, and DT(release (T(release - T(lag was 1-2 min. 3 Activation by heat or sodium nitrite was essential for efficient nutrient germination of G. stearothermophilus spores, primarily by decreasing T(lag values. 4 Values of T(lag and T(release were heterogeneous among individual spores, but DT(release values were relatively constant. 5 Temperature had major effects on nutrient germination of G. stearothermophilus spores, as at temperatures below 65°C, average T(lag values increased significantly. 6 G. stearothermophilus spore germination with exogenous CaDPA or dodecylamine was fastest at 65°C, with longer T(lag values at lower temperatures. 7 Decoating of G. stearothermophilus spores slowed nutrient germination slightly and CaDPA germination significantly, but increased dodecylamine germination markedly. These results indicate that the dynamics and heterogeneity of the germination of individual G. stearothermophilus spores are generally similar to that of Bacillus species.

  17. The abp gene in Geobacillus stearothermophilus T-6 encodes a GH27 β-L-arabinopyranosidase.

    Science.gov (United States)

    Salama, Rachel; Alalouf, Onit; Tabachnikov, Orly; Zolotnitsky, Gennady; Shoham, Gil; Shoham, Yuval

    2012-07-30

    In this study we demonstrate that the abp gene in Geobacillus stearothermophilus T-6 encodes a family 27 glycoside hydrolase β-L-arabinopyranosidase. The catalytic constants towards the chromogenic substrate pNP-β-L-arabinopyranoside were 0.8±0.1 mM, 6.6±0.3 s(-1), and 8.2±0.3 s(-1) mM(-1) for K(m), k(cat) and k(cat)/K(m), respectively. (13)C NMR spectroscopy unequivocally showed that Abp is capable of removing β-L-arabinopyranose residues from the natural arabino-polysaccharide, larch arabinogalactan. Most family 27 enzymes are active on galactose and contain a conserved Asp residue, whereas in Abp this residue is Ile67, which shifts the specificity of the enzyme towards arabinopyranoside.

  18. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  19. Keratinous waste decomposition and peptide production by keratinase from Geobacillus stearothermophilus AD-11.

    Science.gov (United States)

    Gegeckas, Audrius; Gudiukaitė, Renata; Debski, Janusz; Citavicius, Donaldas

    2015-04-01

    A keratinolytic proteinase was cloned from thermophilic bacterium Geobacillus stearothermophilus AD-11 and was expressed in Escherichia coli BL21(DE3). Recombinant keratinolytic proteinase (RecGEOker) with an estimated molecular weight of 57 kDa was purified and keratinase activity was measured. RecGEOker showed optimal activity at pH 9 and 60 °C. Recombinant keratinolytic proteinase showed the highest substrate specificity toward keratin from wool > collagen > sodium caseinate > gelatin > and BSA in descending order. RecGEOker is applicable for efficient keratin waste biodegradation and can replace conventional non-biological hydrolysis processes. High-value small peptides obtained from enzymatic biodegradation by RecGEOker are suitable for industrial application in white and/or green biotechnology for use as major additives in various products.

  20. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  1. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure.

    Science.gov (United States)

    Georget, Erika; Kapoor, Shobhna; Winter, Roland; Reineke, Kai; Song, Youye; Callanan, Michael; Ananta, Edwin; Heinz, Volker; Mathys, Alexander

    2014-08-01

    Bacterial spores are a major concern for food safety due to their high resistance to conventional preservation hurdles. Innovative hurdles can trigger bacterial spore germination or inactivate them. In this work, Geobacillus stearothermophilus spore high pressure (HP) germination and inactivation mechanisms were investigated by in situ infrared spectroscopy (FT-IR) and fluorometry. G. stearothermophilus spores' inner membrane (IM) was stained with Laurdan fluorescent dye. Time-dependent FT-IR and fluorescence spectra were recorded in situ under pressure at different temperatures. The Laurdan spectrum is affected by the lipid packing and level of hydration, and provided information on the IM state through the Laurdan generalized polarization. Changes in the -CH2 and -CH3 asymmetric stretching bands, characteristic of lipids, and in the amide I' band region, characteristic of proteins' secondary structure elements, enabled evaluation of the impact of HP on endospores lipid and protein structures. These studies were complemented by ex situ analyses (plate counts and microscopy). The methods applied showed high potential to identify germination mechanisms, particularly associated to the IM. Germination up to 3 log10 was achieved at 200 MPa and 55 °C. A molecular-level understanding of these mechanisms is important for the development and validation of multi-hurdle approaches to achieve commercial sterility.

  2. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.

    Science.gov (United States)

    Soriano-Maldonado, Pablo; Andújar-Sánchez, Montserrat; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Martínez-Rodríguez, Sergio

    2015-05-01

    N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding.

  3. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Sivasangkary Gandhi

    2015-01-01

    Full Text Available Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX. Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL−1 at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg−1. The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0–8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t1/2 of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.

  4. Protein engineering applications of industrially exploitable enzymes: Geobacillus stearothermophilus LDH and Candida methylica FDH.

    Science.gov (United States)

    Karagüler, N G; Sessions, R B; Binay, B; Ordu, E B; Clarke, A R

    2007-12-01

    Enzymes have become important tools in several industries due to their ability to produce chirally pure and complex molecules with interesting biological properties. The NAD(+)-dependent LDH (lactate dehydrogenase) [bsLDH [Geobacillus stearothermophilus (formerly Bacillus stearothermophilus) LDH] from G. stearothermophilus and the NAD(+)-dependent FDH (formate dehydrogenase) [cmFDH (Candida methylica FDH)] enzyme from C. methylica are particularly crucial enzymes in the pharmaceutical industry and are related to each other in terms of NADH use and regeneration. LDH catalyses the interconversion of pyruvate (oxo acid) and lactate (alpha-hydroxy acid) using the NADH/NAD(+) pair as a redox cofactor. Employing LDH to reduce other oxo acids can generate chirally pure alpha-hydroxy acids of use in the production of pharmaceuticals. One important use of FDH is to regenerate the relatively expensive NADH cofactor that is used by NAD(+)-dependent oxidoreductases such as LDH. Both LDH and FDH from organisms of interest were previously cloned and overproduced. Therefore they are available at a low cost. However, both of these enzymes show disadvantages in the large-scale production of chirally pure compounds. We have applied two routes of protein engineering studies to improve the properties of these two enzymes, namely DNA shuffling and site-directed mutagenesis. Altering the substrate specificity of bsLDH by DNA shuffling and changing the coenzyme specificity of cmFDH by site-directed mutagenesis are the most successful examples of our studies. The present paper will also include the details of these examples together with some other applications of protein engineering regarding these enzymes.

  5. Plasma Decontamination: A Case Study on Kill Efficacy of Geobacillus stearothermophilus Spores on Different Carrier Materials.

    Science.gov (United States)

    Semmler, Egmont; Novak, Wenzel; Allinson, Wilf; Wallis, Darren; Wood, Nigel; Awakowicz, Peter; Wunderlich, Joachim

    2016-01-01

    A new technology to the pharmaceutical field is presented: surface decontamination by plasmas The technology is comparable to established barrier systems like e-beam, volatile hydrogen peroxide, or radiation inactivation of microbiological contaminations. This plasma technology is part of a fully automated and validated syringe filling line at a major pharmaceutical company and is in production operation. Incoming pre-sterilized syringe containers ("tubs") are processed by plasma, solely on the outside, and passed into the aseptic filling isolator upon successful decontamination. The objective of this article is to present the operating principles and develop and establish a validation routine on the basis of standard commercial biological indicators. Their decontamination efficacies are determined and correlated to the actual inactivation efficacy on the pharmaceutical packaging material.The reference setup is explained in detail and a short presentation of the cycle development and the relevant plasma control parameters is given, with a special focus on the in-process monitor determining the cycle validity. Different microbial inactivation mechanisms are also discussed and evaluated for their contribution and interaction to enhance plasma decontamination. A material-dependent inactivation behavior was observed. In order to be able to correlate the tub surface inactivation of Geobacillus stearothermophilus endospores to metallic biological indicators, a comparative study was performed. Through consistently demonstrating the linear inactivation behavior between the different materials, it becomes possible to develop an effective and time-saving validation scheme. The challenge in new decontamination systems lies in a thorough validation of the inactivation efficacy under different operating regimes. With plasma, as an ionized gas, a new barrier concept is introduced into pharmaceutical aseptic processing of syringes. The presented system operates in vacuum and only

  6. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    Science.gov (United States)

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry.

  7. Structural Basis of Substrate Binding in WsaF, a Rhamnosyltransferase from Geobacillus stearothermophilus

    Science.gov (United States)

    Steiner, Kerstin; Hagelueken, Gregor; Messner, Paul; Schäffer, Christina; Naismith, James H.

    2010-01-01

    Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by α-1,3-, α-1,2-, and β-1,2-linkages. The formation of the β-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-β-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-β-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition. PMID:20097205

  8. Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Solomon,V.; Teplitsky, A.; Shulami, S.; Zolotnitsky, G.; Shoham, Y.; Shoham, G.

    2007-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factor of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.

  9. Crystal Structure of the Geobacillus stearothermophilus Carboxylesterase Est55 and Its Activation of Prodrug CPT-11

    Science.gov (United States)

    Liu, Ping; Ewis, Hosam E.; Tai, Phang C.; Lu, Chung-Dar; Weber, Irene T.

    2007-01-01

    Several mammalian carboxylesterases were shown to activate the prodrug irinotecan (CPT-11) to produce SN-38, a topoisomerase inhibitor used in cancer therapy. However, the potential use of bacterial carboxylesterases, which have the advantage of high stability, has not been explored. We present the crystal structure of the carboxyesterase Est55 from Geobacillus stearothermophilus and evaluation of its enzyme activity on CPT-11. Crystal structures were determined at pH 6.2 and 6.8 and resolution of 2.0 and 1.58 Å, respectively. Est55 folds into three domains, a catalytic domain, an α/β domain and a regulatory domain. The structure is in an inactive form; the side chain of His409, one of the catalytic triad residues, is directed away from the other catalytic residues Ser194 and Glu310. Moreover, the adjacent Cys408 is triply oxidized and lies in the oxyanion hole, which would block the binding of substrate, suggesting a regulatory role. However, Cys408 is not essential for enzyme activity. Mutation of Cys408 showed that hydrophobic side chains were favorable, while polar serine was unfavorable for enzyme activity. Est55 was shown to hydrolyze CPT-11 into the active form SN-38. The mutant C408V provided a more stable enzyme for activation of CPT-11. Therefore, engineered thermostable Est55 is a candidate for use with irinotecan in enzyme-prodrug cancer therapy. PMID:17239398

  10. Inactivation of Geobacillus stearothermophilus spores by alkaline hydrolysis applied to medical waste treatment.

    Science.gov (United States)

    Pinho, Sílvia C; Nunes, Olga C; Lobo-da-Cunha, Alexandre; Almeida, Manuel F

    2015-09-15

    Although alkaline hydrolysis treatment emerges as an alternative disinfection/sterilization method for medical waste, information on its effects on the inactivation of biological indicators is scarce. The effects of alkaline treatment on the resistance of Geobacillus stearothermophilus spores were investigated and the influence of temperature (80 °C, 100 °C and 110 °C) and NaOH concentration was evaluated. In addition, spore inactivation in the presence of animal tissues and discarded medical components, used as surrogate of medical waste, was also assessed. The effectiveness of the alkaline treatment was carried out by determination of survival curves and D-values. No significant differences were seen in D-values obtained at 80 °C and 100 °C for NaOH concentrations of 0.5 M and 0.75 M. The D-values obtained at 110 °C (2.3-0.5 min) were approximately 3 times lower than those at 100 °C (8.8-1.6 min). Independent of the presence of animal tissues and discarded medical components, 6 log10 reduction times varied between 66 and 5 min at 100 °C-0.1 M NaOH and 110 °C-1 M NaOH, respectively. The alkaline treatment may be used in future as a disinfection or sterilization alternative method for contaminated waste.

  11. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    Science.gov (United States)

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  12. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    Science.gov (United States)

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus.

  13. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.

    Science.gov (United States)

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2015-06-01

    Geobacillus stearothermophilus is recognized as one of the most prevalent micro-organism responsible for flat sour in the canned food industry. To control these highly resistant spore-forming bacteria, the heat treatment intensity could be associated with detrimental conditions for germination and outgrowth. The purpose of this work was to study successively the impact of temperature and pH on the growth rate of G. stearothermophilus ATCC 12980, its sporulation ability, its heat resistance in response to various sporulation conditions, and its recovery ability after a heat treatment. The phenotypic investigation was carried out at different temperatures and pHs on nutrient agar and the heat resistance was estimated at 115 °C. The greatest spore production and the highest heat resistances were obtained at conditions of temperature and pH allowing maximal growth rate. The current observations also revealed that growth, sporulation and recovery boundaries are close. Models using growth boundaries as main parameters were extended to describe and quantify the effect of temperature and pH throughout the life cycle of G. stearothermophilus as vegetative cells or as spore after a heat treatment and during recovery.

  14. Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29

    Directory of Open Access Journals (Sweden)

    Zainab Bibi

    2014-10-01

    Full Text Available Xylan degrading bacterial strain was isolated from soil and identified as Geobacillus stearothermophilus KIBGE-IB29 on the basis of morphological, biochemical and 16S rDNA sequence analysis. Optimization of medium and culture conditions in submerged fermentation was investigated for maximum endo-1, 4-β-xylanase production. High yield of xylan degrading endo-1, 4-β-xylanase was achieved at 60 °C and pH-6.0 with 24 h of fermentation. Maximum enzyme was produced using 0.5% xylan as a carbon source, 0.5% peptone, 0.2% yeast extract and 0.1% meat extract as nitrogen sources. Di-potassium hydrogen phosphate (0.25%, calcium chloride (0.01%, potassium hydrogen phosphate (0.05% and ammonium sulfate (0.05% were also incorporated in the fermentation medium to enhance the enzyme production.

  15. Plasma sterilization of Geobacillus Stearothermophilus by O{mathsf2}:N{mathsf2} RF inductively coupled plasma

    Science.gov (United States)

    Kylián, O.; Sasaki, T.; Rossi, F.

    2006-05-01

    The aim of this work is to identify the main process responsible for sterilization of Geobacillus Stearothermophilus spores in O{2}:N{2} RF inductively coupled plasma. In order to meet this objective the sterilization efficiencies of discharges in mixtures differing in the initial O{2}/N{2} ratios are compared with plasma properties and with scanning electron microscopy images of treated spores. According to the obtained results it can be concluded that under our experimental conditions the time needed to reach complete sterilization is more related to O atom density than UV radiation intensity, i.e. complete sterilization is not related only to DNA damage as in UV sterilization but more likely to the etching of the spore.

  16. PURIFICATION AND CHARACTERIZATION OF SOLVENT STABLE LIPASE FROM A SOLVENT TOLERANT STRAIN OF GEOBACILLUS STEAROTHERMOPHILUS PS 11

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2016-06-01

    Full Text Available An extracellular organic solvent stable lipase produced by solvent tolerant strain of Geobacillus stearothermophilus PS11 was purified and characterised. The overall purification was 8.04 fold with a yield of 22.6%. The molecular weight of purified lipase was approximately 27.5 kDa. The purified lipase activity was stable (745 EU/ml at 72h incubation in presence of toluene, benzene, propanol, methanol etc. The enzyme activity was maximum (764 EU/ml when assayed under optimum temperature and pH of 50⁰C and 10.0, respectively. The enzyme showed stability at a wide range of temperature from 10⁰C to 60⁰C. This solvent stable lipase can be a novel tool for biodiesel industry.

  17. Cloning of araA Gene Encoding L-Arabinose Isomerase from Marine Geobacillus stearothermophilus Isolated from Tanjung Api, Poso, Indonesia

    Directory of Open Access Journals (Sweden)

    DEWI FITRIANI

    2010-06-01

    Full Text Available L-arabinose isomerase is an enzyme converting D-galactose to D-tagatose. D-tagatose is a potential sweetener-sucrose substitute which has low calorie. This research was to clone and sequence araA gene from marine bacterial strain Geobacillus stearothermophilus isolated from Tanjung Api Poso Indonesia. The amplified araA gene consisted of 1494 bp nucleotides encoding 497 amino acids. DNA alignment analysis showed that the gene had high homology with that of G. stearothermophilus T6. The enzyme had optimum activity at high temperature and alkalin condition.

  18. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.

    Science.gov (United States)

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2017-06-01

    Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth.

  19. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Lansky, Shifra; Salama, Rachel; Solomon, Vered H; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2013-06-01

    Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp.

  20. Crystallization and preliminary crystallographic analysis of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6

    Energy Technology Data Exchange (ETDEWEB)

    Brüx, Christian; Niefind, Karsten [Institute for Biochemistry, University of Cologne (Germany); Ben-David, Alon; Leon, Maya [Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa (Israel); Shoham, Gil [Department of Inorganic Chemistry and The Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem (Israel); Shoham, Yuval [Department of Biotechnology and Food Engineering and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Haifa (Israel); Schomburg, Dietmar, E-mail: d.schomburg@uni-koeln.de [Institute for Biochemistry, University of Cologne (Germany)

    2005-12-01

    The crystallization and preliminary X-ray analysis of a β-d-xylosidase from G. stearothermophilus T-6, a family 43 glycoside hydrolase, is described. Native and catalytic inactive mutants of the enzymes were crystallized in two different space groups, orthorhombic P2{sub 1}2{sub 1}2 and tetragonal P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2), using a sensitive cryoprotocol. The latter crystal form diffracted X-rays to a resolution of 2.2 Å. β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6 (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2{sub 1}2{sub 1}2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å.

  1. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Solomon, Hodaya V; Tabachnikov, Orly; Feinberg, Hadar; Govada, Lata; Chayen, Naomi E; Shoham, Yuval; Shoham, Gil

    2013-10-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P2₁2₁2₁, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Å resolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.

  2. Structural characterization of the acid-degraded secondary cell wall polymer of Geobacillus stearothermophilus PV72/p2.

    Science.gov (United States)

    Petersen, Bent O; Sára, Margit; Mader, Christoph; Mayer, Harald F; Sleytr, Uwe B; Pabst, Martin; Puchberger, Michael; Krause, Eberhard; Hofinger, Andreas; Duus, Jens Ø; Kosma, Paul

    2008-06-09

    The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].

  3. Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids.

    Science.gov (United States)

    Aslan, Aşkın Sevinç; Birmingham, William R; Karagüler, Nevin Gül; Turner, Nicholas J; Binay, Barış

    2016-06-01

    Chiral α-hydroxy acids (AHAs) are rapidly becoming important synthetic building blocks, in particular for the production of pharmaceuticals and other fine chemicals. Chiral compounds of a variety of functionalities are now often derived using enzymes, and L-lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (bsLDH) has the potential to be employed for the industrial synthesis of chiral α-hydroxy acids. Despite the thorough characterization of this enzyme, generation of variants with high activity on non-natural substrates has remained difficult and therefore limits the use of bsLDH in industry. Here, we present the engineering of bsLDH using semi-rational design as a method of focusing screening in a small and smart library for novel biocatalysts. In this study, six mutant libraries were designed in an effort to expand the substrate range of bsLDH. The eight variants identified as having enhanced activity toward the selected α-keto acids belonged to the same library, which targeted two positions simultaneously. These new variants now may be useful biocatalysts for chiral synthesis of α-hydroxy acids.

  4. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    Science.gov (United States)

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-03

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process.

  5. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.

    Science.gov (United States)

    Solomon, Hodaya V; Tabachnikov, Orly; Lansky, Shifra; Salama, Rachel; Feinberg, Hadar; Shoham, Yuval; Shoham, Gil

    2015-12-01

    Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active

  6. Preliminary crystallographic analysis of Xyn52B2, a GH52 β-D-xylosidase from Geobacillus stearothermophilus T6.

    Science.gov (United States)

    Dann, Roie; Lansky, Shifra; Lavid, Noa; Zehavi, Arie; Belakhov, Valery; Baasov, Timor; Dvir, Hay; Manjasetty, Babu; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-12-01

    Geobacillus stearothermophilus T6 is a thermophilic bacterium that possesses an extensive hemicellulolytic system, including over 40 specific genes that are dedicated to this purpose. For the utilization of xylan, the bacterium uses an extracellular xylanase which degrades xylan to decorated xylo-oligomers that are imported into the cell. These oligomers are hydrolyzed by side-chain-cleaving enzymes such as arabinofuranosidases, acetylesterases and a glucuronidase, and finally by an intracellular xylanase and a number of β-xylosidases. One of these β-xylosidases is Xyn52B2, a GH52 enzyme that has already proved to be useful for various glycosynthesis applications. In addition to its demonstrated glycosynthase properties, interest in the structural aspects of Xyn52B2 stems from its special glycoside hydrolase family, GH52, the structures and mechanisms of which are only starting to be resolved. Here, the cloning, overexpression, purification and crystallization of Xyn52B2 are reported. The most suitable crystal form that has been obtained belonged to the orthorhombic P212121 space group, with average unit-cell parameters a = 97.7, b = 119.1, c = 242.3 Å. Several X-ray diffraction data sets have been collected from flash-cooled crystals of this form, including the wild-type enzyme (3.70 Å resolution), the E335G catalytic mutant (2.95 Å resolution), a potential mercury derivative (2.15 Å resolution) and a selenomethionine derivative (3.90 Å resolution). These data are currently being used for detailed three-dimensional structure determination of the Xyn52B2 protein.

  7. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    Science.gov (United States)

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production.

  8. Coproduction of thermostable amylase and beta-galactosidase enzymes by Geobacillus stearothermophilus SAB-40: aplication of Plackett-Burman design to evaluate culture requirements affecting enzyme production.

    Science.gov (United States)

    Solimam, Nadia A

    2008-04-01

    A locally isolated thermophile, Geobacillus sp. SAB-40, producing thermostable extracellular amylase constitutively and an induced intracellular beta-galactosidase was characterized and identified based on 16S rRNA sequencing. A phylogenetic analysis then revealed its closeness to Geobacillus stearothermophilus. To evaluate the effect of the culture conditions on the coproduction of both enzymes by G. stearothermophilus SAB-40, a Plackett-Burman fractional factorial design was applied to determine the impact of twenty variables. Among the tested variables, CaCl2, the incubation time, MgSO4.7H2O, and tryptone were found to be the most significant for encouraging amylase production. Lactose was found to promote beta-galactosidase production, whereas starch had a significantly negative effect on lactase production. Based on a statistical analysis, a preoptimized medium attained the maximum production of amylase and beta-galactosidase at 23.29 U/ml/min and 12,958 U/mg biomass, respectively, which was 3- and 2-fold higher than the yield of amylase and lactase obtained with the basal medium, respectively.

  9. Strain Improvement of Bacillus coagulans and Geobacillus stearothermophilus for Enhanced Thermostable Cellulase Production and the Effect of Different Metal Ions on Cellulase Activity

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2012-11-01

    Full Text Available The current study was focused on the strain improvement of Bacillus coagulans and Geobacillus stearothermophilus for thermostable cellulase production with higher enzyme activity. For strain improvement UV radiations, NTG and Sodium azide were used as mutagenic agents.NTG was found to be best mutagenic agent among all in term of highest cellulase activity. Mutant strain C11 exhibited the highest cellulase specific activity at 45 U/mg followed by C15 (39 U/mg in case of B.coagulans while Mutant strain S18 exhibited thehighest cellulase specific activity at 69 U/mg followed by S12 (62 U/mg in case of G. stearothermophilus. Specific activity of cellulase was 92 U/mg in case of B.coagulans C11 and 118 U/mg in case of G. stearothermophilus S18. Ag+, Mg+, Se2+,Ca2+,Co2+,Mn2+,K+, Zn2+ ,Fe3+, Hg2+ and Cu2+ showed positive change in specific activity while Na+, Ni2+ negative change in specific activity of cellulase with respect to specific activity of cellulase in absence of any additive in case of B.coagulans C11 and Ag+, Mg+, Se2+,Co2+,Mn2+ andHg2+ showed positive change in specific activity, Na+, K+ showed no change in specific activity while Ca2+, Zn2+, Ni2+, Fe3+ and Cu2+ showed negative change in specific activity of cellulase with respect to specific activity of cellulase in absence of any additive in case of G. stearothermophilus S18.

  10. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus

    Energy Technology Data Exchange (ETDEWEB)

    Hawwa, Renda; Aikens, John; Turner, Robert J.; Santarsiero, Bernard D.; Mescar, Andrew D.; (Lybradyn Inc.); (UIC)

    2009-08-31

    A new enzyme homologous to phosphotriesterase was identified from the bacterium Geobacillus stearothermophilus (GsP). This enzyme belongs to the amidohydrolase family and possesses the ability to hydrolyze both lactone and organophosphate (OP) compounds, making it a phosphotriesterase-like lactonase (PLL). GsP possesses higher OP-degrading activity than recently characterized PLLs, and it is extremely thermostable. GsP is active up to 100 C with an energy of activation of 8.0 kcal/mol towards ethyl paraoxon, and it can withstand an incubation temperature of 60 C for two days. In an attempt to understand the thermostability of PLLs, the X-ray structure of GsP was determined and compared to those of existing PLLs. Based upon a comparative analysis, a new thermal advantage score and plot was developed and reveals that a number of different factors contribute to the thermostability of PLLs.

  11. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.

    Science.gov (United States)

    Lansky, Shifra; Salama, Rachel; Solomon, Hodaya V; Feinberg, Hadar; Belrhali, Hassan; Shoham, Yuval; Shoham, Gil

    2014-11-01

    L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system in Geobacillus stearothermophilus T6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer

  12. Three-dimensional structure of a variant `Termamyl-like' Geobacillus stearothermophilus α-amylase at 1.9 Å resolution.

    Science.gov (United States)

    Offen, Wendy A; Viksoe-Nielsen, Anders; Borchert, Torben V; Wilson, Keith S; Davies, Gideon J

    2015-01-01

    The enzyme-catalysed degradation of starch is central to many industrial processes, including sugar manufacture and first-generation biofuels. Classical biotechnological platforms involve steam explosion of starch followed by the action of endo-acting glycoside hydrolases termed α-amylases and then exo-acting α-glucosidases (glucoamylases) to yield glucose, which is subsequently processed. A key enzymatic player in this pipeline is the `Termamyl' class of bacterial α-amylases and designed/evolved variants thereof. Here, the three-dimensional structure of one such Termamyl α-amylase variant based upon the parent Geobacillus stearothermophilus α-amylase is presented. The structure has been solved at 1.9 Å resolution, revealing the classical three-domain fold stabilized by Ca2+ and a Ca2+-Na+-Ca2+ triad. As expected, the structure is similar to the G. stearothermophilus α-amylase but with main-chain deviations of up to 3 Å in some regions, reflecting both the mutations and differing crystal-packing environments.

  13. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization.

    Science.gov (United States)

    Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo

    2012-12-01

    Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.

  14. A differentially conserved residue (Ile42) of GH42 β-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability.

    Science.gov (United States)

    Dong, Yi-Ning; Chen, Hai-Qin; Sun, Yan-Hui; Zhang, Hao; Chen, Wei

    2015-04-01

    The glycoside hydrolase family 42 (GH42) of thermophilic microorganisms consists of thermostable β-galactosidases that display significant variations in their temperature optima and stabilities. In this study, we compared the substrate binding modes of 2 GH42 β-galactosidases, BgaB from Geobacillus stearothermophilus and A4-β-Gal from Thermus thermophilus A4. The A4-β-Gal has a catalytic triad (Glu312-Arg32-Glu35) with an extended hydrogen bond network that has not been observed in BgaB. In this study, we performed site-saturation mutagenesis of Ile42 in BgaB (equivalent to Glu312 in A4-β-Gal) to study the effects of different residues on thermostability, catalytic function, and the extended hydrogen bond network. Our experimental results suggest that substitution of Ile42 with polar AA enhanced the thermostability but decreased the catalytic efficiency of BgaB. Polar AA substitution for Ile42 simultaneously affected thermostability, catalytic efficiency, and the hydrogen bond network, suggesting that Ile42 is responsible for functional discrimination between members of the GH42 family. These observations could lead to a novel strategy for investigating the functional evolution of the GH42 β-galactosidases.

  15. Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ.

    Science.gov (United States)

    Nogueira, Maria Luiza C; Sforça, Mauricio Luis; Chin, Yanni K-Y; Mobli, Mehdi; Handler, Aaron; Gorbatyuk, Vitaliy Y; Robson, Scott A; King, Glenn F; Gueiros-Filho, Frederico J; Zeri, Ana Carolina de Mattos

    2015-10-01

    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA.

  16. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus.

    Science.gov (United States)

    Kinns, Helen; Badelt-Lichtblau, Helga; Egelseer, Eva Maria; Sleytr, Uwe B; Howorka, Stefan

    2010-01-29

    Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies.

  17. Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus Lipase T6 for enhanced stability in methanol.

    Science.gov (United States)

    Dror, Adi; Shemesh, Einav; Dayan, Natali; Fishman, Ayelet

    2014-02-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production.

  18. Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases

    Science.gov (United States)

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-01-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region

  19. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree.

    Science.gov (United States)

    Liato, Viacheslav; Labrie, Steve; Viel, Catherine; Benali, Marzouk; Aïder, Mohammed

    2015-10-01

    The combined effect of heat treatment and electro-activated solution (EAS) on the heat resistance of spores of Clostridium sporogenes and Geobacillus stearothermophilus was assessed under various heating and exposure time combinations. The acid and neutral EAS showed the highest inhibitory activity, indicating that these solutions may be considered as strong sporicidal disinfectants. These EAS were able to cause a reduction of ≥6 log of spores of C. sporogenes at 60 °C in only 1 min of exposition. For G. stearothermophilus spores, a reduction of 4.5 log was observed at 60 °C in 1 min, while in 5 min, ≥7 log CFU/ml reduction was observed. Inoculated puree of pea and corn were used as a food matrix for the determination of the heat resistance of these spores during the treatments in glass capillaries. The inactivation kinetics of the spores was studied in an oil bath. Combined treatment by EAS and temperature demonstrated a significant decrease in the heat resistance of C. sporogenes. The D100°C in pea puree with NaCl solution was 66.86 min while with acid and neutral EAS it was reduced down to 3.97 and 2.19 min, respectively. The spore of G. stearothermophilus displayed higher heat resistance as confirmed by other similar studies. Its D130°C in pea puree showed a decrease from 1.45 min in NaCl solution down to 1.30 and 0.93 min for acid and neutral EAS, respectively. The differences between the spores of these species are attributable to their different sensitivities with respect to pH, Redox potential and oxygen.

  20. Optimization of the Fermentation Conditions of 5L Fermenter for Geobacillus stearothermophilus CHB1%嗜热脂肪土芽孢杆菌CHB1的5L发酵罐发酵条件初探

    Institute of Scientific and Technical Information of China (English)

    张慧; 李活孙; 邱宏端; 林新坚

    2012-01-01

    A single-factor method was used to optimize the conditions of Geobacillus stearothermophilus CHB1 such as ventilation volume, speed, temperature, pH and other parameters, and to determine the growth curve of CHB1 in a 5 L fermenter. The best fermentation conditions were: ventilation 6 L/min, speed l80r/min, inoculum 4% and culture temperature 58 ℃. The maximum cell biomass could be achieved by fermentation 21 h. Through the method of auto-fed acetic acid to control the pH of fermentation process, it could achieve a high-density fermentation of CHB1. The cell biology was as high as 6.07x108 cfu/ml. Using fed acid pH control pH8.0, it could achieve the maximum cell biomass up to 6.07x108 cfu/ml.%优化嗜热脂肪芽孢杆菌CHB1的5L发酵罐发酵条件.通过单因素法优化发酵罐的通气量、转速、温度、pH等参数,并测定CHB1在5L发酵罐中的生长曲线.结果表明,最佳发酵条件为:转速180 r/min、通气量6 L/min、发酵温度58℃、接种量4%,发酵过程自动流加乙酸控制pH值为8.0,培养21 h.采用自动流加乙酸控制pH值的方法,效果显著,控制pH值为8.0时,发酵效果最好,细胞生物量高达6.07×108 cfu/mL,约是不控制pH值发酵的对照组(3.5× 108 cfu/mL)的2倍.

  1. 嗜热脂肪芽孢杆菌羧酸酯酶的异源表达及酶学性质研究%Heterologous Expression and Characterization of The Carboxylesterase From Geobacillus stearothermophilus

    Institute of Scientific and Technical Information of China (English)

    孙锦霞; 刘钟滨

    2010-01-01

    运用生物信息学技术从嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)CICC 20156中克隆获得羧酸酯酶基因,构建黑曲霉和毕氏酵母表达质粒,将重组质粒分别转化毕氏酵母GS115和黑曲霉pyrG基因缺陷株M54.SDS-PAGE和Westernblot检测显示:携带His标记的外源蛋白在转化真茼宿主中均获得了高效分泌性表达,毕氏酵母和黑曲霉表达的外源蛋白分子质量均约为29ku,蛋白质浓度分别为30.7mg/L和15.3mg/L.生物学活性测定表明,毕氏酵母与黑曲霉表达的羧酸酯酶单位蛋白酶活分别为22 671 U/mg和21 438 U/mg.酶学性质研究显示,两种表达系统表达的重组羧酸酯酶的酶学特性基本一致,它们在40~70℃范围内均显示较好的酶活性,最适反应温度为60℃.70℃处理30min,毕氏酵母和黑曲霉表达重组羧酸酯酶残余酶活分别为76.7%和67.6%,显示出良好的热稳定性.在pH 6.5~8.5的范围内显示较高酶活性,最适pH为8.0.上述研究首次实现了具有良好热稳定性的嗜热脂肪芽孢杆菌羧酸酯酶在黑曲霉和毕氏酵母中高效异源分泌性表达,其中毕氏酵母羧酸酯酶的产量要高于黑曲霉的酶产量,但考虑到重组黑曲霉表达外源性蛋白无需使用任何诱导剂,黑曲霉菌表达热稳定性羧酸酯酶可能具有更好的应用前景.

  2. 嗜热脂肪土芽孢杆菌木聚糖酶基因的合成及其在大肠杆菌中的表达%De novo Synthesis and Expression of a Thermostable Xylanase from Geobacillus stearothermophilus in Escherichia coil

    Institute of Scientific and Technical Information of China (English)

    张志刚; 裴小琼; 吴中柳

    2009-01-01

    The endoxylanase XT6 secreted from Geobacillus stearothermophilus is a particularly attractive candidate for some industrial purposes and was used successfully on an industrial-scale mill trial. The gene was de novo synthesized with the codons adjusted to fit the bias of that of Escherichia coli and constructed into vector pET28a (+). After optimizing the expression conditions, functional xylanase XT6 was over expressed in E. coll with up to 65% of total protein. A maximum xylanase activity of 3,030 U/mL was obtained from cell extract against birchwood xylan. The recombinant XT6 was partly characterized and was similar with those of the native enzyme in G. stearothermophilus. This is the first report on the over expression of a de novo synthesized xylanase XT6 gene from Geobacillus stearothermophilus. Fig 6, Tab 1, Ref 19%来自嗜热脂肪土芽孢杆菌的木聚糖内切酶XT6在工业上有着重要的应用,已经成功应用于工业规模的生产试验.本文作者在合成XT6基因全序列的同时对其密码子进行了优化,且构建重组质粒在大肠杆菌中高表达.通过优化表达条件,功能正常的XT6基因在大肠杆菌中成功过量表达,蛋白表达量占细胞中总蛋白的65%.重组表达的木聚糖内切酶XT6特性和天然酶相似,以桦木木聚糖为底物测定细胞提取物中木聚糖酶活性,最大活性高达3 030 U/mL.本文首次报道了来自嗜热脂肪土芽孢杆菌中木聚糖酶基因全序列的合成和在大肠杆菌中成功过量表达.图6表1参19

  3. 嗜热脂肪芽孢杆菌耐热β-半乳糖苷酶功能位点的累积进化研究%Coevolutionary study on the functionary amino acid residues of Geobacillus stearothermophilus thermostable β-Galactosidase BgaB

    Institute of Scientific and Technical Information of China (English)

    董艺凝; 陈海琴; 张灏; 陈卫

    2015-01-01

    针对嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源耐热p-半乳糖苷酶BgaB底物结合位点构建突变体,研究底物结合位点累积突变的功能进化及水解活性的变化规律.实验结果表明:Y272A与E351R的累积突变体比酶活为野生型酶的3.67倍,为单点突变体Y272A的2倍;Y272A/E351R突变体的Km值增大,其对乳糖的亲和力下降,但由于Kcat值增大,使累积突变体Y272A/E351R催化效率提高为野生型酶催化效率的7.8倍.本研究结果表明底物结合位点间的累积突变可改变底物亲和性,并对水解催化活性进化起到正向促进作用.

  4. 高产耐热脂肪酶嗜热脂肪地芽孢杆菌的选育%Breeding of Geobacillus stearothermophilus for high producing thermostable lipase

    Institute of Scientific and Technical Information of China (English)

    戚薇; 冯艳蕊; 王海宽; 王建玲; 邵静

    2009-01-01

    采用氮离子注入技术对耐热脂肪酶产生菌嗜热脂肪地芽孢杆菌( Geobacillus stearother mophilus )L4进行诱变,筛选获得酶活力有较大提高且传代稳定的正突变菌株L4-3;再对 L4-3进行紫外线诱变,得到脂肪酶活力提高的正突变菌株L4-3-2,其脂肪酶活力达25.71 U/ mL,较原始菌株L4提高511.9%.高产突变株L4-3-2所产脂肪酶的最适作用温度为50℃,70 ℃保温60min的剩余酶活为82%,最适作用pH为7.0~8.0,为一种耐热碱性脂肪酶.外诱变参考文献胡朝阳, 韦晗宁, 李春苑, 等. 产脂肪酶菌株的筛选及酶学特性研究.

  5. The genus Geobacillus and their biotechnological potential.

    Science.gov (United States)

    Hussein, Ali H; Lisowska, Beata K; Leak, David J

    2015-01-01

    The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.

  6. Characterization of two novel plasmids from Geobacillus sp. 610 and 1121 strains.

    Science.gov (United States)

    Kananavičiūtė, Rūta; Butaitė, Elena; Citavičius, Donaldas

    2014-01-01

    We describe two cryptic low molecular weight plasmids, pGTD7 (3279bp) and pGTG5 (1540bp), isolated from Geobacillus sp. 610 and 1121 strains, respectively. Homology analysis of the replication protein (Rep) sequences and detection of ssDNA indicate that both of them replicate via rolling circle mechanism. As revealed by sequence similarities of dso region and Rep protein, plasmid pGTD7 belongs to pC194/pUB110 plasmid family. The replicon of pGTD7 was proved to be functional in another Geobacillus host. For this purpose, a construct pUCK7, containing a replicon of the analyzed plasmid, was created and transferred to G. stearothermophilus NUB3621R strain by electroporation. Plasmid pGTG5, based on Rep protein sequence similarity, was found to be related mostly to some poorly characterized bacterial plasmids. Rep proteins encoded by these plasmids contain conservative motifs that are most similar to those of Microviridae phages. This feature suggests that pGTG5, together with other plasmids containing the same motifs, could constitute a new family of bacterial plasmids. To date, pGTG5 is the smallest plasmid identified in bacteria belonging to the genus Geobacillus. The two plasmids described in this study can be used for the construction of new vectors suitable for biotechnologically important bacteria of the genus Geobacillus.

  7. Genetic engineering of Geobacillus spp.

    Science.gov (United States)

    Kananavičiūtė, Rūta; Čitavičius, Donaldas

    2015-04-01

    Members of the genus Geobacillus are thermophiles that are of great biotechnological importance, since they are sources of many thermostable enzymes. Because of their metabolic versatility, geobacilli can be used as whole-cell catalysts in processes such as bioconversion and bioremediation. The effective employment of Geobacillus spp. requires the development of reliable methods for genetic engineering of these bacteria. Currently, genetic manipulation tools and protocols are under rapid development. However, there are several convenient cloning vectors, some of which replicate autonomously, while others are suitable for the genetic modification of chromosomal genes. Gene expression systems are also intensively studied. Combining these tools together with proper techniques for DNA transfer, some Geobacillus strains were shown to be valuable producers of recombinant proteins and industrially important biochemicals, such as ethanol or isobutanol. This review encompasses the progress made in the genetic engineering of Geobacillus spp. and surveys the vectors and transformation methods that are available for this genus.

  8. Characteristics of Newly Isolated Geobacillus sp. ZY-10 Degrading Hydrocarbons in Crude Oil.

    Science.gov (United States)

    Sun, Yumei; Ning, Zhanguo; Yang, Fan; Li, Xianzhen

    2015-01-01

    An obligately thermophilic strain ZY-10 was isolated from the crude oil in a high-temperature oilfield, which was capable of degrading heavy crude oil. Phenotypic and phylogenetic analysis demonstrated that the isolate should be grouped in the genus Geobacillus, which shared thd highest similarity (99%) of the 16S rDNA sequence to Geobacillus stearothermophilus. However, the major cellular fatty acid iso-15:0 (28.55%), iso-16:0 (24.93%), iso-17:0 (23.53%) and the characteristics including indole production, tolerance to NaN3 and carbohydrate fermentation showed some difference from the recognized species in the genus Geobacillus. The isolate could use tridecane, hexadecane, octacosane and hexatridecane as sole carbon source for cell growth, and the digesting rate of long-chain alkane was lower than that of short-chain alkane. When the isolate was cultured in the heavy crude oil supplement with inorganic salts and trace yeast extract, the concentration of short-chain alkane was significantly increased and the content of long-chain alkane was decreased, suggesting that the larger hydrocarbon components in crude oil were degraded into shorter-chain alkane. Strain ZY-10 would be useful for improving the mobility of crude oil and upgrading heavy crude oil in situ.

  9. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Rawana N. Alkhalili

    2016-08-01

    Full Text Available A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase.

  10. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Science.gov (United States)

    Alkhalili, Rawana N.; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase. PMID:27548162

  11. Rate-limiting steps of stereochemistry retaining ß-D-xylosidase from Geobacillus stearothermophilus acting as substrates

    Science.gov (United States)

    Kinetic experiments of GSXynB2, a ß-xylosidase, acting on 2-nitrophenyl-ß-D-xylopyranoside (2NPX), 4-nitrophenyl-ß-D-xylopyranoside (4NPX), 4-methylumbelliferyl-ß-D-xylopyanoside (MuX) and xylobiose (X2) were conducted at pH 7.0 and 25 °C. Catalysis proceeds in two steps: E + substrate TO E-xylose ...

  12. Thermostable, Raw-Starch-Digesting Amylase from Bacillus stearothermophilus

    OpenAIRE

    Kim, Jaeyoung; Nanmori, Takashi; Shinke, Ryu

    1989-01-01

    An endospore-forming thermophilic bacterium, which produced amylase and was identified as Bacillus stearothermophilus, was isolated from soil. The amylase had an optimum temperature of 70°C and strongly degraded wheat starch granules (93%) and potato starch granules (80%) at 60°C.

  13. Cloning, overexpression, and characterization of a novel alkali-thermostable xylanase from Geobacillus sp. WBI.

    Science.gov (United States)

    Mitra, Suranjita; Mukhopadhyay, Bidhan Chandra; Mandal, Anisur Rahaman; Arukha, Ananta Prasad; Chakrabarty, Kuheli; Das, Gourab Kanti; Chakrabartty, Pran Krishna; Biswas, Swadesh Ranjan

    2015-04-01

    An endo-β-1,4-xylanase gene xynA of a thermophilic Geobacillus sp. WBI from "hot" compost was isolated by PCR amplification. The gene encoding 407 residues were overexpressed in E. coli and purified by Ni-NTA chromatography. The purified enzyme (47 kDa) had a broad pH optimum of 6.0 to 9.0, and was active between 50 and 90 °C. The enzyme retained 100% of its activity when incubated at 65 °C for 1 h under alkaline condition (pH 10.0) and retained 75% activity at pH 11.0. The K(m) and V(max) of the enzyme were 0.9 mg ml(-1) and 0.8 µmol ml(-1) min(-1), respectively. In molecular dynamics simulation at 338 K (65 °C), the enzyme was found to be stable. At an elevated temperature (450 K) specific α-helix and β-turns of the proteins were most denatured. The denaturation was less in WBI compared with its highest homolog G. stearothermophilus T-6 xylanase with difference of six residues. The results predict that these regions are responsible for the improved thermostability observed over related enzymes. The present work encourages further experimental demonstration to understand how these regions contribute thermostability to WBI xylanase. The study noted that WBI produces a xylanase with unique characteristics, specifically alkali-thermostability.

  14. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    Science.gov (United States)

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA.

  15. Cloning and sequence analysis of the heat-stable acrylamidase from a newly isolated thermophilic bacterium, Geobacillus thermoglucosidasius AUT-01.

    Science.gov (United States)

    Cha, Minseok; Chambliss, Glenn H

    2013-02-01

    A thermophilic bacterium capable of degrading acrylamide, AUT-01, was isolated from soil collected from a hot spring area in Montana, USA. The thermophilic strain grew with 0.2 % glucose as the sole carbon source and 1.4 mM acrylamide as the sole nitrogen source. The isolate AUT-01 was identified as Geobacillus thermoglucosidasius based on 16S rDNA sequence. An enzyme from the strain capable of transforming acrylamide to acrylic acid was purified by a series of chromatographic columns. The molecular weight of the enzyme was estimated to be 38 kDa by SDS-PAGE. The enzyme activity had pH and temperature optima of 6.2 and 70 ºC, respectively. The influence of different metals and amino acids on the ability of the purified protein to transform acrylamide to acrylic acid was evaluated. The gene from G. thermoglucosidasius encoding the acrylamidase was cloned, sequenced, and compared to aliphatic amidases from other bacterial strains. The G. thermoglucosidasius gene, amiE, encoded a 38 kDa, monomeric, heat-stable amidase that catalysed the cleavage of carbon-nitrogen bonds in acrylamide. Comparison of the amino acid sequence to other bacterial amidases revealed 99 and 82 % similarity to the amino acid sequences of Bacillus stearothermophilus and Pseudomonas aeruginosa, respectively.

  16. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Amylase enzyme preparation from Bacillus... preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture... Bacillus stearothermophilus. Its characterizing enzyme activity is α-amylase (1,4 α-D...

  17. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  18. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    1994-01-01

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this alpha-amylas

  19. Characterization of a new Bacillus stearothermophilus isolate : a highly thermostable α-amylase-producing strain

    NARCIS (Netherlands)

    Wind, R.D.; Buitelaar, R.M.; Eggink, G.; Huizing, H.J.; Dijkhuizen, L.

    1994-01-01

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known α-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable α-amylase. The half-time of inactivation of this α-amylase was 5.1 h

  20. Transglycosylation of neohesperidin dihydrochalcone by Bacillus stearothermophilus maltogenic amylase.

    Science.gov (United States)

    Cho, J S; Yoo, S S; Cheong, T K; Kim, M J; Kim, Y; Park, K H

    2000-02-01

    Neohesperidin dihydrochalcone (NHDC), a sweet compound derived from citrus fruits, was modified to a series of its oligosaccharides by transglycosylation activity of Bacillus stearothermophilus maltogenic amylase (BSMA). Maltotriose as a donor was reacted with NHDC as an acceptor to glycosylate for the purpose of increasing the solubility of NHDC. Maltosyl-NHDC was a major transglycosylation product among the several transfer products by TLC analysis. The structure of the major transglycosylation product was determined to be maltosyl-alpha-(1,6)-neohesperidin dihydrochalcone by MALDI-TOF/MS and (1)H and (13)C NMR. Maltosyl-NHDC was 700 times more soluble in water and 7 times less sweet than NHDC.

  1. An improved agar medium for growth of Geobacillus thermoglucosidarius strains.

    Science.gov (United States)

    Javed, M; Baghaei-Yazdi, N; Qin, W; Amartey, S

    2017-01-01

    Geobacillus species have potential applications in many biotechnological processes. They are fastidious in their vitamin and amino acid requirements. A new semi-defined agar medium (SDM) was developed which gave consistently high viable cell counts of various G. thermoglucosidasius strains (5×10(8)-6×10(8)cfu/ml) under aerobic conditions at 70°C.

  2. Phylogenomic re-assessment of the thermophilic genus Geobacillus.

    Science.gov (United States)

    Aliyu, Habibu; Lebre, Pedro; Blom, Jochen; Cowan, Don; De Maayer, Pieter

    2016-12-01

    Geobacillus is a genus of Gram-positive, aerobic, spore-forming obligate thermophiles. The descriptions and subsequent affiliations of the species in the genus have mostly been based on polyphasic taxonomy rules that include traditional sequence-based methods such as DNA-DNA hybridization and comparison of 16S rRNA gene sequences. Currently, there are fifteen validly described species within the genus. The availability of whole genome sequences has provided an opportunity to validate and/or re-assess these conventional estimates of genome relatedness. We have applied whole genome approaches to estimate the phylogenetic relatedness among the sixty-three Geobacillus strains for which genome sequences are currently publicly available, including the type strains of eleven validly described species. The phylogenomic metrics AAI (Average Amino acid Identity), ANI (Average Nucleotide Identity) and dDDH (digital DNA-DNA hybridization) indicated that the current genus Geobacillus is comprised of sixteen distinct genomospecies, including several potentially novel species. Furthermore, a phylogeny constructed on the basis of the core genes identified from the whole genome analyses indicated that the genus clusters into two monophyletic clades that clearly differ in terms of nucleotide base composition. The G+C content ranges for clade I and II were 48.8-53.1% and 42.1-44.4%, respectively. We therefore suggest that the Geobacillus species currently residing within clade II be considered as a new genus. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park.

    Science.gov (United States)

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2015-01-01

    Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.

  4. Genetic toolbox for controlled expression of functional proteins in Geobacillus spp

    DEFF Research Database (Denmark)

    Pogrebnyakov, Ivan; Jendresen, Christian Bille; Nielsen, Alex Toftgaard

    2017-01-01

    Species of genus Geobacillus are thermophilic bacteria and play an ever increasing role as hosts for biotechnological applications both in academia and industry. Here we screened a number of Geobacillus strains to determine which industrially relevant carbon sources they can utilize. One...

  5. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus.

    Science.gov (United States)

    Bezuidt, Oliver K; Pierneef, Rian; Gomri, Amin M; Adesioye, Fiyin; Makhalanyane, Thulani P; Kharroub, Karima; Cowan, Don A

    2016-01-01

    The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Our analysis revealed that Geobacillus and Anoxybacillus share a high proportion of genes. Moreover, the results strongly suggest that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.

  6. Bacillus stearothermophilus contains a plasmid-borne gene for alpha-amylase.

    Science.gov (United States)

    Mielenz, J R

    1983-01-01

    The gene for thermostable alpha-amylase from the thermophilic bacterium Bacillus stearothermophilus has been cloned and expressed in Escherichia coli. Each alpha-amylase-producing colony contained at least a 9.7-kilobase-pair (kb) chimeric plasmid composed of the vector pBR322 and a common 5.4-kb HindIII fragment of DNA. B. stearothermophilus contains four plasmids with sizes from 12 kb to over 108 kb. Restriction endonuclease analysis of these naturally occurring plasmids showed they also contain a 5.4-kb HindIII fragment of DNA. Cloning experiments with the four plasmids yielded alpha-amylase-producing E. coli that contained the same 9.7-kb chimeric plasmid. Restriction endonuclease analysis and further recombinant DNA experiments identified a 26-kb plasmid that contains the gene for alpha-amylase. A spontaneous mutant of B. stearothermophilus unable to produce alpha-amylase was missing the 26-kb plasmid but contained a 20-kb plasmid. A 6-kb deletion within the region of the 5.4-kb HindIII fragment yielded the 20-kb plasmid unable to code for alpha-amylase. A nick-translated probe for the alpha-amylase coding region did not hybridize to either plasmid or total cellular DNA from this mutant strain of B. stearothermophilus. These results demonstrate the gene for alpha-amylase is located exclusively on a 26-kb plasmid in B. stearothermophilus with no genetic counterpart present on the chromosome. Images PMID:6193526

  7. Enzymatic production of fructose 1,6-diphosphate using crude cell extract of Bacillus stearothermophilus.

    Science.gov (United States)

    Widjaja, A; Yasuda, M; Ogino, H; Nakajima, H; Ishikawa, H

    1999-01-01

    The enzymatic production of fructose 1,6-diphosphate (FDP) from glucose was performed in a batch reactor and a semibatch reactor using the crude cell extract of Bacillus stearothermophilus which contains all four enzymes required for the synthesis. The experimental results of the yield and the time courses of FDP production obtained using various enzyme concentrations were in good agreement with the theoretical predictions calculated based on the differential equations including the rate equations of the four enzymes, which were determined using the purified enzymes of B. stearothermophilus.

  8. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit

    NARCIS (Netherlands)

    Dongre, Ramachandra; Folkers, Gert E; Gualerzi, Claudio O; Boelens, Rolf; Wienk, Hans

    2016-01-01

    Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the I

  9. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, David A.; Streamer, Margaret; Rowland, Susan L.; King, Glenn F.; Guss, J. Mitchell; Trewhella, J.; Langley, David B.; (Sydney); (Queensland)

    2009-09-02

    The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.

  10. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Lin, Paul P; Rabe, Kersten S; Takasumi, Jennifer L; Kadisch, Marvin; Arnold, Frances H; Liao, James C

    2014-07-01

    The potential advantages of biological production of chemicals or fuels from biomass at high temperatures include reduced enzyme loading for cellulose degradation, decreased chance of contamination, and lower product separation cost. In general, high temperature production of compounds that are not native to the thermophilic hosts is limited by enzyme stability and the lack of suitable expression systems. Further complications can arise when the pathway includes a volatile intermediate. Here we report the engineering of Geobacillus thermoglucosidasius to produce isobutanol at 50°C. We prospected various enzymes in the isobutanol synthesis pathway and characterized their thermostabilities. We also constructed an expression system based on the lactate dehydrogenase promoter from Geobacillus thermodenitrificans. With the best enzyme combination and the expression system, 3.3g/l of isobutanol was produced from glucose and 0.6g/l of isobutanol from cellobiose in G. thermoglucosidasius within 48h at 50°C. This is the first demonstration of isobutanol production in recombinant bacteria at an elevated temperature.

  11. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus

    NARCIS (Netherlands)

    Gaillard, Isabelle; Slotboom, Dirk-Jan; Knol, Jan; Lolkema, Juke S.; Konings, Wil N.

    1996-01-01

    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli

  12. The caa(3) terminal oxidase of Bacillus stearothermophilus - Transient spectroscopy of electron transfer and ligand binding

    NARCIS (Netherlands)

    Giuffre, A; DItri, E; Giannini, S; Brunori, M; UbbinkKok, T; Konings, WN; Antonini, G

    1996-01-01

    The thermophilic bacterium Bacillus stearothermophilus possesses a caa(3)-type terminal oxidase, which was previously purified (De Vrij, W., Heyne, R. I. HL, and Konings, W. N. (1989) Ear. J. Biochem. 178, 763-770). We have carried out extensive kinetic experiments on the purified enzyme by stopped-

  13. Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3.

    Science.gov (United States)

    van Zyl, Leonardo Joaquim; Sunda, Falone; Taylor, Mark Paul; Cowan, Don Arthur; Trindade, Marla Iris

    2015-09-01

    The study of extremophilic phages may reveal new phage families as well as different mechanisms of infection, propagation and lysis to those found in phages from temperate environments. We describe a novel siphovirus, GVE3, which infects the thermophile Geobacillus thermoglucosidasius. The genome size is 141,298 bp (G+C 29.6%), making it the largest Geobacillus spp-infecting phage known. GVE3 appears to be most closely related to the recently described Bacillus anthracis phage vB_BanS_Tsamsa, rather than Geobacillus-infecting phages described thus far. Tetranucleotide usage deviation analysis supports this relationship, showing that the GVE3 genome sequence correlates best with B. anthracis and Bacillus cereus genome sequences, rather than Geobacillus spp genome sequences.

  14. The Geobacillus pan-genome: implications for the evolution of the genus

    Directory of Open Access Journals (Sweden)

    Oliver Keoagile Ignatius Bezuidt

    2016-05-01

    Full Text Available The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Interestingly, our analysis has shown that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.

  15. Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus.

    Science.gov (United States)

    Marks, Timothy J; Hamilton, Paul T

    2014-10-01

    GBK2 is a bacteriophage, isolated from a backyard compost pile, that infects the thermophile Geobacillus kaustophilus. GBK2 has a circularly permuted genome of 39,078 bp with a G+C content of 43 %. Annotation of the genome reveals 62 putative open reading frames (ORFs), 25 of which (40.3 %) show homology to known proteins and 37 of which (59.7 %) are proteins with unknown functions. Twelve of the identified ORFs had the greatest homology to genes from the phage SPP1, a phage that infects the mesophile Bacillus subtilis. The overall genomic arrangement of GBK2 is similar to that of SPP1, with the majority of GBK2 SPP1-like genes coding for proteins involved in DNA replication and metabolism.

  16. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    Science.gov (United States)

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  17. [Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons].

    Science.gov (United States)

    Liu, Qing-kun; Wang, Jun; Li, Guo-qiang; Ma, Ting; Liang, Feng-lai; Liu, Ru-lin

    2008-12-01

    A thermophilic Geobacillus strain DM-2 from a deep-subsurface oil reservoir was investigated on its capability of degrading crude oil under various conditions as well as its characters on degrading hydrocarbons in optimal conditions. The results showed that Geobacillus strain DM-2 was able to degrade crude oil under anoxic wide-range conditions with pH ranging from 4.0 to 10.0, high temperature in the range of 45-70 degrees C and saline concentration ranging from 0.2% to 3.0%. Furthermore, the optimal temperature and pH value for utilizing hydrocarbons by the strain were 60 degrees C and 7.0, respectively. Under such optimal conditions, the strain utilized liquid paraffine emulsified by itself as its carbon source for growth; further analysis by gas chromatography (GC) and infrared absorption spectroscopy demonstrated that it was able to degrade n-alkanes (C14-C30), branched-chain alkanes and aromatic hydrocarbons in crude oil and could also utilize long-chain n-alkanes from C16 to C36, among of which the degradation efficiency of C28 was the highest, up to 88.95%. One metabolite of the strain oxidizing alkanes is fatty acid.While utilizing C16 as carbon source for 5 d, only one fatty acid-acetic acid was detected by HPLC and MS as the product, with the amount of 0.312 g/L, which indicated that it degraded n-alkanes with pathway of inferior terminal oxidation,and then followed by a beta-oxidation pathway. Due to its characters of efficient emulsification, high-performance degradation of hydrocarbons and fatty-acid production under high temperature and anoxic condition, the strain DM-2 may be potentially applied to oil-waste treatment and microbial enhanced heavy oil recovery in extreme conditions.

  18. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  19. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    Science.gov (United States)

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.

  20. High Production of Thermostable β-Galactosidase of Bacillus stearothermophilus in Bacillus subtilis

    OpenAIRE

    1985-01-01

    By cloning the β-galactosidase gene of Bacillus stearothermophilus IAM11001 (ATCC 8005) into Bacillus subtilis, enzyme production was enhanced 50 times. β-Galactosidase could be purified to 80% homogeneity by incubating the cell extract of B. subtilis at 70°C for 15 min, followed by centrifugation to remove the denatured proteins. Because of its heat stability and ease of production, β-galactosidase is suitable for application in industrial processes.

  1. Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus

    Science.gov (United States)

    1994-05-01

    retard the growth of spoilage flora in meat , poultry, and fish is well documented (1, 3, 17, 18, 20, 21). The inhibitory effect of C02 increases...high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products . Int. J...SUBJECT TERMS BACILLUS STEAROTHERMOPHILUS THERM0PHILIC BACTERIA THERM0PHILIC SPOILAGE 15. NUMBER OF PAGES 39 16 PRICE CODE 17. SECURITY

  2. SODIUM ION-DEPENDENT AMINO-ACID-TRANSPORT IN MEMBRANE-VESICLES OF BACILLUS-STEAROTHERMOPHILUS

    NARCIS (Netherlands)

    HEYNE, RIR; DEVRIJ, W; CRIELAARD, W; KONINGS, WN

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (K(t) = 1.0 mM) and L-leucine (K(t) = 0.4 mM). In contrast, the Na+-H+-L-glutamate transport system has a high affinity for sodium io

  3. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  4. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost.

    Science.gov (United States)

    Brumm, Phillip J; Land, Miriam L; Mead, David A

    2016-01-01

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with an average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.

  5. A thiostrepton resistance gene and its mutants serve as selectable markers in Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Wada, Keisuke; Kobayashi, Jyumpei; Furukawa, Megumi; Doi, Katsumi; Ohshiro, Takashi; Suzuki, Hirokazu

    2016-01-01

    Effective utilization of microbes often requires complex genetic modification using multiple antibiotic resistance markers. Because a few markers have been used in Geobacillus spp., the present study was designed to identify a new marker for these thermophiles. We explored antibiotic resistance genes functional in Geobacillus kaustophilus HTA426 and identified a thiostrepton resistance gene (tsr) effective at 50 °C. The tsr gene was further used to generate the mutant tsr(H258Y) functional at 55 °C. Higher functional temperature of the mutant was attributable to the increase in thermostability of the gene product because recombinant protein produced from tsr(H258Y) was more thermostable than that from tsr. In fact, the tsr(H258Y) gene served as a selectable marker for plasmid transformation of G. kaustophilus. This new marker could facilitate complex genetic modification of G. kaustophilus and potentially other Geobacillus spp.

  6. BIOPHYSICAL CHARACTERIZATION OF A THERMOALKALOPHILIC ESTERASE FROM Geobacillus sp.

    Directory of Open Access Journals (Sweden)

    Liam M. Longo

    2013-12-01

    Full Text Available Esterases are a class of enzyme with broad industrial applications in stereo-specific synthetic approaches to metabolic processing of drugs and antimicrobial agents. As such, preparation of an efficient esterase that is robust to denaturation under a wide range of temperatures and solvent conditions would be of great practical utility. To this end, an esterase cloned from the thermophilic bacteria Geobacillus sp. was subjected to biophysical characterization. In the presence of reducing agents (e.g., dithiothreitol, equilibrium studies of heat- and chemicalinduced denaturation were apparently two-state and reversible. Derived parameters from unfolding studies using fluorescence and circular dichroism were similar, indicating that unfolding is largely cooperative. As predicted, the esterase is highly stable, with Tm app = 75.8 °C and delta Gunf app = –69.8 kJ/mol at 25°C. Refolding studies carried out at 25°C reveal the presence of one or more folding intermediates. Taken together, these results suggest that this esterase is an excellent candidate for use in industrial applications, and indicate that the systematic removal of Cys to recover reversible folding in the absence of reducing agents will be a feasible approach to further improving the utility of this enzyme.

  7. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Directory of Open Access Journals (Sweden)

    Kato Tomohisa

    2009-03-01

    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  8. Genome shuffling enhances lipase production of thermophilic Geobacillus sp.

    Science.gov (United States)

    Chalopagorn, Pornchanok; Charoenpanich, Jittima; Choowongkomon, Kiattawee

    2014-10-01

    Thermostable lipases are potential enzymes for biocatalytic application. In this study, the lipase production of Geobacillus sp. CF03 (WT) was improved by genome shuffling. After two rounds of genome shuffling, one fusant strain (FB1) achieved increase lipase activity from the populations generated by ultraviolet irradiation and ethyl methylsulfonate (EMS) mutagenesis. The growth rate and lipase production of FB1 increased highest by 150 and 238 %, respectively, in comparison to the wild type. The fusant enzyme had a significant change in substrate specificity but still prefers the long-chain length substrates. It had an optimum activity at 60 °C, pH at 7.0-8.0, with p-nitrophenyl palmitate (C16) as a substrate and retained about 50 % of their activity after 15 min at 70 °C, pH 8.0. Furthermore, the fusant lipase showed the preference of sesame oil, waste palm oil, and canola oil. Therefore, the genome shuffling strategy has been successful to strain improvement and selecting strain with multiple desirable characteristics.

  9. Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring.

    Science.gov (United States)

    Bryanskaya, Alla V; Rozanov, Alexey S; Slynko, Nikolay M; Shekhovtsov, Sergey V; Peltek, Sergey E

    2015-03-01

    A Gram-reaction-positive, motile, thermophilic spore-forming strain, G1w1(T), was isolated from a hot spring of the Valley of Geysers, Kamchatka (Russia). Based on data from the present polyphasic taxonomic study, including phylogenetic analysis of 16S rRNA and spo0A gene sequences, the strain is considered to represent a novel species of the genus Geobacillus, for which the name Geobacillus icigianus sp. nov. is proposed. The type strain is G1w1(T) ( = VKM B-2853(T) = DSM 28325(T)).

  10. Study on the Optimization of Bio-emulsifier Production by Geobacillus sp.XS2 Based on Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the optimization of bio-emulsifier production by Geobacillus sp.XS2 based on response surface methodology.[Method] Firstly,single factor experiment was conducted to find out the main medium components influencing bio-emulsifier production by Geobacillus sp.XS2,and then response surface model was established by using response surface methodology and Design-Expert 7.0,so as to optimize the fermentation medium for bio-emulsifier production by Geobacillus sp.XS2.[Result] Glucose...

  11. PURIFICATION AND CHARACTERIZATION OF A HIGHLY THERMOSTABLE ALPHA-L-ARABINOFURANOSIDASE FROM GEOBACILLUS CALDOXYLOLYTICUS TK4

    Science.gov (United States)

    The gene encoding an alpha-L-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalyt...

  12. Genome sequence of Geobacillus thermoglucosidasius DSM2542, a platform hosts for biotechnological applications with industrial potential.

    Science.gov (United States)

    Chen, Jingyu; Zhang, Zhengzhi; Zhang, Caili; Yu, Bo

    2015-12-20

    Thermophilic Geobacillus thermoglucosidasius could ferment a wide range of substrates with low nutrient requirements for growth. Here, the first released the complete genome sequence of G. thermoglucosidasius DSM2542 may facilitate the design of rational strategies for further strain improvements and provide information for exploring industrially interesting enzymes with thermotolerant properties.

  13. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    Science.gov (United States)

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  14. Complete Genome Sequence of Geobacillus thermoglucosidasius NCIMB 11955, the Progenitor of a Bioethanol Production Strain

    Science.gov (United States)

    Sheng, Lili; Zhang, Ying

    2016-01-01

    The industrially important thermophile Geobacillus thermoglucosidasius has the potential to produce chemicals and fuels from biomass-derived sugar feedstocks. Here, we present the genome sequence of strain NCIMB 11955, the progenitor of an ethanologenic industrial strain, revealing 11 single-nucleotide polymorphisms and 2 indels compared to strain DSM 2542 and two novel plasmids. PMID:27688322

  15. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies

    Directory of Open Access Journals (Sweden)

    Phillip eBrumm

    2015-05-01

    Full Text Available In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates.. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan.

  16. Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Indian Academy of Sciences (India)

    Venkatakrishna R Jala; V Prakash; N Appaji Rao; H S Savithri

    2002-06-01

    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a m of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32.4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT).

  17. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet?

    Science.gov (United States)

    Zeigler, Daniel R

    2014-01-01

    The genus Geobacillus comprises endospore-forming obligate thermophiles. These bacteria have been isolated from cool soils and even cold ocean sediments in anomalously high numbers, given that the ambient temperatures are significantly below their minimum requirement for growth. Geobacilli are active in environments such as hot plant composts, however, and examination of their genome sequences reveals that they are endowed with a battery of sensors, transporters and enzymes dedicated to hydrolysing plant polysaccharides. Although they appear to be relatively minor members of the plant biomass-degrading microbial community, Geobacillus bacteria have achieved a significant population with a worldwide distribution, probably in large part due to adaptive features of their spores. First, their morphology and resistance properties enable them to be mobilized in the atmosphere and transported long distances. Second, their longevity, which in theory may be extreme, enables them to lie quiescent but viable for long periods of time, accumulating gradually over time to achieve surprisingly high population densities.

  18. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  19. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  20. Graphical procedure for comparing thermal death of Bacillus stearothermophilus spores in saturated and superheated steam.

    Science.gov (United States)

    SHULL, J J; ERNST, R R

    1962-09-01

    The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel.

  1. Kinetic model of Bacillus stearothermophilus. cap alpha. -amylase under process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, W.E.; Teague, W.M.

    1988-11-01

    A model is presented describing starch hydrolysis by Bacillus stearothermophilus ..cap alpha..-amylase at temperatures of 90 to 115/sup 0/C and substrate concentrations of 24 to 36% solids. First order kinetics adequately describe both the enzyme decay and starch hydrolysis reactions. Quantitation of temperature, pH, added calcium and substrate concentration interactive effects on the first order rate constants is aided by applying standard statistical techniques of experimental design and data analysis. A method for determining residual ..cap alpha..-amylase activity in liquefact based on the Phadebas dye release assay, and an osmometry method for determining degree of liquefact hydrolysis are described. Computer implementation of the model allows rapid graphical visualization as well as screening of ideas for improved starch hydrolysis processes.

  2. Optimized culture condition for enhancing lytic performance of waste activated sludge by Geobacillus sp. G1.

    Science.gov (United States)

    Yang, Chunxue; Zhou, Aijuan; Hou, Yanan; Zhang, Xu; Guo, Zechong; Wang, Aijie; Liu, Wenzong

    2014-01-01

    Hydrolysis is known as the rate-limiting step during waste activated sludge (WAS) digestion. The optimization of the culture conditions of Geobacillus sp. G1 for enhancing WAS hydrolysis was conducted in this study with uniform design and response surface methodology. Taking the lysis rate of Escherichia coli as the response, the Plackett-Burman design was used to screen the most important variables. Experimental results showed that the maximum predicted lysis rate of E. coli was 50.9% for 4 h treatment time with concentrations of skim milk, NaCl and NH4SO4 at 10.78, 4.36 and 11.28 g/L, respectively. The optimized dosage ratio of Geobacillus sp. G1 to WAS was 35%:65% (VG1:VWAS). Under this condition, soluble protein was increased to 695 mg chemical oxygen demand (COD)/L, which was 5.0 times higher than that obtained in the control (140 mg COD/L). The corresponding protease activity reached 1.1 Eu/mL. Scanning electron microscopy showed that abundant cells were apparently lysed with treatment of Geobacillus sp. G1.

  3. Biotransformation of eugenol via protocatechuic acid by thermophilic Geobacillus sp. AY 946034 strain.

    Science.gov (United States)

    Giedraityte, Gražina; Kalėdienė, Lilija

    2014-04-01

    The metabolic pathway of eugenol degradation by thermophilic Geobacillus sp. AY 946034 strain was analyzed based on the lack of data about eugenol degradation by thermophiles. TLC, GC-MS, and biotransformation with resting cells showed that eugenol was oxidized through coniferyl alcohol, and ferulic and vanillic acids to protocatechuic acid before the aromatic ring was cleaved. The cell-free extract of Geobacillus sp. AY 946034 strain grown on eugenol showed a high activity of eugenol hydroxylase, feruloyl-CoA synthetase, vanillate-O-demethylase, and protocatechuate 3,4-dioxygenase. The key enzyme, protocatechuate 3,4- dioxygenase, which plays a crucial role in the degradation of various aromatic compounds, was purified 135-fold to homogeneity with a 34% overall recovery from Geobacillus sp. AY 946034. The relative molecular mass of the native enzyme was about 450 ± 10 kDa and was composed of the non-identical subunits. The pH and temperature optima for enzyme activity were 8 and 60°C, respectively. The half-life of protocatechuate 3,4-dioxygenase at the optimum temperature was 50 min.

  4. Cloning and sequence analysis of novel DNA polymerases from thermophilic Geobacillus species isolated from hot springs in Turkey: characterization of a DNA polymerase I from Geobacillus kaue strain NB.

    Science.gov (United States)

    Çağlayan, Melike; Bilgin, Neş'e

    2011-11-01

    The complete coding sequences of the polA genes from seven thermophilic Geobacillus species, isolated from hot springs of Gönen and Hisaralan in Turkey, were cloned and sequenced. The polA genes of these Geobacillus species contain a long open reading frame of 2,637 bp encoding DNA polymerase I with a calculated molecular mass of 99 kDa. Amino acid sequences of these Geobacillus DNA polymerases are closely related. The multiple sequence alignments show all include the conserved amino acids in the polymerase and 5'-3' exonuclease domains, but the catalytic residues varied in 3'-5' exonuclease domain of these Geobacillus DNA polymerases. One of them, DNA polymerase I from Geobacillus kaue strain NB (Gkaue polI) is purified to homogeneity and biochemically characterized in vitro. The optimum temperature for enzymatic activity of Gkaue polI is 70 °C at pH 7.5-8.5 in the presence of 8 mM Mg(2+) and 80-100 mM of monovalent ions. The addition of polyamines stimulates the polymerization activity of the enzyme. Three-dimensional structure of Gkaue polI predicted using homology modeling confirmed the conservation of all the functionally important regions in the polymerase active site.

  5. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms.

    Science.gov (United States)

    Somerton, B; Lindsay, D; Palmer, J; Brooks, J; Flint, S

    2015-08-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm(-2) lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na(+) and low free Ca(2+) and Mg(2+) concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations.

  6. Gene cloning and functional analysis of triple alkane monooxygenases from Geobacillus thermoleovorans B23

    OpenAIRE

    2014-01-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23 which was isolated from a deep subterranean oil reservoir at Niigata, Japan, is capable of degrading broad range alkanes (C11-C32) at 70℃ by terminal oxidation pathway, followed by β-oxidation pathway. Whole genome sequence analysis revealed that B23 did not have alkB-type alkane monooxygenases genes like most alkane degrading bacteria but it carried three gene homologs namely ladAαB23, ladAβB23 and ladBB23 on its chromosome...

  7. Absorption, steady-state fluorescence, fluorescence lifetime, and 2D self-assembly properties of engineered fluorescent S-layer fusion proteins of Geobacillus stearothermophilus NRS 2004/3a.

    Science.gov (United States)

    Kainz, Birgit; Steiner, Kerstin; Möller, Marco; Pum, Dietmar; Schäffer, Christina; Sleytr, Uwe B; Toca-Herrera, José L

    2010-01-11

    S-layer fusion protein technology was used to design four different fluorescent fusion proteins with three different GFP mutants and the red fluorescent protein mRFP1. Their absorption spectra, steady-state fluorescence, and fluorescence lifetime were investigated as a function of pH. It was found that fluorescence intensities and lifetime of the GFP mutant S-layer fusion proteins decreased about 50% between pH 6 and pH 5. The spectral properties of the red S-layer fusion protein were minimally affected by pH variations. These results were compared with His-tagged reference fluorescent proteins, demonstrating that the S-layer protein did not change the general spectral properties of the whole fusion protein. In addition, the pK(a) values of the fluorescent S-layer fusion proteins were calculated. Finally, it was shown that the S-layer fusion proteins were able to self-assemble forming 2D nanostructures of oblique p2 symmetry with lattice parameters of about a = 11 nm, b = 14 nm, and gamma = 80 degrees . The fluorescence tag did not hinder the natural self-assembly process of the S-layer protein. The combination of the fluorescence properties and the self-assembly ability of the engineered fusion proteins make them a promising tool to generate biomimetic surfaces for future applications in nanobiotechnology at a wide range of pH.

  8. Genome Sequence of Geobacillus sp. Strain ZGt-1, an Antibacterial Peptide-Producing Bacterium from Hot Springs in Jordan.

    Science.gov (United States)

    Alkhalili, Rawana N; Hatti-Kaul, Rajni; Canbäck, Björn

    2015-07-23

    This paper reports the draft genome sequence of the firmicute Geobacillus sp. strain ZGt-1, an antibacterial peptide producer isolated from the Zara hot spring in Jordan. This study is the first report on genomic data from a thermophilic bacterial strain isolated in Jordan.

  9. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    Science.gov (United States)

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels.

  10. Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.; Abee, T.; Siezen, R.J.; Kort, R.

    2012-01-01

    Thermophilic spore-forming bacteria are a common cause of contamination in dairy products. We isolated the thermophilic strain Geobacillus thermoglucosidans TNO-09.020 from a milk processing plant and report the complete genome of a dairy plant isolate consisting of a single chromosome of 3.75 Mb.

  11. Complete Genome Sequence of Geobacillus thermoglucosidans TNO-09.020, a Thermophilic Sporeformer Associated with a Dairy-Processing Environment.

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.; Abee, T.; Siezen, R.J.; Kort, R.

    2012-01-01

    Thermophilic spore-forming bacteria are a common cause of contamination in dairy products. We isolated the thermophilic strain Geobacillus thermoglucosidans TNO-09.020 from a milk processing plant and report the complete genome of a dairy plant isolate consisting of a single chromosome of 3.75 Mb.

  12. Conjugative plasmid transfer from Escherichia coli is a versatile approach for genetic transformation of thermophilic Bacillus and Geobacillus species.

    Science.gov (United States)

    Tominaga, Yurie; Ohshiro, Takashi; Suzuki, Hirokazu

    2016-05-01

    We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coli-Geobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10(-7) and 3.8 × 10(-2)/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.

  13. Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.; Abee, T.; Siezen, R.J.; Kort, R.

    2012-01-01

    Thermophilic spore-forming bacteria are a common cause of contamination in dairy products. We isolated the thermophilic strain Geobacillus thermoglucosidans TNO-09.020 from a milk processing plant and report the complete genome of a dairy plant isolate consisting of a single chromosome of 3.75 Mb. ©

  14. Preliminary Characterization of the Probiotic Properties of Candida Famata and Geobacillus Thermoleovorans

    Directory of Open Access Journals (Sweden)

    A Bakhrouf

    2011-12-01

    Full Text Available Background and Objective: Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance, producing metabolites which inhibit the colonization or growth of other microorganisms or by competing with them for resources such as nutrients or space. The aim of this study was to investigate the probiotic properties of Candida famata and Geobacillus thermoleovorans.Material and Methods: In this study, yeast and bacterial strains isolated from pure oil waste were identified using Api 50 CHB and Api Candida Systems and their probiotic properties were studied through antimicrobial activity, biofilm production, adherence assay and enzymatic characterization.Results and Conclusion: According to biochemical analyses, these strains corresponded to Geobacillus thermoleovorans and Candida famata. Antagonism assay results showed that the tested strains have an inhibitory effect against tested pathogenic bacteria. The yeast Candida famata was unable to produce biofilm on Congo Red Agar (CRA, while the bacterial strain was a slime producer. Adherence assays to abiotic surfaces revealed that the investigated strains were fairly adhesive to polystyrene with values ranging from 0.18 to 0.34 at 595 nm. The enzymatic characterization revealed that the tested strains expressed enzymes such as phosphatase alkaline, esterase lipase (C8, amylase, lipase, lecitenase and caseinase. The obtained results may allow the isolated strains to be considered as having the potential to be candidate probiotics.

  15. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    Directory of Open Access Journals (Sweden)

    Anuradha Balan

    2012-01-01

    Full Text Available Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v; yeast extract 1.25% (w/v; NaCl 0.45% (w/v olive oil 0.1% (v/v with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16 and olive oil with optimal activity (100% compared to other substrates.

  16. Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6.

    Science.gov (United States)

    Zhu, Yanbing; Zheng, Wenguang; Ni, Hui; Liu, Han; Xiao, Anfeng; Cai, Huinong

    2015-10-01

    A new lipolytic enzyme gene was cloned from a thermophile Geobacillus sp. JM6. The gene contained 750 bp and encoded a 249-amino acid protein. The recombinant enzyme was expressed and purified from Escherichia coli BL21 (DE3) with a molecular mass of 33.6 kDa. Enzyme assays using p-nitrophenyl esters with different acyl chain lengths as the substrates confirmed its esterase activity, yielding the highest activity with p-nitrophenyl butyrate. When p-nitrophenyl butyrate was used as a substrate, the optimum reaction temperature and pH for the enzyme were 60 °C and pH 7.5, respectively. Geobacillus sp. JM6 esterase showed excellent thermostability with 68% residual activity after incubation at 100 °C for 18 h. A theoretical structural model of strain JM6 esterase was developed with a monoacylglycerol lipase from Bacillus sp. H-257 as a template. The predicted core structure exhibits an α/β hydrolase fold, and a putative catalytic triad (Ser97, Asp196, and His226) was identified. Inhibition assays with PMSF indicated that serine residue is involved in the catalytic activity of strain JM6 esterase. The recombinant esterase showed a relatively good tolerance to the detected detergents and denaturants, such as SDS, Chaps, Tween 20, Tween 80, Triton X-100, sodium deoxycholate, urea, and guanidine hydrochloride.

  17. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    Science.gov (United States)

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  18. Homologi Gen Seleno Metiltransferase (smt pada Geobacillus sp. 20k dengan smt Astragalus bisulcatus

    Directory of Open Access Journals (Sweden)

    Evi Triana

    2010-09-01

    Full Text Available Methylselenocysteine (MSC is the most effective form of selenium against cancer. The synthesis of MSC is catalyzed by seleno methyltransferase (smt through selenium methylation as its detoxification mechanism. Gene of smt has been characterized in selenium rich plant, Astragalus bisulcatus. This experimental laboratoric study was done on Geobacillus sp. 20k. at Lembaga Ilmu Pengetahuan Indonesia (LIPI, Cibinong, Bogor, November 2008–June 2009.Target gene was detected by polymerase chain reaction and sequencing. DNA sequence was analyzed by the basic local alignment search tool (BLAST. The results showed that smt gene and its homolog were generally found on selenium rich plants, such as A. bisulcatus, C. sinensis, and A. thaliana, with similarity more than 85%. Designed primers for amplification of smt are CAAGCCACCATTCAAGGTTT and CCCTACTGATCCCGCAATTA. Amplification of DNA fragments obtained at approximately 190 base pair. DNA sequence and its protein translation were identified as part of the thermophilic enzyme and smt of A. bisulcatus, with 83% similarity for smt genes and 88–90% for protein. In conclusion, Geobacillus sp. 20k have smt genes similar with that of A. bisulcatus, therefore further development of this isolate as a non toxic selenium source for cancer therapy could be taken into consideration.

  19. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    Directory of Open Access Journals (Sweden)

    Xianbo Jia

    2016-01-01

    Full Text Available Catalases are widely used in many scientific areas. A catalase gene (Kat from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli, which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and Km of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.

  20. Magnesium-Calcite Crystal Formation Mediated by the Thermophilic Bacterium Geobacillus thermoglucosidasius Requires Calcium and Endospores.

    Science.gov (United States)

    Murai, Rie; Yoshida, Naoto

    2016-11-01

    Fresh Geobacillus thermoglucosidasius cells grown on soybean-casein digest nutrient agar were inoculated as a parent colony 1 cm in diameter on the surface of an agar gel containing acetate and calcium ions (calcite-promoting hydrogel) and incubated at 60 °C for 4 days, after which magnesium-calcite single crystals of 50-130 µm in size formed within the parent colony. Addition of EDTA, polyacrylic acid or N,N-dicyclohexylcarbodiimide to the calcite-forming hydrogel inhibited the parent colony from forming magnesium-calcite crystals. Inoculation of G. thermoglucosidasius on calcite-forming hydrogel containing 5 µM cadmium and 20 µM zinc resulted in a decrease in the sporulation rate from 55 to 7-8 %. Magnesium-calcite synthesis decreased relative to the sporulation rate. G. thermoglucosidasius exhibited higher adsorption/absorbance of calcium than other Geobacillus sp. that do not mediate calcite formation and higher levels of magnesium accumulation. Calcium ions contained in the calcite-promoting hydrogel and magnesium ions concentrated in G. thermoglucosidasius cells serve as the elements for magnesium-calcite synthesis. The observed decreases in sporulation rate and magnesium-calcite formation support the hypothesis that endospores act as nuclei for the synthesis of magnesium-calcite single crystals.

  1. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    Science.gov (United States)

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.

  2. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  3. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra.

    Science.gov (United States)

    Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra

    2012-01-01

    Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl(2), CaCl(2), and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates.

  4. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    NARCIS (Netherlands)

    Berendsen, Erwin M; Wells-Bennik, Marjon H J; Krawczyk, Antonina O; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T; Kuipers, Oscar P

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria.

  5. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    Science.gov (United States)

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  6. Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Bartosiak-Jentys, Jeremy; Hussein, Ali H; Lewis, Claire J; Leak, David J

    2013-07-01

    The facultatively anaerobic, thermophilic bacterium Geobacillus thermoglucosidasius is being developed as an industrial micro-organism for cellulosic bioethanol production. Process improvement would be gained by enhanced secretion of glycosyl hydrolases. Here we report the construction of a modular system for combining promoters, signal peptide encoding regions and glycosyl hydrolase genes to facilitate selection of the optimal combination in G. thermoglucosidasius. Initially, a minimal three-part E. coli-Geobacillus sp. shuttle vector pUCG3.8 was constructed using Gibson isothermal DNA assembly. The three PCR amplicons contained the pMB1 E. coli origin of replication and multiple cloning site (MCS) of pUC18, the Geobacillus sp. origin of replication pBST1 and the thermostable kanamycin nucleotidyltransferase gene (knt), respectively. G. thermoglucosidasius could be transformed with pUCG3.8 at an increased efficiency [2.8×10(5) c.f.u. (µg DNA)(-1)] compared to a previously reported shuttle vector, pUCG18. A modular cassette for the inducible expression and secretion of proteins in G. thermoglucosidasius, designed to allow the simple interchange of parts, was demonstrated using the endoglucanase Cel5A from Thermotoga maritima as a secretion target. Expression of cel5A was placed under the control of a cellobiose-inducible promoter (Pβglu) together with a signal peptide encoding sequence from a G. thermoglucosidasius C56-YS93 endo-β-1,4-xylanase. The interchange of parts was demonstrated by exchanging the cel5A gene with the 3' region of a gene with homology to celA from Caldicellulosiruptor saccharolyticus and substituting Pβglu for the synthetic, constitutive promoter PUp2n38, which increased Cel5A activity five-fold. Cel5A and CelA activities were detected in culture supernatants indicating successful expression and secretion. N-terminal protein sequencing of Cel5A carrying a C-terminal FLAG epitope confirmed processing of the signal peptide sequence.

  7. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    Science.gov (United States)

    Cordova, Lauren T; Long, Christopher P; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2015-11-01

    We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The corresponding specific glucose and xylose utilization rates are 5.55 g/g/h and 5.24 g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio's RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications.

  8. Higher-order structure in the 3'-terminal domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus

    DEFF Research Database (Denmark)

    Garrett, R A; Christensen, A; Douthwaite, S

    1984-01-01

    An experimental approach was used to determine, and compare, the higher-order structure within domain VI of the 23 S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus. This domain, which encompasses approximately 300 nucleotides at the 3' end of the RNAs, consists of two large ...

  9. Crystal structure of the single-stranded RNA binding protein HutP from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri; Ponnuswamy, Mondikalipudur Nanjappagounder

    2014-04-18

    RNA binding proteins control gene expression by the attenuation/antitermination mechanism. HutP is an RNA binding antitermination protein. It regulates the expression of hut operon when it binds with RNA by modulating the secondary structure of single-stranded hut mRNA. HutP necessitates the presence of l-histidine and divalent metal ion to bind with RNA. Herein, we report the crystal structures of ternary complex (HutP-l-histidine-Mg(2+)) and EDTA (0.5 M) treated ternary complex (HutP-l-histidine-Mg(2+)), solved at 1.9 Å and 2.5 Å resolutions, respectively, from Geobacillus thermodenitrificans. The addition of 0.5 M EDTA does not affect the overall metal-ion mediated ternary complex structure and however, the metal ions at the non-specific binding sites are chelated, as evidenced from the results of structural features.

  10. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    Science.gov (United States)

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  11. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Van Zyl, L J; Taylor, M P; Eley, K; Tuffin, M; Cowan, D A

    2014-02-01

    This study reports the expression, purification, and kinetic characterization of a pyruvate decarboxylase (PDC) from Gluconobacter oxydans. Kinetic analyses showed the enzyme to have high affinity for pyruvate (120 μM at pH 5), high catalytic efficiency (4.75 × 10(5) M(-1) s(-1) at pH 5), a pHopt of approximately 4.5 and an in vitro temperature optimum at approximately 55 °C. Due to in vitro thermostablity (approximately 40 % enzyme activity retained after 30 min at 65 °C), this PDC was considered to be a suitable candidate for heterologous expression in the thermophile Geobacillus thermoglucosidasius for ethanol production. Initial studies using a variety of methods failed to detect activity at any growth temperature (45-55 °C). However, the application of codon harmonization (i.e., mimicry of the heterogeneous host's transcription and translational rhythm) yielded a protein that was fully functional in the thermophilic strain at 45 °C (as determined by enzyme activity, Western blot, mRNA detection, and ethanol productivity). Here, we describe the first successful expression of PDC in a true thermophile. Yields as high as 0.35 ± 0.04 g/g ethanol per gram of glucose consumed were detected, highly competitive to those reported in ethanologenic thermophilic mutants. Although activities could not be detected at temperatures approaching the growth optimum for the strain, this study highlights the possibility that previously unsuccessful expression of pdcs in Geobacillus spp. may be the result of ineffective transcription/translation coupling.

  12. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  13. Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1.

    Science.gov (United States)

    Cuebas, Mariola; Villafane, Aramis; McBride, Michelle; Yee, Nathan; Bini, Elisabetta

    2011-07-01

    Geobacillus kaustophilus strain A1 was previously isolated from a geothermal environment for its ability to grow in the presence of high arsenate levels. In this study, the molecular mechanisms of arsenate resistance of the strain were investigated. As(V) was reduced to As(III), as shown by HPLC analysis. Consistent with the observation that the micro-organism is not capable of anaerobic growth, no respiratory arsenate reductases were identified. Using specific PCR primers based on the genome sequence of G. kaustophilus HTA426, three unlinked genes encoding detoxifying arsenate reductases were detected in strain A1. These genes were designated arsC1, arsC2 and arsC3. While arsC3 is a monocistronic locus, sequencing of the regions flanking arsC1 and arsC2 revealed the presence of additional genes encoding a putative arsenite transporter and an ArsR-like regulator upstream of each arsenate reductase, indicating the presence of sequences with putative roles in As(V) reduction, As(III) export and arsenic-responsive regulation. RT-PCR demonstrated that both sets of genes were co-transcribed. Furthermore, arsC1 and arsC2, monitored by quantitative real-time RT-PCR, were upregulated in response to As(V), while arsC3 was constitutively expressed at a low level. A mechanism for regulation of As(V) detoxification by Geobacillus that is both consistent with our findings and relevant to the biogeochemical cycle of arsenic and its mobility in the environment is proposed.

  14. Purification and characterization of a novel thermo-active amidase from Geobacillus subterraneus RL-2a.

    Science.gov (United States)

    Mehta, Praveen Kumar; Bhatia, Shashi Kant; Bhatia, Ravi Kant; Bhalla, Tek Chand

    2013-07-01

    A thermostable amidase produced by Geobacillus subterraneus RL-2a was purified to homogeneity, with a yield of 9.54 % and a specific activity of 48.66 U mg(-1). The molecular weight of the native enzyme was estimated to be 111 kDa. The amidase of G. subterraneus RL-2a is constitutive in nature, active at a broad range of pH (4.5-11.5) and temperature (40-90 °C) and has a half-life of 5 h and 54 min at 70 °C. Inhibition of enzyme activity was observed in the presence of metal ions, such as Co(2+), Hg(2+), Cu(2+), Ni(2+), and thiol reagents. The presence of mid-chain aliphatic and amino acid amides enhances the enzymatic activity. The acyl transferase activity was detected with propionamide, butyramide and nicotinamide. The enzyme showed moderate stability toward toluene, carbon tetrachloride, benzene, ethylene glycol except acetone, ethanol, butanol, propanol and dimethyl sulfoxide. The K m and V max of the purified amidase with nicotinamide were 6.02 ± 0.56 mM and 132.6 ± 4.4 μmol min(-1) mg(-1) protein by analyzing Michaelis-Menten kinetics. The results of MALDI-TOF analysis indicated that this amidase has homology with the amidase of Geobacillus sp. C56-T3 (gi|297530427). It is the first reported wide-spectrum thermostable amidase from a thermophilic G. subterraneus.

  15. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Hwa Park, K.; Jeong Kim, M.; Seob Lee, H.; Kim, D. [Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University, Suwon (Korea, Republic of); Soo Han, N.; Robyt, J.F. [Laboratory for Carbohydrate Chemistry and Enzymology, Department of Biochemistry and Biophysics, Iowa State University, Ames, IA (United States)

    1998-12-15

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an {alpha}-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached {alpha}-(1-6) to d-glucose, d-mannose, d-galactose, and methyl {alpha}-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked {alpha}-(1-5) and {alpha}-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of {alpha}-(1-3) and/or {alpha}-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked {alpha}-(1-4) to the glucose residue. {alpha},{alpha}-Trehalose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4). Maltitol gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked {alpha}-(1-5) as the major product and d-glucitol gave PTS linked {alpha}-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and {sup 13}C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    Energy Technology Data Exchange (ETDEWEB)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Jeyakanthan, Jeyaraman [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Baba, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shiro, Yoshitsugu [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Sekar, Kanagaraj, E-mail: sekar@serc.iisc.ernet.in [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Yokoyama, Shigeyuki, E-mail: sekar@serc.iisc.ernet.in [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India)

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  17. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.

    Science.gov (United States)

    Cordova, Lauren T; Antoniewicz, Maciek R

    2016-01-01

    Thermophiles are increasingly used as versatile hosts in the biotechnology industry. One of the key advantages of thermophiles is the potential to achieve high rates of feedstock conversion at elevated temperatures. The recently isolated Geobacillus strain LC300 grows extremely fast on xylose, with a doubling time of less than 30 min. In the accompanying paper, the genome of Geobacillus LC300 was sequenced and annotated. In this work, we have experimentally validated the metabolic network model using parallel (13)C-labeling experiments and applied (13)C-metabolic flux analysis to quantify precise metabolic fluxes. Specifically, the complete set of singly labeled xylose tracers, [1-(13)C], [2-(13)C], [3-(13)C], [4-(13)C], and [5-(13)C]xylose, was used for the first time. Isotopic labeling of biomass amino acids was measured by gas chromatography mass spectrometry (GC-MS). Isotopic labeling of carbon dioxide in the off-gas was also measured by an on-line mass spectrometer. The (13)C-labeling data was then rigorously integrated for flux elucidation using the COMPLETE-MFA approach. The results provided important new insights into the metabolism of Geobacillus LC300, its efficient xylose utilization pathways, and the balance between carbon, redox and energy fluxes. The pentose phosphate pathway, glycolysis and TCA cycle were found to be highly active in Geobacillus LC300. The oxidative pentose phosphate pathway was also active and contributed significantly to NADPH production. No transhydrogenase activity was detected. Results from this work provide a solid foundation for future studies of this strain and its metabolic engineering and biotechnological applications.

  18. Hypervariable pili and flagella genes provide suitable new targets for DNA high-resolution melt-based genotyping of dairy Geobacillus spp.

    Science.gov (United States)

    Chauhan, Kanika; Seale, R Brent; Deeth, Hilton C; Turner, Mark S

    2014-10-01

    Although nonpathogenic in nature, spores of Geobacillus are able to attach to surfaces, germinate, and form biofilms, allowing rapid multiplication and persistence within milk powder processing plants, causing final product contamination, and eventually leading to a loss of revenue in terms of downgraded product quality. As a result, Geobacillus spp. have been found to be common contaminants of milk powder worldwide. Genotyping methods can help in gaining insight into the ecology and transmission of these thermophilic bacteria within and between dairy processing plants. The objective of this study was to use the assembled draft genomes of two Geobacillus spp. to identify and test new hypervariable genotyping targets for differentiating closely related dairy Geobacillus isolates. The two Geobacillus spp. strains obtained from high spore count powders were obtained in 2010 (isolate 7E) and in 1995 (isolate 126) and were previously shown to be of same genotype based on a variable number tandem repeat genotyping method. Significant nucleotide sequence variation was found in genes encoding pili and flagella, which were further investigated as suitable loci for a new high-resolution melt analysis (HRMA)-based genotyping method. Three genes encoding pulG (containing prepilin-type N-terminal cleavage domain), pilT (pili retraction protein), and fliW (flagellar assembly protein) were selected as targets for the new pili/flagella gene (PilFla) HRMA genotyping method. The three-gene-based PilFla-HRMA genotyping method differentiated 35 milk powder Geobacillus spp. isolates into 19 different genotype groups (D = 0.93), which compared favorably to the previous method (which used four variable number tandem repeat loci) that generated 16 different genotype groups (D = 0.90). In conclusion, through comparative genomics of two closely related dairy Geobacillus strains, we have identified new hypervariable regions that prove to be useful targets for highly discriminatory genotyping.

  19. Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3.

    Science.gov (United States)

    Zhu, Yanbing; Wang, Guohong; Ni, Hui; Xiao, Anfeng; Cai, Huinong

    2014-04-01

    A new gene encoding a superoxide dismutase (SOD) was identified from a thermophile Geobacillus sp. EPT3 isolated from a deep-sea hydrothermal field in east Pacific. The open reading frame of this gene encoded 437 amino acid residues. It was cloned, overexpressed in Escherichia coli (DE3), and the recombinant protein was purified to homogeneity. Geobacillus sp. EPT3 SOD was of the manganese-containing SOD type, as judged by the insensitivity of the recombinant enzyme to both KCN and H₂O₂, and the activity analysis of Fe or Mn reconstituted SODs by polyacrylamide gel electrophoresis. The recombinant SOD was determined to be a homodimer with monomeric molecular mass of 59.0 kDa. In comparison with other Mn-SODs, the manganese-binding sites are conserved in the sequence (His260, His308, Asp392, His396). The recombinant enzyme had high thermostability at 50 °C. It retained 57 % residual activity after incubation at 90 °C for 1 h, which indicated that this SOD was thermostable. The enzyme also showed striking stability over a wide range of pH 5.0-11.0. At tested conditions, the recombinant SOD from Geobacillus sp. EPT3 showed a relatively good tolerance to some inhibitors, detergents, and denaturants, such as β-mercaptoethanol, dithiothreitol, phenylmethylsulfonyl fluoride, Chaps, Triton X-100, urea, and guanidine hydrochloride.

  20. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, David A.; Streamer, Margaret [School of Molecular and Microbial Biosciences, University of Sydney (Australia); Rowland, Susan L.; King, Glenn F. [Institute of Molecular Biology, University of Queensland (Australia); Guss, J. Mitchell; Trewhella, Jill; Langley, David B., E-mail: d.langley@usyd.edu.au [School of Molecular and Microbial Biosciences, University of Sydney (Australia)

    2009-06-01

    The crystal structure of Sda, a DNA-replication/damage checkpoint inhibitor of sporulation in B. subtilis, has been solved via the MAD method. The subunit arrangement in the crystal has enabled a reappraisal of previous biophysical data, resulting in a new model for the behaviour of the protein in solution. The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.

  1. Geobacillus sp.A27的分离筛选及其淀粉酶酶学性质研究%Isolation of Geobacillus sp.A27 and characterization of its α-amylase

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 高润池; 廖昌珑; 孟艳芬; 唐湘华; 李俊俊; 许波; 黄遵锡

    2011-01-01

    用淀粉平板透明圈法,从分离自腾冲热泉的高温菌中筛选到一株产胞外淀粉酶的菌株,经16sRNA序列比对,在Genbank中与Geobacillus sp.sbs4s有99%同源性,定名为Geobacillus sp.A27.该菌最适生长温度为60-65℃,在LB培养基上不生长,但能在以淀粉为唯一碳源的培养基上生长,并能将来自植物种子、根茎的淀粉质底物水解为以麦芽二糖为主的麦芽寡糖.Geobacillus sp.A27菌株产生的胞外α-淀粉酶最适pH5.6,最适温度70℃.金属离子Fe3+、Cu2+、EDTA对酶活有显著抑制作用,椎测AmyA27可能属于金属酶.粗酶液经饱和硫酸胺沉淀、无水乙醇沉淀、8%分离胶的SDS-PAGE电泳和蛋白质复性,确定该淀粉酶分子量为67kD.%A strain with extracellular amylase was isolated by transparent circle in starch medium from Tengchong hot springs by 16sRNA sequence alignment in Genbank. It has 99% homology with Geobacillus sp. sbs4s, and blongs to Geobacillus sp. lt can grow up in culture medium in which starch was only one carbon source but can not in completely medium LB without starch. The amylase activity on solute starch was optimal at pH5.6 and 70℃.The enzyme efficiently hydrolyzed various types of starch from plant seeds,roots and stems to yield a series of maltooligosaccharides by endo-cleavage mode. The enzyme had different reactions to varity metal ions,it was inhibited significantly by Fe3+, EDTA and Cu2+, it may belong to metal enzymes. The precipitate of the enzymes by ammonium sulfate and ethanol,67kD for amylase molecular weight was determined by 8% separation glue SDSPAGE protein electrophoresis.

  2. 嗜热菌Geobacillus sp.PZH1产木聚糖酶发酵条件的优化%Optimization of fermentation conditions of xylanase from thermophilic bacterium Geobacillus sp.PZH1

    Institute of Scientific and Technical Information of China (English)

    刘培培; 陈学敏; 王石峰; 张波

    2012-01-01

    The culture conditions for alkali-thermo-stable xylanase production from the thermophilic bacterium Geobacillus sp.PZH1 were optimized.Five factors,such as carbon source,nitrogen source,initial pH,inoculum size and fermentation temperature,were researched in single-factor experiment.C/N ratio,initial pH and inoculum size were researched in orthogonal experiment.The results showed that the xylanase yield reached a highest level for 7d culture,and the best combination of fermentation conditions for alkali-thermo-stable xylanase production from the thermophilic bacterium Geobacillus sp.PZH1 was brichwood xylan as carbon source,beef extract as nitrogen source,C N ratio 2∶3,initial pH 7.0,inoculum size 4%,fermentation temperature 50℃ and fermentation time 7d.Under these optimal conditions,the xylanase production from the thermophilic bacterium Geobacillus sp.PZH1 was 2.56IU/mL,1.44 fold higher than that before the optimization.%对嗜热菌Geobacillus sp.PZH1发酵产嗜热耐碱木聚糖酶的培养条件进行了优化研究。对碳源、氮源、初始pH、接种量以及发酵温度五个因素进行了单因素实验,在此基础上对碳氮比、初始pH以及接种量进行了正交实验。结果表明,该菌株在发酵培养7d时有最大产酶量,Geobacillus sp.PZH1发酵产木聚糖酶最佳发酵条件为:桦木木聚糖为碳源,牛肉膏为氮源,碳氮比2∶3,初始pH7.0,接种量4%,发酵温度50℃,发酵时间7d。在最佳产酶条件下进行发酵,木聚糖酶活力可达2.56IU/mL,是未优化前酶活的1.44倍。

  3. Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles.

    Science.gov (United States)

    Straksys, Antanas; Kochane, Tatjana; Budriene, Saulute

    2016-11-15

    The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10°C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology.

  4. Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties.

    Science.gov (United States)

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-08-15

    In baking applications involving starch gelatinisation, surfactants such as sodium stearoyl lactylate (SSL) and monoacylglycerols (MAG) and Bacillus stearothermophilus maltogenic alpha-amylase (BStA) can be used jointly. We here showed that SSL but not MAG delays wheat starch hydrolysis by BStA. The effects were explained in terms of different degrees of adsorption of the surfactants on the starch granule surface, retarded and/or decreased water uptake and delayed availability of gelatinised starch for hydrolysis by BStA. Additional experiments with waxy maize starch led to the conclusion that SSL impacts swelling power and carbohydrate leaching more by covering the starch granule surface than by forming amylose-lipid complexes. SSL postponed starch hydrolysis by BStA, but this did not influence subsequent starch gelation. Finally, when adding SSL or MAG on top of BStA to starch suspensions, the effect of the surfactants on gel strength predominated over that of BStA.

  5. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    Science.gov (United States)

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.

  6. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    Directory of Open Access Journals (Sweden)

    Xiao Zijun

    2012-12-01

    Full Text Available Abstract Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its

  7. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain.

    Science.gov (United States)

    Xiao, Zijun; Wang, Xiangming; Huang, Yunling; Huo, Fangfang; Zhu, Xiankun; Xi, Lijun; Lu, Jian R

    2012-12-06

    Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography-mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic

  8. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1.

    Science.gov (United States)

    Bhalla, Aditya; Bischoff, Kenneth M; Uppugundla, Nirmal; Balan, Venkatesh; Sani, Rajesh K

    2014-08-01

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37kDa) exhibited high specific activity of 461.0U/mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. The endo-xylanase was found to be highly thermostable at 50 and 60°C, retaining 82% and 50% of its original activity, respectively, after 60h. High xylan conversions (92%) were obtained with oat-spelt xylan hydrolysis. Higher glucan and xylan conversions were obtained on AFEX-treated corn stover with an enzyme cocktail containing WSUCF1 endo-xylanase (71% and 47%) as compared to enzyme cocktail containing commercial fungal endo-xylanase (64% and 41%). High specific activity, active at high pH's, wide substrate specificity, and higher hydrolytic activity on recalcitrant lignocellulose, make this endo-xylanase a suitable candidate for biofuel and bioprocess industries.

  9. Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides.

    Science.gov (United States)

    Jain, Ira; Kumar, Vikash; Satyanarayana, T

    2014-10-01

    The β-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The β-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl β-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250μmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate.

  10. Characteristics of thermostable amylopullulanase of Geobacillus thermoleovorans and its truncated variants.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2015-05-01

    The far-UV CD spectroscopic analysis of the secondary structure in the temperature range between 30 and 90°C revealed a compact and thermally stable structure of C-terminal truncated amylopullulanase of Geobacillus thermoleovorans NP33 (gt-apuΔC) with a higher melting temperature [58°C] than G. thermoleovorans NP33 amylopullulanase (gt-apu) [50°C] and the N-terminal truncated amylopullulanase from G. thermoleovorans NP33 (gt-apuΔN) [55°C]. A significant decline in random coils in gt-apuΔC and gt-apuΔN suggested an improvement in conformational stability, and thus, an enhancement in their thermal stability. The improvement in the thermostability of gt-apuΔC was corroborated by the thermodynamic parameters for enzyme inactivation. The Trp fluorescence emission (335 nm) and the acrylamide quenching constant (22.69 M(-1)) of gt-apuΔC indicated that the C-terminal truncation increases the conformational stability of the protein with the deeply buried tryptophan residues. The 8-Anilino Naphthalene Sulfonic acid (ANS) fluorescence experiments indicated the unfolding of gt-apu to expose its hydrophobic surface to a greater extent than the gt-apuΔC and gt-apuΔN.

  11. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Extance, Jonathan; Crennell, Susan J; Eley, Kirstin; Cripps, Roger; Hough, David W; Danson, Michael J

    2013-10-01

    Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcohol via an aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD(+) pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophile Geobacillus thermoglucosidasius has been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain. In silico modelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.

  12. Thermostable lipase from Geobacillus sp. Iso5: bioseparation, characterization and native structural studies.

    Science.gov (United States)

    Mahadevan, Gurumurthy D; Neelagund, Shivayogeeswar E

    2014-05-01

    The extracellular thermoalkaline lipase from Geobacillus sp. Iso5 was purified to homogeneity by ultrafiltration, 6% cross-linked agarose and Phenyl spehrose HIC column chromatography. The final purified lipase resulted in 8.7-fold with 6.2% yield. The relative molecular weight of the enzyme was determined to be a monomer of 47 kDa by SDS-PAGE and MALDI-TOF MS/MS spectroscopy. The purified enzyme exhibit optimum activity at 70 °C and pH 8.0. The enzyme retained above 90% activity at temperatures of 70 °C and about 35% activity at 85 °C for 2 h. However, the stability of the enzyme decreased at the temperature over 90 °C. The enzyme activity was promoted in the presence of Ca(2+) and Mg(2+) and strongly inhibited by HgCl2 , PMSF, DTT, K(+) , Co(2+) , and Zn (2+) . EDTA did not affect the enzyme activity. The secondary structure of purified lipase contains 36% α-helix and 64% β-sheet which was determined by Circular dichromism, FTIR, and Raman Spectroscopy.

  13. Purification and characterization of an extremely stable glucose isomerase from Geobacillus thermodenitrificans TH2.

    Science.gov (United States)

    Konak, L; Kolcuoğlu, Y; Ozbek, E; Colak, A; Ergenoglu, B

    2014-01-01

    The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80 degrees C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4 degrees C and 50 degrees C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4 degrees C and 50 degrees C, respectively. The K(m) and V(max) values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 micromol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.

  14. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  15. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    Directory of Open Access Journals (Sweden)

    Deyaa M. Abol Fotouh

    2016-01-01

    Full Text Available Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v, respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v, 4% (v/v, and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5% or the sole crude enzyme (8.9%. It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.

  16. Crystal structures and ligand binding of PurM proteins from Thermus thermophilus and Geobacillus kaustophilus.

    Science.gov (United States)

    Kanagawa, Mayumi; Baba, Seiki; Watanabe, Yuzo; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Sampei, Gen-Ichi; Kawai, Gota

    2016-03-01

    Crystal structures of 5-aminoimidazole ribonucleotide (AIR) synthetase, also known as PurM, from Thermus thermophilus (Tt) and Geobacillus kaustophilus (Gk) were determined. For TtPurM, the maximum resolution was 2.2 Å and the space group was P21212 with four dimers in an asymmetric unit. For GkPurM, the maximum resolution was 2.2 Å and the space group was P21212 with one monomer in asymmetric unit. The biological unit is dimer for both TtPurM and GkPurM and the dimer structures were similar to previously determined structures of PurM in general. For TtPurM, ∼50 residues at the amino terminal were disordered in the crystal structure whereas, for GkPurM, the corresponding region covered the ATP-binding site forming an α helix in part, suggesting that the N-terminal region of PurM changes its conformation upon binding of ligands. FGAM binding site was predicted by the docking simulation followed by the MD simulation based on the SO4 (2-) binding site found in the crystal structure of TtPurM.

  17. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL from Geobacillus kaustophilus HTA426 (GkaP exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  18. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry.

    Science.gov (United States)

    Abol Fotouh, Deyaa M; Bayoumi, Reda A; Hassan, Mohamed A

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.

  19. Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions

    Science.gov (United States)

    Di Donato, Paola; Romano, Ida; Mastascusa, Vincenza; Poli, Annarita; Orlando, Pierangelo; Pugliese, Mariagabriella; Nicolaus, Barbara

    2017-06-01

    Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.

  20. [Regulation of citrate synthese in bacteria: Comparison of the action of various effectors on the enzymes of Rhodospirillum rurbum and Bacillus stearothermophilus].

    Science.gov (United States)

    Higa, A I; Massarini, E; Cazzulo, J J

    1976-01-01

    A comparative study of the citrate synthases purified from the facultatively photosynthetic bacterium Rhodospirillum rubrum (Gram negative) and the thermophile Bacillus stearothermophilus (Gram positive) was made. The citrate synthase from R. rubrum was activated by KCl (6-fold at 0.1 M KCl) and, less effectively, by NaCl and NH4Cl. Its molecular weight was about 300,000. The enzyme was strongly inhibited by NADH, and this inhibition was counteracted by AMP. The citrate synthase from B. stearothermophilus was little affected by KCl, NaCl and NH4Cl, all of which activated by about 25% at 0.1 M. Its molecular weight was ca 100,000. The enzyme was not affected by NADH or AMP. Both citrate synthases were insensitive to alpah-oxoglutarate concentrations up to 5 mM, and were inhibited by ATP; the B. stearothermophilus enzyme was more strongly inhibited than the R. rubrum enzyme. In both cases the ATP inhibition was strictly competitive towards acetyl-CoA and non-competitive towards oxaloacetate. Both enzymes, in spite of the peculiar physiological properties of their bacterial sources, followed the close correlation between the properties of the citrate synthase and the taxonomical position of the microorganism, proposed by Weitzman and his co-workers.

  1. CLONING, PURIFICATION AND CHARACTERIZATION OF HALOTOLERANT XYLANASE FROM Geobacillus Thermodenitrificans C5

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2016-06-01

    Full Text Available High levels of extracellular xylanase activity (994.50 IU/ml produced by Geobacillus thermodenitrificans C5 originated gene was detected when it was expressed in E. coli BL21 host. Thermostable xylanase (GthC5Xyl was purified to homogeneity and showed a molecular mass of approximately 44 kDa according to SDS-PAGE. The specific activity of the purified GthC5Xyl was up to 1243.125IU/mg with a 9.89-fold purification. The activity of GthC5Xyl was stimulated by CoCl2, MnSO4, CuSO4, MnCl2 but was inhibited by FeSO4, Hg, CaSO4. GthC5Xyl showed resistant to SDS, Tween 20, Triton X-100, β- Mercaptoethanol, PMSF, DTT, NEM and DEPC, SDS, and EDTA. A greater affinity for oat spelt xylan was exhibited by GthC5Xyl with maximum enzymatic activity at 60°C and 6.0 pH. The activity portrayed by GthC5Xyl was found to be acellulytic with stability at high temperature (70°C-80°C and low pH (4.0 to 8.0. Xylobiose and xylopentose were the end products of proficient oat spelt xylanase hydrolysis by GthC5Xyl. High SDS resistance and broader stability of GthC5Xyl proves it to be worthy of impending application in numerous industrial processes especially textile, detergents and animal feed industry.

  2. β-D-xylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme.

    Science.gov (United States)

    Ratnadewi, Anak Agung Istri; Fanani, Muchzainal; Kurniasih, Sari Dewi; Sakka, Makiko; Wasito, Eddy Bagus; Sakka, Kazuo; Nurachman, Zeily; Puspaningsih, Ni Nyoman Tri

    2013-08-01

    The gene encoding a thermostable β-D-xylosidase (GbtXyl43B) from Geobacillus thermoleovorans IT-08 was cloned in pET30a and expressed in Escherichia coli; additionally, characterization and kinetic analysis of GbtXyl43B were carried out. The gene product was purified to apparent homogeneity showing M r of 72 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme exhibited an optimum temperature and pH of 60 °C and 6.0, respectively. In terms of stability, GbtXyl43B was stable at 60 °C at pH 6.0 for 1 h as well as at pH 6-8 at 4 °C for 24 h. The enzyme had a catalytic efficiency (k cat/K M) of 0.0048 ± 0.0010 s(-1) mM(-1) on p-nitrophenyl-β-D-xylopyranoside substrate. Thin layer chromatography product analysis indicated that GbtXyl43B was exoglycosidase cleaving single xylose units from the nonreducing end of xylan. The activity of GbtXyl43B on insoluble xylan was eightfold higher than on soluble xylan. Bioinformatics analysis showed that GbtXyl43B belonging to glycoside hydrolase family 43 contained carbohydrate-binding module (CBM; residues 15 to 149 forming eight antiparallel β-strands) and catalytic module (residues 157 to 604 forming five-bladed β-propeller fold with predicted catalytic residues to be Asp287 and Glu476). CBM of GbtXyl43B dominated by the Phe residues which grip the carbohydrate is proposed as a novel CBM36 subfamily.

  3. Structural elements of thermostability in the maltogenic amylase of Geobacillus thermoleovorans.

    Science.gov (United States)

    Mehta, Deepika; Satyanarayana, T

    2015-08-01

    Maltogenic amylase of Geobacillus thermoleovorans (Gt-MamyIII), which has the highest thermostability among bacterial maltogenic amylases, has been used as a model enzyme to understand the role of networked salt bridges in thermoadaptation. The role of intra-chain cross-domain salt bridge networks in the thermostabilization of maltogenic amylase of G. thermoleovorans was confirmed by site-directed mutagenesis and CD analysis. The amino acid pairs in seven salt bridges have been mutated singly and pair-wise, and their free energy of thermal inactivation has been calculated. Among seven, single and double mutations in the amino acids corresponding to four salt bridges (lys306.glu336, arg403.asp65, arg497.glu523 and lys524.glu523) decrease T1/2 and Tm of Gt-MamyIII significantly. Moreover, glu523 forms networked salt bridges with arg497 and lys524. OE1 of glu523 forms electrostatic interactions with NH1 of arg497, NH2 of arg497 and NZ of lys524 at a distance of 2.33, 2.02 and 0.33Å, respectively. The mutations in three buried amino acids led to a decline in T1/2 and Tm. The buried as well as networked cross-domain salt bridges thus appear to play a significant role in the thermostabilization of Gt-MamyIII. The salt bridges lys306.glu336 and arg403.asp65, which are isolated and partially accessible, play a minor role in its thermostabilization.

  4. Substrate preference of a Geobacillus maltogenic amylase: a kinetic and thermodynamic analysis.

    Science.gov (United States)

    Nasrollahi, Samira; Golalizadeh, Leila; Sajedi, Reza H; Taghdir, Majid; Asghari, S Mohsen; Rassa, Mehdi

    2013-09-01

    The gene encoding a maltogenic amylase (MAase) from a newly isolated strain of thermophilic Geobacillus has been isolated, cloned and expressed. Following purification, biochemical and structural characterization have been performed. The enzyme exhibited maximal activity at a broad temperature range between 55 and 65 °C, clearly higher than that of other dimeric MAses. The optimum pH was 6.0 and catalytic activity increased by of Li(+) and K(+). A noticeable preference was demonstrated for α-, β- and γ-cyclodextrin (CD) compared to polymeric substrates (amylose, amylopectin, glycogen and starch) possibly due to steric interference. The affinity for CD substrates increased in the order of γ-CD>β-CD>α-CD, but k(cat)/K(m) increased as α-CD>β-CD>γ-CD, implying that increased substrate specificities are mainly attribute to kcat. Thermodynamic analysis of the activation process showed that improved activity (decrease in ΔG(#)) is accompanied by increases in activation entropy (ΔS(#)) for aforementioned substrates. Molecular docking on the binding interactions between substrates and active site residues revealed a considerably higher accessible surface area for the active site residues in the presence of α-CD than β-CD, indicating that interactions in the transition state are stronger in the presence of α-CD. This result explains the increased ΔH(#) of the activation process and increased K(m) of the enzyme in the presence of α-CD, compared to that of β-CD. This study, which presents the first detailed comparative analysis on the substrate preference of dimeric MAases for different substrates, may shed some lights into the molecular mechanism of these enzymes.

  5. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption.

    Science.gov (United States)

    Mehta, Deepika; Satyanarayana, T

    2014-05-01

    The gene (1,542 bp) encoding thermostable Ca(2+)-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir-Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.

  6. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  7. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain.

    Science.gov (United States)

    Ben Ali, Mamdouh; Khemakhem, Bassem; Robert, Xavier; Haser, Richard; Bejar, Samir

    2006-02-15

    The implications of Asn315 and Val450 in the atypical starch hydrolysis profile of Bacillus stearothermophilus Amy (a-amylase) US100 have been suggested previously [Ben Ali, Mhiri, Mezghani and Bejar (2001) Enzyme Microb. Tech. 28, 537-542]. In order to confirm this hypothesis, three mutants were generated. Of these two have a single mutation, N315D or V450G, whereas the third contains both mutations. Analysis of the starch breakdown-profile of these three mutants, as well as of the wild-type, allowed us to conclude that each single mutation induces a small variation in the hydrolysis product. However, the major end product produced by the double mutant shifts from maltopentaose/maltohexaose to maltose/maltotriose, confirming the involvement of these two residues in starch hydrolysis. The superimposition of AmyUS100 model with that of Bacillus licheniformis shows in AmyUS100 an additional loop containing residues Ile214 and Gly215. Remarkably, the deletion of these two residues increases the half-life at 100 degrees C from 15 min to approx. 70 min. Moreover, this engineered amylase requires less calcium, 25 p.p.m. instead of 100 p.p.m., to reach maximal thermostability.

  8. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner.

    Science.gov (United States)

    Fukuda, Yohta; Koteishi, Hiroyasu; Yoneda, Ryohei; Tamada, Taro; Takami, Hideto; Inoue, Tsuyoshi; Nojiri, Masaki

    2014-03-01

    The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.

  9. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    Science.gov (United States)

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  10. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08

    NARCIS (Netherlands)

    Rohman, Ali; van Oosterwijk, Niels; Kralj, Slavko; Dijkhuizen, Lubbert; Dijkstra, Bauke W.; Puspaningsih, Ni Nyoman Tri

    2007-01-01

    The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-beta-xylanase and beta-xylosidase. beta-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-beta-xylanase into xylose monomers. The beta-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of

  11. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9.

    Science.gov (United States)

    Zhu, Yanbing; Li, Hebin; Ni, Hui; Xiao, Anfeng; Li, Lijun; Cai, Huinong

    2015-02-01

    A gene (1,254 bp) encoding a lipase was identified from a deep-sea hydrothermal field thermophile Geobacillus sp. EPT9. The open reading frame of this gene encoded 417 amino acid residues. The gene was cloned, overexpressed in Escherichia coli, and the target protein was purified to homogeneity. The purified recombinant enzyme presented a molecular mass of 44.8 kDa. When p-nitrophenyl palmitate was used as a substrate, the recombinant lipase was optimally active at 55 °C and pH 8.5. The recombinant enzyme retained 44 % residual activity after incubation at 80 °C for 1 h, which indicated that Geobacillus sp. EPT9 lipase was thermostable. Homology modeling of strain EPT9 lipase was developed with the lipase from Bacillus sp. L2 as a template. The core structure exhibits an α/β-hydrolase fold and the typical catalytic triad might consist of Ser142, Asp346, and His387. The enzymatic activity of EPT9 lipase was inhibited by addition of phenylmethylsulfonyl fluoride, indicating that it contains serine residue, which plays an important role in the catalytic mechanism.

  12. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota.

    Science.gov (United States)

    Bergdale, Terran E; Hughes, Stephen R; Bang, Sookie S

    2014-04-01

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

  13. Taguchi's experimental design for optimizing the production of novel thermostable polypeptide antibiotic from Geobacillus pallidus SAT4.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmed, Safia; Ismail, Tariq; Hameed, Abdul

    2014-01-01

    Polypeptide antimicrobials used against topical infections are reported to obtain from mesophilic bacterial species. A thermophilic Geobacillus pallidus SAT4 was isolated from hot climate of Sindh Dessert, Pakistan and found it active against Micrococcus luteus ATCC 10240, Staphylococcus aureus ATCC 6538, Bacillus subtilis NCTC 10400 and Pseudomonas aeruginosa ATCC 49189. The current experiment was designed to optimize the production of novel thermostable polypeptide by applying the Taguchi statistical approach at various conditions including the time of incubation, temperature, pH, aeration rate, nitrogen, and carbon concentrations. There were two most important factors that affect the production of antibiotic including time of incubation and nitrogen concentration and two interactions including the time of incubation/pH and time of incubation/nitrogen concentration. Activity was evaluated by well diffusion assay. The antimicrobial produced was stable and active even at 55°C. Ammonium sulphate (AS) was used for antibiotic recovery and it was desalted by dialysis techniques. The resulted protein was evaluated through SDS-PAGE. It was concluded that novel thermostable protein produced by Geobacillus pallidus SAT4 is stable at higher temperature and its production level can be improved statistically at optimum values of pH, time of incubation and nitrogen concentration the most important factors for antibiotic production.

  14. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.

    Science.gov (United States)

    Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing

    2015-10-01

    A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis.

  15. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    Science.gov (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  16. Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325.

    Science.gov (United States)

    Jasilionis, Andrius; Kuisiene, Nomeda

    2015-07-01

    A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His(400)-Glu(401)-X-XHis (404)). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0-8.0, at pH 7.3 and 40°C, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10(-6) M, 2.65 ± 0.03 × 10(-3) micrometer/min, and 5.99 ± 0.07 s(-1), respectively. Peptidase remained stable at a broad pH range of 5.0-8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50°C and 60°C, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60°C for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase.

  17. KINETIC EVALUATION OF ETHANOL-TOLERANT THERMOPHILE Geobacillus thermoglucosidasius M10EXG FOR ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Eny Ida Riyanti

    2016-10-01

    Full Text Available Thermophiles are challenging to be studied for ethanol production using agricultural waste containing lignocellulosic materials rich in hexose and pentose. These bacteria have many advantages such as utilizing a wide range of substrates, including pentose (C5 and hexose (C6. In ethanol production, it is important to use ethanol tolerant strain capable in converting lignocellulosic hydrolysate. This study was aimed to investigate the growth profile of ethanol-tolerant thermophile Geobacillus thermoglucosidasius M10EXG using a defined growth medium consisted of single carbon glucose (TGTV, xylose (TXTV, and a mixture of glucose and xylose (TGXTV, together with the effect of yeast extract additionto the media. The experiments were conducted at the School of Biotechnology and Biomolecular Sciences of The University of New South Wales, Australia on a shake flask fermentation at 60°C in duplicate experiment. Cultures were sampled every two hours and analised for their kinetic parameters including the maximum specific growth rate (µmax, biomass yield (Yx/s, ethanol and by-product yields (acetate and L-lactate (Yp/s, and the doubling time (Td. Results showed that this strain was capable of growing on minimal medium containing glucose or xylose as a single carbon source. This strain utilized glucose and xylose simultaneously (co-fermentation, although there was glucose repression of xylose at relatively low glucose concentration (0.5% w/v, particularly when yeast extract (0.2% w/v was added to the medium. The highest biomass yield was obtained at 0.5 g l-1 on glucose medium; the yield increased when yeast extract was added (at 0.59 g l-1. The highest specific growth rate of 0.25 was obtained in the phase I growth when the strain was grown on a mixture of glucose and xylose (0.5% : 0.5% w/v medium. Diauxic growth was shown on the mixture of glucose, xylose, and yeast extract. The strain produced low level of ethanol (0.1

  18. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus.

    Science.gov (United States)

    Li, Zhu; Duan, Xuguo; Wu, Jing

    2016-03-20

    The thermostability of the maltohexaose-forming α-amylase from Bacillus stearothermophilus (AmyMH) without added Ca(2+) was improved through structure-based rational design in this study. Through comparison of a homologous model structure of AmyMH with the crystal structure of the thermostable α-amylase from Bacillus licheniformis, Ser242, which located at the beginning of fourth α-helix of the central (β/α)8 barrel was selected for mutation to improve thermostability. In addition, an amide-containing side chain (Asn193) and a loop in domain B (ΔIG mutation), which have been proven to be important for thermostability in corresponding position of other α-amylases, were also investigated. Five mutants carrying the mutations ΔIG, N193F, S242A, ΔIG/N193F, and ΔIG/N193F/S242A were generated and their proteins characterized. The most thermostable mutant protein, ΔIG/N193F/S242A, exhibited a 26-fold improvement in half-life at 95°C compared to the wild-type enzyme without added Ca(2+). Mutant ΔIG/N193F/S242A also exhibited substantially better activity and stability in the presence of the chelator EDTA, demonstrating enhanced Ca(2+) binding. These results suggest that mutant ΔIG/N193F/S242A has potential for use in the industrial liquefaction of starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Genome sequencing and annotation of Geobacillus sp. 1017, a hydrocarbon-oxidizing thermophilic bacterium isolated from a heavy oil reservoir (China

    Directory of Open Access Journals (Sweden)

    Vitaly V. Kadnikov

    2017-03-01

    Full Text Available The draft genome sequence of Geobacillus sp. strain 1017, a thermophilic aerobic oil-oxidizing bacterium isolated from formation water of the Dagang high-temperature oilfield, China, is presented here. The genome comprised 3.6 Mbp, with the G + C content of 51.74%. The strain had a number of genes responsible for numerous metabolic and transport systems, exopolysaccharide biosynthesis, and decomposition of sugars and aromatic compounds, as well as the genes related to resistance to metals and metalloids. The genome sequence is available at DDBJ/EMBL/GenBank under the accession no MQMG00000000. This genome is annotated for elucidation of the genomic and phenotypic diversity of new thermophilic alkane-oxidizing bacteria of the genus Geobacillus.

  20. Draft Genome Sequence of Geobacillus icigianus Strain G1w1T Isolated from Hot Springs in the Valley of Geysers, Kamchatka (Russian Federation).

    Science.gov (United States)

    Bryanskaya, Alla V; Rozanov, Aleksey S; Logacheva, Maria D; Kotenko, Anastasia V; Peltek, Sergey E

    2014-10-23

    The Geobacillus icigianus G1w1(T) strain was isolated from sludge samples of unnamed vaporing hydrothermal (97°С) outlets situated in a geyser in the Troinoy region (Valley of Geysers, Kronotsky Nature Reserve, Kamchatka, Russian Federation; 54°25'51.40″N, 160°7'41.40″E). The sequenced and annotated genome is 3,457,810 bp and encodes 3,342 genes.

  1. 嗜热菌Geobacillus sp.HB1的分离鉴定及其α-淀粉酶基因克隆表达

    Institute of Scientific and Technical Information of China (English)

    张光旭; 谢模意; 王凡; 余磊; 梁海秋; 朱萍; 杨辉

    2015-01-01

    淀粉加工和利用是广西的支柱产业,各种优良淀粉酶的开发一直是研究热点。本文从云南腾冲热海温泉分离到一株产嗜热Ⅶ-淀粉酶的菌株Geobacillus sp.HB1,经扩增其16Sr DNA测序比对,表明其与已公布基因组序列的嗜热芽孢菌Geobacillus sp.C56-T3具有99%的相似性。根据Geobacillus sp.C56-T3的AMY2基因设计引物,从Geobacillus sp.HB1中扩增出Ⅶ-淀粉酶基因HBCANH1,其与AMY2基因的核苷酸序列和氨基酸序列的一致性分别为96.7%和98.0%,以p ET-22b(+)为载体构建重组质粒p HBCANH1并在大肠杆菌中获得了外源基因的表达,经破胞后测得表达活力为172.38U/m L。重组酶HBCANH1最适反应温度为70℃,最适反应p H为6.4,具有较好的应用研究前景。

  2. PRODUCTION AND CHARACTERIZATION OF AN ALKALOTHERMOSTABLE, ORGANIC SOLVENT TOLERANT AND SURFACTANT TOLERANT ESTERASE PRODUCED BY A THERMOPHILIC BACTERIUM GEOBACILLUS SP. AGP-04, ISOLATED FROM BAKRESHWAR HOT SPRING, INDIA

    Directory of Open Access Journals (Sweden)

    Amit Ghati

    2013-10-01

    Full Text Available A thermophilic bacteria, Geobacillus sp. AGP-04, isolated from Surya Kund hot spring, Bakreshwar, West Bengal, India was studied in terms of capability of tributyrin hydrolysis and characterization of its thermostable esterase activity using p-nitrophenyl butyrate (PNPB as substrate. The extracellular crude preparation was characterized in terms of pH and temperature optima and stability, organic solvent tolerance capacity and stability, substrate specificity, surfactant tolerance capacity, kinetic parameters and activation/inhibition behavior towards some metal ions and chemicals. Tributyrin agar assay exhibited that Geobacillus sp. AGP-04 secretes an extracellular esterase. The Vmax and Km values of the esterase were found to be 5099 U/Land 103.5µM, respectively in the presence of PNPB as substrate. The optimum temperature and pH, for Geobacillus sp. AGP-04 esterase was 60oC and 8.0, respectively. Although the enzyme activity was not significantly altered by incubating crude extract solution at 20-70oC for 1 hour, the enzyme activity was fully lost at 90oC for same incubation period. The pH stability profile showed that original crude esterase activity is stable at a broad range (pH 5.0-10.0. Moreover, the enzyme was highly organic solvent and surfactant tolerant. The effect of some chemical on crude esterase activity indicated that Geobacillus sp. AGP-04 produce an esterase which contains a serine residue in active site and for its activity -SH groups are essential. Besides, enzyme production was highly induced if fermentation medium contain polysaccharides and oil as carbon source.

  3. Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.

    Science.gov (United States)

    Wissuwa, Juliane; Stokke, Runar; Fedøy, Anita-Elin; Lian, Kjersti; Smalås, Arne Oskar; Steen, Ida Helene

    2016-01-01

    Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential.

  4. Characterization of a thermophilic and halotolerant strain Geobacillus sp.XDF-4%一株耐温耐盐烃降解菌Geobacillus sp. XDF-4性能

    Institute of Scientific and Technical Information of China (English)

    夏文杰; 董汉平; 俞理; 黄立信; 赵婷

    2010-01-01

    从大庆油田龙虎泡区块采油地层水中分离得到一株性能很好的耐盐耐温的兼性烃降解菌XDF-4,经形态观察、生理生化实验和16S rDNA基因序列分析,初步鉴定为地芽孢杆菌Geobacillus sp..该菌在45~75℃、pH 6.5~9.0、盐的质量分数0~10%下生长良好,其最适生长温度为65℃,最适盐的质量分数为 3.0%.研究发现,该菌株能以原油为唯一碳源生长并合成生物表面活性剂, 发酵7 d, 其发酵液表面张力从68.59 mN·m-1降到29.58 mN·m-1.薄层色谱和显色反应表明,XDF-4产出的表面活性剂主要包含:糖类50.26%(质量)、脂类28.47%(质量)、蛋白质15.35%(质量);其临界胶束浓度为22 mg·L-1.GC气相色谱和族组分柱色谱分析表明,烃降解菌Geobacillus sp.XDF-4作用后,原油轻质组分含量明显增加,重质组分含量降低.物理模拟实验表明,该菌可在一次水驱基础上进一步提高采收率5.69%,可有效应用于高温高盐油藏微生物驱现场实验.

  5. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius.

    Science.gov (United States)

    Orenes-Piñero, Esteban; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2013-08-15

    Phenol hydroxylase gene cloning from the thermophilic bacteria Geobacillus thermoglucosidasius was used to develop an effective method to convert tyrosol into the high-added-value compound hydroxytyrosol by hydroxylation. Phenol hydroxylase is a two-component enzyme encoded by pheA1 and pheA2 genes and strictly dependent on NADH and FAD. These two genes were subcloned together as a 2 kb fragment into Escherichia coli Rosetta cells, and the transformants were able to grow and effectively transform up to 5 mM of phenol and tyrosol using IPTG (isopropyl-β-D-thiogalactopyranoside) as inducer. In addition, when a new fragment with a 340 pb upstream pheA1 gene was subcloned, a similar biotransformation rate was attained without IPTG, confirming that this fragment encodes for a phenol hydroxylase promoter that can be recognised by E. coli. Both transformants brought about the total bioconversion of monophenols at a high concentration (5 mM), which represents an increase, both in concentration and in yield, compared with that previously described in the bibliography. The use of the transformant with its constitutive promoter was more interesting from a biotechnological point of view, since it is not necessary to use IPTG. It also gave rise to greater operational stability.

  6. Construction of Geobacillus thermoglucosidasius cDNA library and analysis of genes expressed in response to heat stress.

    Science.gov (United States)

    Tripathy, S; Maiti, N K

    2014-03-01

    Thermophiles exhibit various kinds of molecular mechanisms to survive in extreme environment, but their behavioral responses to long duration stress is poorly understood until date. In the present study, we have prospected for the genes differentially expressed in response to long duration heat stress in thermophilic bacteria. A cDNA library was constructed from Geobacillus thermoglucosidasius grown with a temperature upshift of 10 °C from optimum growth temperature of 45 °C for 16 h. A total of 451 clones from the library were sequenced with accurate base calling that generated 257 high quality sequences with an average read length of 350 bp. We queried our collection of single pass sequences against the NCBI non-redundant database using the BLASTX algorithm and obtained sequences that showed significant similarity (>60%) with heat shock proteins, metabolic proteins and hypothetical proteins. The expressed sequence tags (ESTs) expressed in response to heat stress were annotated that further commuted a strong interaction network among one another. The ESTs based on the best hits were validated by RT-PCR. Di- and tri-nucleotide repeat motifs were also found to be associated with 17 genes involved in heat shock response, metabolism, transport and transcriptional regulation. The present results provide the novel identification of the putative genes responsible for imparting tolerance to bacteria under heat stress and unveil their role for survival of life in environmental extremes.

  7. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A.

    Science.gov (United States)

    Holliday, Michael J; Zhang, Fengli; Isern, Nancy G; Armstrong, Geoffrey S; Eisenmesser, Elan Z

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181-187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520-1523, 2002; Eisenmesser et al. Nature 438(7064): 117-121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351-356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  8. Crystallization and preliminary X-ray crystallographic analysis of L-arabinose isomerase from thermophilic Geobacillus kaustophilus.

    Science.gov (United States)

    Cao, Thinh-Phat; Choi, Jin Myung; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sung-Keun; Jun, Youngsoo; Lee, Dong-Woo; Lee, Sung Haeng

    2014-01-01

    L-arabinose isomerase (AI), which catalyzes the isomerization of L-arabinose to L-ribulose, can also convert D-galactose to D-tagatose, a natural sugar replacer, which is of commercial interest in the food and healthcare industries. Intriguingly, mesophilic and thermophilic AIs showed different substrate preferences and metal requirements in catalysis and different thermostabilities. However, the catalytic mechanism of thermophilic AIs still remains unclear. Therefore, thermophilic Geobacillus kaustophilus AI (GKAI) was overexpressed, purified and crystallized, and a preliminary X-ray diffraction data set was obtained. Diffraction data were collected from a GKAI crystal to 2.70 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 224.12, b = 152.95, c = 91.28 Å, β = 103.61°. The asymmetric unit contained six molecules, with a calculated Matthews coefficient of 2.25 Å(3) Da(-1) and a solvent content of 45.39%. The three-dimensional structure determination of GKAI is currently in progress by molecular replacement and model building.

  9. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  10. Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues.

    Science.gov (United States)

    Verma, Digvijay; Satyanarayana, T

    2012-03-01

    A xylanase gene (xyl-gt) of 1.224 kbp was cloned from the extremely thermophilic bacterium Geobacillus thermoleovorans that encodes a protein containing 408 amino acid residues. Eight conserved regions (signature sequences) of GH family 10 xylanases have been found in the xylanase. When the xylanase gene was cloned and expressed in Escherichia coli BL21 (DE3), the recombinant strain produced xylanase titer of 270 U mg(-1) which is 27-fold higher than the wild strain. It is optimally active at 80°C and pH 8.5 with a high thermostability over broad range of pH (6-12) and temperature (40-100°C). The end products of the hydrolysis of birch wood xylan and agro-residues included xylobiose, xylotriose, xylotetraose and xylopentaose. The xylanase of G. thermoleovorans is one of the rare xylanases that exhibits thermo-alkali-stability, and thus, it is a suitable candidate for pre-bleaching of paper pulps and generating xylooligosaccharides from agro-residues for use as prebiotics.

  11. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field.

    Science.gov (United States)

    Chamkha, Mohamed; Mnif, Sami; Sayadi, Sami

    2008-06-01

    An aerobic, thermophilic, halotolerant and Gram-positive bacterium, designated strain C5, was isolated from a high-temperature oil field, located in Sfax, Tunisia, after enrichment on tyrosol. Strain C5 grew between 25 and 70 degrees C and optimally at 50 degrees C. It grew in the presence of 0-12% (w/v) NaCl, with optimum growth at 3% (w/v) NaCl. Strain C5 was able to degrade tyrosol aerobically, in the presence of 30 g L(-1) NaCl and under warm conditions (55 degrees C). The degradation of tyrosol proceeded via p-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids. The products were confirmed by HPLC and GC-MS analyses. Strain C5 was also found to degrde a wide range of other aromatic compounds, including benzoic, p-hydroxybenzoic, protocatechuic, vanillic, p-hydroxyphenylacetic, 3,4-dihydroxyphenylacetic, cinnamic and ferulic acids, phenol and m-cresol. Moreover, strain C5 was grown on diesel and crude oil as sole carbon and energy sources. Strain C5 was also able to utilize several carbohydrates. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain C5 revealed that it was related to members of the genus Geobacillus, being most closely related to the type strain of G. pallidus (99% sequence similarity). In addition, we report on growth of the type strain of G. pallidus on different aromatic compounds and hydrocarbons.

  12. 嗜热菌Geobacillus sp.HB1的分离鉴定及其α-淀粉酶基因克隆表达

    Institute of Scientific and Technical Information of China (English)

    张光旭; 谢模意; 王凡; 余磊; 梁海秋; 朱萍; 杨辉

    2015-01-01

    淀粉加工和利用是广西的支柱产业,各种优良淀粉酶的开发一直是研究热点.本文从云南腾冲热海温泉分离到一株产嗜热α-淀粉酶的菌株Geobacillus sp.HB1,经扩增其16SrDNA测序比对,表明其与已公布基因组序列的嗜热芽孢菌Geobacillussp.C56-T3具有99%的相似性.根据Geobacillus sp.C56-T3的AMY2基因设计引物,从Geobacillus sp.HB1中扩增出α-淀粉酶基因HBCANH1,其与AMY2基因的核苷酸序列和氨基酸序列的一致性分别为96.7%和98.0%,以pET-22b(+)为载体构建重组质粒pHB-CANH1并在大肠杆菌中获得了外源基因的表达,经破胞后测得表达活力为172.38U/mL.重组酶HBCANH1最适反应温度为70℃,最造反应pH为6.4,具有较好的应用研究前景.

  13. 嗜热耐盐烃降解菌Geobacillus sp.WJ-2降解原油性能研究%Oil-degrading characterization of thermophilic and halotolerant strain Geobacillus sp.WJ-2

    Institute of Scientific and Technical Information of China (English)

    夏文杰; 董汉平; 俞理

    2012-01-01

    Strain WJ-2 which was identified as Geobacillus sp. By morphology, physiological and biochemical identification and analysis of 16S rDNA sequencing was characterized to degrade crude oil and produce biosurfactant at high temperature and salinity. It could grow at 45-75 °C and 0-10% (mass fraction) of NaCl, and the optimal temperature and NaCl concentration is 65 °C and 3.0%, respectively. Under aerobic or anaerobic condition, the strain could utilize crude oil as sole carbon source to synthesize biosurfactant that the yield is 19.89 g/L and 11.69 g/L, respectively. Based on thin layer chromatography and chromogenic reaction, the purified biosurfactant is extracted from two conditions contain different compounds. Gas chromatography and group composition analysis reveal that the strain WJ-2 has a preference of utilizing light components under aerobic condition, degrading heavy components under anaerobic condition and decreasing the viscosity by 71.57% and 77.45% and freezing point of crude oil by 5 °C and 8 °C, respectively. Sand cores were used to simulate the actual environment in Daqing petroleum reservoirs. The results show that the oil recovery of strain WJ-2 under aerobic and anaerobic condition increases by 6.46% and 5.92%, respectively.%以液蜡为唯一碳源,从大庆油田龙虎泡区块采油污水样中分离到一株高效嗜热耐盐的兼性烃降解菌WJ-2,经形态观察、生理生化实验和16S rRNA基因序列分析,初步鉴定为地芽孢杆菌Geobacillus sp..在有氧或者厌氧条件下,该菌均在45~75℃和0~10% NaCl溶液中生长良好,其最适生长温度为65℃,最适盐的质量分数为3.0%;该菌株能以原油为唯一碳源生长并合成生物表面活性剂,发酵7d,生物表面活性剂产量在好氧条件和厌氧条件下分别为19.89 g/L和11.69 g/L.薄层层析和显色反应表明WJ-2产出的表面活性剂组成在好氧和厌氧条件下不相同.经GC气相色谱和族组分柱层析对菌株WJ-2

  14. Gene Cloning, Expression and Charactrization of the Alapha-amylase Gene from Geobacillus sp GXS1%Geobacillus sp.GXS1α-淀粉酶基因的克隆表达及酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    薛蓓; 裴建新; 刘振东; 罗章; 韦宇拓

    2014-01-01

    以地芽孢杆菌Geobacillus sp.GXS1基因组DNA为模板,PCR扩增获得α-淀粉酶基因,构建重组质粒pSE-amy,转化大肠杆菌诱导表达。SDS-PAGE电泳结果显示,有相对分子质量为58 ku的特异性蛋白得到表达。用金属镍亲和层析将重组蛋白进行分离纯化,并进行酶学性质研究。结果表明:重组酶的最适温度为65℃,最适pH 7.0,Km值为2.93 mg/mL,比活力为353.95 U/mg,Tm为75℃。金属离子Cu2+、Fe3+、Fe2+、Zn2+、Co2+、Hg2+、Ag+及金属鏊合剂EDTA对酶活有显著抑制作用, Mn2+、Ba2+对酶活有微弱的抑制作用, K+、Ca2+、Mg2+、巯基乙醇对酶有微弱的激活作用,而其它一些离子如Na+、Li+对酶活影响不大。经HPLC分析表明,重组α-淀粉酶催化淀粉的水解产物为葡萄糖、麦芽糖和麦芽三糖的混合物。%The gene encoding alpha-amylase from Geobacillus sp.GXS1 was amplified by PCR and expressed in JM109 (DE3). The recombinant protein was purified by nickel affinity chromatography.The purified enzyme presented as one protein band on SDS-PAGE with molecular weight of 58 u.The results showed that the optimum tempreture and pH of purified alpha-amylase were 65℃/7.0 respectively. The Vmax,Km,activity and Tm for soluble-starch were shown to be 2.93 mg/mL,353.95 U/mg,75 ℃. The activity of the enzyme was strongly inhibited by Cu2+, Fe3+,Fe2+,Zn2+,Co2+,Hg2+,Ag+and EDTA, while Na+,Li+had no effect on it. Mn2+,Ba2+had a little inhibition and K+,Ca2+,Mg2+had a little activation on its activity. The results of HPLC of products from starch by the amylase demonstrated that the enzyme can be used to produce maltotriose,maltose and glucose from starch.

  15. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23

    OpenAIRE

    2014-01-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23, is capable of degrading a broad range of alkanes (with carbon chain lengths ranging between C11 and C32) at 70 A degrees C. Whole-genome sequence analysis revealed that unlike most alkane-degrading bacteria, strain B23 does not possess an alkB-type alkane monooxygenase gene. Instead, it possesses a cluster of three ladA-type genes, ladA alpha(B23), ladA beta(B23), and ladB (B23), on its chromosome, whose protein products sh...

  16. Characterization of thermophilic strain Geobacillus sp. SY-9 with capability to lyse bacterial Cells%嗜热溶胞土芽孢杆菌(Geobacillus sp.) SY-9的基本特性

    Institute of Scientific and Technical Information of China (English)

    宋玉栋; 胡洪营; 李鑫

    2007-01-01

    从污泥堆肥中分离得到一株具有溶胞能力的嗜热菌SY-9,经形态及16S rDNA测序初步鉴定为土芽孢杆菌属(Geobacillus sp.).对其生长、产酶及溶胞特性进行了研究.结果表明,SY-9最适生长pH值为7~9,最适生长温度约60℃,60℃的世代时间为34min.SY-9培养上清液具有溶胞能力,上清液经过热处理后溶胞能力明显下降,说明溶胞能力主要来自酶的作用.SY-9间歇培养过程中,培养上清液对大肠杆菌(Escherichia coli)的溶胞活性在SY-9进入稳定生长期后逐渐升高,达到最大值后随着培养时间的延长逐渐下降.SY-9培养上清液对受试的5株革兰氏阴性菌(3株大肠杆菌及2株假单胞菌)及部分革兰氏阳性菌(枯草芽孢杆菌、红球菌、球形节杆菌及溶壁微球菌)都具有溶胞能力.

  17. Biophysical and biochemical characterization of a hyperthermostable and Ca2+ -independent alpha-Amylase of an extreme thermophile Geobacillus thermoleovorans.

    Science.gov (United States)

    Uma Maheswar Rao, J L; Satyanarayana, T

    2008-08-01

    alpha-Amylases reported from various microbial sources have been shown to be moderately thermostable and Ca2+ dependent. The bacterial strain used in this investigation is an extremely thermophilic bacterium Geobacillus thermoleovorans that produces a novel alpha-amylase (26 kDa; alpha-amylase gt), which is hyperthermostable (Topt 100 degrees C) and does not require Ca2+ for its activity/stability. These special features of alpha-amylase gt make it applicable in starch saccharification process. The structural aspects of alpha-amylase gt are, therefore, of significant interest to understand its structure-function relationship. The circular dichroism spectroscopic data revealed the native alpha-amylase gt to contain 25% alpha-helix, 21% beta-sheet, and 54% random coils. The addition of urea, at high concentration (8 M), appeared to expose the buried Trp residues of the native alpha-amylase gt to the aqueous environment and thus showed low fluorophore. Fluorescence-quenching experiments using KI, CsCl, N-bromosuccinimide, and acrylamide revealed interesting features of the tryptophan microenvironment. Analysis of Ksv and fa values of KI, CsCl, and acrylamide suggested the overall Trp microenvironment in alpha-amylase to be slightly electropositive. Fluorescence-quenching studies with acrylamide revealed the occurrence of both collisional as well as static quenching processes. There was no change in the alpha-helix content or the enzyme activity with an increase in temperature (60-100 degrees C) that suggested a critical role of the alpha-helix content in maintaining the catalytic activity.

  18. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    Energy Technology Data Exchange (ETDEWEB)

    Agarkar, Vinod B. [Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kimani, Serah W. [Department of Molecular and Cell Biology, University of Cape Town, Rondebosch (South Africa); Cowan, Donald A.; Sayed, Muhammed F.-R. [Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Sewell, B. Trevor, E-mail: sewell@uctvms.uct.ac.za [Electron Microscope Unit, University of Cape Town, Rondebosch (South Africa); Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2006-12-01

    The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method. The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4{sub 2}32, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.

  19. Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation.

    Science.gov (United States)

    Marcolongo, Loredana; La Cara, Francesco; Morana, Alessandra; Di Salle, Anna; Del Monaco, Giovanni; Paixão, Susana M; Alves, Luis; Ionata, Elena

    2015-04-01

    An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5-10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K(+) that showed a stimulating effect, and Fe(2+), Co(2+) and Hg(2+), which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation.

  20. A comparative study of fatty acid profile and formation of biofilm in Geobacillus gargensis exposed to variable abiotic stress.

    Science.gov (United States)

    Al-Beloshei, Noor Essa; Al-Awadhi, Husain; Al-Khalaf, Rania A; Afzal, Mohammad

    2015-01-01

    Understanding bacterial fatty acid (FA) profile has a great taxonomic significance as well as clinical importance for diagnosis issues. Both the composition and nature of membrane FAs change under different nutritional, biotic and (or) abiotic stresses, and environmental stress. Bacteria produce both odd-carbon as well as branched-chain fatty acids (BCFAs). This study was designed to examine the effect of abiotic pressure, including salinity, temperature, pH, and oxinic stress on the growth, development, and FA profile in thermophilic Geobacillus gargensis. Under these stresses, 3 parametric ratios, 2-methyl fatty acids/3-methyl fatty acids (iso-/anteiso-FAs), BCFAs/straight-chain saturated fatty acids (SCSFA), and SCSFAs/straight-chain unsaturated fatty acids (SCUFA), in addition to total lipids affected by variable stresses were measured. Our results indicate that the ratio of total iso-/anteiso-FAs increased at the acidic pH range of 4.1-5.2 and decreased with increasing pH. The reverse was true for salt stress when iso-/anteiso-FAs ratio increased with salt concentration. The BCFAs/SCSFAs and SCSFAs/SCUFAs ratios increased at neutral and alkaline pH and high salt concentration, reduced incubation time, and comparatively high temperature (55-65 °C) of the growth medium. The bacterial total lipid percentage deceased with increasing salt concentration, incubation period, but it increased with temperature. The formation of extracellular polymeric substances was observed under all stress conditions and with the addition of sodium dodecyl sulfate (2 and 5 mmol/L) to the growth medium. The membrane phospholipid composition of the bacterium was analyzed by thin-layer chromatography.

  1. Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Suzuki, Hirokazu; Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi

    2015-01-01

    Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bacillus subtilis. The predominant mutations in G. kaustophilus were A · T→G · C and C · G→T · A transitions, implying that the high mutability of G. kaustophilus was attributable in part to high-temperature-associated DNA damage during growth. Among the genes that may be involved in DNA repair in G. kaustophilus, deletions of the mutSL, mutY, ung, and mfd genes markedly enhanced mutability. These genes were subsequently deleted to construct an error-prone thermophile that showed much higher (700- to 9,000-fold) mutability than the parent strain. The error-prone strain was auxotrophic for uracil owing to the fact that the strain was deficient in the intrinsic pyrF gene. Although the strain harboring Bacillus subtilis pyrF was also essentially auxotrophic, cells became prototrophic after 2 days of culture under uracil starvation, generating B. subtilis PyrF variants with an enhanced half-denaturation temperature of >10°C. These data suggest that this error-prone strain is a promising host for thermoadaptation-directed evolution to generate thermostable variants from thermolabile enzymes.

  2. Isolation and characterization of a thermotolerant ene reductase from Geobacillus sp. 30 and its heterologous expression in Rhodococcus opacus.

    Science.gov (United States)

    Tsuji, Naoto; Honda, Kohsuke; Wada, Mayumi; Okano, Kenji; Ohtake, Hisao

    2014-07-01

    Rhodococcus opacus B-4 cells are adhesive to and even dispersible in water-immiscible hydrocarbons owing to their highly lipophilic nature. In this study, we focused on the high operational stability of thermophilic enzymes and applied them to a biocatalytic conversion in an organic reaction medium using R. opacus B-4 as a lipophilic capsule of enzymes to deliver them into the organic medium. A novel thermo- and organic-solvent-tolerant ene reductase, which can catalyze the enantioselective reduction of ketoisophorone to (6R)-levodione, was isolated from Geobacillus sp. 30, and the gene encoding the enzyme was heterologously expressed in R. opacus B-4. Another thermophilic enzyme which catalyzes NAD(+)-dependent dehydrogenation of cyclohexanol was identified from the gene-expression library of Thermus thermophilus and the gene was coexpressed in R. opacus B-4 for cofactor regeneration. While the recombinant cells were not viable in the mixture due to high reaction temperature, 634 mM of (6R)-levodione could be produced with an enantiopurity of 89.2 % ee by directly mixing the wet cells of the recombinant R. opacus with a mixture of ketoisophorone and cyclohexanol at 50 °C. The conversion rate observed with the heat-killed recombinant cells was considerably higher than that obtained with a cell-free enzyme solution, demonstrating that the accessibility between the substrates and enzymes could be improved by employing R. opacus cells as a lipophilic enzyme capsule. These results imply that a combination of thermophilic enzymes and lipophilic cells can be a promising approach for the biocatalytic production of water-insoluble chemicals.

  3. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David; Blanch, Harvey; Keasling, Jay D.

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.

  4. The quorum-quenching lactonase from Geobacillus caldoxylosilyticus : purification, characterization, crystallization and crystallographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzi, Celine; Schwab, Michael; Elias, Mikael

    2016-08-09

    Lactonases are enzymes that are capable of hydrolyzing various lactones such as aliphatic lactones or acyl-homoserine lactones (AHLs), with the latter being used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases therefore have the ability to quench the chemical communication, also known as quorum sensing, of numerous bacteria, and in particular to inhibit behaviors that are regulated by this system, such as the expression of virulence factors or the production of biofilms. A novel representative from the metallo-β-lactamase superfamily, dubbed GcL, was isolated from the thermophilic bacteriumGeobacillus caldoxylosilyticus. Because of its thermophilic origin, GcL may constitute an interesting candidate for the development of biocontrol agents. Here, we show that GcL is a thermostable enzyme with a half-life at 75°C of 152.5 ± 10 min. Remarkably, it is also shown that GcL is among the most active lactonases characterized to date, with catalytic efficiencies (kcat/Km) against AHLs of greater than 106 M$-$1 s$-$1. The structure of GcL is expected to shed light on the catalytic mechanism of the enzyme and the molecular determinants for the substrate specificity in this class of lactonases. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.6 Å resolution of GcL are reported.

  5. Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77

    Directory of Open Access Journals (Sweden)

    Wajdi Thebti

    2016-01-01

    Full Text Available A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca2+, Mg2+, DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed Km=1 mg mL−1,  Vmax=217.5 U mL−1, Kcat/Km=99 mg mL−1 S−1, Ea=51.5 kJ mol−1, and ΔG⁎=56.5 kJ mol−1.

  6. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23.

    Science.gov (United States)

    Boonmak, Chanita; Takahashi, Yasunori; Morikawa, Masaaki

    2014-05-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23, is capable of degrading a broad range of alkanes (with carbon chain lengths ranging between C11 and C32) at 70 °C. Whole-genome sequence analysis revealed that unlike most alkane-degrading bacteria, strain B23 does not possess an alkB-type alkane monooxygenase gene. Instead, it possesses a cluster of three ladA-type genes, ladAαB23, ladAβB23, and ladB B23, on its chromosome, whose protein products share significant amino acid sequence identities, 49.8, 34.4, and 22.7 %, respectively, with that of ladA alkane monooxygenase gene found on a plasmid of Geobacillus thermodetrificans NG 80-2. Each of the three genes, ladAαB23, ladAβB23, and ladB B23, was heterologously expressed individually in an alkB1 deletion mutant strain, Pseudomonas fluorescens KOB2Δ1. It was found that all three genes were functional in P. fluorescens KOB2Δ1, and partially restored alkane degradation activity. In this study, we suggest that G. thermoleovorans B23 utilizes multiple LadA-type alkane monooxygenases for the degradation of a broad range of alkanes.

  7. Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95.

    Science.gov (United States)

    Gudiukaitė, Renata; Gegeckas, Audrius; Kazlauskas, Darius; Citavicius, Donaldas

    2014-01-01

    GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an α helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents.

  8. Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems.

    Science.gov (United States)

    Sood, Nitu; Lal, Banwari

    2008-02-01

    Paraffin deposition problems, that have plagued the oil industry, are currently remediated by mechanical and chemical means. However, since these methods are problematic, a microbiological approach has been considered. The bacteria, required for the mitigation of paraffin deposition problems, should be able to survive the high temperatures of oil wells and degrade the paraffins under low oxygen and nutrient conditions while sparing the low carbon chain paraffins. In this study, a thermophilic paraffinic wax degrading bacterial strain was isolated from a soil sample contaminated with paraffinic crude oil. The selected strain, Geobacillus TERI NSM, could degrade 600mg of paraffinic wax as the sole carbon source in 1000ml minimal salts medium in 7d at 55 degrees C. This strain was identified as Geobacillus kaustophilus by fatty acid methyl esters analysis and 16S rRNA full gene sequencing. G. kaustophilus TERI NSM showed 97% degradation of eicosane, 85% degradation of pentacosane and 77% degradation of triacontane in 10d when used as the carbon source. The strain TERI NSM could also degrade the paraffins of crude oil collected from oil wells that had a history of paraffin deposition problems.

  9. Enzymatic synthesis of fructose 1,6-diphosphate with ATP regeneration in a batch reactor and a semibatch reactor using purified enzymes of Bacillus stearothermophilus.

    Science.gov (United States)

    Widjaja, A; Shiroshima, M; Yasuda, M; Ogino, H; Nakajima, H; Ishikawa, H

    1999-01-01

    The enzymatic synthesis of fructose 1,6-diphosphate (FDP), an important glycolytic intermediate whose applications in the field of medicine have generated a great deal of interest, was performed in a batch reactor and a semibatch reactor. Using the batch reactor, FDP was first synthesized from glucose by three enzymatic reactions and the ATP consumed was regenerated simultaneously using conjugated enzymes, all of which were purified from crude cell extract of thermophilic Bacillus stearothermophilus. The results of the experiments performed using several enzyme concentrations suggest the existence of an optimum concentration for each enzyme at which the maximum FDP yield can be attained. Since the thermal decomposition of acetyl phosphate reduced the yield of FDP in the batch reactor, the use of a semibatch reactor in which acetyl phosphate was fed continuously was examined. The yield of FDP was improved but the time required to complete the reaction was longer, resulting in a lower productivity of FDP. The yields observed in the two reactors using various enzyme and substrate concentrations were in good agreement with the theoretical predictions calculated based on differential equations derived for the system using the rate equations and the kinetic parameters determined previously. This means that these equations can be used for the analysis of the experimental results as well as for determining the optimum experimental conditions.

  10. Secretory expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris.

    Science.gov (United States)

    Latiffi, Amaliawati Ahmad; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Oslan, Siti Nurbaya; Basri, Mahiran

    2013-01-01

    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.

  11. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus.

    Science.gov (United States)

    Esnoz, A; Periago, P M; Conesa, R; Palop, A

    2006-02-01

    A model for prediction of bacterial spore inactivation was developed. The influence of temperature, pH and NaCl on the heat resistance of Bacillus stearothermophilus spores was described using low-complexity, black box models based on artificial neural networks. Literature data were used to build and train the neural network, and new experimental data were used to evaluate it. The neural network models gave better predictions than the classical quadratic response surface model in all the experiments tried. When the neural networks were evaluated using new experimental data, also good predictions were obtained, providing fail-safe predictions of D values in all cases. The weights and biases values of neurons of the neural network that gave the best results are presented, so the reader can use the model for their own purposes. The use of this non-linear modelling technique makes it possible to describe more accurately interacting effects of environmental factors when compared with classical predictive microbial models.

  12. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans.

    Directory of Open Access Journals (Sweden)

    Deepika Mehta

    Full Text Available BACKGROUND: Maltogenic amylases belong to a subclass of cyclodextrin-hydrolyzing enzymes and hydrolyze cyclodextrins more efficiently than starch unlike typical α-amylases. Several bacterial malto-genic amylases with temperature optima of 40-60°C have been previously characterized. The thermo-adaption, substrate preferences and transglycosylation aspects of extremely thermostable bacterial maltogenic amylases have not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS: The recombinant monomeric and dimeric forms of maltogenic α-amylase (Gt-Mamy of the extremely thermophilic bacterium Geobacillus thermoleovorans are of 72.5 and 145 kDa, which are active optimally at 80°C. Extreme thermostability of this enzyme has been explained by analyzing far-UV CD spectra. Dimerization increases T1/2 of Gt-Mamy from 8.2 h to 12.63 h at 90°C and mediates its enthalpy-driven conformational thermostabilization. Furthermore, dime-rization regulates preferential substrate binding of the enzyme. The substrate preference switching of Gt-Mamy upon dimerization has been confirmed from the substrate-binding affinities of the enzyme for various high and low molecular weight substrates. There is an alteration in Km and substrate hydrolysis efficiency (Vmax/Km of the enzyme (for cyclodex-trins/starch upon dimerization. N-terminal truncation indicated the role of N-terminal 128 amino acids in the thermostabilization and modulation of substrate-binding affinity. This has been confirmed by molecular docking of β-cyclodextrin to Gt-Mamy that indicated the requirement of homodimer formation by the interaction of a few N-terminal residues of chain A with the catalytic residues of (α/β8 barrel of chain B and vice-versa for stable cyclodextrin binding. Site directed mutagenesis provided evidence for the role of N-terminal D109 at the dimeric interface in substrate affinity modulation and thermostabilization. The dimeric Gt-Mamy transglycosylates hydrolytic products of G4/G

  13. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  14. Detection and characterization of chlorinated-dioxin ether cleavage function in the bacterium geobacillus midousuji SH2B-J2

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y.; Hoshina, S. [Jikei Univ. School of Medicine, Tokyo (Japan). Dept. of Laboratory Medicine; Nakamura, M.; Hishiyama, S. [Forestry and Forest Products Research Institute, Ibaraki (Japan); Katayama, Y. [Tokyo Univ. of Agriculture and Technology, Koganei (Japan)

    2004-09-15

    As of now, there are no dioxin degrading microorganism reported that can be applied to bioremediation. The reasons for this are that degrading function acquired from comprehensive screening of bacteria that can be grown with a single carbon source using non-chlorinated dioxin does not function against highly chlorinated dioxins, and that although white rot fungus capable of degrading lignin, a plant polyphenol substance, have been reported to reduce chlorinated dioxins, degrading enzyme remain unclear. Geobacillus midousuji SH2B-J2 (J2 strain) that have been separated by Hoshina et al. have shown to reduce highly chlorinated dioxins in incineration fly ash, as well as octa-chlorinated dioxins (OCDD). However, details of its degrading mechanisms remain unclear. Since the J2 strain is capable of reducing even OCDD, it was hypothesized that the initial degradation reaction is intramolecular ether bond cleavage, so J2 strain dioxin degradation mechanism was analyzed for verification.

  15. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  16. Study on the application of Bacillus stearothermophilus in the detection of antibiotics residues in milk%嗜热脂肪芽孢杆菌检测牛乳中抗生素残留的研究

    Institute of Scientific and Technical Information of China (English)

    赵新淮; 潘琳琳

    2009-01-01

    基于嗜热脂肪芽孢杆菌繁殖分解乳糖产酸,将其应用于原料乳的抗生素残留检测.以嗜热脂肪芽孢杆茵为指示菌株.通过改变指示剂组成、添加增效剂乳糖酶以及对分析条件进行筛选,得到适宜的检测条件参数.具体条件参数为:茵液活茵数5×10~6,茵液添加量0.1 mL,30 g·L~(-1)的乳糖酶溶液0.1 mL,混合指示剂0.1mL,乳样0.1 mL,发酵温度64℃,检测时间2.5 h.与国家标准法(TTC法)相比较,所研究的方法对5种抗生素的检出限更低.结果更易于肉眼判断.%Based on the fact that Bacillus stearothermophilus can degrade lactose to produce acid, Bacillus stearothermophilus was used as indicator strain to detect antibiotics residues in the raw milk. The composition of mixed indicators was modified and lactase was added to milk sample to enhance detection rate. Other detection parameters were also studied. The optimal parameters for detection were as follows: the viable cells of Bacillus stearothermophilus 5×10~6 in 0.1 mL solution, addition of 30 g·L~(-1) lactase solution 0.1 mL, addition volume of indicator 0.1 mL, detection volume of milk 0.1 mL, fermentation temperature 64°C and detection time 2.5 h. Compared with national standard method (TTC method), this new method has lower detection limits for five antibiotics, and is easy to judge result by nude eyes.

  17. 嗜热菌Geobacillus Kaustophilus HTA426磷酸三酯酶在毕赤酵母GS115中的表达%Overexpression of Phosphotriesterase(PTE) Gene from thermophilic Geobacillus Kaustophilus HTA426 in Pichia pastoris GS115

    Institute of Scientific and Technical Information of China (English)

    詹冬玲; 林禹欣; 任玉雪; 刘洋

    2013-01-01

    将嗜热菌Geobacillus Kaustophilus HTA426中的磷酸三酯酶基因转入毕赤酵母GS115中,整合到染色体DNA基因组上,并进行诱导表达.SDS-PAGE和Western-blot试验结果显示,重组蛋白是一个分子量约为50KD的磷酸三酯酶二聚体.酶活检测证明重组蛋白具有较高的磷酸三酯酶活性,其最适温度为70℃,最适pH为10.0.

  18. A putative Type IIS restriction endonuclease GeoICI from Geobacillus sp. – A robust, thermostable alternative to mezophilic prototype BbvI

    Indian Academy of Sciences (India)

    Joanna Zebrowska; Olga Zołnierkiewicz; Marta A Skowron; Agnieszka Zylicz-Stachula; Joanna Jezewska-Frackowiak; Piotr M Skowron

    2016-03-01

    Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers’ biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5′-GCAGC(N8/12)-3′ DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase-MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.

  19. Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2013-07-01

    A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for α-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for α-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K(cat)/K(m)) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme.

  20. The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2015-07-01

    In order to understand the role of N1 domain (1-257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apuΔN has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apuΔN increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir-Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability.

  1. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.).

    Science.gov (United States)

    Lü, Yucai; Li, Ning; Yuan, Xufeng; Hua, Binbin; Wang, Jungang; Ishii, Masaharu; Igarashi, Yasuo; Cui, Zongjun

    2013-12-01

    The effect of a non-cellulolytic bacterium W2-10 (Geobacillus sp.) on the cellulose-degrading activity of a cellulolytic bacterium CTL-6 (Clostridium thermocellum) was determined using cellulose materials (paper and straw) in peptone cellulose solution (PCS) medium under aerobic conditions. The results indicated that in the co-culture, addition of W2-10 resulted in a balanced medium pH, and may provide the required anaerobic environment for CTL-6. Overall, addition of W2-10 was beneficial to CTL-6 growth in the adverse environment of the PCS medium. In co-culture with W2-10, the CTL-6 cellulose degradation efficiency of filter paper and alkaline-treated wheat straw significantly increased up to 72.45 and 37.79 %, respectively. The CMCase activity and biomass of CTL-6 also increased from 0.23 U ml(-1) and 45.1 μg ml(-1) (DNA content) up to 0.47 U ml(-1) and 112.2 μg ml(-1), respectively. In addition, co-culture resulted in accumulation of acetate and propionate up to 4.26 and 2.76 mg ml(-1). This was a respective increase of 2.58 and 4.45 times, in comparison to the monoculture with CTL-6.

  2. Characterization and multiple applications of a highly thermostable and Ca²⁺-independent amylopullulanase of the extreme thermophile Geobacillus thermoleovorans.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2014-12-01

    The amylopullulanase of Geobacillus thermoleovorans NP33 (apu105) is Ca(2+)-independent with a molecular mass of 105 kDa and optimum activity at 80 °C and pH 7.0. The apu105 is extremely thermostable with T 1/2 of 7.8 h at 90 °C and hydrolyzes starch, pullulan, and malto-oligosaccharides, but not panose and cyclodextrins. The low K m values of apu105 (starch, pullulan, amylose, and amylopectin) indicates higher affinity of apu105 than others. The action of the enzyme on mixed substrates (starch and pullulan) confirmed the presence of only one active site for cleaving both α-1,4- and α-1,6- glycosidic linkages. The raw starches are efficiently hydrolyzed into glucose, maltose, and malto-oligosaccharides. Two-step starch saccharification involving pretreatment with apu105 followed by glucoamylase enhanced glucose yield. The supplementation of whole wheat dough with apu105 markedly enhanced the loaf volume, shelf-life, and the texture of bread. The enzyme is compatible with detergents and useful in desizing of cotton fabrics.

  3. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Lin, Yen-Chen; Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-04-22

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, the path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process.

  4. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08

    Energy Technology Data Exchange (ETDEWEB)

    Rohman, Ali [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Airlangga University, Kampus C Unair, Jl. Mulyorejo, Surabaya 60115 (Indonesia); Oosterwijk, Niels van [Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Kralj, Slavko; Dijkhuizen, Lubbert [Laboratory of Microbial Physiology, University of Groningen, Kerklaan 30, 9750 NN Haren (Netherlands); Dijkstra, Bauke W. [Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Puspaningsih, Ni Nyoman Tri, E-mail: nyomantri@unair.ac.id [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Airlangga University, Kampus C Unair, Jl. Mulyorejo, Surabaya 60115 (Indonesia)

    2007-11-01

    The β-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-β-xylanase and β-xylosidase. β-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-β-xylanase into xylose monomers. The β-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, β = 90.5°, and diffracted to 1.80 Å resolution.

  5. Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars.

    Science.gov (United States)

    Verma, Digvijay; Anand, Ashima; Satyanarayana, T

    2013-05-01

    Xylanase encoding gene (1,224 bp) from Geobacillus thermodenitrificans was cloned in pET28a (+) vector and successfully expressed in Escherichia coli BL21 (DE3). The deduced amino acid sequence analysis revealed homology with that of glycosyl hydrolase (GH) 10 family with a high molecular mass (50 kDa). The purified recombinant xylanase is optimally active at pH 9.0 and 70 °C with T(1/2) of 10 min at 80 °C, and retains greater than 85 % activity after exposure to 70 °C for 180 min. The enzyme liberates xylose as well as xylooligosaccharides from birchwood xylan and agro-residues, and therefore, this is an endoxylanase. The xylan hydrolytic products (xylooligosaccharides, xylose, and xylobiose) find application as prebiotics and in the production of bioethanol. The xylanase being thermostable and alkalistable, it has released chromophores and phenolics from the residual lignin of pulps, suggesting its utility in mitigating chlorine requirement in pulp bleaching.

  6. Gene Cloning and Characterization of the Geobacillus thermoleovorans CCR11 Carboxylesterase CaesCCR11, a New Member of Family XV.

    Science.gov (United States)

    Espinosa-Luna, Graciela; Sánchez-Otero, María Guadalupe; Quintana-Castro, Rodolfo; Matus-Toledo, Rodrigo Eloir; Oliart-Ros, Rosa María

    2016-01-01

    A gene encoding a carboxylesterase produced by Geobacillus thermoleovoras CCR11 was cloned in the pET-3b cloning vector, sequenced and expressed in Escherichia coli BL21(DE3). Gene sequence analysis revealed an open reading frame of 750 bp that encodes a polypeptide of 250 amino acid residues (27.3 kDa) named CaesCCR11. The enzyme showed its maximum activity at 50 °C and pH 5-8, with preference for C4 substrates, confirming its esterase nature. It displayed good resistance to temperature, pH, and the presence of organic solvents and detergents, that makes this enzyme biotechnologically applicable in the industries such as fine and oleo-chemicals, cosmetics, pharmaceuticals, organic synthesis, biodiesel production, detergents, and food industries. A 3D model of CaesCCR11 was predicted using the Bacillus sp. monoacyl glycerol lipase bMGL H-257 structure as template (PBD code 3RM3, 99 % residue identity with CaesCCR11). Based on its canonical α/β hydrolase fold composed of 7 β-strands and 6 α-helices, the α/β architecture of the cap domain, the GLSTG pentapeptide, and the formation of distinctive salt bridges, we are proposing CaesCCR11 as a new member of family XV of lipolytic enzymes.

  7. A putative Type IIS restriction endonuclease GeoICI from Geobacillus sp.--A robust, thermostable alternative to mezophilic prototype BbvI.

    Science.gov (United States)

    Zebrowska, Joanna; Zolnierkiewicz, Olga; Skowron, Marta A; Zylicz-Stachula, Agnieszka; Jezewska-Frackowiak, Joanna; Skowron, Piotr M

    2016-03-01

    Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.

  8. Characterisation of a new thermoalkaliphilic bacterium for the production of high-quality hemp fibres, Geobacillus thermoglucosidasius strain PB94A.

    Science.gov (United States)

    Valladares Juárez, A G; Dreyer, J; Göpel, P K; Koschke, N; Frank, D; Märkl, H; Müller, R

    2009-06-01

    Novel thermophilic and alkaliphilic bacteria for the processing of bast fibres were isolated using hemp pectin as substrate. The strain PB94A, which showed the highest growth rate (micro = 0.5/h) was identified as Geobacillus thermoglucosidasius (DSM 21625). The strain grew optimally at 60 degrees C and pH 8.5. During growth on citrus pectin, the strain produced pectinolytic lyases, which were excreted into the medium. In contrast to the commercially available pectinase Bioprep 3000 L, the enzymes from G. thermoglucosidasius PB94A converted pectin isolated from hemp fibres. In addition to hemp pectin, the culture supernatant also degraded citrus, sugar beet and apple pectin and polygalacturonic acid. When hemp fibres were incubated with the cell-free fermentation broth of G. thermoglucosidasius PB94A, the fineness of the fibres increased. The strain did not produce any cellulases, which is important in order to avoid damaging the fibres during incubation. Therefore, these bacteria or their enzymes can be used to produce fine high-quality hemp fibres.

  9. Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor.

    Science.gov (United States)

    Jiang, Tao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Cai, Menghao; Zhang, Yuanxing

    2016-08-17

    Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.

  10. Studies of nitrile oxide cycloadditions, and the phenolic oxidative coupling of vanillin aldoxime by Geobacillus sp. DDS012 from Italian rye grass silage.

    Science.gov (United States)

    Kelly, David R; Baker, Simon C; King, David S; de Silva, Deepa S; Lord, Gwyn; Taylor, Jason P

    2008-02-21

    During studies directed towards the discovery of nitrile hydrolysing enzymes from thermophiles, vanillin aldoxime was incubated with the thermophilic organism, Geobacillus sp. DDS012 isolated from Italian rye grass (Lolium multiflorum) silage. The predominant product was a dihydro-dimer, which could only be characterised by LC-MS. This was initially imagined to be the product of cycloaddition of vanillin aldoxime with the corresponding nitrile oxide, but preparation of the supposed adduct and model studies excluded this possibility. The rate constant for the second order dimerisation of 4-O-acetyl vanillin nitrile oxide was measured (1.21 x 10(-4) M(-1) s(-1), 0.413 M, 25 degrees C) and the (13)C-NMR signal for the nitrile oxide carbon was observed (delta(C) 34.4, br. t (1)J(13)C,(14)N circa 50 Hz). Treatment of vanillin aldoxime with potassium persulfate and iron sulfate gave material with the same LC-MS properties as the natural product, which is therefore identified as 5,5'-dehydro-di-(vanillin aldoxime) 1d formed by phenolic oxidative coupling.

  11. Unique plasmids generated via pUC replicon mutagenesis in an error-prone thermophile derived from Geobacillus kaustophilus HTA426.

    Science.gov (United States)

    Kobayashi, Jyumpei; Tanabiki, Misaki; Doi, Shohei; Kondo, Akihiko; Ohshiro, Takashi; Suzuki, Hirokazu

    2015-11-01

    The plasmid pGKE75-catA138T, which comprises pUC18 and the catA138T gene encoding thermostable chloramphenicol acetyltransferase with an A138T amino acid replacement (CATA138T), serves as an Escherichia coli-Geobacillus kaustophilus shuttle plasmid that confers moderate chloramphenicol resistance on G. kaustophilus HTA426. The present study examined the thermoadaptation-directed mutagenesis of pGKE75-catA138T in an error-prone thermophile, generating the mutant plasmid pGKE75(αβ)-catA138T responsible for substantial chloramphenicol resistance at 65°C. pGKE75(αβ)-catA138T contained no mutation in the catA138T gene but had two mutations in the pUC replicon, even though the replicon has no apparent role in G. kaustophilus. Biochemical characterization suggested that the efficient chloramphenicol resistance conferred by pGKE75(αβ)-catA138T is attributable to increases in intracellular CATA138T and acetyl-coenzyme A following a decrease in incomplete forms of pGKE75(αβ)-catA138T. The decrease in incomplete plasmids may be due to optimization of plasmid replication by RNA species transcribed from the mutant pUC replicon, which were actually produced in G. kaustophilus. It is noteworthy that G. kaustophilus was transformed with pGKE75(αβ)-catA138T using chloramphenicol selection at 60°C. In addition, a pUC18 derivative with the two mutations propagated in E. coli at a high copy number independently of the culture temperature and high plasmid stability. Since these properties have not been observed in known plasmids, the outcomes extend the genetic toolboxes for G. kaustophilus and E. coli.

  12. Characterization of a F280N variant of L-arabinose isomerase from Geobacillus thermodenitrificans identified as a D-galactose isomerase.

    Science.gov (United States)

    Kim, Baek-Joong; Hong, Seung-Hye; Shin, Kyung-Chul; Jo, Ye-Seul; Oh, Deok-Kun

    2014-11-01

    The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cat/K m of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cat/K m of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.

  13. Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1.

    Science.gov (United States)

    Itoi, Yuichi; Horinaka, Mano; Tsujimoto, Yoshiyuki; Matsui, Hiroshi; Watanabe, Kunihiko

    2006-09-01

    A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, extracellularly produces a collagenolytic protease with a large molecular mass. Complete nucleotide sequencing of this gene after gene cloning revealed that the collagenolytic protease is a member of the subtilisin family of serine proteases and consists of a signal sequence for secretion, a prosequence for maturation, a catalytic region, 14 direct repeats of 20 amino acids at the C terminus, and a region with unknown function intervening between the catalytic region and the numerous repeats. Since the unusual repeats are most likely to be cleaved in the secreted form of the enzyme, the intervening region was investigated to determine whether it participates in collagen binding to facilitate collagen degradation. It was found that the mature collagenolytic protease containing the intervening region at the C terminus bound collagen but not the other insoluble proteins, elastin and keratin. Furthermore, the intervening region fused with glutathione S-transferase showed a collagen-binding ability comparable to that of the mature collagenolytic protease. The collagen-binding ability was finally attributed to two-thirds of the intervening region which is rich in beta-strands and is approximately 35 kDa in molecular mass. In the collagenolytic protease from strain MO-1, hydrogen bonds most likely predominate over the hydrophobic interaction for collagen binding, since a higher concentration of NaCl released collagen from the enzyme surface but a nonionic detergent could not. To the best of our knowledge, this is the first report of a thermophilic collagenolytic protease containing the collagen-binding segment.

  14. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yen-Chen [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Naveen, Vankadari [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China); Hsiao, Chwan-Deng, E-mail: hsiao@gate.sinica.edu.tw [Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan (China); Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan (China)

    2016-04-22

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, the path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.

  15. Improvement of Thermal Stability via Outer-Loop Ion Pair Interaction of Mutated T1 Lipase from Geobacillus zalihae Strain T1

    Directory of Open Access Journals (Sweden)

    Mahiran Basri

    2012-01-01

    Full Text Available Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The Tm for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher Tm as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.

  16. 近海温泉中嗜热菌Geobacillus sp.ZH1锰超氧化物歧化酶的克隆与表达%Cloning and expression of manganese-containing superoxide dismutase from offshore hot spring Geobacillus sp.ZH1

    Institute of Scientific and Technical Information of China (English)

    李鹤宾; 洪璇; 黄秀梅

    2012-01-01

    将嗜热菌Geobacillus sp.ZH1的超氧化物歧化酶(supseroxide dismutase,SOD)基因插入表达载体pET-32α(+),在Escherichia coli BL21( DE3)中进行表达,并利用亲和层析纯化重组超氧化物歧化酶.将制备的脱辅SOD进行Mn2+和Fe2+金属重构后,得到的Mn2+重构SOD的比活力达668U/mg,Fe2+重构Fe-SOD没有活性,说明ZH1菌株的超氧化物歧化酶为Mn-SOD.凝胶过滤及SDS-PAGE分析显示,Mn2+重构SOD为同聚二聚体,亚基分子量为71.7 kDa.这些研究结果为进一步研究该酶的生化特性及酶的定向进化研究奠定了良好的基础.%The gene encoding a putative superoxide dismutase from thermophilic Geobacillus sp. ZH1 was cloned into the expression vector pET-32a ( + ) and overexpressed in Escherichia coli BL21 (DE3). Recombinant superoxide dismutase was purified using affinity chromatography. The prepared apo-SOD was reconstituted with either Mn or Fe by means of incubation with appropriate metal salts. The molecular mass of Mn2+ -reconstituted SOD was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and size exclusion chromatography. Mn2 +-reconstituted SOD exhibited the specific activity of 668 U/mg and Fe2 +-reconstituted SOD had no specific activity which showed that SOD from strain ZH1 was Mn-SOD. The Mn2 +-reconstituted SOD was determined as homodimer with a monomeric molecular mass of 71. 7 kDa. These results laid a foundation for further research of biochemical characteristics and directed evolution of this enzyme.

  17. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment

    Science.gov (United States)

    Caspers, Martien P. M.; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  18. Identification and Characterization of a Novel Thermophilic Geobacillus Degrading Phenol%一株嗜热菌的分离鉴定及其苯酚降解特性

    Institute of Scientific and Technical Information of China (English)

    唐赟; 刘沐之; 梁凤来; 冯露; 刘如林

    2006-01-01

    从油田地层水中分离到一株嗜热并高效降解苯酚的BF80菌株,其最适生长和降解苯酚的温度为60℃~65℃.利用API 50 CHB/E系统和16S rDNA序列分析对菌株BF80进行了分类鉴定,该菌株的形态和生理生化特性与Geobacillus thermoglucosidasius基本相同,其16S rDNA序列与Geobacillus thermoglucosidasius BGSC W95A1(=ATCC 43742)的相似性为99.22%.在接种量为1%的条件下,该菌在20 h内能完全降解3 mmol/L的苯酚;在pH值5.5~9.0范围内能保持对苯酚良好的降解能力,并在12 mmol/L苯酚的无机盐培养基中也能生长和降解苯酚,表明该菌能耐受高浓度苯酚并可用于高温含酚废水的生物处理.

  19. Cloning and Bioinformatics Analysis of the Sulfatase Gene from Thermophilic Geobacillus sp.EPT3%嗜热菌EPT3硫酸酯酶基因的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    朱艳冰; 倪辉; 蔡慧农

    2013-01-01

    利用筛选培养基筛选到一株产硫酸酯酶的深海嗜热菌EPT3,通过16S rDNA分析,将该菌株归属为Geobacillus sp.EPT3.以菌株EPT3的基因组DNA为模板,使用硫酸酯酶引物进行PCR扩增,将目的基因克隆至pUCm-T载体后进行测序.测序结果表明,克隆基因的大小为1956 bp,预测编码651个氨基酸残基.对该基因编码蛋白质进行了生物信息学分析,结果表明,该蛋白质序列与其他菌株来源的硫酸酯酶具有很高的相似性,提示本研究克隆的基因编码硫酸酯酶.该硫酸酯酶的理论分子质量为75.1 ku,理论等电点为6.90.采用同源建模法建立了Geobacillus sp.EPT3硫酸酯酶的三维结构模型,为球状结构.

  20. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM

    Directory of Open Access Journals (Sweden)

    Basri Mahiran

    2008-12-01

    Full Text Available Abstract Background Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost. Results Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583. The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3°C, medium volume (50 ml, inoculum size (1%, agitation rate (static condition, incubation period (24 h and initial pH (5.8. The experimental lipase activity was 0.47 Uml-1 at optimum condition (4.7-fold increase, which compared well to the maximum predicted values by ANN (0.47 Uml-1 and RSM (0.476 Uml-1, whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively. Conclusion Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and

  1. Isolation of Lignin Degraded Thermophilic Geobacillus Caldoxylosilyticus Strain J16 and Characteristics of its Enzymes and Fermentation%高温木质素降解菌Geobacillus caldoxylosilyticus J16的筛选及其产酶发酵性质研究

    Institute of Scientific and Technical Information of China (English)

    晋果果; 翁海波; 李萍萍; 孙武举; 覃勉

    2011-01-01

    从张家界、白云山采集到的朽木及落叶中,经分离、纯化后,获得了一株高温木质素降解菌,命名为地芽孢杆菌(Geobacillus caldoxylosilyticus J16),此菌嗜热,耐高温,只降解木质素且不降解纤维素,对造纸业和可再生能源产业具有重要意义.笔者通过对木质素中2种酶木质素过氧化物酶、锰过氧化物酶活性的研究,确定了木质素过氧化物酶的最适温度为65℃.最适pH为4,在55℃至70℃之间时酶活力较其他温度高且较稳定;锰过氧化物酶最是温度为60℃,最适pH为3在温度为55℃至65℃之间时,活力较其他温度高.作者发酵了黄豆杆、玉米杆、芝麻杆、油菜杆、锯末、小麦杆这6种农业废弃物,通过发酵前后的比较,说明了J16菌株对木质素降解的最大减少量为7.5%.上述数据显示此菌可以应用于废弃秸秆的处理和造纸厂污水的处理,对环保有重要意义.%The thermophilic Geobacillus caldoxylosilyticus strain J16 was isolated after screening many microorganisms.Its factors was thermophilic, but could not degrade cellulose.It was significance for paper industry and renewable energy industry.The factors were studied, which effected on lignin peroxidase and manganese peroxidase.The strain could grow very well at 65℃ and pH 4.0.When fermented with the agriculture wastes about soybean stem, maize stem, rape stem, sawdust, wheat stem and sesame stem, it could efficiently degrade lignin up to 7.5%, but not degrade cellulose.All of above showed that it was significant for paper industry and renewable energy industry.All the data showed that this strain could be applied to agriculture wastes and sewage, and it was very important for environmental protection.

  2. Optizing cultivation condition of thermophilic protease from Geobacillus sp. YMTC1049 strain%泥土芽孢杆菌YMTC1049菌株高温蛋白酶产酶条件的优化

    Institute of Scientific and Technical Information of China (English)

    祝伟; 彭谦; 李勇; 郭春雷; 杨红亚

    2003-01-01

    报道高温蛋白酶产生菌YMTC1049(Geobacillus sp.)产酶条件的优化过程.在基础培养基中分别添加葡萄糖、麦芽糖、酵母提取物、蛋白胨、胰蛋白胨、酪蛋白、聚胨等7种营养成分,获得对酶活影响较大的碳、氮源.用多因素正交试验设计考察了pH、酪蛋白、葡萄糖和温度对酶活的影响水平,菌株在优化发酵条件下培养24 h时,上清液蛋白酶活力达312U/(mL·min).

  3. Study on Physico-chemical Properties of the Biosurfactant Produced by Geobacillus thermoleovorans%喜热噬油芽胞杆菌代谢产生表面活性剂的研究

    Institute of Scientific and Technical Information of China (English)

    王凤兰; 王晓东

    2007-01-01

    采用丙酮抽提、高压液相分离纯化等技术从嗜热菌Geobacillus thermoleovorans以正十六烷为碳源培养的发酵液中分离获得性能突出的表面活性物质.利用甲脂化、乙酰化衍生技术结合GC-MS,MS(ESI)等鉴定该表面活性剂为单脂肪酸甘油脂.实验条件下,该表面活性剂使水的表面张力降低到 32.7 mN/m,测定其临界胶束浓度为 41 mg/L.

  4. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    NARCIS (Netherlands)

    Blecha, Andreas; Zarschler, Kristof; Sjollema, Klaas A.; Veenhuis, Marten; Rödel, Gerhard; Rodel, G.

    2005-01-01

    Background: Native as well as recombinant bacterial cell surface layer (S-layer) protein of Geobacillus (G.) stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested

  5. 一株嗜热菌产耐热木聚糖酶对馒头品质和保质期的影响%Effect of Thermo-tolerant Xylanase from Thermophilic Geobacillus sp.PZH1 on the Quality and Shelf-life of Steamed Bread

    Institute of Scientific and Technical Information of China (English)

    王石峰; 林孔亮; 秦晓培; 陈学敏; 刘培培; 郭小虎; 张波

    2011-01-01

    研究嗜热细菌Geobacillus sp.PZH1产耐热木聚糖酶对馒头品质及保质期的影响作用.从嗜热细菌Geobacillus sp.的PZH1制备木聚糖酶,添加到面粉中制作馒头,观察其对馒头品质和保质期的影响.结果表明:在馒头中添加适量的耐热木聚糖酶,能明显降低馒头的持水性,提高面筋网络的弹性,改变面团的加工及稳定性能,增大馒头体积,并能有效抑制馒头中细菌的生长,延长馒头的保质期.

  6. 易错PCR法提高土芽孢杆菌ZH1羧酸酯酶的热稳定性%Improving thermal stability of Geobacillus sp.ZH1 carboxylesterase by error-prone PCR

    Institute of Scientific and Technical Information of China (English)

    刘韩; 吴丽云; 高贺; 倪辉; 蔡慧农; 朱艳冰

    2015-01-01

    [目的]对土芽孢杆菌(Geobacillus sp.)ZH1的羧酸酯酶基因进行定向进化,筛选得到酶热稳定性提高的突变酶.[方法]利用易错PCR技术向羧酸酯酶基因中随机引入突变,建立酶基因突变文库,筛选获得热稳定性提高的突变体,并对突变酶进行诱导表达、纯化及部分酶学性质研究.[结果]通过筛选,获得羧酸酯酶热稳定性提高的突变菌株65.序列分析表明,突变酯酶65有2个氨基酸发生了改变,包括T113S和M160K.突变酶的三维结构模拟显示,突变T113S位于酶分子的第5个β-折叠上;突变M160K处在酶分子第5个和第6个α-螺旋之间的环结构上,位于酶分子表面,突变后的Lys160与邻近的Thr162形成一个额外氢键.在90℃下,突变酶65和亲本酶的半衰期分别为3.1h和1.9h,表明筛选到的突变酶65比亲本酶的热稳定性好.[结论]基于易错PCR技术对Geobacillus sp.ZH1羧酸酯酶的热稳定性进行了定向进化,对改善酶的性质、扩大酯酶的应用范围,以及研究酯酶的结构与功能的关系具有重要意义.

  7. Cloning, expression and characterization of the DNA polymerase gene from Geobacillus sp. DYth03%地芽孢杆菌属DYth03 DNA聚合酶基因的克隆、表达及性质分析

    Institute of Scientific and Technical Information of China (English)

    罗淑娅; 李侃; 徐丽美

    2011-01-01

    A strain of thermophilic bacteria (DYth03) that can grow at 65℃ was isolated from the sediment of a hydrothermal vent field on the E53 site of the east Pacific Ocean. The 16S rDNA of DYth03 shared more than 98%sequence homology with related Geobacillus species. The gene encoding the DNA polymerase of DYth03 (DYth-pol)was cloned and sequenced. Analysis indicated that the gene was 2 631 bp in length with a G + C content of 55.5%,encoding an 876-amino-acid peptide, which was most similar to that of Bst DNApolI (98%). The DYth-pol gene was cloned in the expression vetor pTTQ-h and expressed in E. coli DH1. The expressed product was purified and characterized. It showed 5'-3' exonuclease and polymerase activity.%从东太平洋热液区E53站位的深海沉积物样品中分离出1株能在65℃生长的嗜热菌(DYth03).该菌的16S rDNA序列与地芽孢杆菌属(Geobacillus)内各种之间的同源性为98%以上.克隆得到DYth03的DNA聚合酶基因(DYth-pol),序列分析表明该基因全长为2 631 bp,G+C含量为55.5%,推测编码为876个氨基酸,与Bst DNApolI的同源性最高(达98%).将该聚合酶基因克隆到pTTQ-h表达载体上,并在大肠杆菌DH1中进行表达.对纯化到的表达产物进行酶活性测定,结果表明该酶具有聚合酶活性和5'-3'外切酶活性.

  8. A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds.

    Science.gov (United States)

    Espina, Giannina; Eley, Kirstin; Pompidor, Guillaume; Schneider, Thomas R; Crennell, Susan J; Danson, Michael J

    2014-05-01

    Geobacillus thermoglucosidasius is a thermophilic bacterium that is able to ferment both C6 and C5 sugars to produce ethanol. During growth on hemicellulose biomass, an intracellular β-xylosidase catalyses the hydrolysis of xylo-oligosaccharides to the monosaccharide xylose, which can then enter the pathways of central metabolism. The gene encoding a G. thermoglucosidasius β-xylosidase belonging to CAZy glycoside hydrolase family GH52 has been cloned and expressed in Escherichia coli. The recombinant enzyme has been characterized and a high-resolution (1.7 Å) crystal structure has been determined, resulting in the first reported structure of a GH52 family member. A lower resolution (2.6 Å) structure of the enzyme-substrate complex shows the positioning of the xylobiose substrate to be consistent with the proposed retaining mechanism of the family; additionally, the deep cleft of the active-site pocket, plus the proximity of the neighbouring subunit, afford an explanation for the lack of catalytic activity towards the polymer xylan. Whilst the fold of the G. thermoglucosidasius β-xylosidase is completely different from xylosidases in other CAZy families, the enzyme surprisingly shares structural similarities with other glycoside hydrolases, despite having no more than 13% sequence identity.

  9. Components and Properties of a Bioemulsifier from Geobacillus thermoleovorans%喜热噬油芽胞杆菌产生的生物乳化剂的组成与性质

    Institute of Scientific and Technical Information of China (English)

    薛峰; 刘瑾

    2009-01-01

    由喜热噬油芽胞杆菌(Geobacillus thermoleovorans str 5366T)以正十六烷为碳源 55 ℃培养的发酵液中分离获得了一种生物乳化剂,经鉴定为糖-肽-脂复合物.该乳化剂中糖、肽、脂和烃的含量分别为29.4%、15.8%和35.8%.利用肽水解结合氨基酸分析、糖醇乙酰化结合GC-MS、脂肪酸甲脂化结合GC-MS等技术手段鉴定乳化剂中糖主要为D-甘露糖;主要氨基酸为谷氨酸、天冬氨酸、丙氨酸;构成脂的主要脂肪酸为十六烷酸、十八烯酸和十八烷酸.该菌及其代谢产生的乳化剂乳化性能良好,具有高温条件下应用的潜力.

  10. 嗜热土芽孢杆菌GSEY01及其高温蛋白酶的初步研究%Study on A Thermophilic Geobacillus sp.GSEY01 and Its Thermophilic Protease

    Institute of Scientific and Technical Information of China (English)

    廖艳江; 季秀玲; 魏云林; 林连兵

    2010-01-01

    从云南腾冲热海热泉中分离出一株产高温蛋白酶的菌株GSEY01.该菌株最适生长温度为60℃,16S rRNA基因序列分析表明,该菌株为土芽孢杆菌属(Geobacillus)的耐热菌株.该菌株所产高温蛋白酶可以通过超滤浓缩,硫酸铵分级沉淀和强阴离子交换层析获得纯酶.此高温蛋白酶分子量约为42 kD,最适催化温度为80℃,最适催化pH7.5,Mg2+能增强该酶活力,Fe3+,Cd2+和Ni2+对其活性则有抑制作用.PMSF对该酶影响较小,乙二胺四乙酸(EDTA) 和十二烷基磺酸钠(SDS) 则对其有强烈的抑制作用,此高温蛋白酶和其他土芽孢杆菌所产蛋白酶有较大差异,可以应用于相关的高温催化环境.

  11. Study on the activation Geobacillus species in Zhan 3 blocks of Shengli Oilfield%胜利油田沾3区块油藏中Geobacillus菌的激活研究

    Institute of Scientific and Technical Information of China (English)

    李彩风; 李阳; 吴昕宇; 曹嫣镔; 汪卫东; 包木太

    2016-01-01

    利用16S rRNA克隆文库技术分析胜利油田沾3区块油藏样品的微生物群落结构,使用不同激活剂对沾3区块油藏样品进行内源微生物激活,对激活后样品进行乳化能力、产生表面活性物质能力评价及微生物群落结构分析,并开展物理模拟驱油实验.结果表明:沾3区块油藏样品中含有2%的Geobacillus,该菌是沾3区块油藏内源微生物中产生表面活性物质、发挥乳化功能的关键菌群;加入适宜的激活剂体系可以选择性激活该类细菌,使其成为优势菌;利用选择性激活Geobacillus的配方激活沾3区块油藏内源微生物,可以在水驱基础上提高原油采收率10.8%.

  12. L-Ribose production from L-arabinose by immobilized recombinant Escherichia coli co-expressing the L-arabinose isomerase and mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Kim, Kyoung-Rok; Seo, Eun-Sun; Oh, Deok-Kun

    2014-01-01

    L-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the L-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l L-ribose from 300 g/l L-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co(2+), with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h(-1) produced an average of 100 g/l L-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for L-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from L-arabinose as the substrate.

  13. Challenges to validation of a complex nonsterile medical device tray.

    Science.gov (United States)

    Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela

    2014-01-01

    Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers.

  14. Study on the Optimization of Bio-emulsifier Production by Geobacillus sp.XS2 by Means of Response Surface Methodology%响应面法优化土芽孢杆菌XS2产生物乳化剂的研究

    Institute of Scientific and Technical Information of China (English)

    徐爽; 黄志勇; 路福平; 王永莉

    2011-01-01

    [目的]采用响应面法对土芽孢杆茵XS2产生物乳化剂的发酵培养基进行优化研究.[方法]利用单因素试验确定影响土芽孢杆菌XS2产生物乳化剂的主要培养基成分,再采用响应面分析法和Design-Expert 7.0软件建立响应曲面模型,来优化土芽孢杆菌XS2产生物乳化剂的发酵培养基.[结果]葡萄糖、磷酸氢二钾、磷酸二氢钾为影响土芽孢杆茵XS2产生物乳化荆的主要因素,土芽孢杆菌XS2产生物乳化剂的最佳发酵培养基为:葡萄糖68 g/L,硝酸钠2 g/L,磷酸二氢钾5.03 g/L,磷酸氢二钾1.36 g/L,硫酸镬结晶0.2 g/L,硫酸亚铁0.02 g/L,氯化钙0.01 g/L,微量元素液2 ml.在此条件下,生物乳化剂乳化活性的实测值(67.0%)与预测值(66.7%)较为接近,比优化前提高了27%.[结论]响应面法适用于土芽孢杆茵XS2产生物乳化剂发酵培养基的优化,优化结果与实际情况吻合较好.%[Objective] The aim was to study the optimization of fermentation medium for bio-emulsifier production by Geobacillus sp. XS2 by means of response surface methodology. [Method] Firstly, single-factor experiment was conducted to determine the main medium components influencing bio-emulsifier production by Geobacillus sp. XS2, and then response surface model was established by using response surface methodology and Design-Expert 7.0.2, so as to optimize the fermentation medium for bio-emulsifier production by Geobacillus sp. XS2. [Result] Glucose, KH2PO4 and K2HPO4 were the main factors influencing bio-emulsifier production by Geobacillus sp. XS2, and its optimal fermentation medium was as follows; glucose 68 g/L, NaNO3 2 g/L, KH2PO4 5.03 g/L, K2HPO4 1. 36 g/L, MgSO4 · 7H2O 0. 2 g/L, FeSO4 · 7H2O 0.02 g/L, CaCl2 · 2H2O 0.01 g/L, element solution 2 ml. Under the optimal condition, the measured value (67.0% ) of bio-emulsifier of e-mulsifying activity was close to predictive value (66.7% ) and increased by 27% compared with previous value

  15. 地芽孢杆菌Y565-5分离鉴定及其木糖异构酶基因xylA的克隆表达和酶学性质%Cloning, expression and characterization of xylose isomerase, XylA from Geobacillus sp.Y565-5

    Institute of Scientific and Technical Information of China (English)

    张洁; 黄志勇; 王钦宏; 王永莉; 王硕

    2011-01-01

    从甘肃玉门油田地表土中分离到一株嗜热木糖利用菌,地芽孢杆菌Y565-5.利用PCR方法从该菌株中克隆得到一个木糖异构酶基因,xylA.该基因开放阅读框长1 182 bp,编码394个氨基酸,XylA氨基酸序列与Geobacillus sp.Y412MC52相似性达到99%.将xylA基因克隆到原核表达载体pET-28a(+)上,得到重组质粒pET-28a(+)-xylA,然后将此重组质粒转化至BL21(DE3)中,经IPTG诱导后,通过SDS-PAGE电泳检测出明显的45 kD(相对分子质量)特异性蛋白质条带,并且通过半胱氨酸咔唑法检测出表达产物具有木糖异构酶的活性.对其酶学性质的研究发现,XylA最适温度为90℃,最适pH值为8.0.%Xylose-utilizing and thermophilic Geobacillus sp. Y565-5 was isolated from surface soil of an oilfield in Yumen Town, Gansu Province, China. A xylose isomerase (XylA) gene was cloned from the strain by PCR. The open reading frame of xylA (1 182 bp) encoded a protein of 394 amino acids,which showed high sequence homology (99% identity) with that of Geobacillus sp. Y412MC52. The intact coding region was subcloned into pET28a(+) vector and expressed in Escherichia coli BL21(DE3).The molecular weight of the recombinant protein was 45 kD based on SDS-PAGE and its xylose isomerase activity was detected through cysteine welts thiazole method after the induction of isopropyl β-D-1-thiogalactopyranoside (IPTG). The optimum temperature and pH for the partially purified recombinant XylA activity were 90 ℃ and pH 8.0, respectively.

  16. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; Dao, E. Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S.; Koglin, Jason E.; Boutet, Sébastien; Junco, Elia A.; Hayes, Brandon; Bogan, Michael J.; Hampton, Christina Y.; Puglisi, Elisabetta V.; Sauter, Nicholas K.; Stan, Claudiu A.; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.; Soltis, S. Michael; Puglisi, Joseph D.; DeMirci, Hasan

    2015-11-30

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  17. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II.

    Science.gov (United States)

    Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan

    2016-01-01

    We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

  18. Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb.

    Science.gov (United States)

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Pradeepa, Venkatraman; Sakthi-Bhagavathy, Muthiah; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-07-01

    Evaluations of biological effects of (Pb-CVO) the crude volatile oil of Piper betle leaves on the tobacco cutworm Spodoptera litura were conducted. Pb-CVO was subjected to GC-MS analysis and twenty vital compounds were isolated from the betel leaf oil. Pb-CVO was tested at four different concentrations (0.25, 0.5, 1.0 and 1.5%) against S. litura. The treated insects exhibited dose depended mortality. The mortality rate was significantly higher at the 1.0 and 1.5% Pb-CVO. The LC50 (Lethal concentration) were observed at 0.48% Pb-CVO. Larval and pupal durations increased in all treatment concentrations (0.25, 0.3, 0.4 and 0.5%) whereas, pupal weight decreased compared to control. Adult longevity of S. litura was reduced in all treatments but predominantly in the 0.4 and 0.5% Pb-CVO. Correspondingly, mean fecundity rate was reduced at all concentrations compared to control. Histological studies of larvae mid-gut profiles of S. litura were severely damaged in 1.0 and 1.5% and showed abnormalities in mid-gut cells with 0.25 and 0.5% Pb-CVO treatments. Earthworm toxicity illustrated that 0.1% of chemical insecticides (monocrotophos and cypermethrin) varied widely in their contact toxicities compared to 0.5 and 1.0% Pb-CVO and control in both contact filter paper and artificial soil test. These findings suggest that twenty essential compounds of betel leaf oil were significant inhibitors of the development and caused behavioral changes of S. litura. Treatment with betel leaf oil at these concentrations had no adverse effect on earthworm populations.

  19. 嗜热脱氮土壤芽孢杆菌β-葡萄糖苷酶的克隆与重组表达及其酶学性质研究%Cloning, expression and characterization of a beta-glucosidase from Geobacillus thermodenitrificans

    Institute of Scientific and Technical Information of China (English)

    胡开蕾; 韩剑; 刘伟丰; 王艳萍; 陶勇

    2012-01-01

    [Objective] Cloning of P-glucosidase gene bglB from Geobacillus thermodenitrifl-cans, heterologous expression in E.coli, purification and characterization of its enzymatic properties.[Methods] Molecular cloning of the β-glucosidase encoding gene (bglB) from Geobacillus thermodenitrificans was performed by using a PCR technique.The gene was expressed in BL21(DE3) of Escherichia coli.After purification, the enzymatic properties and the protein aggregation of β-glucosidase was investigated.[Results] The optimum temperature and optimum pH of the recombinant β-glucosidase are 65 ℃ and 7.0 respectively, the enzyme is stable for 4 h under the conditions of pH 5-10, 60 ℃, and it maintains its high enzymatic activity at the high salt concentration (up to 880 mmol/L K+).The recombinant β-glucosidase is strongly activated by Al3+, while slightly inhibited by Co2+.Under the optimal reaction condition, the enzyme specific activity of recombinant β-glucosidase is 0.043 IU/mg.The β-glucosidase GST fusion protein exists in different oligomers by a Superdex G-200 gel filtration analysis, and the different oligomers of enzymes all have hydrolase activity.[Conclusion] We successfully obtained a heat- and salt- resistant neutral recombinant β-glucosidase from Geobacillus thermodenitrificans, and paved a way for further study of its catalytic mechanism and improvement its thermal stability of beta-glucosidase.%[目的]克隆嗜热脱氮土壤芽孢杆菌中的β-葡萄糖苷酶基因bglB,在E.coli中异源表达,纯化并研究其酶学性质.[方法]利用PCR技术从嗜热脱氮土壤芽孢杆菌的基因组DNA中克隆得到bglB基因,将该基因克隆到表达载体pGEX-2TL上并在大肠杆菌BL21(DE3)中表达,对纯化后的β-葡萄糖苷酶的酶学性质及寡聚状态进行分析.[结果]重组表达的β-葡萄糖苷酶最适温度为65℃,最适pH为7.0,能在pH 5-10、60℃下稳定存在4h,并能在较高的离子强度(880 mmol/L K+)下发挥其功能.A13+

  20. Biosynthesis of anti-HCV compounds using thermophilic microorganisms.

    Science.gov (United States)

    Rivero, Cintia W; De Benedetti, Eliana C; Sambeth, Jorge E; Lozano, Mario E; Trelles, Jorge A

    2012-10-01

    This work describes the application of thermophilic microorganisms for obtaining 6-halogenated purine nucleosides. Biosynthesis of 6-chloropurine-2'-deoxyriboside and 6-chloropurine riboside was achieved by Geobacillus stearothermophilus CECT 43 with a conversion of 90% and 68%, respectively. Furthermore, the selected microorganism was satisfactorily stabilized by immobilization in an agarose matrix. This biocatalyst can be reused at least 70 times without significant loss of activity, obtaining 379mg/L of 6-chloropurine-2'-deoxyriboside. The obtained compounds can be used as antiviral agents.

  1. Plasma Disinfection and the Deterioration of Surgical Tools at Atmospheric Pressure Plasma

    Science.gov (United States)

    Zaaba, Siti Khadijah; Akitsu, Tetsuya; Ohkawa, Hiroshi; Katayama-Hirayama, Keiko; Tsuji, Masao; Shimizu, Naohiro; Imanishi, Yuichirou

    The purpose of this paper is to present and compare disinfection effect of plasma by means of Atmospheric Pressure Glow plasma and streamer discharge. Geobacillus stearothermophilus was used as biological indicator for disinfection process. The effect of blades after irradiated in plasma was also studied by SEM analysis. It was found that the disinfection process was effective when the cylindrical configuration was applied. Carbon steel blade was also found to be deteriorated after immersed in plasma irradiation. Results indicate that disinfection can be achieved and at the same time deteriorations of the tools were observed.

  2. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge

    Science.gov (United States)

    Eto, Hiroyuki; Ono, Yoshihito; Ogino, Akihisa; Nagatsu, Masaaki

    2008-12-01

    A flexible sheet-type dielectric barrier discharge (DBD) was studied for the low-temperature sterilization of medical instruments wrapped with Tyvek packaging. Sterilization experiments using Geobacillus stearothermophilus spores with a population of 106 were carried out with various mixtures of nitrogen and oxygen. We confirmed the inactivation of spores after 4.5 min of DBD irradiation at a temperature of 28.4 °C and relative humidity of 64.4%. The main sterilizing factors of this method are the ozone and UV emissions generated by DBD in dry air and synergistic OH radicals generated by DBD in moist air.

  3. Surface plasmon resonance-enabled antibacterial digital versatile discs

    Science.gov (United States)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  4. Crystallization of domains involved in self-assembly of the S-layer protein SbsC.

    Science.gov (United States)

    Ðordić, Anđela; Egelseer, Eva M; Tesarz, Manfred; Sleytr, Uwe B; Keller, Walter; Pavkov-Keller, Tea

    2012-12-01

    The Gram-positive bacterium Geobacillus stearothermophilus ATCC 12980 is completely covered with a two-dimensional crystalline monolayer composed of the S-layer protein SbsC. In order to complete the structure of the full-length protein, additional soluble constructs containing the crucial domains for self-assembly have been successfully cloned, expressed and purified. Crystals obtained from three different recombinant constructs yielded diffraction to 3.4, 2.8 and 1.5 Å resolution. Native data have been collected.

  5. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  6. The microbial-kill characteristics of saturated steam plus 1,000 to 10,000 ppm hydrogen peroxide at atmospheric pressure.

    Science.gov (United States)

    Pflug, Irving J; Melgaard, Hans L; Schaffer, Shawn M; Lysfjord, Jack P

    2008-01-01

    This is the report of a project carried out to determine the microbial-kill characteristics of saturated steam plus hydrogen peroxide (H2O2) using a specially-constructed test apparatus. Spores on stainless-steel planchets were inserted into a flowing gaseous atmosphere of steam plus H2O2 for a timed exposure to the lethal agent. The specially-designed test apparatus and its operating parameters are described. Geobacillus stearothermophilus (former name, Bacillus stearothermophilus) spore-death rates were evaluated in several spore-planchet handling modes. Enumeration microbial recovery methods were used. The data were analyzed using survivor-curve methods; D-values were calculated using the initial number of spores per planchet and the number of spores surviving the process. Extensive tests were carried out using Geobacillus stearothermophilus spores; limited tests were carried out using Bacillus smithii ATCC 51232 (former name, Bacillus coagulans), Bacillus macerans, and Bacillus subtilis, subtilis ATCC 35021 spores (former name, Bacillus subtilis, CCC 5230, Kerns 15U). For G. stearothermophilus spores subjected to steam plus H2O2 and recovered using the 2B procedure (planchets deposited in sterile, 100-mL bottles containing 50.0 mL of buffer immediately after they were subjected to the steam-H2O2 condition; 11 experiments), the mean D-value was 0.48 min at 2,500 ppm and 0.22 min at 7,500 ppm. The application of steam plus H2O2 to the sterilization of barrier isolator enclosures is discussed.

  7. Crystallization and preliminary X-ray diffraction studies of two thermostable α-galactosidases from glycoside hydrolase family 36

    Energy Technology Data Exchange (ETDEWEB)

    Foucault, M. [Institut de Biologie et Chimie des Protéines, CNRS-UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07 (France); Watzlawick, H.; Mattes, R. [Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart (Germany); Haser, R.; Gouet, P., E-mail: p.gouet@ibcp.fr [Institut de Biologie et Chimie des Protéines, CNRS-UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07 (France)

    2006-02-01

    The α-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 Å resolution, respectively. α-Galactosidases from thermophilic organisms have gained interest owing to their applications in the sugar industry. The α-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 Å resolution, respectively. Crystals of AgaB belong to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 87.5, b = 113.3, c = 161.6 Å. Crystals of AgaA A355E belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 150.1, c = 233.2 Å.

  8. Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights.

    Science.gov (United States)

    Scholtz, V; Julák, J; Kríha, V; Mosinger, J; Kopecká, S

    2007-01-01

    The second part of our paper presents the results of experiments with the decontamination of surfaces by low-temperature plasma generated by corona discharge in air at atmospheric pressure. A simple device is described and the effects of the corona discharge on model microorganisms, viz. the yeast Candida albicans, Gram-negative bacteria Escherichia coli, Enterobacter aerogenes, Neisseria sicca, Stenotrophomonas maltophilia, Gram-positive bacteria Deinococcus radiodurans, Enterococcus faecium, Staphylococcus epidermidis, Streptococcus sanguinis, and vegetative and spore forms of Geobacillus stearothermophilus are discussed. A similar microbicidal effect after about one-minute exposure was observed in all vegetative forms of the microorganisms. Measurement in growth inhibition zones on a semisolid medium was used to determine the dependence of the microbicidal effect on exposure time and the distance between electrodes. Counting of colonies served to assess the microbicidal effect of the discharge on contaminated inert surfaces observable after more than 1 min exposure. Geobacillus stearothermophilus spores were found to have several times lower susceptibility to the action of the discharge and the microbicidal effect was observed only after an 8 min exposure. Reaction with the iodide reagent did not unambiguously demonstrate the difference between ozone and singlet oxygen as presumed active components of the corona. The area distribution of reactive oxygen species was determined; it was found to differ from the Wartburg law depending on exposure time. Qualitative evidence was obtained on the penetration of the reactive oxygen species into the semisolid medium.

  9. Progress in Geobacillus Study%Geobacillus研究进展

    Institute of Scientific and Technical Information of China (English)

    周卫民; 杨世忠; T.N.Nazina; 牟伯中

    2005-01-01

    Geobacillus是国际上2001年新命名的一类细菌.由于其具有嗜热、兼性厌氧,降解烃和产生表面活性剂的特性,在微生物采油、环境治理等领域中有潜在应用价值;同时,这类细菌可能具有特殊的功能基因和特种酶,对构建工程菌亦具有重要的研究价值.对Geobacillus的研究历史、分类组成和生物学特性、生态分布及其分子生物学研究和应用进行了综述.

  10. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    Science.gov (United States)

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  11. A culture-dependent survey of thermophilic bacteria from hot springs in Xiamen area in China

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; OUYANG Jianping; AO Jingqun; CHEN Xinhua

    2009-01-01

    Microbes are believed to play important roles in ecosystem function in many environments. The hot springs of Xiamen Island are close to the Xiamen Sea, and may have some characteristics different from those of inland hot springs. Microbes living in the hot springs of Xiamen may have new characteristics. However, little is known about microbial communities of hot springs close to the Xiamen Sea. A cuhure-dependent survey of microbial population in the Xiamen hot springs was pcrformed by using an approach combining total cellular protein profile identification and 16S rRNA gene sequencing. A total of 328 isolates of bacteria were obtained from liquid and sediment samples from the Xiamen hot springs, including neutrophilie thermophilic bacteria and moderately thermophilic acidophiles. Neutrophilic thermophilic bacteria, which grow at a temperature range of 55-90℃ including Rhodothermus marinus (Strain 1) , Thermus thermophilus (Strain 2), Thermus thiopara (Strain 3) , Geobacillus stearothermophilus(Strain 4) , Geobacillus thermoleovorans (Strain 5) , and Pseudomonas pseudoal-caligenes (Strain 6), were recovered by 2216E plates. Moderately thermophilic acidophiles, which can grow at temperatures above 50℃ and a pH range of 1. 8-3.5 such as Alicyclobacillus acidoterrestris (Strain 8) , Sul-fobacillus acidophilus (Strain 9), and Sulfobacillus thermosulfidooxidans (Strain 10), were isolated on selective solid medium containing sulfur and Fe2+. Among these strains, Rhodothermus marinus, Thermus thermophilus and Geobacillus stearothermophilus are not only thermophilcs, but also halophiles. One bacterium strain (Strain 6) shared 99% nucleotide sequence homology with Pseudomonas pseudoalcaligenes on the 16S rRNA gene se-quence, but was quite different from Pseudomonas pseudoalcaligenes in biological characteristics, suggesting that it may represent a novel thermophilic species. Results indicated that various species of neutrophilic thermophiles and moderately thermophilic

  12. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk.

  13. A survey of antimicrobial residues in table eggs in Khartoum State, Sudan, 2007–2008

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sirdar

    2012-02-01

    Full Text Available The risk to consumers of antimicrobial residues in table eggs produced in Khartoum State, Sudan, was studied. All producing layer farms (n = 175 in the state were sampled in April, June and August 2008. A total of 933 eggs from 335 layer houses were screened for antimicrobial residues by using the growth inhibition of Geobacillus stearothermophilus var. calidolactis in-house test. A high proportion of layer farms (72% in April, 61% in June and 66% in August and layer houses (63% April, 59% in June and 61% in August were found to have antimicrobial residues, with no significant difference in prevalence (p = 0.57 between study periods. The study showed that the consumer was at constant risk of exposure to antimicrobial residues in table eggs. The paper discusses reasons for the high prevalence of antimicrobial residues in Sudanese eggs and its implications, and makes recommendations to address this important public health problem.

  14. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Terashita, F [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Nonaka, H [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Ogino, A [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan); Nagata, T [Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192 (Japan); Koide, Y [Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Hamamatsu 431-3192 (Japan); Nanko, S [Nissin Inc., 10-7 Kamei-cho, Takarazuka 665-0047 (Japan); Kurawaki, I [GMA Co. Ltd., 3898-1, Asaba, Fukuroi, 437-1101 (Japan); Nagatsu, M [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 (Japan)

    2006-01-07

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 x 10{sup 6} and 3.0 x 10{sup 6} were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 deg. C below that of CW SWPs under the same average microwave power.

  15. Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-01-01

    Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.

  16. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    Science.gov (United States)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  17. Study of Inactivation Factors in Low Temperature Surface-wave Plasma Sterilization

    Science.gov (United States)

    Singh, Mrityunjai Kumar; Xu, Lei; Ogino, Akihisa; Nagatsu, Masaaki

    In this study we investigated the low temperature surface-wave plasma sterilization of directly and indirectly exposed Geobacillus stearothermophilus spores with a large-volume microwave plasma device. The air-simulated gas mixture was used to produce the plasma. The water vapor addition to the gas mixture improved the sterilization efficiency significantly. The effect of ultraviolet photons produced along with plasma to inactivate the spores was studied using a separate chamber, which was evacuated to less than one mTorr and was observed that spores were sterilized within 60 min. The scanning electron microscopy images revealed no significant changes in the actual size of the spores with that of untreated spores despite the survival curve shown that the spores were inactivated.

  18. Characteristics of surface sterilization using electron cyclotron resonance plasma

    Science.gov (United States)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  19. Pressure-assisted thermal sterilization of soup

    Science.gov (United States)

    Shibeshi, Kidane; Farid, Mohammed M.

    2010-12-01

    The overall efficiency of an existing scale-up pressure-assisted thermal sterilization (PATS) unit was investigated with regards to inactivation of Geobacillus stearothermophilus spores suspended in pumpkin soup. The PATS unit is a double pipe heat exchanger in which the soup is pumped into its inner high pressure tube and constrained by two high pressure valves, while steam is continuously passed through the annular region to heat the content. The technology is based on pressure generation by thermal expansion of the liquid in an enclosure. In this work, the addition of an air line to push the treated liquid food out of the existing PATS unit has improved the overall quality of the treated samples, as evidenced by achieving higher log reduction of the spores. Compared with thermal processing, the application of PATS shows the potential for lowering the thermal treatment temperature, offering improved food quality.

  20. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    Science.gov (United States)

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare.

  1. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    Science.gov (United States)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  2. Sterilization of single-use helical stone baskets: an experimental study

    Directory of Open Access Journals (Sweden)

    Cely Barreto da Silva

    2011-03-01

    Full Text Available Objectives: To experimentally evaluate the efficacy of a standard sterilization protocol employed during reuse of disposable helical stone baskets. Methods: Study performed on 20 helical stone baskets: 10 were used in the initial validation process, contaminated with Escherichia coli ATCC 25922 and imprinted on Müeller-Hinton media; 10 catheters were contaminated with Geobacillus stearothermophilus ATCC 7953, processed, inoculated in TSB and incubated in a water bath at a temperature of 55ºC. Bacterial growth was evaluated after 1, 3, 5 and 7 days. After sterilization, stone baskets were also opened and closed 40 times to check for functional problems. All plastic and basket parts were carefully checked for damages. Results: After the 72-hour incubation period, there was growth of E. coli ATCC 25922 in 100% of imprints. After the sterilization process and up to 7 days incubation period on a blood agar plate, there was no growth of G. stearothermophilus ATCC 7953 or any other bacteria. There were no functional problems or damage to baskets after the sterilization process. Conclusion: The ethylene oxide system is efficacious and safe for sterilization of disposable helical stone baskets. However, further clinical studies are required and should provide more safety information.

  3. Decontamination of sugar syrup by pulsed light.

    Science.gov (United States)

    Chaine, Aline; Levy, Caroline; Lacour, Bernard; Riedel, Christophe; Carlin, Frédéric

    2012-05-01

    The pulsed light produced by xenon flash lamps was applied to 65 to 67 °Brix sugar syrups artificially contaminated with suspensions of Saccharomyces cerevisiae and with spores of Bacillus subtilis, Geobacillus stearothermophilus, Alicyclobacillus acidoterrestris, and Aspergillus niger. The emitted pulsed light contained 18.5 % UV radiation. At least 3-log reductions of S. cerevisiae, B. subtilis, G. stearothermophilus, and A. acidoterrestris suspended in 3-mm-deep volumes of sugar syrup were obtained with a fluence of the incident pulsed light equal to or less than 1.8 J/cm(2), and the same results were obtained for B. subtilis and A. acidoterrestris suspended in 10-mm-deep volumes of sugar syrup. A. niger spores would require a more intense treatment; for instance, the maximal log reduction was close to 1 with a fluence of the incident pulsed light of 1.2 J/cm(2). A flowthrough reactor with a flow rate of 320 ml/min and a flow gap of 2.15 mm was designed for pulsed light treatment of sugar syrup. Using this device, a 3-log reduction of A. acidoterrestris spores was obtained with 3 to 4 pulses of incident pulsed light at 0.91 J/cm(2) per sugar syrup volume.

  4. ISOLATION AND CHARACTERIZATION OF MANNANOLYTIC THERMOPHILIC BACTERIA FROM PALM OIL SHELL AND THEIR MANNANASE ENZYME PRODUCTION PROPERTIES

    Directory of Open Access Journals (Sweden)

    T RESNAWATI P URWADARIA

    2005-01-01

    Full Text Available A mannanolytic thermophilic bacterium (L-07 was isolated from palm oil shell after 2 days of enrichment in liquid medium supplemented with 1% palm kernel meal as mannan source. Sequence analysis of 16S-rRNA indicated that L-07 was similar (98% to Geobacillus stearothermophilus, a species of thermophilic aerobi c bacteria. We found that G. stearothermophilus L-07 produced extracellular β -1,4-mannanases, but no β -manosidase and α -galactosidase activities. The growth of L-07 reached its maximum (3.0 x 106 cell/ml at 12-20 hours, while the highest β -mannanase activity (0.52 U/ml was observed in culture medium after 36 hours of cultivation at 60oC. The medium containing locust bean gum was the best for producing extracellular β -1,4-mannanases compared with kolang kaling , konjak , and palm kernel meal. SDS-PAGE and zymogram analysis demonstrated that crude mannanase complex of L-07 from locust bean gum containing medium comprised three active bands with molecular weight of 85, 73 and 50 kDa.

  5. High-pressure thermal sterilization: food safety and food quality of baby food puree.

    Science.gov (United States)

    Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich

    2014-02-01

    The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min.

  6. Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized L-N-carbamoylase and N-succinyl-amino acid racemase.

    Science.gov (United States)

    Soriano-Maldonado, Pablo; Las Heras-Vazquez, Francisco Javier; Clemente-Jimenez, Josefa María; Rodriguez-Vico, Felipe; Martínez-Rodríguez, Sergio

    2015-01-01

    Taking advantage of the catalytic promiscuity of L-carbamoylase from Geobacillus stearothermophilus CECT43 (BsLcar) and N-succinyl-amino acid racemase from Geobacillus kaustophilus CECT4264 (GkNSAAR), we have evaluated the production of different optically pure L-α-amino acids starting from different racemic N-formyl- and N-carbamoyl-amino acids using a dynamic kinetic resolution approach. The enzymes were immobilized on two different solid supports, resulting in improved stability of the enzymes in terms of thermostability and storage when compared to the enzymes in solution. The bienzymatic system retained up to 80% conversion efficiency after 20 weeks at 4 °C and up to 90% after 1 week at 45 °C. The immobilization process also resulted in a great enhancement of the activity of BsLcar toward N-formyl-tryptophan, showing for the first time that substrate specificity of L-carbamoylases can be influenced by this approach. The system was effective for the biosynthesis of natural and unnatural L-amino acids (enantiomeric excess (e.e.) >99.5%), such as L-methionine, L-alanine, L-tryptophan, L-homophenylalanine, L-aminobutyric acid, and L-norleucine, with a higher performance toward N-formyl-α-amino acid substrates. Biocatalyst reuse was studied, and after 10 reaction cycles, over 75% activity remained.

  7. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.

    Science.gov (United States)

    Postollec, Florence; Mathot, Anne-Gabrielle; Bernard, Muriel; Divanac'h, Marie-Laure; Pavan, Sonia; Sohier, Danièle

    2012-08-01

    Sporeforming bacteria are ubiquitous in the environment and exhibit a wide range of diversity leading to their natural prevalence in foodstuff. The state of the art of sporeformer prevalence in ingredients and food was investigated using a multiparametric PCR-based tool that enables simultaneous detection and identification of various genera and species mostly encountered in food, i.e., Alicyclobacillus, Anoxybacillus flavithermus, Bacillus, B. cereus group, B. licheniformis, B. pumilus, B. sporothermodurans, B. subtilis, Brevibacillus laterosporus, Clostridium, Geobacillus stearothermophilus, Moorella and Paenibacillus species. In addition, 16S rDNA sequencing was used to extend identification to other possibly present contaminants. A total of 90 food products, with or without visible trace of spoilage were analysed, i.e., 30 egg-based products, 30 milk and dairy products and 30 canned food and ingredients. Results indicated that most samples contained one or several of the targeted genera and species. For all three tested food categories, 30 to 40% of products were contaminated with both Bacillus and Clostridium. The percentage of contaminations associated with Clostridium or Bacillus represented 100% in raw materials, 72% in dehydrated ingredients and 80% in processed foods. In the last two product types, additional thermophilic contaminants were identified (A. flavithermus, Geobacillus spp., Thermoanaerobacterium spp. and Moorella spp.). These results suggest that selection, and therefore the observed (re)-emergence of unexpected sporeforming contaminants in food might be favoured by the use of given food ingredients and food processing technologies.

  8. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8

    CSIR Research Space (South Africa)

    Williamson, DS

    2010-09-01

    Full Text Available , Electron Microscope Unit Varsani, Arvind; University of Canterbury, Biological Sciences Frederick, Joni; CSIR Biosciences, Enzyme Technologies Cameron, Rory; University of the Western Cape, Biotechnology van Heerden, Johan; University of Cape Town...,5, Joni Frederick2,3, Rory A. Cameron4, Johan H. van Heerden2, Donald A. Cowan4, B. Trevor. Sewell1* 1 Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa 2 Department of Molecular and Cell Biology...

  9. The Nitrile-Forming Enzyme 7-Cyano-7-Deazaguanine Synthase from Geobacillus kaustophilus: A Reverse Nitrilase?

    Science.gov (United States)

    Winkler, Margit; Dokulil, Katharina; Weber, Hansjörg; Pavkov-Keller, Tea; Wilding, Birgit

    2015-11-01

    7-Cyano-7-deazaguanine synthase (E.C. 6.3.4.20) is an enzyme that catalyzes the formation of a nitrile from a carboxylic acid and ammonia at the expense of ATP. The protein from G. kaustophilus was heterologously expressed, and its biochemical characteristics were explored by using a newly developed HPLC-MS based assay, (31) P NMR, and a fluorescence-based thermal-shift assay. The protein showed the expected high thermostability, had a pH optimum at pH 9.5, and an apparent temperature optimum at 60 °C. We observed strict substrate specificity of QueC for the natural substrate 7-carboxy-7-deazaguanine, and determined AMP and pyrophosphate as co-products of preQ0.

  10. Highly thermostable GH39 ß-xylosidase from a Geobacillus sp. strain WSUCF1

    Science.gov (United States)

    Background Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and ß-xylosidase. ß-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable ß-xylosidases have been a focus of attention as industrially important enzymes due to th...

  11. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.

    Science.gov (United States)

    Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M

    2014-05-01

    GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes.

  12. Examination of dioxin degradation conditions for geobacillus midousuji SH2B-J2

    Energy Technology Data Exchange (ETDEWEB)

    Hoshina, S. [Jikei Univ., School of Medicine, Tokyo (Japan); Ohtsuka, Y. [Forestry and Forest Products Research Instiute; Goda, H. [Towa Kagaku Co., Ltd.

    2004-09-15

    Cellular membrane degradation capability of SH2B-J2 strains for dioxin mixtures that are greater than tetra-chlorinated have been examined. Optimal temperature, reaction time, optimal pH, and heavy metal resistance of cellular membrane enzyme were investigated, to examine dioxin degradation characteristics of SH2B-J2 strains. For chlorinated dioxins, a mixture (PCDD/PCDF mix) containing 7 species of dibenzo-p-dioxins greater than tetra-chlorinated, as well as 10 isomers of dibenzofurans, was used. Using GC/MS, decrease of 17 species of dioxin isomer/congener was measured.

  13. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki [Department of Material Chemistry, Asahikawa National College of Technology, 2-2-1-6 Shunko-dai, Asahikawa, Hokkaido 071-8142 (Japan); Senda, Miki [Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), 2-42 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Fukuda, Masao [Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188 (Japan); Senda, Toshiya, E-mail: tsenda@jbirc.aist.go.jp [Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo (Japan); Department of Material Chemistry, Asahikawa National College of Technology, 2-2-1-6 Shunko-dai, Asahikawa, Hokkaido 071-8142 (Japan)

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB has been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.

  14. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    Directory of Open Access Journals (Sweden)

    Kai eReineke

    2015-05-01

    Full Text Available The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1, skim milk (0.3% fat; 5.3 mS cm-1 and fresh prepared carrot juice (7.73 mS cm-1. The combination of moderate preheating (70-90 °C and an insulated PEF-chamber, combined with a holding tube (65 cm and a heat exchanger for cooling, enabled a rapid heat up to 105-140 °C (measured above the PEF chamber within 92.2-368.9 µs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using Comsol Multiphysics combined with a Matlab routine.A preheating of saline water to 70 °C with a flow rate of 5 l h-1, a frequency of 150 Hz and an energy input of 226.5 kJ kg-1, resulted in a measured outlet temperature of 117 °C and a 4.67 log10 inactivation of Bacillus subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for Geobacillus stearothermophilus spores in saline water. A preheating to 95 °C and an energy input of 144 kJ kg-1 resulted in an outlet temperature of 126 °C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10 was achieved during the thermal treatment.Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring

  15. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications

    Science.gov (United States)

    Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.

    2012-01-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450

  16. Low-temperature decontamination with hydrogen peroxide or chlorine dioxide for space applications.

    Science.gov (United States)

    Pottage, T; Macken, S; Giri, K; Walker, J T; Bennett, A M

    2012-06-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m(3) exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry.

  17. Isolation and Enzyme System Preliminary Analysis of Thermophilic Microorganisms%嗜热微生物的分离及其产酶特性的初步研究

    Institute of Scientific and Technical Information of China (English)

    王佳; 易弋; 夏杰; 伍时华; 黎娅

    2014-01-01

    从采集自温泉及高温堆肥的样品中分离纯化得到11株嗜热菌,通过分离菌株16S rDNA序列的分析对其进行了初步鉴定,其中地衣芽孢杆菌(Bacillus licheniformis)6株,凝结芽孢杆菌(Bacillus coagulans)2株,嗜热脱氮芽孢杆菌(Geobacillus thermodenitrificans)1株,史氏芽孢杆菌(Bacillus smithii)1株,嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)1株.并且针对蛋白酶、酯酶、淀粉酶、乳糖酶(β-半乳糖苷酶)、β-葡聚糖酶、木聚糖酶、羧甲基纤维素酶、α-半乳糖苷酶这8种饲料酶,采用唯一碳源或显色反应的方式对这些嗜热菌进行了产酶特性初步研究,检测结果表明这些嗜热菌均具有较强大的酶系,地衣芽孢杆菌和史氏芽孢杆菌产酶较多,分别可产其中的7种和6种酶.为嗜热酶的开发利用提供一定的理论基础.

  18. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.

    Science.gov (United States)

    Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2015-01-02

    Aseptic-Ultra-High-Temperature (UHT) products are manufactured to be free of microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage. Two important phases within the process are widely recognised as critical in controlling microbial contamination: the sterilisation steps and the following aseptic steps. Of the microbial hazards, the pathogen spore formers Clostridium botulinum and Bacillus cereus are deemed the most pertinent to be controlled. In addition, due to a relatively high thermal resistance, Geobacillus stearothermophilus spores are considered a concern for spoilage of low acid aseptic-UHT products. A probabilistic exposure assessment model has been developed in order to assess the aseptic-UHT product failure rate associated with these three bacteria. It was a Modular Process Risk Model, based on nine modules. They described: i) the microbial contamination introduced by the raw materials, either from the product (i.e. milk, cocoa and dextrose powders and water) or the packaging (i.e. bottle and sealing component), ii) the sterilisation processes, of either the product or the packaging material, iii) the possible recontamination during subsequent processing of both product and packaging. The Sterility Failure Rate (SFR) was defined as the sum of bottles contaminated for each batch, divided by the total number of bottles produced per process line run (10(6) batches simulated per process line). The SFR associated with the three bacteria was estimated at the last step of the process (i.e. after Module 9) but also after each module, allowing for the identification of modules, and responsible contamination pathways, with higher or lower intermediate SFR. The model contained 42 controlled settings associated with factory environment, process line or product formulation, and more than 55 probabilistic inputs corresponding to inputs with variability

  19. Sporicidal efficacy of genipin: a potential theoretical alternative for biomaterial and tissue graft sterilization.

    Science.gov (United States)

    Reich, Michael S; Akkus, Ozan

    2013-09-01

    Terminal sterilization of musculoskeletal allografts by gamma radiation minimizes the risk of disease transmission but impairs allograft mechanical properties. Commonly employed crosslinking agents can sterilize tissues without affecting mechanical properties adversely; however, these agents are toxic. Genipin is reported to be a benign crosslinking agent that strengthens mechanical properties of tissues; however, the antimicrobial capacity of genipin is largely unknown. The present study's aims were: (1) to assess the sporicidal potential of genipin, (2) to improve antimicrobial capacity by changing chemical and physical treatment conditions. To establish genipin's sterilization potential Bacillus subtilis var. niger spore strips were treated with 0-10% genipin in PBS or in 1:1 DMSO:PBS up to 72 h at room temperature (RT). Sterilizing doses and concentrations of genipin were used to treat B. pumilus and Geobacillus stearothermophilus spores to assess broader spectrum sporicidal activity of genipin. Scanning electron microscopy (SEM) was performed to evaluate gross morphological changes after genipin treatment. Optimal sterilization conditions were determined by evaluating the effects of temperature (RT-50 °C), DMSO:PBS ratio (0:100-100:0), and treatment duration (24-72 h) on B. subtilis. Genipin penetration of full thickness bovine patellar tendon and cortical bone specimens was observed to assess the feasibility of the agent for treating grafts. Initial studies showed that after 72 h of treatment at RT with 0.63-10% genipin/DMSO:PBS B. subtilis spore strips were sterilized; 0.63% genipin/PBS did not sterilize spore strips at 72 h at RT. Genipin doses and concentrations that sterilized B. subtilis spore strips sterilized B. pumilus and G. stearothermophilus spore strips. SEM revealed no gross morphological differences between untreated and treated spores. Treatment optimization resulted in sterilization within 24 h with 100% PBS, and DMSO facilitated sporicidal

  20. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.

    Science.gov (United States)

    Pujol, Laure; Johnson, Nicholas Brian; Magras, Catherine; Albert, Isabelle; Membré, Jeanne-Marie

    2015-10-15

    In a previous study, a quantitative microbial exposure assessment (QMEA) model applied to an aseptic-UHT food process was developed [Pujol, L., Albert, I., Magras, C., Johnson, N. B., Membré, J. M. Probabilistic exposure assessment model to estimate aseptic UHT product failure rate. 2015 International Journal of Food Microbiology. 192, 124-141]. It quantified Sterility Failure Rate (SFR) associated with Bacillus cereus and Geobacillus stearothermophilus per process module (nine modules in total from raw material reception to end-product storage). Previously, the probabilistic model inputs were set by experts (using knowledge and in-house data). However, only the variability dimension was taken into account. The model was then improved using expert elicitation knowledge in two ways. First, the model was refined by adding the uncertainty dimension to the probabilistic inputs, enabling to set a second order Monte Carlo analysis. The eight following inputs, and their impact on SFR, are presented in detail in this present study: D-value for each bacteria of interest (B. cereus and G. stearothermophilus) associated with the inactivation model for the UHT treatment step, i.e., two inputs; log reduction (decimal reduction) number associated with the inactivation model for the packaging sterilization step for each bacterium and each part of the packaging (product container and sealing component), i.e., four inputs; and bacterial spore air load of the aseptic tank and the filler cabinet rooms, i.e., two inputs. Second, the model was improved by leveraging expert knowledge to develop further the existing model. The proportion of bacteria in the product which settled on surface of pipes (between the UHT treatment and the aseptic tank on one hand, and between the aseptic tank and the filler cabinet on the other hand) leading to a possible biofilm formation for each bacterium, was better characterized. It was modeled as a function of the hygienic design level of the aseptic

  1. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    Science.gov (United States)

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  2. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    Science.gov (United States)

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan.

    Science.gov (United States)

    Bibi, Zainab; Shahid, Faiza; Ul Qader, Shah Ali; Aman, Afsheen

    2015-04-01

    Microbial xylanases, specially endo-β-1,4-xylanase catalyzes the hydrolysis of xylan, is considered one of the most significant hydrolases. It has numerous applications but most extensively is utilized in paper and pulp industry as a bio-bleaching agent. Immobilization technique is comprehensively studied with the expectation of modifying and improving enzyme stability and characteristics for commercial purposes. Currently, matrix entrapment technique is applied to immobilize endo-β-1,4-xylanase within agar-agar gel beads produced by Geobacillus stearothermophilus KIBGE-IB29. Maximal enzyme immobilization yield was achieved at 2.5% of agar-agar concentration. Optimized conditions demonstrated an increase in the optimal reaction time from 05 min to 30 min and incubation temperature from 50 °C to 60 °C with reference to free enzyme whereas; no effect was observed for optimum pH. Entrapment technique uniquely changed the kinetic parameters of immobilized endo-β-1,4-xylanase (Km: 0.5074 mg min(-1) to 0.5230 mg min(-1) and Vmax: 4773 U min(-1) to 968 U min(-1)) as compared to free enzyme. However, immobilized enzyme displayed broad thermal stability and retained 79.0% of its initial activity at 80 °C up to 30 min whereas; free enzyme completely lost its activity at this temperature. With respect to economic feasibility, the immobilized enzyme showed impressive recycling efficiency up to six reaction cycles.

  4. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China.

    Science.gov (United States)

    Sadiq, Faizan A; Li, Yun; Liu, TongJie; Flint, Steve; Zhang, Guohua; He, GuoQing

    2016-01-18

    Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future.

  5. Evaluation of kinetic behaviour of two preparations of tylosin administered in beehives for American foulbrood control

    Directory of Open Access Journals (Sweden)

    F. Reynaldi

    2017-09-01

    Full Text Available We compared the kinetic behaviour of tylosin administered to beehives by dusting or paper-pack placement through three treatment protocols (D, PP, CONTROL. D (dusting: tylosin, divided in four portions, was sprinkled over the ends of the hives' top bars weekly for four weeks (n=3; PP (paper-pack placement: tylosin in paper packs was administered at two-week intervals (n=3; CONTROL (control: the hives were left untreated (n=3. In every inspection, from each of the nine hives, fifty young (2-day-old larvae were sampled for drug analysis. The concentration of tylosin in the young larvae was determined by a microbiological assay with Geobacillus stearothermophilus ATCC 12980 as test organism. The (mean±SD maximum concentration (Cmax for D was 136.0±194.0 and for PP – 144.0±187.4 µg/mL; the time to reach Cmax (tmax was 1.5±0.9 h for D and 1.8 ± 1.8 h for PP. The area under the tylosin behaviour kinetics curve between 0–1392 h with D was 308.7±185.2 and with PP: 326.4±141.0 µg/h/mL, indicating no statistical difference between the treatments (P>0.05. The shorter duration of paper-pack-administered tylosin observed in the larvae implied a lower risk of antibiotic residues in the resulting honey

  6. Combined effects of carbonation with heating and fatty acid esters on inactivation and growth inhibition of various bacillus spores.

    Science.gov (United States)

    Klangpetch, Wannaporn; Nakai, Tomoe; Noma, Seiji; Igura, Noriyuki; Shimoda, Mitsuya

    2013-09-01

    The effects of carbonation treatment (1 to 5 MPa, 30 min) plus heat treatment (30 to 80°C, 30 min) in the presence of various fatty acid esters (FAEs; 0.05 and 0.1%, wt/vol) on counts of viable Bacillus subtilis spores were investigated. FAEs or carbonation alone had no inactivation or growth inhibition effects on B. subtilis spores. However, carbonation plus heat (CH; 80°C, 5 MPa, 30 min) in the presence of mono- and diglycerol fatty acid esters markedly decreased counts of viable spores, and the spore counts did not change during storage for 30 days. The greatest decrease in viable spore counts occurred in the presence of monoglycerol fatty acid esters. Under CH conditions, inactivation and/or growth inhibition occurred at only 80°C and increased with increasing pressure. The greatest decrease in spore counts (more than 4 log units) occurred with CH (80°C, 5 MPa, 30 min) in the presence of monoglycerol fatty acid esters. However, this treatment was less effective against Bacillus coagulans and Geobacillus stearothermophilus spores.

  7. A Hidden Transhydrogen Activity of a FMN-Bound Diaphorase under Anaerobic Conditions

    Science.gov (United States)

    Collins, John; Zhang, Ting; Huston, Scott; Sun, Fangfang; Zhang, Y.-H. Percival; Fu, Jinglin

    2016-01-01

    Background Redox cofactors of NADH/NADPH participate in many cellular metabolic pathways for facilitating the electron transfer from one molecule to another in redox reactions. Transhydrogenase plays an important role in linking catabolism and anabolism, regulating the ratio of NADH/NADPH in cells. The cytoplasmic transhydrogenases could be useful to engineer synthetic biochemical pathways for the production of high-value chemicals and biofuels. Methodology/Principal Findings A transhydrogenase activity was discovered for a FMN-bound diaphorase (DI) from Geobacillus stearothermophilus under anaerobic conditions. The DI-catalyzed hydride exchange were monitored and characterized between a NAD(P)H and a thio-modified NAD+ analogue. This new function of DI was demonstrated to transfer a hydride from NADPH to NAD+ that was consumed by NAD-specific lactate dehydrogenase and malic dehydrogenase. Conclusions/Significance We discover a novel transhydrogenase activity of a FMN-DI by stabilizing the reduced state of FMNH2 under anaerobic conditions. FMN-DI was demonstrated to catalyze the hydride transfer between NADPH and NAD+. In the future, it may be possible to incorporate this FMN-DI into synthetic enzymatic pathways for balancing NADH generation and NADPH consumption for anaerobic production of biofuels and biochemicals. PMID:27145082

  8. A Hidden Transhydrogen Activity of a FMN-Bound Diaphorase under Anaerobic Conditions.

    Directory of Open Access Journals (Sweden)

    John Collins

    Full Text Available Redox cofactors of NADH/NADPH participate in many cellular metabolic pathways for facilitating the electron transfer from one molecule to another in redox reactions. Transhydrogenase plays an important role in linking catabolism and anabolism, regulating the ratio of NADH/NADPH in cells. The cytoplasmic transhydrogenases could be useful to engineer synthetic biochemical pathways for the production of high-value chemicals and biofuels.A transhydrogenase activity was discovered for a FMN-bound diaphorase (DI from Geobacillus stearothermophilus under anaerobic conditions. The DI-catalyzed hydride exchange were monitored and characterized between a NAD(PH and a thio-modified NAD+ analogue. This new function of DI was demonstrated to transfer a hydride from NADPH to NAD+ that was consumed by NAD-specific lactate dehydrogenase and malic dehydrogenase.We discover a novel transhydrogenase activity of a FMN-DI by stabilizing the reduced state of FMNH2 under anaerobic conditions. FMN-DI was demonstrated to catalyze the hydride transfer between NADPH and NAD+. In the future, it may be possible to incorporate this FMN-DI into synthetic enzymatic pathways for balancing NADH generation and NADPH consumption for anaerobic production of biofuels and biochemicals.

  9. Structure and mechanism of the UvrA-UvrB DNA damage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Pakotiprapha, Danaya; Samuels, Martin; Shen, Koning; Hu, Johnny H; Jeruzalmi, David [Harvard

    2012-04-17

    Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexus of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.

  10. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid

    Directory of Open Access Journals (Sweden)

    Sulaiman A. Alrumman

    2016-03-01

    Full Text Available Abstract The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50 °C, respectively, after 24 h of incubation, with a yield of 31.56 mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24 h by using a two-step hydrolysis. Significant lactic acid production (27.8 mg/mL was obtained by separate saccharification and fermentation after 72 h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate.

  11. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities

    Science.gov (United States)

    Jeon, J.; Klaempfl, T. G.; Zimmermann, J. L.; Morfill, G. E.; Shimizu, T.

    2014-10-01

    In the current study, bacterial endospores of Geobacillus stearothermophilus are exposed to the surface micro-discharge plasma for 5 min and the humidity and power consumption are varied. At the low humidity of 5.5 ± 0.5 g m-3, almost no sporicidal effect (<0.5 log) is observed. At the high humidity of 17.9 ± 0.6 g m-3, the spore reduction increases monotonically up to 3.5 log with increasing power consumption. At a humidity of 10.4 ± 0.6 g m-3, the spores are inactivated in a limited range of power consumption with a maximum reduction of ˜2.5 log. The survival curves show a single-slope decrease of the spores. The contribution of heat and UV to the sporicidal effect as well as the inactivation of spores by the short-lived species from the plasma are ruled out. The concentration of ozone, one indicator for the long-lived species, is measured and no correlation with the sporicidal effect is found. In conclusion, water-related reactive species, e.g. hydrogen peroxide, appear to be responsible for the sporicidal effect under the investigated conditions. Furthermore, condensation of water at high humidity enables the plasma-activated water containing both long-lived and short-lived reactive species to contribute to the sporicidal effect.

  12. Detecting inactivated endospores in fluorescence microscopy using propidium monoazide

    Science.gov (United States)

    Probst, Alexander; Mahnert, Alexander; Weber, Christina; Haberer, Klaus; Moissl-Eichinger, Christine

    2012-04-01

    The differentiation between living and dead bacterial endospores is crucial in many research areas of microbiology. The identification of inactivated, non-pathogenic Bacillus anthracis spores is one reason why improvement of decontamination protocols is so desirable. Another field interested in spore viability is planetary protection, a sub-discipline of astrobiology that estimates the bioburden of spacecraft prior to launch in order to avoid interplanetary cross-contamination. We developed a dedicated, rapid and cost-effective method for identifying bacterial endospores that have been inactivated and consequently show a compromised spore wall. This novel protocol is culture-independent and is based on fluorescence microscopy and propidium monoazide (PMA) as a fluorescent marker, which is suggested to bind to DNA of spores with compromised spore coat, cortex and membranes based on our results. Inactivated preparations (treated with wet heat, irradiation, ultracentrifugation) showed a significant increase in spores that were PMA stained in their core; moreover, Bacillus atrophaeus, Bacillus safensis and Geobacillus stearothermophilus seemed to be best suited for this technique, as the spore cores of all these endospores could be positively stained after inactivation. Lastly, we describe an additional counter-staining protocol and provide an example of the application of the coupled staining methods for planetary protection purposes. The introduction of this novel protocol is expected to provide an initial insight into the various possible future applications of PMA as a non-viability marker for spores in, for example, B. anthracis-related studies, food microbiology and astrobiology.

  13. Screening, Identification of a Thermophilic Bacterium P4 and the Character of Its Thermophilic Protease%嗜热菌P4的筛选、鉴定及其高温蛋白酶性质研究

    Institute of Scientific and Technical Information of China (English)

    伦镜盛; 周新荣; 胡忠; 黄通旺

    2011-01-01

    用涂布平板法从温泉水中分离到1株产高温蛋白酶的嗜热菌,命名为P4.通过对菌株P4的生理生化试验和16S rRNA基因鉴定,初步确定其为一株嗜热脂肪地芽孢杆菌(Geobacillus stearothermophilus).菌株P4所产蛋白酶的最适反应温度在65-75℃之间,最适催化pH值为8.0,Zn2+、Mg2+对菌株P4的酶活力具有一定的促进作用.实验结果显示,菌株P4蛋白酶属于嗜热碱性蛋白酶,其酶活力在最适催化温度时达到每毫升发酵液10.0 U.

  14. Effects of VUV/UV radiation and oxygen radicals on low-temperature sterilization in surface-wave excited O{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ying; Singh, Mrityunjai K.; Ogino, Akihisa [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Nagatsu, Masaaki, E-mail: tmnagat@ipc.shizuoka.ac.j [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2010-04-30

    Effects of VUV/UV radiation and oxygen radicals on low-temperature sterilization in surface-wave excited O{sub 2} plasma were studied. To examine the effect of VUV/UV radiation on the inactivation of microorganisms, a small metal chamber covered with an optical filter at the top to block the radicals and allow the VUV/UV radiation was placed inside the plasma chamber. With a LiF and a glass filter, two different emission spectra above 120 nm (LiF filter) and above 300 nm (glass filter) were examined. The spores of Geobacillus stearothermophilus with a population of 2.5 x 10{sup 6} were put below the optical filter in the small chamber, which was filled with the oxygen gas at appropriate pressure or pumped down to 10{sup -3} Pa. The survival curve showed that the vacuum condition inside a small chamber with a LiF filter was more efficient than the same O{sub 2} gas pressure as that outside plasma chamber. From the SEM analysis of the spores, there was no obvious change in shape after plasma treatment with filter at vacuum condition. According to the present results, it is concluded that the etching effect by the oxygen radical is more efficient in inactivation process than the sterilizing effect by the VUV emission in the oxygen plasma.

  15. Relevance of glycosylation of S-layer proteins for cell surface properties.

    Science.gov (United States)

    Schuster, Bernhard; Sleytr, Uwe B

    2015-06-01

    Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices.

  16. Construction of silica-enhanced S-layer protein cages.

    Science.gov (United States)

    Schuster, D; Küpcü, S; Belton, D J; Perry, C C; Stöger-Pollach, M; Sleytr, U B; Pum, D

    2013-03-01

    The work presented here shows for the first time that it is possible to silicify S-layer coated liposomes and to obtain stable functionalized hollow nano-containers. For this purpose, the S-layer protein of Geobacillus stearothermophilus PV72/p2 was recombinantly expressed and used for coating positively charged liposomes composed of dipalmitoylphosphatidylcholine, cholesterol and hexadecylamine in a molar ratio of 10:5:4. Subsequently, plain (uncoated) liposomes and S-layer coated liposomes were silicified. Determination of the charge of the constructs during silicification allowed the deposition process to be followed. After the particles had been silicified, lipids were dissolved by treatment with Triton X-100 with the release of previously entrapped fluorescent dyes being determined by fluorimetry. Both, ζ-potential and release experiments showed differences between silicified plain liposomes and silicified S-layer coated liposomes. The results of the individual preparation steps were examined by embedding the respective assemblies in resin, ultrathin sectioning and inspection by bright-field transmission electron microscopy (TEM). Energy filtered TEM confirmed the successful construction of S-layer based silica cages. It is anticipated that this approach will provide a key to enabling technology for the fabrication of nanoporous protein cages for applications ranging from nano medicine to materials science.

  17. A fusion tag to fold on: the S-layer protein SgsE confers improved folding kinetics to translationally fused enhanced green fluorescent protein.

    Science.gov (United States)

    Ristl, Robin; Kainz, Birgit; Stadlmayr, Gerhard; Schuster, Heinrich; Pum, Dietmar; Messner, Paul; Obinger, Christian; Schaffer, Christina

    2012-09-01

    Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

  18. Fluorescence energy transfer in the bi-fluorescent S-layer tandem fusion protein ECFP-SgsE-YFP.

    Science.gov (United States)

    Kainz, Birgit; Steiner, Kerstin; Sleytr, Uwe B; Pum, Dietmar; Toca-Herrera, José L

    2010-12-01

    This work reports for the first time on the fabrication of a bi-functional S-layer tandem fusion protein which is able to self-assemble on solid supports without losing its functionality. Two variants of the green fluorescent protein (GFP) were genetically combined with a self-assembly system having the remarkable opportunity to interact with each other and act as functional nanopatterning biocoating. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the cyan ECFP donor protein at the SgsE N-terminus and with the yellow YFP acceptor protein at the C-terminus. The fluorescence energy transfer was studied with spectrofluorimetry, confocal microscopy and flow cytometry, whilst protein self-assembly (on silicon dioxide particles) and structural investigations were carried out with atomic force microscopy (AFM). The fluorescence resonance energy transfer efficiency of reassembled SgsE tandem protein was 20.0 ± 6.1% which is almost the same transfer efficiency shown in solution (19.6 ± 0.1%). This work shows that bi-fluorescent S-layer fusion proteins self-assemble on silica particles retaining their fluorescent properties.

  19. Characterization of a nanoscale S-layer protein based template for biomolecular patterning.

    Science.gov (United States)

    Wong, Wing Sze; Yung, Pun To

    2014-01-01

    Well organized template for biomolecular conjugation is the foundation for biosensing. Most of the current devices are fabricated using lithographic patterning processes and self-assembly monolayer (SAM) methods. However, the research toward developing a sub-10 nm patterned, self-regenerated template on various types of substrates is limited, mainly due to the limited functional groups of the building material. Bacterial surface layer proteins (S-layer proteins) can self-assemble into ordered lattice with regular pore sizes of 2-8 nm on different material supports and interfaces. The ordered structure can regenerate after extreme variations of solvent conditions. In this work, we developed a nanoscale biomolecular template based on S-layer proteins on gold surface for fabrication of sensing layer in biosensors. S-layer proteins were isolated from Bacillus cereus, Lysinibacillus sphaericus and Geobacillus stearothermophilus. Protein concentrations were measured by Bradford assay. The protein purities were verified by SDS-PAGE, showing molecular weights ranging from 97-135 kDa. The hydrophilicity of the substrate surface was measured after surface treatments of protein recrystallization. Atomic force microscopic (AFM) measurement was performed on substrate surface, indicating a successful immobilization of a monolayer of S-layer protein with 8-9 nm height on gold surface. The template can be applied on various material supports and acts as a self-regenerated sensing layer of biosensors in the future.

  20. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Nuriye; Ostermann, Kai; Roedel, Gerhard, E-mail: nuriye_korkmaz@yahoo.com, E-mail: kai.ostermann@tu-dresden.de, E-mail: gerhard.roedel@tu-dresden.de [Institut fuer Genetik, Technische Universitaet Dresden, Zellescher Weg 20b, 01217 Dresden (Germany)

    2011-03-04

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca{sup 2+}) ions, with an optimal concentration of 10 mM. Further increase of the Ca{sup 2+} concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 {mu}m compared to 2.69 {mu}m at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  1. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    Science.gov (United States)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  2. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    Science.gov (United States)

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  3. Sporocidic properties of poly(vinyl alcohol)/silver nanoparticles/TEOS thin hybrid films.

    Science.gov (United States)

    Pencheva, Daniela; Bryaskova, Rayna; Lad, Umesh; Kale, Girish M; Kantardjiev, T

    2012-06-01

    The sporocidic activity of hybrid materials based on PVA/AgNps/TEOS thin films has been investigated. Deep Agar Method has been applied to study the sporocidic properties of these hybrid materials with different silver concentrations. This method has been used because of the lack of standard methods for testing the sporocidic activity in such materials and due to the specific characteristics of bacterial spore. Clear and pronounced presence of sporocidic activity of the hybrid materials towards spores of control strains Bacillus subtilis ATCC 6633 and Geobacillus stearothermophilus ATCC 7953 has been established. The use of chromatographic paper disks impregnated with PVA/AgNps/TEOS showed the advantages in testing the biological properties of the hybrid material in comparison to the disks obtained by directly cutting the PVA/AgNps/TEOS films. The highest sporocidic activity, although with small deviation of 0.5-1.0 mm, was established at the PVA/AgNps/TEOS hybrid films with concentration of silver precursor 9.2 mg/mL and 18.3 mg/mL. The experiments were performed with the aim to reveal the opportunities for a practical application of the material.

  4. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    Science.gov (United States)

    Grande Burgos, María José; Pérez Pulido, Rubén; López Aguayo, María del Carmen; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  5. Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation.

    Science.gov (United States)

    Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori

    2009-03-01

    A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.

  6. Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2012-01-01

    Full Text Available There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s, the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries.

  7. Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment

    Science.gov (United States)

    Amara, Amro A.

    2012-01-01

    There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s), the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries. PMID:22629141

  8. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    Science.gov (United States)

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  9. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry.

    Science.gov (United States)

    Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F

    2012-04-16

    Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species.

  10. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    Directory of Open Access Journals (Sweden)

    María José Grande Burgos

    2014-12-01

    Full Text Available Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria. The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.

  11. Cyclic lipodepsipeptides produced by Pseudomonas spp. naturally present in raw milk induce inhibitory effects on microbiological inhibitor assays for antibiotic residue screening.

    Directory of Open Access Journals (Sweden)

    Wim Reybroeck

    Full Text Available Two Pseudomonas strains, identified as closely related to Pseudomonas tolaasii, were isolated from milk of a farm with frequent false-positive Delvotest results for screening putative antibiotic residues in raw milk executed as part of the regulatory quality programme. Growth at 5 to 7°C of these isolates in milk resulted in high lipolysis and the production of bacterial inhibitors. The two main bacterial inhibitors have a molecular weight of 1168.7 and 1140.7 Da respectively, are heat-tolerant and inhibit Geobacillus stearothermophilus var. calidolactis, the test strain of most of the commercially available microbiological inhibitor tests for screening of antibiotic residues in milk. Furthermore, these bacterial inhibitors show antimicrobial activity against Staphylococcus aureus, Bacillus cereus and B. subtilis and also interfere negatively with yoghurt production. Following their isolation and purification with RP-HPLC, the inhibitors were identified by NMR analysis as cyclic lipodepsipeptides of the viscosin group. Our findings bring to light a new challenge for quality control in the dairy industry. By prolonging the refrigerated storage of raw milk, the keeping quality of milk is influenced by growth and metabolic activities of psychrotrophic bacteria such as pseudomonads. Besides an increased risk of possible spoilage of long shelf-life milk, the production at low temperature of natural bacterial inhibitors may also result in false-positive results for antibiotic residue screening tests based on microbial inhibitor assays thus leading to undue production loss.

  12. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.

    Science.gov (United States)

    Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo

    2012-07-01

    To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals.

  13. Antibacterial Effect of Fructose Laurate Synthesized by Candida antarctica B Lipase-Mediated Transesterification.

    Science.gov (United States)

    Lee, Ki Ppeum; Kim, Hyung Kwoun

    2016-09-28

    Sugar esters are valuable compounds composed of various sugars and fatty acids that can be used as antibacterial agents and emulsifiers in toothpaste and canned foods. For example, fructose fatty acid esters suppress growth of Streptococcus mutans, a typical pathogenic bacterium causing dental caries. In this study, fructose laurate ester was chosen as a target material and was synthesized by a transesterification reaction using Candida antarctica lipase B. We performed a solvent screening experiment and found that a t-butanol/dimethyl sulfoxide mixture was the best solvent to dissolve fructose and methyl laurate. Fructose laurate was synthesized by transesterification of fructose (100 mM) with methyl laurate (30 mM) in t-butanol containing 20% dimethyl sulfoxide. The conversion yield was about 90%, which was calculated based on the quantity of methyl laurate using high-performance liquid chromatography. Fructose monolaurate (Mr 361) was detected in the reaction mixture by high-resolution mass spectrometry. The inhibitory effect of fructose laurate on growth of oral or food spoilage microorganisms, including S. mutans, Bacillus coagulans, and Geobacillus stearothermophilus, was evaluated.

  14. Cloning, Sequencing, and Expression of α-amylases Gene from Geobacillus sp. POT5%Geobacillus sp. POT5 α-淀粉酶基因的克隆及表达

    Institute of Scientific and Technical Information of China (English)

    杨灵; 侯瑛; 余霖霖; 刘国生; 张志芳

    2007-01-01

    从高温环境土壤中分离到1株能在75 ℃生长并产生α-淀粉酶的菌株(POT5),扩增了其16Sr DNA核苷酸序列,序列分析表明该菌属于Geobacillus属.根据该属全基因序列测定数据中推定的α-淀粉酶基因,利用PCR方法从G. sp. POT5基因组中扩增得到该菌α-淀粉酶基因(amyP).序列分析表明该基因全长1.545 kb、G+C含量51.33%,编码514个氨基酸.构建重组表达质粒pET22b(+)-amyP,转化Escherichia coli BL21系统,表达产物经SDS-PAGE分析、活性染色及淀粉酶活力分析,表明amyP基因得到了表达,且产物具有生物学活性.

  15. Isolation and Characterization of a Geobacillus thermoleovorans Strain from an Ultra-Deep South African Gold Mine

    Energy Technology Data Exchange (ETDEWEB)

    Deflaun, Mary F.; Fredrickson, Jim K.; Dong, Hailiang; Pfiffner, Susan M.; Onstott, T. C.; Balkwill, David L.; Streger, Sheryl H.; Stackebrandt, E.; Knoessen, S.; van Heerden, E.

    2007-03-08

    A thermophilic, facultative bacterium was isolated from a depth of 3.1 km below ground surface in an ultradeep gold mine in South Africa. This isolate, designated GE-7, was cultivated from pH 8.0, 600C fissure water. GE-7 grows optimally at 650C, pH 6.5 on a wide range of carbon substrates including GE-7 is a long rod-shaped bacterium (4-6 µm long x 0.5 wide) with terminal endospores and flagella, in addition to O2, can also utilize nitrate as an electron acceptor. Phylogenetic analysis of GE-7 16S rDNA sequence revealed high sequence similarity with G. thermoleovorans DSM 5366T (99.6%), however, certain phenotypic characteristics of GE-7 were distinct from this and other strains of G. thermoleovorans previously described.

  16. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Science.gov (United States)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  17. Purification and biochemical characterization of manganese-containing superoxide dismutase from deep-sea thermophile Geobacillus sp. EPT3

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanbing; LI Hebin; NI Hui; LIU Jingwen; XIAO Anfeng; CAI Huinong

    2014-01-01

    Thermostable SOD is a promising enzyme in biotechnological applications. In the present study, thermo-phileGeobacillussp.EPT3 was isolated from a deep-sea hydrothermal field in the East Pacific. A thermo-stable superoxide dismutase (SOD) from this strain was purified to homogeneity by steps of fractional am-monium sulfate precipitation, DEAE-Sepharose chromatography, and Phenyl-Sepharose chromatography. SOD was purified 13.4 fold to homogeneity with a specific activity of 3 354 U/mg and 11.1% recovery. SOD fromGeobacillussp. EPT3 was of the Mn-SOD type, judged by the insensitivity of the enzyme to both KCN and H2O2. SOD was determined to be a homodimer with monomeric molecular mass of 26.0 kDa. It had high thermostability at 50°C and 60°C. At tested conditions,SOD was relatively stable in the presence of some inhibitors and denaturants, such asβ-mercaptoethanol (β-ME), dithiothreitol (DTT), phenylmethylsulfonyl fluoride (PMSF), urea, and guanidine hydrochloride.Geobacillussp. EPT3 SOD showed striking stability across a wide pH range from 5.0 to 11.0. It could withstand denaturants of extremely acidic and alkaline conditions, which makes it useful in the industrial applications.

  18. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  19. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  20. Isolation of viscous-oil degrading microorganism and biodegradation to resin%稠油降解菌的筛选及其对胶质降解作用

    Institute of Scientific and Technical Information of China (English)

    王大威; 张健; 齐义彬; 马挺

    2012-01-01

    Phanerochaete chrysosporium; laccase; resistant to nutritional repression; regulation of carbon and nitrogen nutrition%[目的]以胶质为唯一碳源,从中海油南堡35-2油田地层水中经富集培养,为海上油田稠油降解及提高稠油采收率研究奠定基础.[方法]利用富集培养和胶质平板法分离胶质降解菌株,对分离菌株通过形态特征、16S rRNA基因进行鉴定,对菌株的理化性质进行分析,并对其降解胶质和稠油的性能进行研究.[结果]分离筛选出细菌菌株21株,并从中筛选出性能较好的4株.经鉴定为分别为Q4-油杆菌(Petrobacter sp.)、QB9-嗜热脂肪地芽胞杆菌(Geobacillus stearothermophilus)、QB26-地衣芽胞杆菌(Bacillus licheniformis)、QB36-白色地芽胞杆菌(Geobacillus pallidus),其中QB26菌株效果最好,对该菌株的理化性质进行了分析,并对其降解胶质和稠油的性能进行了研究.结果显示,该菌株可在厌氧条件下生长,并能适应地层环境.分离菌株作用稠油后,饱和烃相对含量均有不同程度的上升,芳香烃、胶质、沥青质相对含量降低,能使胶质相对含量降低5.1%,沥青质相对含量降低2.7%.[结论]分离菌株对NB35-2油田稠油中的胶质具有一定的降解作用,在微生物采油和原油污染处理方面具有应用潜力.

  1. Microbes under pressure: A comparison of CO2 stress responses on three model organisms and their implications for geologic carbon sequestration

    Science.gov (United States)

    Santillan, E. U.; Franks, M. A.; Omelon, C. R.; Bennett, P.

    2011-12-01

    When carbon dioxide is captured and stored in deep saline aquifers, many biogeochemical changes will occur in these reservoirs. High concentrations of aqueous CO2 itself can be toxic to microorganisms as the gas easily enters cell membranes and alters intracellular cell functions. Because of this, we expect CO2 to be a perturbation that will alter microbial community composition. Microbes that are capable of withstanding CO2 stress will be selected for and their subsequent growth and metabolism will further affect brine chemistry. For this study, we examined three organisms representing metabolic functions and cellular structures potentially found in deep saline aquifers: the Gram-negative dissimilatory iron reducing bacterium Shewanella oneidensis strain MR-1, the aerobic Gram-positive hydrocarbon degrading Geobacillus stearothermophilus, and the methanogenic archaeon Methanothermobacter thermoautotrophicus. Organisms were grown in batch cultures and subsequently exposed to high PCO2 ranging from 25 atm to 60 atm for 2 to 24 hours. Cultures were then plated for viability or tested for metabolic activity such as methane production. Following CO2 stress, organisms were also examined for membrane changes through phospholipid fatty acid analysis and for morphological changes by transmission electron microscopy. After only 2 hours of incubation in 30 atm of CO2, no viable cells were found in planktonic cultures of Shewanella. In contrast, cultures of Geobacillus remained viable (less than a log 2 reduction from initial counts) even after exposure to double the CO2 pressure and for 17 hours. However, when grown in the presence of quartz sandstone, biofilm formation on the rock surface occurred in Shewanella cultures, resulting in survival times greater than 8 hours. Our results suggest that biofilm formation and cell wall thickness may be two very important factors in resisting CO2 toxicity as they create a reactive barrier that slows the diffusion of CO2 into

  2. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    Science.gov (United States)

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  3. Comparative Amino Acids Studies on Phac Synthases and Proteases as Well as Establishing a New Trend in Experimental Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2012-04-01

    Full Text Available ABSTRACT: A question addressed in this study is: why similar enzymes are classified into different subclasses? As an example, PhaC synthases are classified according to four different classes (I, II, III and IV. To answer this question we proposed that besides the catalytic residues, the overall amino acids (AAs present are responsible for the differences observed. The AAs’ composition affects the structure/function/substrate specificity (SFS of these enzymes. The differences between the classes in various PhaC synthases and proteases were analysed to support our argument. Homology and phylogenic tree of some selected PhaC synthases of different strains (representing the four classes were demonstrated. The properties of a specific class of enzyme could not be changed into those of another by changing the catalytic residues. Moreover, these differences could not be detected from the proteins’ 3D structures, despite clear differences at the AAs level. Another question was also addressed: could we benefit from the various existing protein databases in the field of biotechnology? To answer this, we introduced a model for an Experimental Design based on the information in the protein database (for strains available in our lab regarding their ability to degrade castor oil. Two enzymes in the phenol degradation pathway, phenol 2-monooxygenase and catechol 1,2-dioxygenase, and a lipase enzyme were analysed. These enzymes were screened and analysed according to the BLAST-protein database and BRENDA. The comprehensive enzyme information system compared six strains against each other, including: Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Bacillus thuringiensis, Bacillus licheniformis, and Geobacillus stearothermophilus. Only P. aeruginosa proved to have the three required enzymes and was suitable for the production of lipases from castor oil (crude castor oil is usually contaminated with phenol as indicated by the databases. In

  4. Using antibodies against ATPase and microarray immunoassays for the search for potential extraterrestrial life in saline environments on Mars.

    Science.gov (United States)

    Weigl, Andreas; Gruber, Claudia; Blanco-López, Yolanda; Rivas, Luis A.; Parro, Victor; Stan-Lotter, Helga

    2010-05-01

    For the search for extraterrestrial life it is proposed to use receptors such as labelled antibodies for the detection of organic biomarkers. One of these organic molecules to be tested is the universal enzyme ATP synthase which is present in highly conserved forms in all organisms on earth. Therefore it is necessary to evaluate antibodies against ATPase respectively ATP synthase and their subunits. As it is known, that there are halite deposits on Mars the experiments in this study have been carried out with regard to halophile microorganisms and saline environments. Standard F1F0 ATPase from Escherichia coli LE 392 and Bacillus megaterium as well as haloarchaeal A-ATPase from Halorubrum saccharovorum and Halobacterium salinarum NRC-1 were used. The cultivated cells, except Bacillus, were broken by passage through a French Pressure Cell. Separation of enzyme subunits was performed by polyacrylamide gel electrophoresis. Western Blotting with antisera produced in rabbit against A-ATPase subunits A (85 kD) and subunits B (60 kD) from Halorubrrum saccharovorum (1) showed positive reactions with the membrane fraction, which should be enriched with ATPase from Halorubrum saccharovorum, Halobacterium salinarum NRC-1 and Escherichia coli LE 392. Particular attention was given to the question if ATPase subunits can be detected in whole cells. Therefore whole cell preparations of all cells and spore suspensions from Geobacillus stearothermophilus were tested against the antiserum as well as against protein-A-purified antibody against A-ATPase subunit A from Halorubrum saccharovorum. A positive immuno reaction of all cell preparations with the antiserum as well as with the purified antibody was detected. The spores of Geobacillus stearothermophilus reacted positively with the antiserum against subunit A of the A-ATPase from Hrr. saccharovorum. A commercial antibody Rabbit Anti-V-ATPase subunit A polyclonal antibody from the GenScript Corporation reacted positively with

  5. Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors.

    Science.gov (United States)

    Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D

    2016-12-02

    The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits.

  6. Residues of a proposed gate region in type I ATP-binding cassette import systems are crucial for function as revealed by mutational analysis.

    Science.gov (United States)

    Weidlich, Daniela; Wiesemann, Nicole; Heuveling, Johanna; Wardelmann, Kristina; Landmesser, Heidi; Sani, Katayoun Behnam; Worth, Catherine L; Preissner, Robert; Schneider, Erwin

    2013-09-01

    The type I ATP-binding cassette (ABC) importer for positively charged amino acids of the thermophilic bacterium Geobacillus stearothermophilus consists of the extracellular solute binding protein, ArtJ, and a homodimer each of the transmembrane subunit, ArtM, and the nucleotide-binding and -hydrolyzing subunit, ArtP. We have investigated the functional consequences of mutations affecting conserved residues from two peptide regions in ArtM, recently proposed to form a 'gate' by which access of a substrate to the translocation path is controlled (Hollenstein et al., 2007 [14]). Transporter variants were reconstituted into proteoliposomes and assayed for ArtJ/arginine-stimulated ATPase activity. Replacement of residues from region 1 (Arg-63, Pro-66) caused no or only moderate reduction in ATPase activity. In contrast, mutating residues from gate region 2 (Lys-159, Leu-163) resulted in a substantial increase in ATPase activity which, however, as demonstrated for variants ArtM(K159I) and ArtM(K159E), is not coupled to transport. Replacing homologous residues in the closely related histidine transporter of Salmonella enterica serovar Typhimurium (HisJ-QMP2) caused different phenotypes. Mutation to isoleucine of HisQ(K163) or HisM(H172), both homologous to ArtM(K159), abolished ATPase activity. The mutations most likely caused a structural change as revealed by limited proteolysis. In contrast, substantial, albeit reduced, enzymatic activity was observed with variants of HisQ(L167→G) or HisM(L176→G), both homologous to ArtM(L163). Our study provides the first experimental evidence in favor of a crucial role of residues from the proposed gate region in type I ABC importer function. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analytical strategy for the detection of antibiotic residues in sheep and goat’s milk

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán, M.C.; Althaus, R.L.; Molina, A.; Berruga, M.I.; Molina, M.P.

    2015-07-01

    The use of antibiotics to treat mastitis and other infectious diseases in dairy sheep and goats is a widespread practice nowadays that can, when not properly applied, result in the contamination of the milk supply. Spanish legislation establishes the control of the presence of antibiotic residues in sheep and goat’s milk using screening methods that detect, at least, beta-lactam drugs. Microbial inhibitor tests using Geobacillus stearothermophilus var. calidolactis and specific receptor-binding assays are most widely employed for this purpose. The detection rates of screening tests routinely used in Spain have been calculated considering the frequency of use of veterinary drugs commonly applied in ovine and caprine livestock to treat and prevent mastitis as well as the test sensitivity toward these substances at safety levels. In general, the use of a single test allows detecting 62.8-82.4% of the antibiotics employed. For sheep milk, the total detection range achieved with microbial tests was significantly higher than that reached with rapid receptor tests. However, no significant differences between the two types of methods were found when goat's milk was analysed. In both types of milk, the simultaneous use of two screening tests with a different analytical basis increases the total detection range significantly, reaching values ≥ 90% in some cases (81.5-90.1% for sheep and 84.7-92.6% for goats). However, the periodical use of screening tests able to detect quinolones, macrolides or aminoglycosides would be recommended to carry out more efficient screening and ensure the safety of milk and dairy products from sheep and goats. (Author)

  8. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Directory of Open Access Journals (Sweden)

    Shelly J Krebs

    Full Text Available Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab responses toward conserved regions of the viral Envelope (Env. However, the generation of neutralizing Abs (NAbs targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  9. Vapor Hydrogen Peroxide Sterilization Certification

    Science.gov (United States)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  10. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    Science.gov (United States)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  11. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    Science.gov (United States)

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  12. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    Directory of Open Access Journals (Sweden)

    Navya Mastanaiah

    Full Text Available Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC, it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4 and 20 °C-49 °C (for SC. Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.

  13. Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N{sub 2} and O{sub 2} gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M K; Ogino, A; Nagatsu, M [Graduate School of Science and Technology, Shizuoka University, Johoku 3-5-1, Hamamatsu 432-8561 (Japan)], E-mail: tmnagat@ipc.shizuoka.ac.jp

    2009-11-15

    In this study, we investigated the inactivation characteristics of Geobacillus stearothermophilus spores under different plasma exposure conditions using low-pressure microwave plasma in nitrogen, oxygen and an air-simulated (N{sub 2}:O{sub 2}=4:1) gas mixture. The microwave-excited surface-wave plasma discharges were produced at low pressure by a large volume device. The directly plasma-exposed spores, up to 10{sup 6} populations, were successfully inactivated within 15, 10 and 5 min of surface-wave plasma treatment using nitrogen, oxygen and an air-simulated gas mixture, respectively, as working gases within the temperature of 75 deg. C. The contribution of different inactivation factors was evaluated by placing different filters (e.g. a LiF plate, a quartz plate and a Tyvek (registered) sheet) as indirect exposure of spores to the plasma. It was observed that optical emissions (including vacuum UV (VUV)/UV) play an important role in the inactivation process. To further evaluate the effect of VUV/UV photons, we placed an evacuated isolated chamber, inside which spores were set, into the main plasma chamber. The experimental results show that the inactivation time by VUV/UV photons alone, without working gas in the immediate vicinity of the spores, is longer than that with working gas. This suggests that the VUV/UV emission is responsible not only for direct UV inactivation of spores but also for generation of reactive neutral species by photoexcitation. The scanning electron microscopy images revealed significant changes in the morphology of directly plasma-exposed spores but no change in the spores irradiated by VUV/UV photons only.

  14. Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture

    Science.gov (United States)

    Singh, M. K.; Ogino, A.; Nagatsu, M.

    2009-11-01

    In this study, we investigated the inactivation characteristics of Geobacillus stearothermophilus spores under different plasma exposure conditions using low-pressure microwave plasma in nitrogen, oxygen and an air-simulated (N2:O2=4:1) gas mixture. The microwave-excited surface-wave plasma discharges were produced at low pressure by a large volume device. The directly plasma-exposed spores, up to 106 populations, were successfully inactivated within 15, 10 and 5 min of surface-wave plasma treatment using nitrogen, oxygen and an air-simulated gas mixture, respectively, as working gases within the temperature of 75 °C. The contribution of different inactivation factors was evaluated by placing different filters (e.g. a LiF plate, a quartz plate and a Tyvek® sheet) as indirect exposure of spores to the plasma. It was observed that optical emissions (including vacuum UV (VUV)/UV) play an important role in the inactivation process. To further evaluate the effect of VUV/UV photons, we placed an evacuated isolated chamber, inside which spores were set, into the main plasma chamber. The experimental results show that the inactivation time by VUV/UV photons alone, without working gas in the immediate vicinity of the spores, is longer than that with working gas. This suggests that the VUV/UV emission is responsible not only for direct UV inactivation of spores but also for generation of reactive neutral species by photoexcitation. The scanning electron microscopy images revealed significant changes in the morphology of directly plasma-exposed spores but no change in the spores irradiated by VUV/UV photons only.

  15. Structure and Reactivity of a Thermostable Prokaryotic Nitric-oxide Synthase That Forms a Long-lived Oxy-Heme Complex

    Energy Technology Data Exchange (ETDEWEB)

    Sudhamsu,J.; Crane, B.

    2006-01-01

    In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from L-arginine via the stable intermediate N-hydroxy L-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates L-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxy species. In single turnover experiments with NOHA, NO forms only in the presence of H4B. The crystal structure of gsNOS at 3.2 A Angstroms of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degC. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.

  16. A Comparative Study of Recombinant Expression of Three Aminopeptidases in Escherichia coli%3种氨肽酶基因在大肠杆菌中的重组表达与比较研究

    Institute of Scientific and Technical Information of China (English)

    张洁; 张梁; 黄武宁; 石贵阳

    2013-01-01

    PCR扩增Bacillus licheniformis 14580、Bacillus subtilis 168、Geobacillus stearothermophilus IFO12589氨肽酶基因,分别酶切连接表达质粒pET-28a,构建重组表达载体pET28a-BLAP、pET28a-BSAP、pET28a-GSAP,酶活力检测表明3个氨肽酶基因均在大肠杆菌宿主BL21(DE3)中获得重组表达.进一步对3株重组菌的氨肽酶粗酶液反应条件进行比较研究,结果表明:重组氨肽酶BSAP与GSAP的粗酶活较高,达到1500U/L以上;BLAP、BSAP、GSAP粗酶的最适酶反应温度分别为50、75、60℃,BSAP温度稳定性最好,在30~70℃时比较稳定;3种重组氨肽酶的最适pH值都是9.0,pH值在8.5~9.0时比较稳定;0.1mmol/L Co2+对酶活有较强的激活作用,BSAP的相对酶活力最高达到195.6%,其他二价金属离子对酶活均有不同程度的抑制,其中Zn2+抑制作用最大;重组质粒pET28a-BSAP、pET28a-GSAP在大肠杆菌中较pET28a-BLAP稳定.

  17. Comparison of different decontaminant delivery methods for sterilizing unoccupied commercial airliner cabins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Chen, Qingyan [National Air Transport Center of Excellence for Research in the Intermodal Transport Environment (RITE), School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47905 (United States)

    2010-09-15

    Effective decontamination is crucial if an airliner cabin is contaminated by biological contaminants, such as infectious disease viruses or intentionally released biological agents. This study used computational fluid dynamics (CFD) method as a tool and vaporized hydrogen peroxide (VHP) as an exemplary decontaminant and Geobacillus stearothermophilus spores as a simulant contaminant to investigate three VHP delivery methods for sterilizing two different airliner cabins. The CFD first determined the airflow and the transient distributions of the contaminant and decontaminant in cabins. Auxiliary equations were implemented into the CFD model for evaluating efficacy of the sterilization process. The improved CFD model was validated by the measured airflow and simulated contaminant distributions obtained from a cabin mockup and the measured efficacy data from the literature. The three decontaminant delivery methods were (1) to supply the mixed VHP and air through the environmental control system of a cabin, (2) to send mixed VHP and air through a front door and to extract them from a back door of a cabin, and (3) to send directly VHP to a cabin and enhance the mixing with air in the cabin by fans. The two air cabins studied were a single-aisle and a twin-aisle airliner one. The results show that the second decontaminant delivery method (displacement method) was the best because the VHP distributions in the cabins were most uniform, the sterilization time was moderate, and the corrosion risk was low. The method displaced the existing air by the air/disinfectant solution, rather than dispersive mixing as the other two methods. (author)

  18. Orthodontic instrument sterilization with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Arif Yezdani

    2015-01-01

    Full Text Available Objective: This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. Materials and Methods: The orthodontic instruments (hinged and nonhinged, molar bands and mouth mirrors used in the patient′s mouth were selected for the study. The instruments were divided into two groups - Group I with oral rinse-set A (0.01% chlorhexidine gluconate and set B (0.025% betadine and Group II (included sets C and D without oral rinse. The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37°C for 24 h. For sterility control, Geobacillus stearothermophilus (MTCC 1518 was included. Results: No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculated with the microwaved set C instruments. Conclusion: Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min.

  19. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    Science.gov (United States)

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  20. Co-immunization with multimeric scaffolds and DNA rapidly induces potent autologous HIV-1 neutralizing antibodies and CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Jaworski

    Full Text Available To obtain proof of concept for HIV vaccines, we generated recombinant multimeric particles displaying the HIV-1 Envelope (Env third hypervariable region (V3 as an N-terminal fusion protein on the E2 subunit of the pyruvate dehydrogenase complex of Geobacillus stearothermophilus. The E2 scaffold self-assembles into a 60-mer core that is 24 nm in diameter, with a molecular weight of 1.5 MDa, similar to a virus like particle with up to 60 copies of a heterologous protein accessible on the surface. Env(V3-E2 multimers were tested alone and in combination with Env(gp160 DNA in mice and rabbits. Following two or more co-immunizations with Env(V3-E2 and Env gp160 DNA, all 18 rabbits developed potent autologous neutralizing antibodies specific for V3 in six weeks. These neutralizing antibodies were sustained for 16 weeks without boosting, and comparable responses were obtained when lipopolysaccharide, a contaminant from expression in E. coli, was removed. Co-immunizations of Env(V3-E2 and DNA expressing gp160 elicited moderate CD8-specific responses and Env-specific antibodies in mice. Co-immunization with DNA and E2 was superior to individual or sequential vaccination with these components in eliciting both neutralizing antibodies in rabbits and CD8(+ T cell responses in mice. Co-immunization with DNA and multimeric E2 scaffolds appears to offer a highly effective means of eliciting rapid, specific, and sustained immune responses that may be a useful approach for other vaccine targets.

  1. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly.

    Science.gov (United States)

    Baranova, Ekaterina; Fronzes, Rémi; Garcia-Pino, Abel; Van Gerven, Nani; Papapostolou, David; Péhau-Arnaudet, Gérard; Pardon, Els; Steyaert, Jan; Howorka, Stefan; Remaut, Han

    2012-07-05

    S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.

  2. Structure prediction of an S-layer protein by the mean force method

    Science.gov (United States)

    Horejs, C.; Pum, D.; Sleytr, U. B.; Tscheliessnig, R.

    2008-02-01

    S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins—their tertiary structure—nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.

  3. Analytical strategy for the detection of antibiotic residues in sheep and goat’s milk

    Directory of Open Access Journals (Sweden)

    M. Carmen Beltrán

    2015-03-01

    Full Text Available The use of antibiotics to treat mastitis and other infectious diseases in dairy sheep and goats is a widespread practice nowadays that can, when not properly applied, result in the contamination of the milk supply. Spanish legislation establishes the control of the presence of antibiotic residues in sheep and goat’s milk using screening methods that detect, at least, beta-lactam drugs. Microbial inhibitor tests using Geobacillus stearothermophilus var. calidolactis and specific receptor-binding assays are most widely employed for this purpose. The detection rates of screening tests routinely used in Spain have been calculated considering the frequency of use of veterinary drugs commonly applied in ovine and caprine livestock to treat and prevent mastitis as well as the test sensitivity toward these substances at safety levels. In general, the use of a single test allows detecting 62.8-82.4% of the antibiotics employed. For sheep milk, the total detection range achieved with microbial tests was significantly higher than that reached with rapid receptor tests. However, no significant differences between the two types of methods were found when goat’s milk was analysed. In both types of milk, the simultaneous use of two screening tests with a different analytical basis increases the total detection range significantly, reaching values ≥ 90% in some cases (81.5-90.1% for sheep and 84.7-92.6% for goats. However, the periodical use of screening tests able to detect quinolones, macrolides or aminoglycosides would be recommended to carry out more efficient screening and ensure the safety of milk and dairy products from sheep and goats.

  4. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    Science.gov (United States)

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  5. Plasmonic Nanostructures for Solar and Biological Application

    Science.gov (United States)

    Neumann, Oara

    The electromagnetic absorption properties of plasmonic nanostructures were utilized to develop mesoscopic sites for highly efficient photothermal generation steam, SERS biosensing, and light-triggered cellular delivery uptake. Plasmonic nanostructures embedded in common thermal solutions produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Solar illuminated aqueous nanoparticle solution can drive water-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation and also produced saturated steam destroying Geobacillus stearothermophilus bacteria in a compact solar powered autoclave. Subwavelength biosensing sites were developed using the plasmonic properties of gold nanoshells to investigate the properties of aptamer (DNA) target complexes. Nanoshells are tunable core-shell nanoparticles whose resonant absorption and scattering properties are dependent on core/shell thickness ratio. Nanoshells were used to develop a label free detection method using SERS to monitor conformational change induced by aptamer target binding. The conformational changes to the aptamers induced by target binding were probed by monitoring the aptamer SERS spectra reproducibility. Furthermore, nanoshells can serve as a nonviral light-controlled delivery vector for the precise temporal and spatial control of molecular delivery in vitro. The drug delivery concept using plasmonic vectors was shown using a monolayer of ds-DNA attached to the nanoshell surface and the small molecular "parcel" intercalated inside ds-DNA loops. DAPI, a fluorescent dye, was used as the molecular parcel to visualize the release process in living cells. Upon laser illumination at the absorption resonance the nanoshell converts photon energy into heat producing a

  6. Effect of Essential Oils on Germination and Growth of Some Pathogenic and Spoilage Spore-Forming Bacteria.

    Science.gov (United States)

    Voundi, Stève Olugu; Nyegue, Maximilienne; Lazar, Iuliana; Raducanu, Dumitra; Ndoye, Florentine Foe; Marius, Stamate; Etoa, François-Xavier

    2015-06-01

    The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus. Essential oils were chemically analyzed using gas chromatography and gas chromatography coupled to mass spectrometry. The minimal inhibitory and bactericidal concentrations of vegetative growth and spore germination were assessed using the macrodilution method. Germination inhibitory effect of treated spores with essential oils was evaluated on solid medium, while kinetic growth was followed using spectrophotometry in the presence of essential oils. Essential oil from Drypetes gossweileri mainly composed of benzyl isothiocyanate (86.7%) was the most potent, with minimal inhibitory concentrations ranging from 0.0048 to 0.0097 mg/mL on vegetative cells and 0.001 to 0.002 mg/mL on spore germination. Furthermore, essential oil from D. gossweileri reduced 50% of spore germination after treatment at 1.25 mg/mL, and its combination with other oils improved both bacteriostatic and bactericidal activities with additive or synergistic effects. Concerning the other essential oils, the minimal inhibitory concentration ranged from 5 to 0.63 mg/mL on vegetative growth and from 0.75 to 0.09 mg/mL on the germination of spores. Spectrophotometric evaluation showed an inhibitory effect of essential oils on both germination and outgrowth. From these results, it is concluded that some of the essential oils tested might be a valuable tool for bacteriological control in food industries. Therefore, further research regarding their use as food preservatives should be carried out.

  7. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    Science.gov (United States)

    Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 106 spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275°F and 75 min at 45 lb/in2 and 292°F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275°F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process. PMID:17012597

  8. Degradation of diclorinated dibenzo-P-dioxin by a cell free extract from Geobacillus midousuji SH2B-J2

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Otsuka, Y.; Katayama, Y.; Takahashi, A.

    2009-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) have been widespread environmental contaminants formed unintentionally as a by-products during the bleaching of pulp and paper, the manufacture of pesticides, and the incineration of halogen containing chemicals. PCDDs and PCDFs contamination has led to serious social problem because of their toxicity mutagenic and carcinogenic properties. (Author)

  9. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma and comparison to thermal and chemical based methods

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Xie, H.; Esveld, D.C.; Abee, T.; Mastwijk, H.C.; Nierop Groot, M.N.

    2015-01-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is s

  10. Combination of Oxyanion Gln114 Mutation and Medium Engineering to Influence the Enantioselectivity of Thermophilic Lipase from Geobacillus zalihae

    Directory of Open Access Journals (Sweden)

    Thean Chor Leow

    2012-09-01

    Full Text Available The substitution of the oxyanion Q114 with Met and Leu was carried out to investigate the role of Q114 in imparting enantioselectivity on T1 lipase. The mutation improved enantioselectivity in Q114M over the wild-type, while enantioselectivity in Q114L was reduced. The enantioselectivity of the thermophilic lipases, T1, Q114L and Q114M correlated better with log p as compared to the dielectric constant and dipole moment of the solvents. Enzyme activity was good in solvents with log p < 3.5, with the exception of hexane which deviated substantially. Isooctane was found to be the best solvent for the esterification of (R,S-ibuprofen with oleyl alcohol for lipases Q114M and Q114L, to afford E values of 53.7 and 12.2, respectively. Selectivity of T1 was highest in tetradecane with E value 49.2. Solvents with low log p reduced overall lipase activity and dimethyl sulfoxide (DMSO completely inhibited the lipases. Ester conversions, however, were still low. Molecular sieves employed as desiccant were found to adversely affect catalysis in the lipase variants, particularly in Q114M. The higher desiccant loading also increased viscosity in the reaction and further reduced the efficiency of the lipase-catalyzed esterifications.

  11. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma and comparison to thermal and chemical based methods

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Xie, H.; Esveld, D.C.; Abee, T.; Mastwijk, H.C.; Nierop Groot, M.N.

    2015-01-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is

  12. NCBI nr-aa BLAST: CBRC-DYAK-04-0048 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-04-0048 ref|YP_146632.1| hypothetical protein GK0779 [Geobacillus kaustop...hilus HTA426] ref|YP_147768.1| hypothetical protein GK1915 [Geobacillus kaustophilus HTA426] dbj|BAD18342.1|... unknown conserved protein [Geobacillus kaustophilus] dbj|BAD75064.1| hypothetical conserved protein [Geobacillus kaustop...hilus HTA426] dbj|BAD76200.1| hypothetical conserved protein [Geobacillus kaustophilus HTA426] YP_146632.1 4.6 23% ...

  13. Saturation Mutagenesis and the Enzyme Properties of the Alpha-Amylase from Geobacillus sp.%地芽孢杆菌Geobacillus sp.GXS1α-淀粉酶的饱和突变及酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    薛蓓; 裴建新; 王治宾; 罗章; 韦宇拓

    2013-01-01

    采用半理性设计方法,在网站Geno3D上以PDB数据库中B.stearothermophilus麦芽糖淀粉酶(BSMA)的三维结构为模板,对AMY(α-淀粉酶)进行三维结构同源建模(二者氨基酸的同源性为33%).比较同源建模预测的3D结构和模板BSMA的3D结构关键位点,在此基础上通过计算机辅助设计软件ProSa2003,根据能量变化确定了AMY三个饱和突变位点:D192、E221和D289.利用兼并引物对AMY的假定活性中心位点D192、E221和D289的氨基酸分别进行饱和突变,定点(饱和)突变库筛选得到4个有活力的突变子D192A、E221N、E221L和D289L,并对突变酶的酶学性质进行初步研究.

  14. Novel DNA Extraction Method Unveiled the Ancient Hot Deep Biosphere Concealed in Terrestrial Sedimentary Rocks

    Science.gov (United States)

    Kouduka, M.; Suko, T.; Okuzawa, K.; Fukuda, A.; Nanba, K.; Yamamoto, M.; Sakata, S.; Ito, K.; Suzuki, Y.

    2009-12-01

    It has been proposed that the hot deep biosphere is distributed deeply in the crust of the Earth. Below the upper limit of life, prokaryotic habitats extend at a depth of 4 km within a typical range of thermal gradients (2.5-3°C/100m). In contrary, large geothermal gradients allow the hot deep biosphere approaching to the Earth’s surface. We conducted aseptic and deoxygenated drilling targeting Miocene marine siliceous rocks in a tectonically stable inland fore-arc basin in central Japan. Although the in-situ groundwater temperature was 30.2°C at a maximum drilling depth of 352 mbgl, opal-CT and clinoptilolite, which commonly form as a result of progressive burial at 30-60°C and over 70°C, respectively, were detected by XRD analysis. However, burial-driven degradation and transformation of sterols (sterene to sterane) was not evident in the core samples. As presented by Y. Suzuki et al. in this meeting, extant microbial populations were dominated by Pseudomonas spp. and Flavobacterium spp. with cell numbers ranging ~107-108 cells/cm3 rock. Despite the abundance of microbial cells, DNA were not extracted from the core samples by conventional methods. We developed a DNA extraction method to avoid binding of DNA onto the siliceous mineral matrix by heating under alkaline conditions, which resulted in the successful retrieval of PCR-amplifiable DNA. Unexpectedly, 16S rRNA gene sequences closely related thermophilic Geobacillus stearothermophilus and Thermus thermophilus were dominant in the clone libraries from 300- and 350-m deep core samples, while those almost identical to the Pseudomonas spp. were minor. Based on the correlation between the GC contents of 16S rRNA gene sequences and growth temperatures of prokaryotes, the estimated growth temperatures were 90.0°C (G+C=66.3%) and 67.5°C (G+C=61.3%) for G. stearothermophilus and T. thermophilus, respectively. From these results, it is implied that temperature rise in the past led to the colonization of

  15. Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

    2003-12-01

    isolates cluster with Bacillus coagulans although B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. For successful production of ethanol from pyruvate, both pyruvate decarboxylase (PDC) and alcohol dehydrogenase (AHD) need to be produced at optimal levels in these biocatalysts. A plasmid containing the S. ventriculi pdc gene and the adh gene from geobacillus stearothermophilus was constructed using plasmid pWH1520 that was successfully used for expression of pdc in B. megaterium. The resulting portable ethanol (PET) plasmid, pJAM423, was transformed into B. megaterium. After xylose induction, a significant fraction of cell cytoplasm was composed of the S. ventriculi PDC and G. stearothermophilus ADH proteins. In preliminary experiments, the amount of ethanol produced by b. megaterium with plasmid pJAM423 was about twice (20 mM) of the bacterium without the plasmid. These results show that the PET operon is functional in B. megaterium but high level ethanol production needs further genetic and metabolic engineering. A genetic transfer system for the second generation biocatalysts needs to be developed for transferring the plasmid pJAM423 and its derivatives for engineering these organisms for ethanol production from biomass derived sugars and cellulose to ethanol. One of the new biocatalysts, strain P4-102B was found to be transformable with plasmids and the method for introducing plasmid pJAM423 into this strain and expression of the encoded DNA is being optimized. These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.

  16. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kolodkin-Gal, I; Elsholz, AKW; Muth, C; Girguis, PR; Kolter, R; Losick, R

    2013-04-29

    Bacillus subtilis forms organized multicellular communities known as biofilms wherein the individual cells are held together by a self-produced extracellular matrix. The environmental signals that promote matrix synthesis remain largely unknown. We discovered that one such signal is impaired respiration. Specifically, high oxygen levels suppressed synthesis of the extracellular matrix. In contrast, low oxygen levels, in the absence of an alternative electron acceptor, led to increased matrix production. The response to impaired respiration was blocked in a mutant lacking cytochromes caa(3) and bc and markedly reduced in a mutant lacking kinase KinB. Mass spectrometry of proteins associated with KinB showed that the kinase was in a complex with multiple components of the aerobic respiratory chain. We propose that KinB is activated via a redox switch involving interaction of its second transmembrane segment with one or more cytochromes under conditions of reduced electron transport. In addition, a second kinase (KinA) contributes to the response to impaired respiration. Evidence suggests that KinA is activated by a decrease in the nicotinamide adenine dinucleotide (NAD(+))/NADH ratio via binding of NAD(+) to the kinase in a PAS domain A-dependent manner. Thus, B. subtilis switches from a unicellular to a multicellular state by two pathways that independently respond to conditions of impaired respiration.

  17. The second extracellular loop of pore-forming subunits of ATP-binding cassette transporters for basic amino acids plays a crucial role in interaction with the cognate solute binding protein(s).

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-04-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)(2) complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP(2) of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P(2) variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM.

  18. The Second Extracellular Loop of Pore-Forming Subunits of ATP-Binding Cassette Transporters for Basic Amino Acids Plays a Crucial Role in Interaction with the Cognate Solute Binding Protein(s)▿

    Science.gov (United States)

    Eckey, Viola; Weidlich, Daniela; Landmesser, Heidi; Bergmann, Ulf; Schneider, Erwin

    2010-01-01

    In the thermophile Geobacillus stearothermophilus, the uptake of basic amino acids is mediated by an ABC transporter composed of the substrate binding protein (receptor) ArtJ and a homodimer each of the pore-forming subunit, ArtM, and the nucleotide-binding subunit, ArtP. We recently identified two putative binding sites in ArtJ that might interact with the Art(MP)2 complex, thereby initiating the transport cycle (A. Vahedi-Faridi et al., J. Mol. Biol. 375:448-459, 2008). Here we investigated the contribution of charged amino acid residues in the second extracellular loop of ArtM to contact with ArtJ. Our results demonstrate a crucial role for residues K177, R185, and E188, since mutations to oppositely charged amino acids or glutamine led to a complete loss of ArtJ-stimulated ATPase activity of the complex variants in proteoliposomes. The defects could not be suppressed by ArtJ variants carrying mutations in site I (K39E and K152E) or II (E163K and D170K), suggesting a more complex interplay than that by a single salt bridge. These findings were supported by cross-linking assays demonstrating physical proximity between ArtJ(N166C) and ArtM(E182C). The importance of positively charged residues for receptor-transporter interaction was underscored by mutational analysis of the closely related transporter HisJ/LAO-HisQMP2 of Salmonella enterica serovar Typhimurium. While transporter variants with mutated positively charged residues in HisQ displayed residual ATPase activities, corresponding mutants of HisM could no longer be stimulated by HisJ/LAO. Interestingly, the ATPase activity of the HisQM(K187E)P2 variant was inhibited by l- and d-histidine in detergent, suggesting a role of the residue in preventing free histidine from gaining access to the substrate binding site within HisQM. PMID:20154136

  19. A novel alkaliphilic bacillus esterase belongs to the 13(th bacterial lipolytic enzyme family.

    Directory of Open Access Journals (Sweden)

    Lang Rao

    Full Text Available BACKGROUND: Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. METHODOLOGY/PRINCIPAL FINDINGS: Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2-C12 and triglycerides (C2-C6. Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. CONCLUSION: EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence

  20. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2005-10-01

    Full Text Available Abstract Background Native as well as recombinant bacterial cell surface layer (S-layer protein of Geobacillus (G. stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099 of the S-layer protein and EGFP (enhanced green fluorescent protein, in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells. Results Upon expression in E. coli the recombinant mSbsC-EGFP fusion protein was recovered from the insoluble fraction. After denaturation by Guanidine (Gua-HCl treatment and subsequent dialysis the fusion protein assembled in solution and yielded green fluorescent cylindric structures with regular symmetry comparable to that of the authentic SbsC. For expression in the eukaryotic host Saccharomyces (S. cerevisiae mSbsC-EGFP was cloned in a multi-copy expression vector bearing the strong constitutive GPD1 (glyceraldehyde-3-phosophate-dehydrogenase promoter. The respective yeast transfomants were only slightly impaired in growth and exhibited a needle-like green fluorescent pattern. Transmission electron microscopy (TEM studies revealed the presence of closely packed cylindrical structures in the cytosol with regular symmetry comparable to those obtained after in vitro recrystallization. Similar structures are observed in HeLa cells expressing mSbsC-EGFP from the Cytomegalovirus (CMV IE promoter. Conclusion The mSbsC-EGFP fusion protein is stably expressed both in the yeast, Saccharomyces cerevisiae, and in HeLa cells. Recombinant mSbsC-EGFP combines properties of both fusion partners: it assembles both in vitro and in vivo to cylindrical structures that show an intensive green fluorescence. Fusion of proteins to S-layer proteins may be a useful tool for high level expression in yeast and HeLa cells of

  1. The Efficacy of Ultraviolet Radiation for Sterilizing Tools Used for Surgically Implanting Transmitters into Fish

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Gay, Marybeth E.; Woodley, Christa M.; Brown, Richard S.

    2013-02-28

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelom of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When several fish are implanted consecutively for large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. However, autoclaving tools can take a long period of time, and chemical sterilants or disinfectants can be harmful to both humans and fish and have varied effectiveness. Ultraviolet (UV) radiation is commonly used to disinfect water in aquaculture facilities. However, this technology has not been widely used to sterilize tools for surgical implantation of transmitters in fish. To determine its efficacy for this application, Pacific Northwest National Laboratory researchers used UV radiation to disinfect surgical tools (i.e., forceps, needle holder, stab scalpel, and suture) that were exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica. Surgical tools were exposed to the bacteria by dipping them into a confluent suspension of three varying concentrations (i.e., low, medium, high). After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods—2, 5, or 15 min. S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV light exposures of 5 and 15 min were effective at killing all four organisms. UV light was also effective at killing Geobacillus stearothermophilus, the organism used as a biological indicator to verify effectiveness of steam sterilizers. These

  2. Estimation and evaluation of management options to control and/or reduce the risk of not complying with commercial sterility.

    Science.gov (United States)

    Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2015-11-20

    In a previous study, a modular process risk model, from the raw material reception to the final product storage, was built to estimate the risk of a UHT-aseptic line of not complying with commercial sterility (Pujol et al., 2015). This present study was focused on demonstrating how the model (updated version with uncertainty and variability separated and 2(nd) order Monte Carlo procedure run) could be used to assess quantitatively the influence of management options. This assessment was done in three steps: pinpoint which process step had the highest influence on the risk, identify which management option(s) could be the most effective to control and/or reduce the risk, and finally evaluate quantitatively the influence of changing process setting(s) on the risk. For Bacillus cereus, it was identified that during post-process storage in an aseptic tank, there was potentially an air re-contamination due to filter efficiency loss (efficiency loss due to successive in-place sterilizations after cleaning operations), followed by B. cereus growth. Two options were then evaluated: i) reducing by one fifth of the number of filter sterilizations before renewing the filters, ii) designing new UHT-aseptic lines without an aseptic tank, i.e. without a storage period after the thermal process and before filling. Considering the uncertainty in the model, it was not possible to confirm whether these options had a significant influence on the risk associated with B. cereus. On the other hand, for Geobacillus stearothermophilus, combinations of heat-treatment time and temperature enabling the control or reduction in risk by a factor of ca. 100 were determined; for ease of operational implementation, they were presented graphically in the form of iso-risk curves. For instance, it was established that a heat treatment of 138°C for 31s (instead of 138°C for 25s) enabled a reduction in risk to 18×10(-8) (95% CI=[10; 34]×10(-8)), instead of 578×10(-8) (95% CI=[429; 754]×10

  3. NCBI nr-aa BLAST: CBRC-SARA-01-1309 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-SARA-01-1309 ref|YP_001125845.1| hypothetical protein GTNG_1736 [Geobacillus thermoden...itrificans NG80-2] gb|ABO67100.1| Conserved hypothetical protein [Geobacillus thermodenitrificans NG80-2] YP_001125845.1 0.47 23% ...

  4. NCBI nr-aa BLAST: CBRC-ACAR-01-0779 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ACAR-01-0779 ref|YP_001127455.1| Putative sigma-B regulator [Geobacillus thermoden...itrificans NG80-2] gb|ABO68710.1| Putative sigma-B regulator [Geobacillus thermodenitrificans NG80-2] YP_001127455.1 5.6 32% ...

  5. NCBI nr-aa BLAST: CBRC-DDIS-05-0159 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-05-0159 ref|YP_001124941.1| Amino acid permease [Geobacillus thermodenitr...ificans NG80-2] gb|ABO66196.1| Amino acid permease [Geobacillus thermodenitrificans NG80-2] YP_001124941.1 4e-49 39% ...

  6. NCBI nr-aa BLAST: CBRC-LAFR-01-0478 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0478 ref|YP_001124451.1| Carbon starvation-induced protein [Geobacillus thermoden...itrificans NG80-2] gb|ABO65706.1| Carbon starvation-induced protein [Geobacillus thermodenitrificans NG80-2] YP_001124451.1 0.40 30% ...

  7. NCBI nr-aa BLAST: CBRC-AGAM-07-0029 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-AGAM-07-0029 ref|YP_001126159.1| Lantibiotic mersacidin modifying enzyme [Geob...acillus thermodenitrificans NG80-2] gb|ABO67414.1| Lantibiotic mersacidin modifying enzyme [Geobacillus thermodenitrificans NG80-2] YP_001126159.1 1e-17 24% ...

  8. NCBI nr-aa BLAST: CBRC-MLUC-01-0287 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MLUC-01-0287 ref|YP_002950411.1| DNA internalization-related competence protei...n ComEC/Rec2 [Geobacillus sp. WCH70] gb|ACS25145.1| DNA internalization-related competence protein ComEC/Rec2 [Geobacillus sp. WCH70] YP_002950411.1 0.019 28% ...

  9. Draft genome sequences of four thermophilic spore formers isolated from a dairy-processing environment

    NARCIS (Netherlands)

    Caspers, M.P.M.; Boekhorst, J.; Jong, de A.; Kort, R.; Nierop Groot, M.N.; Abee, T.

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearother

  10. NCBI nr-aa BLAST: CBRC-DYAK-04-0048 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-04-0048 ref|YP_148765.1| hypothetical protein GK2912 [Geobacillus kaustop...hilus HTA426] dbj|BAD77197.1| hypothetical conserved protein [Geobacillus kaustophilus HTA426] YP_148765.1 2.1 24% ...

  11. NCBI nr-aa BLAST: CBRC-DSIM-02-0033 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0033 ref|YP_149286.1| metabolite transporter [Geobacillus kaustophilus... HTA426] dbj|BAD77718.1| metabolite transporter [Geobacillus kaustophilus HTA426] YP_149286.1 4.0 22% ...

  12. NCBI nr-aa BLAST: CBRC-XTRO-01-3008 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-3008 ref|YP_148753.1| ferrichrome ABC transporter (permease) [Geobacillus kaustop...hilus HTA426] dbj|BAD77185.1| ferrichrome ABC transporter (permease) [Geobacillus kaustophilus HTA426] YP_148753.1 4.7 21% ...

  13. NCBI nr-aa BLAST: CBRC-DDIS-05-0159 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-05-0159 ref|YP_146783.1| amino acid transporter [Geobacillus kaustophilus... HTA426] dbj|BAD75215.1| amino acid transporter [Geobacillus kaustophilus HTA426] YP_146783.1 9e-51 40% ...

  14. Microbiological evaluation of the steam sterilization of assembled laparoscopic instruments.

    Science.gov (United States)

    Camargo, Tamara Carolina de; Graziano, Kazuko Uchikawa; Almeida, Alda Graciele Claudio Dos Santos; Suzuki, Karina; Silva, Cely Barreto da; Pinto, Flávia Morais Gomes

    2016-11-21

    de caseína soja, incubado a 56oC por 21 dias. Não havendo crescimento, foram submetidos a um choque térmico de 80oC, por 20 minutos e reincubados por 72 horas. Tamanho da amostra, 185 pinças e 185 trocartes, com poder de 95%. Os experimentos foram acompanhados dos grupos controle negativo comparativo (5 pinças e 5 trocartes com contaminação desafio, esterilizados desmontados) e positivo (30 suportes de papel filtro, não esterilizados), submetidos aos mesmos procedimentos de incubação. não houve nenhum crescimento microbiano nos grupos experimental e controle negativo. Os resultados do controle positivo foram satisfatórios. este estudo forneceu fortes evidências científicas para sustentar a segurança da prática de esterilização a vapor do instrumental laparoscópico montado. evaluar la seguridad de la esterilización a través de vapor, de instrumental laparoscópico previamente montado con desafío de contaminación. estudio experimental en laboratorio, cuyo cuerpo de prueba fueron trócarte y pinza laparoscópica. Se utilizó esporas Geobacillus stearothermophilus ATCC-7953, con población microbiana de 106UFC/soporte de papel filtro, removidos del indicador biológico. Tres de ellos fueron introducidos en el interior de cada instrumento, en el momento del montaje, los que fueron esterilizados a vapor saturado bajo presión, 134oC por 5 minutos. Después de la esterilización, el instrumental fue desmontado y cada soporte de papel filtro fue inoculado en medio de una cultura de caseína y soya, incubado a 56oC por 21 días. No habiendo crecimiento, fueron sometidos a un choque térmico de 80oC, por 20 minutos y nuevamente incubados por 72 horas. La muestra estuvo constituida por 185 pinzas y 185 trócartes, con poder de 95%. Los experimentos fueron acompañados en los grupos: control negativo comparativo (5 pinzas y 5 trócartes con contaminación desafío, esterilizados desmontados) y positivo (30 soportes de papel filtro, no esterilizados

  15. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.

    Science.gov (United States)

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-08-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.

  16. Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens ▿

    Science.gov (United States)

    Barahona, Emma; Navazo, Ana; Martínez-Granero, Francisco; Zea-Bonilla, Teresa; Pérez-Jiménez, Rosa María; Martín, Marta; Rivilla, Rafael

    2011-01-01

    Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible. PMID:21685161

  17. Improvement of the tube diffusion test with respect to detection of antibiotic residues and sulphonamides in raw milk

    NARCIS (Netherlands)

    Nouws, J.F.M.; Loeffen, G.; Schouten, J.; Egmond, van H.; Keukens, H.; Stegeman, H.

    1995-01-01

    Improvements in detection of tetracycline, sulphonamide, macrolide, rifamycin, trimethoprim and aminoglycoside residues in milk were achieved by addition of either chloramphenicol or trimethoprim, and phenylbutazone to tube diffusion tests utilising Bacillus stearothermophilus var. calidolactis as b

  18. Improvement of the tube diffusion test with respect to detection of antibiotic residues and sulphonamides in raw milk

    NARCIS (Netherlands)

    Nouws, J.F.M.; Loeffen, G.; Schouten, J.; Egmond, van H.; Keukens, H.; Stegeman, H.

    1995-01-01

    Improvements in detection of tetracycline, sulphonamide, macrolide, rifamycin, trimethoprim and aminoglycoside residues in milk were achieved by addition of either chloramphenicol or trimethoprim, and phenylbutazone to tube diffusion tests utilising Bacillus stearothermophilus var. calidolactis as b

  19. Genome sequencing and annotation of Laceyella sacchari strain GS 1-1, isolated from hot spring, Chumathang, Leh, India

    Directory of Open Access Journals (Sweden)

    Navjot Kaur

    2014-12-01

    Full Text Available We report the 3.3-Mb draft genome of Laceyella sacchari strain GS 1-1, isolated from hot spring water sample, Chumathang, Leh, India. Draft genome of strain GS 1-1 consists of 3, 324, 316 bp with a G + C content of 48.8% and 3429 predicted protein coding genes and 75 RNAs. Geobacillus thermodenitrificans strain NG80-2, Geobacillus kaustophilus strain HTA426 and Geobacillus sp. Strain G11MC16 are the closest neighbors of the strain GS 1-1.

  20. Avaliação da presença de resíduos de antimicrobianos em leite e bebida láctea UHT por teste de inibição microbiana comercial.

    Directory of Open Access Journals (Sweden)

    Aline da Silva Costa

    2009-06-01

    Full Text Available A ocorrência de resíduos de antibióticos no leite tem sido objeto de preocupação constante por parte das autoridades sanitárias constituindo um sério problema na saúde pública, devido aos efeitos tóxicos destes compostos, alergias, e até mesmo alguns tipos de câncer, além da possibilidade de favorecer o desenvolvimento de microrganismos patogênicos e alterar a constituição da microflora do trato gastrintestinal. A presença de resíduos de antibióticos no leite representa o principal ponto crítico de controle de contaminação química do leite, devendo ser observada na recepção da matéria prima nas plataformas das indústrias de laticínios. Os objetivos deste trabalho foram: avaliar a incidência de resíduos de antimicrobianos leite UHT comercializado em Seropédica, Rio de Janeiro e avaliar o método de análise pelo kit comercial Delvotest®SP-NT de acordo com a sensibilidade. Para o teste de resíduo antimicrobiano foram obtidos amostras de leite esterilizado, todas pelo processo UHT, coletados em supermercados locais, entre Março de 2007 a Julho de 2008 sendo estes armazenados sob congelamento. As análises das 175 amostras foram realizadas com teste microbiológico comercial Delvotest®SP-NT com Geobacillus. stearothermophilus var. calidolactis, em meio semi-sólido com indicador. Do total de amostras analisadas, 2 (duas foram positivas perfazendo um total de 1,1% de incidência em leite já processado e ofertado ao consumo. Os kits foram testados quanto a sua eficácia, confrontando doses de alguns fármacos que compõem o "pool" de sensibilidade do kit. Realizaram-se diluições dos seguintes antimicrobianos: Amoxilina, Ampicilina, Gentamicina, Eritromicina, e Trimetoprima em doses diferentes à sensibilidade indicada pelo fabricante, uma inferior, uma intermediária e outra superior ao limite de detecção do método e todas foram confirmadas pelo kit testado. A presença de inibidores bacterianos encontrados nas

  1. Halophilic life on Mars ?

    Science.gov (United States)

    Stan-Lotter, Helga; Fendrihan, Sergiu; Dornmayr-Pfaffenhuemer, Marion; Holzinger, Anita; Polacsek, Tatjana K.; Legat, Andrea; Grösbacher, Michael; Weigl, Andreas

    2010-05-01

    Light™ Bacterial Membrane Potential kit gave strong signals with Hcc. dombrowskii and the control microorganism E. coli; as expected, the uncoupler CCCP diminished the membrane potential. Reaction times were generally longer with Hcc. dombrowskii than with E. coli. Hcc. dombrowskii from the ISS experiment showed > 80% viable cells when judged with the LIVE/DEAD kit. CPD formation was detectable in about 3-5 % of the total cells. It is not yet known if growing cells of Hcc. dombrowskii were recovered from the ISS. ATPase subunits were detected in crude membrane preparations, in whole haloarchaeal and bacterial cells, and even in spores (from Geobacillus stearothermophilus), suggesting the usefulness of the ATP synthase as a molecular target for life detection. Conclusions: Fluorescent dyes provide strong signals, which are suitable for remote detection and are compatible with high ionic strength. The advantages of staining with fluorescent dyes are rapid results on membrane intactness, membrane potential, and the presence of certain biomolecules. But more data are needed for a better correlation to cellular viability. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int System Evol Microbiol 52, 1807-1814.

  2. Cellulolytic Activity of Thermophilic Bacilli Isolated from Tattapani Hot Spring Sediment in North West Himalayas.

    Science.gov (United States)

    Priya, Indu; Dhar, M K; Bajaj, B K; Koul, Sanjana; Vakhlu, Jyoti

    2016-06-01

    Eight thermophilic bacterial strains were isolated from Tattapani Hot spring and screened for various hydrolytic enzymes including cellulases. The isolated bacterial strains were identified as Geobacillus thermodenitrificans IP_WH1(KP842609), Bacillus licheniformis IP_WH2(KP842610), B. aerius IP_WH3(KP842611), B. licheniformis IP_WH4(KP842612), B. licheniformis IP_60Y(KP842613), G. thermodenitrificans IP_60A1(KP842614), Geobacillus sp. IP_60A2(KP842615) and Geobacillus sp. IP_80TP(KP842616) after 16S ribotying. Out of the eight isolates Geobacillus sp. IP_80TP grew best at 80 °C whereas rest of the isolates showed optimal growth at 60 °C. G. thermodenitrificans IP_WH1 produced a thermotolerant cellulase with maximum activity at 60 °C.

  3. Generic Protocol for the Verification of Ballast Water Treatment Technology. Version 5.1

    Science.gov (United States)

    2010-09-01

    Core Parameters: The measurements that are required as part of the ETV verification. Cyst: The dormant cell or resting stage of microalgae ...105 organisms/m3 Protists Tetraselmis sp. Green microalgae 103 organisms/mL Bacteria Geobacillus sp. Geobacillus sp. 103 organisms/mL 1 The volumes...observation periods. Within this size class fall dormant cells or resting stages exhibited across a broad phylogenetic range of microalgae

  4. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  5. Pseudomonas fluorescens F113 Can Produce a Second Flagellar Apparatus, Which Is Important for Plant Root Colonization

    Science.gov (United States)

    Barahona, Emma; Navazo, Ana; Garrido-Sanz, Daniel; Muriel, Candela; Martínez-Granero, Francisco; Redondo-Nieto, Miguel; Martín, Marta; Rivilla, Rafael

    2016-01-01

    The genomic sequence of Pseudomonas fluorescens F113 has shown the presence of a 41 kb cluster of genes that encode the production of a second flagellar apparatus. Among 2,535 pseudomonads strains with sequenced genomes, these genes are only present in the genomes of F113 and other six strains, all but one belonging to the P. fluorescens cluster of species, in the form of a genetic island. The genes are homologous to the flagellar genes of the soil bacterium Azotobacter vinelandii. Regulation of these genes is mediated by the flhDC master operon, instead of the typical regulation in pseudomonads, which is through fleQ. Under laboratory conditions, F113 does not produce this flagellum and the flhDC operon is not expressed. However, ectopic expression of the flhDC operon is enough for its production, resulting in a hypermotile strain. This flagellum is also produced under laboratory conditions by the kinB and algU mutants. Genetic analysis has shown that kinB strongly represses the expression of the flhDC operon. This operon is activated by the Vfr protein probably in a c-AMP dependent way. The strains producing this second flagellum are all hypermotile and present a tuft of polar flagella instead of the single polar flagellum produced by the wild-type strain. Phenotypic variants isolated from the rhizosphere produce this flagellum and mutation of the genes encoding it, results in a defect in competitive colonization, showing its importance for root colonization. PMID:27713729

  6. Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for root colonization.

    Directory of Open Access Journals (Sweden)

    Emma Barahona

    2016-09-01

    Full Text Available The genomic sequence of Pseudomonas fluorescens F113 has shown the presence of a 41 kb cluster of genes that encode the production of a second flagellar apparatus. Among 2535 pseudomonads strains with sequenced genomes, these genes are only present in the genomes of F113 and other six strains, all but one belonging to the P. fluorescens cluster of species, in the form of a genetic island. The genes are homologous to the flagellar genes of the soil bacterium Azotobacter vinelandii. Regulation of these genes is mediated by the flhDC master operon, instead of the typical regulation in pseudomonads, which is through fleQ. Under laboratory conditions, F113 does not produce this flagellum and the flhDC operon is not expressed. However, ectopic expression of the flhDC operon is enough for its production, resulting in a hypermotile strain. This flagellum is also produced under laboratory conditions by the kinB and algU mutants. Genetic analysis has shown that kinB strongly represses the expression of the flhDC operon. This operon is activated by the Vfr protein probably in a c-AMP dependent way. The strains producing this second flagellum are all hypermotile and present a tuft of polar flagella instead of the single polar flagellum produced by the wild-type strain. Phenotypic variants isolated from the rhizosphere produce this flagellum and mutation of the genes encoding it, results in a defect in competitive colonization, showing its importance for root colonization.

  7. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.

    Science.gov (United States)

    Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

    2014-02-28

    Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

  8. Projection Structure by Single-Particle Electron Microscopy of Secondary Transport Proteins GItT, Cits, and GltS

    NARCIS (Netherlands)

    Moscicka, Katarzyna B.; Krupnik, Tomasz; Boekema, Egbert J.; Lolkema, Juke S.; Mościcka, Katarzyna B.

    2009-01-01

    The structure of three secondary transporter proteins, GltT of Bacillus stearothermophilus, CitS of Klebsiella pneumoniae, and GltS of Escherichia coli, was studied. The proteins were purified to homogeneity ill detergent solution by Ni(2+)-NTA affinity chromatography, and the complexes were determi

  9. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    Science.gov (United States)

    2007-11-02

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...HA-MGB assay presented here has been used to monitor the viral load in monkey blood and tissues after infection with

  10. THERMOSTABILITY OF RESPIRATORY TERMINAL OXIDASES IN THE LIPID ENVIRONMENT

    NARCIS (Netherlands)

    Elferink, Marieke G.L.; Bosmal, Tjibbe; Lolkema, Juke S.; Gleiszner, Michael; Driessen, Arnold J.M.; Konings, Wil N.

    1995-01-01

    The effect of the lipid environment on the thermostability of three respiratory terminal oxidases was determined. Cytochrome-e oxidase from beef heart and Bacillus stearothermophilus were used as representative proteins from mesophilic and thermophilic origin, respectively. Quinol oxidase from the a

  11. GenBank blastx search result: AK058451 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058451 001-015-H01 AF098974.2 Bacillus stearothermophilus hypothetical protein, cadmium efflux system acce...sory protein (cadC), cadmium efflux pump protein (cadA), and DNA methyltransferase genes, complete cds.|BCT BCT 3e-21 +3 ...

  12. Determination of decimal reduction time (D value of chemical agents used in hospitals for disinfection purposes

    Directory of Open Access Journals (Sweden)

    da S Martins Alzira M

    2003-10-01

    Full Text Available Abstract Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms. At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i 0.1% sodium dichloroisocyanurate (pH 7.0 – E. coli and A. calcoaceticus (D = 5.9 min; (ii sodium hypochlorite (pH 7.0 at 0.025% for B. stearothermophilus (D = 24 min, E. coli and E. cloacae (D = 7.5 min; at 0.05% for B. stearothermophilus (D = 9.4 min and E. coli (D = 6.1 min and 0.1% for B. stearothermophilus (D = 3.5 min and B. subtilis (D = 3.2 min; (iii 2.0% glutaraldehyde (pH 7.4 – B. stearothermophilus, B. subtilis (D = 25 min and E. coli (D = 7.1 min; (iv 0.5% formaldehyde (pH 6.5 – B. subtilis (D = 11.8 min, B. stearothermophilus (D = 10.9 min and A. calcoaceticus (D = 5.2 min; (v 2.0% chlorhexidine (pH 6.2 – B. stearothermophilus (D = 9.1 min, and at 0.4% for E. cloacae (D = 8.3 min; (vi 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3 – B. stearothermophilus (D = 9.1 min and E. coli (D = 6.7 min. Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to

  13. [The effect of growth media on recovery of test microorganisms after exposure to saturated steam under pressure].

    Science.gov (United States)

    Krzywicka, H; Jakimiak, B; Zarzycka, E

    1996-01-01

    The aim of this study was to find out which growth media give the best condition for the development of test bacteria after exposure to saturated steam under pressure. The test organisms were strains of Bacillus subtilis NCTC 3610 and Bacillus stearothermophilus NCTC 8923. The test prepared from spore suspension were exposed to saturated steam under pressure 0.2 atn-B.subtilis, and 0.7 atn-B. stearothermophilus with various length of exposure /sublethal conditions/. After the exposure the tests were placed in growth media. The obtained results show that the compositions of the medium in which spore-forming bacteria are grown after the exposure under sublethal conditions to saturated steam under pressure affects the recovery of the test organism. The media with glucose, tryptose and L-alanine provided the best conditions for growth.

  14. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus...... that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated......, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here....

  15. Microwave-assisted rapid characterization of lipase selectivities.

    Science.gov (United States)

    Bradoo, Sapna; Rathi, Pooja; Saxena, R K; Gupta, Rani

    2002-04-18

    A rapid screening procedure for characterization of lipase selectivities using microwaves was developed. The rate of reaction of various commercial lipases (porcine pancreas, Mucor miehei, Candida rugosa, Pseudomonas cepacia) as well as lipases from laboratory isolates-Bacillus stearothermophilus and Burkholderia cepacia RGP-10 for triolein hydrolysis was 7- to 12-fold higher in a microwave oven as compared to that by pH stat. The esterification of sucrose/methanol and ascorbic acid with different fatty acids was also achieved within 30 s in a microwave using porcine pancreas, B. stearothermophilus SB-1 and B. cepacia RGP-10 lipases. The relative rates and selectivity of the lipases both for hydrolytic and synthesis reactions remains unaltered. However, the rate of reaction was dynamically enhanced when exposed to microwaves. Microwave-assisted enzyme catalysis can become an attractive procedure for rapid characterization of large number of enzyme samples and substrates, which otherwise is a cumbersome and time-consuming exercise.

  16. Treatment of discarded blood units: Disinfection with hypochlorite / formalin versus steam sterilization

    Directory of Open Access Journals (Sweden)

    Chitnis V

    2003-01-01

    Full Text Available Blood bank regulations and bio medical waste rules of India advocate disinfection of contaminated blood units. Incineration is not recommended due to poly-vinyl chloride (PVC content of blood bags. This study was designed to evaluate the efficacy of chemical disinfection of blood units deliberately contaminated with Staphylococcus aureus and E. coli with 1 and 6 % hypochlorite, 10% formalin and 33% formaldehyde and autoclaving of blood units contaminated with the above mentioned vegetative forms and B. stearothermophilus spores. Only 33 % formaldehyde could bring about 5 log reduction of bacteria but it is highly irritating and toxic. Autoclaving at 15 lbs pressure for 2 hours uniformly inactivated the vegetative forms and B. stearothermophilus spores. Thus, autoclaving of PVC blood bags is a safer and reliable method compared to chemical disinfection.

  17. The Construction of the Probe for Amylase Ⅱ Gene Cloning from Bacillus halodurans Strain 38C1-1

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Primers and probes were established according to the sequences of the alpha-amylase genes of Bacillus. halodurans C-125, Thermus sp. IM6501, B. stearothermophilus ET-1, and B. acidopullulytics. Primers were designed and a 0.2 kb DNA fragment was amplified, the fragment was successfully used for the detection of the amylase Ⅱ gene in a 2 842 bp region from Bacillus halodurans strain 38C1-1.

  18. [Combined enzymatic modification of stevioside and rebaudioside A].

    Science.gov (United States)

    Kochikian, V T; Markosian, A A; Abelian, L A; Balaian, A M; Abelian, V A

    2006-01-01

    Cyclodextrin glucanotransferases (CGTases, EC 2.4.1.19) produced by mesophilic, thermophilic, alkaliphilic, and halophilic bacilli were used for transglycosylating stevioside and rebaudiosides A with the use of starch as a donor. CGTases produced by B. stearothermophilus B-5076 B. macerans BIO-4m were the most effective biocatalysts. This method can be successfully used for direct transglycosylation of stevia extract without purification of its individual components.

  19. Decontamination of laboratory microbiological waste by steam sterilization.

    OpenAIRE

    1982-01-01

    A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The...

  20. Ribosomes of the extremely thermophilic eubacterium Thermotoga maritima are uniquely insensitive to the miscoding-inducing action of aminoglycoside antibiotics.

    OpenAIRE

    1988-01-01

    Poly(U)- and poly(UG)-programmed cell-free systems were developed from the extreme thermophilic, anaerobic eubacterium Thermotoga maritima, and their susceptibility to aminoglycoside and other antibiotics was assayed at a temperature (75 degrees C) close to the physiological optimum (80 degrees C) for cell growth and in vitro polypeptide synthesis, using a Bacillus stearothermophilus system as the reference. The synthetic capacity of the Thermotoga assay mixture was abolished by the eubacteri...

  1. Invloed van de pH op het aantonen van bacteriegroeiremmende stoffen in rauwe melk

    OpenAIRE

    Vermunt, A.E.M.; Bakker, R.; Herben, P.J.; Loeffen, G.; Polman, T.; Keukens, H.; Stegeman, H.; Huf, F.A.

    1991-01-01

    Een hoeveelheid melk wordt toegevoegd aan een vaste voedingsbodem, waaraan sporen van Bacillus stearothermophilus var. calidolactis ATCC 10149, broomcresolpurper en trimethoprim zijn toegevoegd. Normale groei van en zuurproduktie door het micro-organisme veroorzaakt een kleurverandering van de pH indicator van paars naar geel. De aanwezigheid in de melk van stoffen die remmend werken op de groei van het micro-organisme, hebben tot gevolg dat de kleur van de pH indicator paars blijft. Nagegaan...

  2. Vaporous Hydrogen Peroxide (VHP) Decontamination of a C-141B Starlifter Aircraft: Validation of VHP and Modified VHP (mVHP) Fumigation Decontamination Process via VHP-Sensor, Biological Indicator, and HD Simulant in a Large-Scale Environment

    Science.gov (United States)

    2007-03-01

    21 18. G. stearothermophilus ATCC 7953VHP Exposure Test Results ..................... 33 19. Vapor Cup ...provided forced air circulation. An anemometer , located downstream of the main blower, measured and recorded the airflow generated by the mVHP system...Station) Height (inches) 1 670 8 2 890 48 3 1230 72 3.4.2 Chemical Warfare Agent Simulant Vapor Analysis Vapor cups were prepared for residual chemical

  3. Bioanalytical Method to Determine the Effects of Cyanide, Cyanide Metabolites and Cyanide Antidotes on the Activity of Cytochrome C Oxidase Immobilized in an Electrode Supported Lipid Bilayer Membrane

    Science.gov (United States)

    2006-06-01

    7. Rhoten, M. C.; Hawkridge, F. M.; Wilczek, J., The reaction of cytochrome c with bovine and Bacillus stearothermophilus Cytochrome c Oxidase...transferases. Fund. and Appl. Toxicol. 1983, 3, 377-382. 27 35. Isom, G. E.; Burrows, G. E.; Way, J. L., Effect of oxygen on the antagonism of...mechanism of antagonism . Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451-481. 50. Bryant, M. A.; Pemberton, E., Surface Raman scattering of self

  4. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Alisha Dhiman

    2014-01-01

    Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  5. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    Science.gov (United States)

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  6. Isolation and Phylogenetic Analysis of Thermophile Community Within Tanjung Sakti Hot Spring, South Sumatera, Indonesia

    Directory of Open Access Journals (Sweden)

    Heni Yohandini

    2015-07-01

    Full Text Available A community of thermophiles within Tanjung Sakti Hot Spring (South Sumatera have been cultivated and identified based on 16S ribosomal RNA gene sequence. The hot spring has temperature 80C-91C and pH 7-8. We used a simple method for culturing the microbes, by enriching the spring water with nutrient broth media. Phylogenetic analysis showed that the method could recover microbes, which clustered within four distinct taxonomic groups: Anoxybacillus, Geobacillus, Brevibacillus, and Bacillus. These microbes closely related to Anoxybacillus rupiensis, Anoxybacillus flavithermus, Geobacillus pallidus, Brevibacillus thermoruber, Bacillus licheniformis, and Bacillus thermoamylovorans. The 16S ribosomal RNA gene sequence of one isolate only had 96% similarity with Brevibacillus sequence in GenBank.

  7. The Architecture of EssB, an Integral Membrane Component of the Type VII Secretion System

    OpenAIRE

    Zoltner, Martin; Norman, David G.; Fyfe, Paul K.; El Mkami, Hassane; Palmer, Tracy; Hunter, William N.

    2013-01-01

    Supported by the Biotechnology and Biological Sciences Research Council (H007571), the Medical Research Council (UK) (G117/519), and the Wellcome Trust (grants 082596, 083481, 094090, and 099149). The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein f...

  8. The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field

    Science.gov (United States)

    2016-09-26

    Copyright. Published XXXX by the American Chemical Society A DOI: 10.1021/acssynbio.6b00256 ACS Synth. Biol. XXXX, XXX , XXX − XXX comprehensive toolkit...generation of synthetic biology chassis. ACS Synthetic Biology Viewpoint DOI: 10.1021/acssynbio.6b00256 ACS Synth. Biol. XXXX, XXX , XXX − XXX B Geobacillus...species genetic circuits and pathways. Nat. Commun. 6, 7832. ACS Synthetic Biology Viewpoint DOI: 10.1021/acssynbio.6b00256 ACS Synth. Biol. XXXX, XXX

  9. Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia.

    Science.gov (United States)

    Thebti, Wajdi; Riahi, Yosra; Gharsalli, Rawand; Belhadj, Omrane

    2016-01-01

    As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.

  10. Heavy metal resistance of some thermophiles: potential use of alpha-amylase from Anoxybacillus amylolyticus as a microbial enzymatic bioassay.

    Science.gov (United States)

    Poli, Annarita; Salerno, Anna; Laezza, Giusi; di Donato, Paola; Dumontet, Stefano; Nicolaus, Barbara

    2009-03-01

    Six thermophilic extremophiles, Anoxybacillus amylolyticus, Geobacillus thermoleovorans, Geobacillus thermoleovorans subspecies stromboliensis, Geobacillus toebii subspecies decanicus, Bacillus thermantarcticus and Thermus oshimai, isolated from different environmental sites, were studied for their heavy metal resistance. The effects of heavy metals on microorganism growth were studied here in a pilot fermenter tank spiked with various trace metals, (Ni(2+), Zn(2+), Co(2+), Hg(2+), Mn(2+), Cr(6+), Cu(2+), Fe(3+) and Cd(2+)) at concentrations spanning from 0.01 to 20 mM. Trace metal toxicity varied depending on the species and metal considered. Among the tested microorganisms, attention was focused on alpha-amylase producing-A. amylolyticus, an acidothermophilic bacterium recently isolated from geothermal soil samples from Mount Rittmann in Antarctica. The effect of heavy metals on the biosynthesis and activity of alpha-amylase of A. amylolyticus was investigated. When bacteria were grown in the presence of heavy metals, a decrease in alpha-amylase activity, correlated with a decrease in alpha-amylase production, was observed, suggesting an effect on the biosynthesis of the enzyme. A decrease in enzyme activity was also noted when the assay was performed in the presence of heavy metals. Thus, alpha-amylase could represent a potential sensitive bioassay for detecting trace heavy metals.

  11. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Mead, David [University of Wisconsin, Madison; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Brumm, Catherine [United States Department of Energy Joint Genome Institute; Hochstein, Rebecca [Lucigen Corporation, Middleton, Wisconsin; Schoenfeld, Thomas [Lucigen Corporation, Middleton, Wisconsin; Brumm, Phillip [University of Wisconsin, Madison

    2012-01-01

    Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.

  12. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide.

    Science.gov (United States)

    Sooch, Balwinder Singh; Kauldhar, Baljinder Singh; Puri, Munish

    2016-11-01

    A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.

  13. Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Garrett, R A

    1981-01-01

    The structures of 5S ribosomal RNAs from Escherichia coli and Bacillus stearothermophilus were examined by using ribonucleases A, T1, and T2 and a double helix specific cobra venom ribonuclease. By using both 5' and 3'-32P-end labeling methods and selecting for digested but intact 5S RNA molecules...... evidence for three of the helical regions of the Fox and Woese model of 5S RNA [Fox, G. E., & Woese, C. (1975) Nature (London) 256, 505] and support other important structural features which include a nucleotide looped out from a helical region which has been proposed as a recognition site for protein L18....

  14. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    Science.gov (United States)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  15. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components

    Science.gov (United States)

    Reyes, A. L.; Campbell, J. E.

    1978-01-01

    The experiments conducted to determine the heat resistance of Bacillus megaterium ATCC 6458 at 90 and 100 C were completed. Estimates from replicate experiments at eight percent relative humidities (less than 0.001 to 100% RH) for each temperature were computed. A Bacillus cereus strain with high heat resistance was cultured and the resistance determined in phosphate buffer (D sub 121.1 = 2.16 min and z = 8.7 C). The profile of the dry heat resistance of B. megaterium is summarized and the most resistant condition to the three spores (Bacillus subtilis var. niger, ATCC 29669, and Bacillus stearothermophilus, strain 1518) is compared.

  16. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry

    DEFF Research Database (Denmark)

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus...... and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region...

  17. "On-the-fly" kinetics of enzymatic racemization using deuterium NMR in DNA-based chiral oriented media.

    Science.gov (United States)

    Chan-Huot, Monique; Lesot, Philippe; Pelupessy, Philippe; Duma, Luminita; Bodenhausen, Geoffrey; Duchambon, Patricia; Toney, Michael D; Reddy, U Venkateswara; Suryaprakash, N

    2013-05-07

    We report the in situ and real-time monitoring of the interconversion of L- and D-alanine-d3 by alanine racemase from Bacillus stearothermophilus directly observed by (2)H NMR spectroscopy in anisotropic phase. The enantiomers are distinguished by the difference of their (2)H quadrupolar splittings in a chiral liquid crystal containing short DNA fragments. The proof-of-principle, the reliability, and the robustness of this new method is demonstrated by the determination of the turnover rates of the enzyme using the Michaelis-Menten model.

  18. Problems in determining residues of inhibitors in raw cows’ milk

    OpenAIRE

    Šalomskienė, Joana; Žvirdauskienė, Renata

    2005-01-01

    Straipsnyje nagrinėjamos inhibitorių karvių piene nustatymo metodų parinkimo ir identifikavimo problemos. Palyginti Lietuvos rinkoje siūlomi nauji testai inhibitoriams žaliame piene nustatyti: mikrobiologiniai, atitinkantys Europos Komisijos sprendimą (91/180/EEB) su Bacillus stearothermophilus var. calidolactis kultūros sporomis, – LPT, MaI-1, Copan, mikrobiologinis su Streptococcus thermophilus kultūra - Valio T 101, fermentinis - Penzym S bei imuninio/receptorių tyrimo (β-STAR, SNAP, ROSA)...

  19. Transglycosylation by barley α-amylase 1

    DEFF Research Database (Denmark)

    Mótyán, János A.; Fazekas, Erika; Mori, Haruhide

    2011-01-01

    The transglycosylation activity of barley α-amylase 1 (AMY1) and active site AMY1 subsite mutant enzymes was investigated. We report here the transferase ability of the V47A, V47F, V47D and S48Y single mutants and V47K/S48G and V47G/S48D double mutant AMY1 enzymes in which the replaced amino acid...... DP 2, DP 3 and DP 5 were successfully applied to detect activity of Bacillus stearothermophilus maltogenic α-amylase, human salivary α-amylase and Bacillus licheniformis α-amylase, respectively in a fast and simple fluorometric assay....

  20. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis.

    Science.gov (United States)

    Bidnenko, Vladimir; Nicolas, Pierre; Grylak-Mielnicka, Aleksandra; Delumeau, Olivier; Auger, Sandrine; Aucouturier, Anne; Guerin, Cyprien; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane; Bidnenko, Elena

    2017-07-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho-null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks.

  1. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Vladimir Bidnenko

    2017-07-01

    Full Text Available In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho-null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks.

  2. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions.

    Directory of Open Access Journals (Sweden)

    Candela Muriel

    Full Text Available The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected.

  3. 温泉中降解纤维素嗜热细菌的分离与鉴定%Isolation and Identification of Thermophiles Degrading Cellulose in Hot Spring

    Institute of Scientific and Technical Information of China (English)

    梅凡; 林白雪; 赵超; 刘斌

    2014-01-01

    Culture-based approach was used to isolate thermophiles from hot spring. In total, 27 thermophilic bacterial strains were isolated from hot springs in Nevada of USA and Yongtai hot spring in Fujian province of China. Superior cellulose and hemicellulose decomposing strains were screened and identified by 16S rDNA. The results showed that LY7 and LY8 degrad-ing cellulose were indentified as Alicyclobacillus sp. LY7 and Geobacillus sp. LY8. Geobacillus sp. LY8 could be cultured at temperature ranging from 40℃ to 70℃, with the optimal temperature of 65℃. The β-glucosidase activity of LY8 was 145 IU/mL.%采用纯培养的方法,从美国内达华州温泉和中国福建永泰温泉分离得到27株嗜热细菌,从中筛选得到产纤维素酶的嗜热细菌并进行了16S rDNA鉴定。结果表明,LY7和LY8是产纤维素酶的嗜热细菌,菌株 LY7与脂环酸芽孢杆菌属(Alicyclobacillus )的同源性达到99%,菌株 LY8与土芽孢杆菌属(Geobacillus)的同源性达到99%,生长温度范围在40~70°C之间,最适温度65°C。酶学性质分析表明, LY8的内切酶酶活高达145 IU/mL。

  4. Dicty_cDB: Contig-U04201-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 118_1( AJ583118 |pid:none) Bartonella sp. AN-tr103 partial gl... 163 8e-39 EU111794_1( EU111794 |pid:none) Bartonella rattaustralian...( EU111796 |pid:none) Bartonella rattaustraliani strain ... 162 1e-38 EU111798_1( EU111798 |pid:none) Barton...CP000557 |pid:none) Geobacillus thermodenitrificans... 162 1e-38 EU111795_1( EU111795 |pid:none) Bartonella rattaustralian...none) Bartonella sp. MN-ko1 partial gltA... 161 3e-38 EU111793_1( EU111793 |pid:none) Bartonella rattaustralian

  5. Screening, Identification and Antibacterial Activities of Effective Thermotolerant Bacillus spp. Strains Isolated from Raw Milk

    Directory of Open Access Journals (Sweden)

    Kannikar SANTONG

    2008-01-01

    Full Text Available Forty-one isolates of Bacillus species were isolated from raw milk, analyzed using the spot on lawn and agar diffusion method in terms of their general inhibition effects to test bacteria (Escherichia coli TISTR 887 and Staphylococcus aureus TISTR 517. The results demonstrated that most isolates are effective against Gram-positive and Gram-negative bacteria whereas their extensive inhibition effect is particularly against Gram-positive bacteria. Only 2 effective thermotolerant isolates, BA8 and BA16, exerted broad spectrum antibacterial activities against both test bacteria.  Based on biochemical and physiological properties, they were classified as Brevibacillus laterosporus and Geobacillus thermoglucosidasius, respectively.

  6. Isolation and Identification of a High-temperature Resistant Bacterium CICC 10853%一株耐高温菌CICC 10853的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    都海渤; 张欣; 李赞; 刘毅; 刘波; 李金霞; 姚粟; 程池

    2016-01-01

    从斜面培养基中分离到一株耐高温菌CICC 10853,对该菌株的分类地位进行了研究.通过形态学、生理生化特征、16S rRNA和recN基因序列分析的多相鉴定技术,将其鉴定为噬热地芽胞杆菌(Geobacillus thermoleovorans),为后续对该菌的生物学功能研究奠定基础.

  7. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    Science.gov (United States)

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore

  8. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA

    OpenAIRE

    Lo, Yu-Hua; Tsai, Kuang-Lei; Sun, Yuh-Ju; Chen, Wei-Ti; Huang, Cheng-Yang; Hsiao, Chwan-Deng

    2008-01-01

    DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. In the replicative hexameric helicase, the fundamental reaction is the unwinding of duplex DNA; however, our understanding of this function remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and bound to single-stranded DNA (ssDNA). The GkDnaC–...

  9. Nutritional optimization for anaerobic growth of Bacillus steaothermophilus LLD-16

    Directory of Open Access Journals (Sweden)

    Muhammad Javed

    2016-04-01

    Full Text Available In this study, a range of nutritional supplements including twenty amino acids, major vitamins and four nucleic acid bases were exploited as added-value supplements for the growth of a lactate-minus (ldh mutant Bacillus stearothermophilus LLD-16 under anaerobic environment. The chemostat studies revealed that five amino acids that includes aspartate, glutamate, isoleucine, methionine, and serine were essential for persuaded growth of B. stearothermophilus LLD-16. The anaerobic batch studies showed that a number of nutritional supplements, such as, p-aminobenzoic acid (PABA, folic acid, pantothenic acid, adenine, glycine, leucine, tryptophan, proline, alanine and α-ketoglutarate, when added individually, improved the biomass levels. In contrast, the higher concentrations of cyanocobalamine or biotin, guanine, uracil and isoleucine were found inhibitory. Furthermore, the study explains why the highest biomass formation cannot necessarily be achieved on the richest mixture of amino acids, and the inadequacy of the biosynthetic machinery is very much dependent on the growth conditions of the microorganism.

  10. Stabilization of k-carrageenan gel with polymeric amines: use of immobilized cells as biocatalysts at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.; Haugen, M.M.; Royer, G.P.

    1986-09-01

    Spherical beads of kappa-carrageenan containing entrapped cells were prepared in a two-step process. First, the beads were formed by dispersing a warm carrageenan cell suspension into stirring oil. After cooling (gelation) the beads were cured by treatment with amines. Ten amines of various sizes and structures were tested. The mechanical strength and the applicability of amine-treated gels as immobilization matrices was evaluated. The results of critical compression tests indicate that linear and branched polyethylenimines (PEI) are both good curing agents. PEI-treated carrageenan beds also exhibited superior resistance to heat and abrasion. Furthermore, PEI polymers were demonstrated to be effective in stabilizing the lactase activity of the free and immobilized Bacillus stearothermophilus cells. The immobilized cell preparations of Saccharomyces cerevisiae, B. stearothermophilus, and Flavobacterium sp. were treated with branched PEI and evaluated for the activity of invertase (EC 3.2.1.26), lactase (EC 3.2.1.23), and glucose isomerase (EC 5.3.1.18), respectively, in a packed bed reactor at 60 degrees C. The apparent half-lives were 108, 39, and 64 days, respectively.

  11. THE USE OF DIFFERENT PROTEASES TO HYDROLYZE GLIADINS

    Directory of Open Access Journals (Sweden)

    Peter Socha

    2015-02-01

    Full Text Available Gliadins represent alcohol-soluble fraction of wheat storage proteins which is responsible for development of celiac disease. The only and effective treatment for celiac disease is strict adherence to a gluten-free diet excluding any food made with wheat, as well as rye, barley and possibly oat flour. Enzymatic modification of wheat gliadins seems to be an alternative method for decreasing of celiac activity. The aim of our study was a trial of enzymatic modification of wheat gliadins using fungal (Aspergillus sp., Aspergillus oryzae, Aspergillus niger and bacterial (Bacillus licheniformis, Bacillus stearothermophilus, Bacillus thermoproteolyticus, Streptomyces griseus proteases. The reaction was performed up to 60 min, stopped by addition of appropriate synthetic inhibitor and products of limited proteolysis were analyzed by SDS-PAGE method. From fungal proteases most effective proteolytic activity was observed using acid proteinase from A. niger since wheat gliadins and low molecular weight peptides were completely degraded. Bacterial proteases form B. licheniformis and B. thermoproteolyticus acted very effective and as the result of hydrolysis, the products of lower molecular weight (<15 kDa occurred. Most of the wheat gliadins were susceptible to proteolysis by examined bacterial enzymes (exception were protease from B. stearothermophilus and S. griseus. Although wheat gliadins are susceptible to enzymatic degradation, further analysis (e.g. immunochemical or mass spectrometry are desirable to confirm if the products of proteolysis have lost or at least partially decrease their celiac activity.

  12. Determination of decimal reduction time (D-value of chemical agents used in hospital disinfection Determinação do tempo de redução decimal (valor D dos agentes químicos empregados em desinfecção hospitalar

    Directory of Open Access Journals (Sweden)

    Priscila Gava Mazzola

    2003-11-01

    Full Text Available Prior to selecting disinfectant for low, intermediate and high (sterilizing levels, the decimal reduction time, D-value, for the most common or persistent bacteria identified on a medical device or at a health care facility should be determined. The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension. At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. B. stearothermophilus and E. coli were the most resistant bacteria for the disinfecting and sterilizing procedures.Para selecionar o agente sanitizante de acordo com o nível (baixo, intermediário, alto ou esterilizante é necessário determinar o tempo de redução decimal (valor D para os microrganismos comumente identificados em equipamentos médico-hospitalares. O valor D é determinado inoculando-se 1 mL da suspensão de microrganismo em 100 mL da solução desinfetante. Em intervalos constantes, alíquotas de 1 mL da mistura devem ser transferidas para 8 mL de meio de cultura contendo agente neutralizante. B. stearothermophilus e E. coli se mostraram os microrganismos mais resistentes para soluções esterilizantes e desinfetantes.

  13. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.

    Science.gov (United States)

    Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P

    2011-09-27

    The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074].

  14. Influence of Organic Manures (Biofertilizers on Soil Microbial Population in the Rhizosphere of Mulberry (Morus Indica L.

    Directory of Open Access Journals (Sweden)

    L. Christilda Louis Mary

    2015-03-01

    Full Text Available The effect of different kinds of organic manures on soil microbial population and mulberry production was assessed. A field experiment wascarried out at Periyar EVR College, Tamil Nadu, India in basic soil to study the influence of organic manures on soil bacterial population andmulberry production. The 4 groups of mulberry plants of MR2 variety were biofertilized with FYM, Azospirillum, Phosphobacteria andVermicompost respectively. The biofertilizers lodged bacteria on the rhizosphere of mulberry plants. When the root microorganism areanalyzed Farm yard manure biofertilized mulberry plant root tips had Gluconacobacter diazotrophicus, Bacillus pumilus, Pseudomonas putida,Bacillus coagulans, Bacillus sonorensis, Azotobacter chrococcum; Azospirillum biofertilized mulberry plants root tips had Bacillus coaculans,Azotobactor chrococcum, Azotobactor vinelandii, Bacillus subtilis and Azospirillum brasilense. Phosphobacteria biofertilized mulberry plantroot tips had Pseudomonas putida, Bacillus stearothermophilus, Brevibacillus borslelansis and Streptomycies thermonitrificans andvermicompost biofertilized mulberry plant root tips had lodged bacterias like Bacillus megaterium, Bacillus subtilis, Gluconacobacterdiazotrophicus, Pseudomonas putida, Azotobacter chrococcum, Azotobacter vinelandi, Bacillus stearothermophilus, Brevibacillus borslelansisand Bacillus sonorensis. Microbiology work reveals luxuriant growth of bacteria in all the biofertizer treated rhizosphere in the order FYM

  15. α-淀粉酶基因amyP的原核表达及酶学性质初步分析

    Institute of Scientific and Technical Information of China (English)

    赵金海; 杨灵; 张志芳; 李轶女

    2014-01-01

    α-amylase is a very important enzyme, the mass production ofα-amylase is based on microorganism fermentation in the industry at present. The gene ofα-amylases (amyP) is amplified from the genome of the thermostable strain Geobacillus. POT-5 by PCR. This gene is cloned, sequence analysis and expressed in procaryotic expression system in E.coli. This study also develops a preliminary analysis of enzyme properties about the recombinantα-amylase.%α-淀粉酶作为一种十分重要的酶制剂,目前工业上都是以微生物发酵法大规模生产的。从耐高温菌株Geobacillus. POT-5基因组中,用PCR的方法扩增得到该菌的α-淀粉酶基因,此基因被克隆、测序,并在原核Escherichia coli表达系统中进行表达,并对该重组酶的酶学性质进行初步的分析。

  16. 嗜热解烃菌NG80-2的鉴定及其特性%Identification and Characters of Thermophilic Desmolysing Bacteria NG80-2

    Institute of Scientific and Technical Information of China (English)

    唐赟; 冯露; 刘沐之; 马挺; 梁凤来; 刘如林

    2006-01-01

    利用细胞形态、生理生化特征、不同碳源发酵产酸试验及16S rDNA的进化树分析的方法,对分离获得的嗜热解烃细菌NG80-2进行了鉴定,确定为Geobacillus thermodenitrificans,其1 6S rDNA与Geobacillus thermodenitrificans BGSC 94Al的相似性最高,达到99.80%.该菌最适生长温度为65 ℃,最适pH为7.2,能在以原油为唯一碳源的无机盐培养基中生长,并且能选择性降解C15~C36直链烷烃,其中对正-十六烷(C16)的降解率高达58.9%.优良的烃降解性能对微生物开采重质原油和治理石油污染具有潜在的应用价值.

  17. Isolation and Characterization of Thermophiles from Hot Springs at Dagejia Cesium-Bearing Geyserite in Tibet%西藏搭格架铯硅华区热泉高温菌株的分离及特征研究

    Institute of Scientific and Technical Information of China (English)

    孔凡晶; 王海雷; 郑绵平; 郑小娟

    2007-01-01

    从西藏搭格架铯硅华矿床区热泉中分离培养高温菌T4-1,并进行了格兰氏染色、显微镜观察、室内温度实验、16SrRNA基因分析等.结果表明,T4-1为杆状菌,格兰氏染色阳性,其生长范围为45~80℃,最适生长温度70℃.16SrRNA基因分析结果表明,该菌株属于地芽孢杆菌属(Geobacillus),在发育树上,T4-1菌株与高温烷烃地芽孢杆菌(Geobacillus thermoleovorans)非常近.本研究为进一步开展西藏高温微生物资源以及微生物参与成矿作用的研究提供了首例.

  18. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park.

    Science.gov (United States)

    Mead, David A; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C; Goodwin, Lynne A; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam; Hauser, Loren J; Chang, Yun-Juan; Kyrpides, Nikos C; Ivanova, Natalia N; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip

    2012-07-30

    Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10.

  19. Triterpenes as α-glucosidase inhibitors from Fagus hayatae.

    Science.gov (United States)

    Lai, Yi-Chun; Chen, Chien-Kuang; Tsai, Sheng-Fa; Lee, Shoei-Sheng

    2012-02-01

    Triterpenoids, 1-3, 8 and 9, along with 24 known compounds were isolated from leaves and twigs of Fagus hayatae. Of these, compound 1, 1,10-seco-3β,10α,23-trihydroxyolean-12-ene-1,28-dioic acid 1,23-lactone, possesses a hitherto unknown 1,10-seco-oleanane skeleton. In addition, 2,3-seco-20(29)-lupene-2,3-dioic acid (16), previously described as a synthetic product, is now established as a plant natural product; the neolignan-9'-O-rhamnoside 19 is also characterized herein. Their structures were deduced mainly by 1D and 2D NMR spectroscopic analyses. Seven of these compounds possess moderate inhibitory activity against α-glucosidase type IV (Bacillus stearothermophilus).

  20. Choice of sterilizing/disinfecting agent: determination of the Decimal ReductionTime (D-Value

    Directory of Open Access Journals (Sweden)

    Priscila Gava Mazzola

    2009-12-01

    Full Text Available Efforts to diminish the transmission of infections include programs in which disinfectants play a crucial role. Hospital surfaces and medical devices are potential sources of cross contamination, and each instrument, surface or area in a health care unit can be responsible for spread of infection. The decimal reduction time was used to study and compare the behavior of selected strains of microorganisms. The highest D-values for various bacteria were obtained for the following solutions: (i 0.1% sodium dichloroisocyanurate (pH 7.0 - E. coli and A. calcoaceticus (D = 5.9 min; (ii sodium hypochlorite (pH 7.0 at 0.025% for B. stearothermophilus (D = 24 min, E. coli and E. cloacae (D = 7.5 min; at 0.05% for B. stearothermophilus (D = 9.4 min and E. coli (D = 6.1 min. The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations shows that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasize the importance and need to develop routine and novel programs to evaluate product utility.Esforços para diminuir o risco de transmissões de infecções incluem programas nos quais os desinfetantes desempenham papel crucial. As superfícies de materiais médico-hospitalares, se não estiverem diretamente ligados à transmissão de doenças, podem contribuir, potencialmente, para uma contaminação cruzada secundária. Cada instrumento ou superfície do estabelecimento do ambiente de saúde que entra em contato com um paciente é um disseminador potencial de infecção. Para estudar e comparar o comportamento dos microrganismos selecionados foram realizados ensaios de determinação do tempo de redução decimal. Os maiores valores D determinados, foram: (i 0,1% dicloroisocianurato de sódio (NaDCC (pH 7.0 - E. coli e A. calcoaceticus (D = 5

  1. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1983-01-01

    . Several unusual structural features were detected. Multiple G X A pairings in two of the putative helices, which are compatible with phylogenetic sequence comparisons, are strongly supported by the occurrence of cobra venom ribonuclease cuts adjacent to, and in one case between, these pairings. Evidence......An experimental approach was used to determine and compare the highest order structure within the 150 to 200 nucleotides at the 3'-ends of the RNAs from the small ribosomal subunits of Escherichia coli, Bacillus stearothermophilus and Saccharomyces cerevisiae. Chemical reagents were employed...... of additional higher order structure in the renatured free RNA. It can be concluded that a high level of conservation of higher order structure has occurred during the evolution of the gram negative and gram positive eubacteria and the eukaryote in both the double helical regions and the "unstructured" regions...

  2. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    Science.gov (United States)

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using (13)C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  3. UCH9, a new antitumor antibiotic produced by Streptomyces: I. Producing organism, fermentation, isolation and biological activities.

    Science.gov (United States)

    Ogawa, H; Yamashita, Y; Katahira, R; Chiba, S; Iwasaki, T; Ashizawa, T; Nakano, H

    1998-03-01

    We developed a microbial prescreen using Bacillus stearothermophilus NUB3620 and bacteriophage TP-68 to detect potential antitumor compounds acting on DNA or topoisomerases. During the course of screening microbial cultures for their antibacteriophage activities, we found that Streptomyces sp. isolated from a soil sample collected in Iwakuni city, Yamaguchi prefecture, Japan, produced a new antitumor antibiotic, UCH9. UCH9 was isolated from culture broth by a combination of EtOAc extraction and column chromatography. UCH9 has a new structure related to the antitumor antibiotic chromomycins. It exhibited antimicrobial activity against Gram-positive organisms. UCH9 also showed cytotoxic activity against HeLa S3 cells with an IC50 value of 13 nM and exhibited antitumor activity in vivo against mouse leukemia P388.

  4. Nucleotide sequence and phylogeny of the tet (L) tetracycline resistance determinant encoded by the plasmid pSTE1 from Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Schwarz, S.; Cardoso, M.; Wegener, Henrik Caspar

    1992-01-01

    The nucleotide sequence of the tetracycline resistance (tet) gene and its regulatory region, encoded by the plasmid pSTE1 from Staphylococcus hyicus, was determined. The tet gene was inducible by tetracycline and encoded a hydrophobic protein of 458 amino acids. Comparisons between the predicted...... amino acid sequences of the pSTE1-encoded Tet from S. hyicus and the previously sequenced Tet K variants from Staphylococcus aureus, Tet L variants from Bacillus cereus, Bacillus stearothermophilus, and Bacillus subtilis, Tet M variants from Steptococcus faecalis and Staphylococcus aureus as well as Tet...... variants on one hand and the Tet K and Tet L variants on the other hand. The pSTE1-encoded Tet proved to be closely related to the Tet L proteins originally found on small Bacillus plasmids. The observed extensive similarities in the nucleotide sequences of the tet genes and in the deduced Tet amino acid...

  5. Evaluation of a new device for sterilizing dental high-speed handpieces

    DEFF Research Database (Denmark)

    Larsen, T; Andersen, H K; Fiehn, N E

    1997-01-01

    contaminated with suspensions of Streptococcus salivarius or endospores of Bacillus stearothermophilus. The effect of flushing and/or autoclaving performed by a new device combining both procedures was evaluated by counting the number of viable bacteria recovered from these devices. Further, the effect...... on clinically used handpieces was evaluated. In an initial experiment, the device partially reduced S. salivarius, and the endospores survived. In a second experiment, a 5 to 6 log reduction of S. salivarius in air and water channels was obtained. No growth was observed in clinically used high-speed handpieces......, and both S. salivarius and endospores were eliminated from the turbine chambers. Thus, the method of validation proved capable of discriminating between different levels of bacterial reduction....

  6. Persistence of residues in milk following antibiotic treatment of dairy cattle.

    Science.gov (United States)

    Seymour, E H; Jones, G M; McGilliard, M L

    1988-08-01

    A study was conducted to determine the persistence of antibiotic residues in milk beyond the recommended withdrawal period. Composite milk samples (n = 122) were collected from 58 lactating dairy cows in the university herd receiving antibiotic treatments for any reason but only when administered as a single drug. Samples were obtained 72 h posttreatment and sampling continued every 24 h until result for antibiotic residue was negative by the Bacillus stearothermophilus disc assay. The antibiotic (n = 7) administered accounted for significant variation in drug persistence; however, route of administration, case number (for cows treated for more than one episode), number of days treated, animal's body weight, lactation number, and daily milk production did not affect drug persistence. Chi-square analysis indicated that 21% of milk samples were positive for residues beyond the recommended withholding period. Milk samples from cows treated with cephapirin and penicillin were the only samples that exceeded recommended withdrawal times. Often doses administered exceeded label directions.

  7. Suitability of different β-galactosidases as reporter enzymes in Bacillus subtilis.

    Science.gov (United States)

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2012-01-01

    The suitability of three β-galactosidases as reporter enzymes for promoter expression analyses was investigated in Bacillus subtilis with respect to various temperature conditions during cultivation and assay procedures. Starting from the hypothesis that proteins derived from diverse habitats have different advantages as reporters at different growth temperatures, the beta-galactosidases from the thermophilic organism Bacillus stearothermophilus, from the mesophilic bacterium Escherichia coli and from the psychrophilic organism Pseudoalteromonas haloplanktis TAE79 were analysed under control of the constitutive B. subtilis lepA promoter. Subsequent expression of the β-galactosidase genes and determination of specific activities was performed at different cultivation and assay temperatures using B. subtilis as host. Surprisingly, the obtained results demonstrated that the highest activities over a broad cultivation temperature range were obtained using the β-galactosidase from the mesophilic bacterium E. coli whereas the enzymes from the thermophilic and psychrophilic bacteria revealed a more restricted usability in terms of cultivation temperature.

  8. Isolation and identification of bacteria for producing thermophilic β-glucosidase%产耐热β-葡萄糖苷酶细菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    廖德芳; 陈献忠; 张梁; 王正祥; 石贵阳

    2011-01-01

    From 1323 bacteria strains collected by the Culture Collection Center of Industrial Microorganism sin Jiangnan Uninversity (CIC IM-CU ), 20 strains with relatively high capability of producing therm ophilic β-glucosidase were isolated . 5 strains were identified as Geobacillus sp . and the others were identified as B acillus licheniform is by 16s rDN A sequencing analysis . C rude enzym es was characterized from Geobacillus sp . (170-28-2 ) and B acinus licheniform is (F157043A ) . The Geobacillussp . with a specific activity of 0.36 U/m g showed optimal activity at pH 8 .0 and 53℃ and the B acillus licheniform is with a specific activity of 0.66 U /m g show ed optim alactivity at pH 9 .0 and 55℃ . Based on morpholoigcal, physiological and biochem ical properties , the strain of F157043A was further identfied as Bacillus lichen iform is .%从中国高校工业微生物资源和信息中心(CICIM-CU)菌种库的1323株细菌保藏物中筛选出20株产β-葡萄糖苷酶能力较高的细菌.通过16S rDNA序列鉴定,初步确定其中有5株为嗜热溶胞土芽孢杆菌 (Geobacillus sp.),其余为地衣芽孢杆菌 (Bacillus licheniformis).对其中编号为F157043A的地衣芽孢杆菌和编号为170-28-2的嗜热溶胞土芽孢杆菌进行了粗酶液酶学性质分析,发现地衣芽孢杆菌最适反应温度为55 ℃,最适反应pH值为9.0,该条件下测得粗酶液比酶活为0.66 U/mg;嗜热溶胞土芽孢杆菌最适反应温度为53 ℃,最适反应pH值为8.0,该条件下测得粗酶液比酶活为0.36 U/mg.通过菌体和菌落形态观察以及生理生化特征分析,进一步鉴定编号为F157043A的菌株为地衣芽孢杆菌.

  9. 一株新型产淀粉酶中度嗜热菌的分离鉴定及酶学性质研究%Isolation of a new type moderately thermophilic amylase-producing strain and its enzymatic properties

    Institute of Scientific and Technical Information of China (English)

    王治宾; 薛蓓; 杜丽琴; 庞宗文; 黄日波; 韦宇拓

    2011-01-01

    用稀释分离法从广西象州温泉筛选分离到一株可水解淀粉的中度嗜热细菌GXS1,该茵株革兰氏染色为阳性,端生芽孢,细胞呈杆状,最适生长温度为60℃~65℃,最适生长pH为6.0~7.0.结合生理生化特征和16S rDNA序列分析,初步鉴定该茵株为Geobacillus sp.GXS1.对该茵所产高温淀粉酶的性质研究表明:酶的最适反应温度为80℃,在40℃~60℃范围内稳定,70℃保温30 min仍保留77%残余酶活,最适pH为7.0,稳定pH范围为4.0~10.0.产物经HPLC分析证明,该酶能水解淀粉产生麦芽三糖、麦芽糖和葡萄糖的混合物,对α-环糊精、β-环糊精不起作用.%Using dilution method, a moderately thermophilic amylase-generated bacterium GXS1 was isolated from the Xiangzhou hot spring of Guangxi in China. The cells of the strain GXS1 were gram-positive, sporulation and rod-shaped. Its optimum temperature for growth was between 60℃ and 65℃ , and its optimum pH for growth was between 6.0 and 7.0. The morphological, physiological characterization and 16S rDNA sequences analysis indicated that the strain GXS1 was relatively close to Geobacillus. Thus the strain GXS1 was preliminarily indentified as Geobacillus sp. GXS1. The characteristics of the thermostable amylase were also discussed. The optimum temperature and pH for the enzyme were determined at 80 t and7. 0 respectively. The stable temperature and pH range were 40 ℃ ~ 60℃ and 4. 0 ~ 10.0 respectively. The amylase exhibited well thermal-stability, retaining 77% activities after 30 min at 70 ℃. The results of HPLC of products from starch by the amylase demonstrated that the enzyme could be used to produce maltotriose, maltose and glucose from starch, but it could not catalyze a-cyclodextrin and β-cyclodextrin.

  10. 一株产木聚糖酶嗜热菌的鉴定及酶学性质%Identification of a thermophilic bacterium and preliminary characterization of the secreted xylanase

    Institute of Scientific and Technical Information of China (English)

    陈学敏; 刘培培; 张波

    2011-01-01

    从云南腾冲热泉水样中分离筛选得到一株产木聚糖酶的菌株.通过细菌形态观察、生理生化特性并结合16S rDNA序列分析,经鉴定,该菌为地芽孢杆菌(Geobacillus sp.),命名为Geobacillus sp.PZH1.对该菌株所产嗜热木聚糖酶及酶学特性进行了初步研究.SDS-PAGE和酶谱分析测得该酶分子量约为69 kD;酶的最适反应pH和最适反应温度分别为7.0和70℃,在pH 5.0-11.0和40℃-100℃范围内均有较高酶活;该酶在pH 5.0-12.0范围内和70℃以内具有较高的稳定性:40℃-100℃范围内,该木聚糖酶没有被检测到纤维素酶活性.%The bacterium isolated from a water sample of Yunnan tengchong hot spring can secrete a kind of thermophilic xylanase. It was identified and named as Geobacillus sp. PZH1 by morphologic observation, physio-biochemical characteristics and 16S rDNA sequence alignment. Subsequently, its secreted xylanase and the xylanase's characteristics were researched preliminarily. SDS-PAGE electrophoresis and zymogram analysis suggested that the xylanase's molecular mass was 69 kD; the optimum pH and temperature of the partially purified enzyme were 7.0 and 70 ℃ respectively, and it performed noted activities from pH 5.0 to pH 11.0 and from 40 ℃ to 100 ℃; it had high stability from pH 5.0 to pH 12.0 and under 70 ℃; from 40 ℃ to 100 ℃, no cellulase activity was detected for the partially purified xylanase.

  11. 海南温泉嗜热菌的16S rDNA分析%Hainan Hot Spring Thermophiles' 16S rDNA Analysis

    Institute of Scientific and Technical Information of China (English)

    吴红萍; 孟甜; 张飞官; 陈永安; 李文芳; 王丙乾; 王锐萍

    2013-01-01

    目的:确定24株海南温泉嗜热菌菌株的分类地位.方法:Blastn分析菌株16S rDNA序列同源性;邻接法构建菌株16S rDNA序列系统发育进化树并分析菌株的进化位置;Clustax比对分析菌株的相似度和进化距离.结果:菌株LY5和LY4的16S rDNA序列与Geobacillus pallidus strain B1,partial sequence(GenBank:HM030740.1)的16SrDNA序列同源性分别为98%和97%,其他菌株的16S rDNA序列与Geobacillus subterraneus,strain R-35641(GenBank:FN428689.1)的16S rDNA序列的同源性均大于96%.Clustax比对分析表明26株菌16S rDNA序列前段(1~70bp)、中段(70bp~1420bp)、后段(1420~1484bp)的相似度分别为40%、100%和60%,进化距离分析表明菌株GT7、LY4和LY5与其他菌株进化距离较远,其余菌株之间进化距离差异不明显.综上所述,初步将24株温泉嗜热菌鉴定为土芽孢杆菌属(Geobacillus sp.).结论:16S rDNA序列分析可用于温泉嗜热菌的鉴定.

  12. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak.

    Science.gov (United States)

    Ottesen, Andrea; Ramachandran, Padmini; Reed, Elizabeth; White, James R; Hasan, Nur; Subramanian, Poorani; Ryan, Gina; Jarvis, Karen; Grim, Christopher; Daquiqan, Ninalynn; Hanes, Darcy; Allard, Marc; Colwell, Rita; Brown, Eric; Chen, Yi

    2016-11-16

    Microbiota that co-enrich during efforts to recover pathogens from foodborne outbreaks interfere with efficient detection and recovery. Here, dynamics of co-enriching microbiota during recovery of Listeria monocytogenes from naturally contaminated ice cream samples linked to an outbreak are described for three different initial enrichment formulations used by the Food and Drug Administration (FDA), the International Organization of Standardization (ISO), and the United States Department of Agriculture (USDA). Enrichment cultures were analyzed using DNA extraction and sequencing from samples taken every 4 h throughout 48 h of enrichment. Resphera Insight and CosmosID analysis tools were employed for high-resolution profiling of 16S rRNA amplicons and whole genome shotgun data, respectively. During enrichment, other bacterial taxa were identified, including Anoxybacillus, Geobacillus, Serratia, Pseudomonas, Erwinia, and Streptococcus spp. Surprisingly, incidence of L. monocytogenes was proportionally greater at hour 0 than when tested 4, 8, and 12 h later with all three enrichment schemes. The corresponding increase in Anoxybacillus and Geobacillus spp.indicated these taxa co-enriched in competition with L. monocytogenes during early enrichment hours. L. monocytogenes became dominant after 24 h in all three enrichments. DNA sequences obtained from shotgun metagenomic data of Listeria monocytogenes at 48 h were assembled to produce a consensus draft genome which appeared to have a similar tracking utility to pure culture isolates of L. monocytogenes. All three methods performed equally well for enrichment of Listeria monocytogenes. The observation of potential competitive exclusion of L. mono by Anoxybacillus and Geobacillus in early enrichment hours provided novel information that may be used to further optimize enrichment formulations. Application of Resphera Insight for high-resolution analysis of 16S amplicon sequences accurately identified L. monocytogenes

  13. Decontamination of laboratory microbiological waste by steam sterilization.

    Science.gov (United States)

    Rutala, W A; Stiegel, M M; Sarubbi, F A

    1982-01-01

    A steam sterilizer (autoclave) was tested to determine the operating parameters that affected sterilization of microbiological waste. Tests involved standardized loads (5, 10 ad 15 lb [ca. 2.27, 4.54, and 6.80 kg, respectively]) contaminated petri plates in autoclave bags placed in polypropylene or stainless steel containers. Thermal and biological data were obtained by using a digital potentiometer and a biological indicator containing spores of Bacillus stearothermophilus, respectively. The transfer of heat was more efficient when smaller loads of microbiological waste were tested and stainless steel rather than polypropylene containers were used. A single bag with the sides rolled down to expose the top layer of petri plates allowed heat to pass better than did a single bag with the top constricted by a twist-tie. The presence of water in the autoclave bag did not significantly improve heat-up time in stainless steel or polypropylene containers. The results of biological tests substantiated the temperature data. When 10 or 15 lb of microbiological waste was exposed to various test conditions, the only condition that ensured the destruction of B. stearothermophilus involved the use of a stainless steel container (with or without water) for 90 min. Autoclaving for 45 min resulted in the destruction of bacteria included in 10 lb (136 +/- 3 plates) or 15 lb (205 +/- 6 plates) of microbiological waste when stainless steel containers with or without water or polypropylene containers with water used, whereas 60 min was required to kill all bacteria if polypropylene containers without water were used. PMID:7103486

  14. Study on Isolation and Identification and Thermal Resistance of Thermophilic Microorganisms in the Plant Beverage Extracts%植物饮料提取液中微生物的分离鉴定及耐热性研究

    Institute of Scientific and Technical Information of China (English)

    邓腾

    2016-01-01

    For studying on diversity and thermal resistance, 6 strains of microbe isolated from the plant bever-age extracts were identified by 16S rDNA sequence analysis and were measured D value, Z value by capillary tube method. The result showed that these isolates identified to be Bacillus stearothermophilus, Bacillus pumilus, Bacillus anthracis, Bacillus ginsengihumi, Alicyclobacillus sp. and Bacillus cereus, respectively. In addition, the results of thermal resistance of Bacillus stearothermophilus which was predominant thermoduric bacteria in canned food showed that the values of D121℃=1.4 min and Z=10.05℃.%以植物饮料提取液为研究对象,通过16S rDNA序列分析法和基于毛细管法测定微生物的D值和Z值的方法对分离出的耐热性菌株进行分子生物学鉴定和耐热性能研究。结果表明,本试验共分离出6株耐热性菌株,包括嗜热脂肪芽孢杆菌、短小芽孢杆菌、枯草芽孢杆菌、人参土芽孢杆菌、脂环酸芽孢杆菌和蜡样芽孢杆菌。其中,罐头食品中典型耐热性代表菌株嗜热脂肪芽孢杆菌芽孢的耐热性测试结果为:D121℃=1.4 min,Z=10.05℃。

  15. The architecture of EssB, an integral membrane component of the type VII secretion system.

    Science.gov (United States)

    Zoltner, Martin; Norman, David G; Fyfe, Paul K; El Mkami, Hassane; Palmer, Tracy; Hunter, William N

    2013-04-02

    The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein forms a dimer that straddles the cytoplasmic membrane. A helical fold is observed for the C-terminal segment, which is positioned on the exterior of the membrane. This segment contributes most to dimer formation. The N-terminal segment displays a structure related to the pseudokinase fold and may contribute to function by recognizing substrates or secretion system partners. The remaining part of EssB may serve as an anchor point for the secretion apparatus, which is embedded in the cytoplasmic membrane with the C-terminal domain protruding out to interact with partner proteins or components of peptidoglycan.

  16. Isolates identification and characteristics of microorganisms in biotrickling filter and biofilter system treating H2S and NH3

    Institute of Scientific and Technical Information of China (English)

    YU Guang-hui; XU Xiao-jun; HE Pin-jing

    2007-01-01

    A combination system of biotrickling filter (BTF) and biofilter (BF), adopting surfactant-modified clinoptilolite and surfactant-modified wood chip as the media respectively, was applied to treat H2S and NH3 simultaneously. The identification and sole carbon sources utilization patterns of isolates in the combination system were studied by Biolog system. The isolates were identified as Bacillus sphaericus, Geobacillus themoglucosidasius (55℃) and Micrococcus luteus (ATCC 9341) in BTF, and Aspergillus sydowii (Bainier & Sartory) Thom & Church in BF. Among 96 substrate classes supplied by Biolog system, the carboxylic acids and methyl esters had the highest utilization extent for the four species, followed by the amino acids and peptides. The descending sequence of carbon sources utilization capability of isolates was A. sydowii (52.6%), M. luteus (39.5%), B. sphaericus (21.6%), and G. thermoglucosidasius (17.7%).

  17. Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study

    Science.gov (United States)

    Mastascusa, V.; Romano, I.; Di Donato, P.; Poli, A.; Della Corte, V.; Rotundi, A.; Bussoletti, E.; Quarto, M.; Pugliese, M.; Nicolaus, B.

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  18. Isolation and Identification of a Thermophilic Bacterium from Hot Spring in Changbai Mountain%一株长白山温泉高温菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    刘景圣; 许志超; 刘回民; 蔡丹; 郑明珠

    2013-01-01

    从长白山温泉泥样中分离纯化一株高温菌T1,检测其生理生化特性.结果表明:菌株T1为革兰氏阳性杆菌,无鞭毛,内生芽孢,最适生长温度65℃,pH6.5,分别能以葡萄糖、麦芽糖等作为唯一碳源生长;其16SrRNA基因序列与Geobacillus stearothermophilus的同源性为99%,二者G+C含量相差7.5%,初步鉴定菌株T1可能是Geobacillus属的一个新种.

  19. 一株耐高温细菌CHBl的分离和产酶特性研究%Isolation of High-Temperature Resistance Bacterium CHB1 and Its Enzyme-Production Characteristic

    Institute of Scientific and Technical Information of China (English)

    任香芸; 陈济琛; 蔡海松; 林新坚; 邱宏端

    2007-01-01

    从土壤中分离到1株耐高温细茵CHB1,经鉴定为嗜热脂肪土芽胞杆菌(Geobacillus stearother-mophilus).通过平板透明圈法研究其产酶特性,结果表明CHB1具有蛋白酶、淀粉酶和纤维素酶活性,产酶最适温度均为60℃;最佳产酶时间因酶的种类而不同,淀粉酶为24 h,蛋白酶和纤维素酶为48 h.培养基厚度对产酶有一定的影响,以每皿20~25 mL为宜.

  20. 产耐热木聚糖酶细菌的分离鉴定及酶易错PCR致突变条件优化%Isolation & Identification of a Heat-Resistant Xylanase-Producing Bacterial Strain & Optimization of the Enzyme Error-Prone PCR Mutagenic Conditions

    Institute of Scientific and Technical Information of China (English)

    赵超; 张宁宁; 梅凡; 艾超; 阮灵伟; 黄一帆; 刘斌

    2013-01-01

    从福建省永泰县温泉采集样品中筛选到1株产耐热木聚糖酶嗜热菌株TC-W7,并获得该木聚糖酶基因。在此基础上,采用易错PCR技术在木聚糖酶基因中引入突变,研究Mg2+浓度、Mn2+浓度、dTTP/dCTP浓度等条件对突变率的影响。通过形态特征、生理生化试验及16S rRNA序列相似性比对分析,初步鉴定菌株TC-W7为土壤芽胞杆菌(Geobacillus),菌株TC-W7在最适温度75℃和 pH 8.2条件下,其木聚糖酶活力为215.83 U/mL,Triton X-100和DDT能显著增强该酶的活性。在 Mg2+浓度为20μmol/L,Mn2+浓度为0.80μmol/L,dTTP/dCTP浓度为0.30 mmol/L的致突变条件下,碱基突变率为0.98%。 Geobacillus sp. TC-W7产木聚糖酶具有较好的耐热和耐碱等工业应用特性,对该酶易错PCR致突变条件优化结果,可用于后续木聚糖酶的耐热定向进化。%A heat-resistant xylanase-producing bacterial strain TC-W7 from samples collected in a hot spring in Yong-tai County, Fujian Province was screened and obtained xylanase gene of the strain. Based on these an error-prone PCR ( Ep-PCR) technique was adopted to introduce mutation in the xylanase gene, to study the effects of the concentration such as Mg2+, Mn2+ and dTTP/dCTP and other conditions on the mutation rate. It was initially identified that strain TC-W7 belonged to Geobacillus through morphology features, physiological and biochemical tests as well as 16S rRNA sequence comparative analysis. Under the most suitable temperature 75℃ and pH 8. 2, the activity of xylanase was at 215. 83 U/mL, Triton X-100 and DDT could remarkably increase the activity of xylanase. The base mutation rate was at 0. 98% under the mutagenic conditions of 20. 0 μmol/L Mg2+, 0. 80 μmol/L Mn2+ and 0. 30 mmol/L dTTP/dCTP. The xylanase-producing Geobacillus sp. TC-W7 had a fine heat and alkali resistance and other industry appli-cable features. The results of Ep-PCR mutagenic conditions optimization of the enzyme can be used for