WorldWideScience

Sample records for gentamicin resistant escherichia

  1. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis.

    Science.gov (United States)

    Hasvold, J; Bradford, L; Nelson, C; Harrison, C; Attar, M; Stillwell, T

    2013-01-01

    Neonatal sepsis is a significant cause of morbidity and mortality among term and preterm infants. Ampicillin and gentamicin are standard empiric therapy for early onset sepsis. Four cases of neonatal sepsis secondary to Escherichia coli (E. coli) found to be gentamicin resistant occurred within a five week period in one neonatal intensive care unit (NICU). To determine whether these cases could be tied to a single vector of transmission, and to more broadly evaluate the incidence of gentamicin resistant strains of E. coli in the neonatal population at our institution compared to other centers, we reviewed the charts of the four neonates (Infants A through D) and their mothers. The E. coli isolates were sent for Pulse Field Gel Electrophoresis (PFGE) to evaluate for genetic similarity between strains. We also reviewed all positive E. coli cultures from one NICU over a two year period. Infants A and B had genetically indistinguishable strains which matched that of urine and placental cultures of Infant B's mother. Infant C had a genetically distinct organism. Infant D, the identical twin of Infant C, did not have typing performed. Review of all cultures positive for E. coli at our institution showed a 12.9 percent incidence of gentamicin-resistance. A review of other studies showed that rates of resistance vary considerably by institution. We conclude that gentamicin-resistant E. coli is a relatively uncommon cause of neonatal sepsis, but should remain a consideration in patients who deteriorate despite initiation of empiric antibiotics.

  2. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Vibeke Frøkjær; Jakobsen, Lotte; Emborg, Hanne-Dorthe;

    2006-01-01

    and gentamicin resistance in Escherichia coli strains from pork, healthy pigs and diagnostic submissions from pigs and to investigate potential relationships to the use of apramycin and gentamicin at farm and national levels. Methods: Data on Danish E. coli isolates from healthy pigs (indicator bacteria......-2004). The genetic background for gentamicin resistance was investigated by PCR. Relationships between antimicrobial usage and resistance were analysed by chi(2) test and logistic regression. Results: At the farm level, the occurrence of apramycin/gentamicin cross-resistance was correlated to the use of apramycin (P...... resistance in clinical E. coli 0149 isolates was significantly correlated with the amounts and duration of apramycin use. The aac(3)-IV gene was detected in all tested cross-resistant isolates. Conclusions: Apramycin consumption...

  3. Characterisation, dissemination and persistence of gentamicin resistant Escherichia coli from a Danish university hospital to the waste water environment

    DEFF Research Database (Denmark)

    Jakobsen, Lotte; Sandvang, Dorthe; Hansen, Lars H

    2008-01-01

    in waste water from the residential area. PFGE profiling revealed no spread of specific patient isolates to the waste water. The aac(3)-II gene was detected both in patient and waste water isolates. Furthermore horizontal transfer of the aac(3)-II gene of patient origin to a recipient was shown in vitro......, indicating a potential spread of the gene from patient isolates to waste water isolates. Regardless of origin, most isolates exhibited multi-resistance and contained several virulence genes. In conclusion, our study showed a possible spread of aac(3)-II from the hospital to the waste water. Most of the GEN......The aim of the study was to investigate the potential spread of gentamicin resistant (GEN(R)) Escherichia coli isolates or GEN(R) determinants from a Danish university hospital to the waste water environment. Waste water samples were collected monthly from the outlets of the hospital bed wards...

  4. Gentamicin susceptibility in Escherichia coli related to the genetic background: problems with breakpoints

    DEFF Research Database (Denmark)

    Jakobsen, L.; Sandvang, D.; Jensen, Vibeke Frøkjær

    2007-01-01

    In total, 120 Escherichia coli isolates positive for one of the gentamicin resistance (GEN(R)) genes aac(3)-II, aac(3)-IV or ant(2 '')-I were tested for gentamicin susceptibility by the agar dilution method. Isolates positive for aac(3)-IV or ant(2 '')-I had an MIC distribution of 8-64 mg/L, wher...... by EUCAST and questions the breakpoint recommended by the CLSI (>= 16 mg/L)....

  5. The Rapid Emergence of High Level Gentamicin Resistance in Enterococci

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    1990-01-01

    Full Text Available The proportion of enterococci isolated from blood and urine cultures that were highly resistant to gentamicin and streptomycin were determined. No blood or urine isolates highly resistant to gentamicin were seen in 1983, whereas by 1986–87 25% of blood and 17% of urine isolates were highly resistant. The rapid emergence of gentamicin resistance has serious implications for patients with life threatening enterococcal disease.

  6. Preliminary study on synergistic combinations of raw honey with gentamicin against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa of veterinary origin

    Institute of Scientific and Technical Information of China (English)

    MoussaAhmed; Baghdad Khiati; SaadAissat; Noureddine Djebli

    2015-01-01

    Objective: To search for further synergistic combinations of gentamicin and raw honey that might have potential in treating wounds. Methods: The antibacterial activity and synergistic interaction of raw honey and gentamicin was assessed by using agar well diffusion method. Two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 2154) bacteria were selected for antibacterial activity assay. The cultures of bacteria were maintained in their appropriate agar slants at 4 °C throughout the study and used as stock cultures. Results: Raw honey and gentamicin interacted synergistically to inhibit Escherichia coli and Pseudomonas aeruginosa. Conclusions: These results suggest that combinations of raw honey and gentamicin have therapeutic benefits in prophylaxis of infections caused by multidrug-resistant Gram-negative bacilli.

  7. Novel Glycoconjugate of 8-Fluoro Norfloxacin Derivatives as Gentamicin-resistant Staphylococcus aureus Inhibitors: Synthesis and Molecular Modelling Studies.

    Science.gov (United States)

    Azad, Chandra S; Bhunia, Shome S; Krishna, Atul; Shukla, Praveen K; Saxena, Anil K

    2015-10-01

    Antibiotic resistance has been the subject of interest in clinical practice due to high prevalence of antibiotic-resistant pathogenic organisms. In view of the prevalence of lesser resistance in antibiotics belonging to aminoglycoside class of compounds viz. Food and Drug Administration-approved gentamicin for the treatment of Staphylococcus infections, which also has instances of resistance in the clinical isolates of Staphylococcus aureus, a series of novel glycoconjugates of 8-fluoro norfloxacin analogues with high regio-selectivity by employing copper (I)-catalyzed 1, 3-dipolar cycloaddition of 1-O-propargyl monosaccharides has been synthesized and evaluated for the antibacterial activity against gentamicin resistance Staphylococcus aureus. Among these compounds, the compound 10g showed better antibacterial activity (MIC = 3.12 μg/ml) than gentamicin (Escherichia coli (12.5 μg/ml), Staphylococcus aureus (6.25 μg/ml) and Klebsiella pneumonia (6.25 μg/ml), including gentamicin resistant (>50 μg/ml) strain in vitro). The docking studies suggest DNA gyrase of Staphylococcus aureus as a probable target for the antibacterial action of compound 10g. © 2014 John Wiley & Sons A/S.

  8. Temperature-dependent gentamicin resistance of Francisella tularensis is mediated by uptake modulation

    Directory of Open Access Journals (Sweden)

    Kathleen eLoughman

    2016-01-01

    Full Text Available Gentamicin (Gm is an aminoglycoside commonly used to treat bacterial infections such as tularemia – the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.. Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C compared to mammalian body temperature (37°C. To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature.

  9. "Emergence of Multidrug Resistant Strains of Escherichia coli Isolated from Urinary Tract Infections"

    OpenAIRE

    R Moniri; Khorshidi, A; H Akbari

    2003-01-01

    The emergence of multidrug resistant strains of Escherichia coli has complicated treatment decision and may lead to treatment failures. From April to November 2001 we prospectively evaluated the prevalence of resistance to trimethoprim-sulfamethoxazole (SXT), gentamicin, cephalothin, ciprofloxacin, and nitrofurantoin in 220 Escherichia coli isolates from patients with urinary tract infections in kashan, Iran. To assess the current breadth of multidrug resistance among urinary isolates of E. c...

  10. Community Acquisition of Gentamicin-Sensitive Methicillin-Resistant Staphylococcus aureus in Southeast Queensland, Australia

    OpenAIRE

    Nimmo, Graeme R.; Schooneveldt, Jacqueline; O'Kane, Gabrielle; McCall, Brad; Vickery, Alison

    2000-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) susceptible to gentamicin has been reported in a number of countries in the 1990s. To study the acquisition of gentamicin-sensitive MRSA (GS-MRSA) in southeast Queensland and the relatedness of GS-MRSA to other strains of MRSA, 35 cases of infection due to GS-MRSA from October 1997 through September 1998 were examined retrospectively to determine the mode of acquisition and risk factors for MRSA acquisition. Thirty-one isol...

  11. Chromosomally and Extrachromosomally Mediated High-Level Gentamicin Resistance in Streptococcus agalactiae.

    Science.gov (United States)

    Sendi, Parham; Furitsch, Martina; Mauerer, Stefanie; Florindo, Carlos; Kahl, Barbara C; Shabayek, Sarah; Berner, Reinhard; Spellerberg, Barbara

    2016-01-04

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in nonpregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shown in vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to the loss of a synergistic effect. We therefore performed a multicenter study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centers in four countries, 1,128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried the aacA-aphD gene, typically conferring HLGR. However, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon designated Tn3706. For the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3 family transposon. Its ability to confer HLGR was proven by transfer into an Enterococcus faecalis isolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformed E. faecalis strain from the plasmid. This is the first report showing plasmid-mediated HLGR in GBS. Thus, in our clinical GBS isolates, HLGR is mediated both chromosomally and extrachromosomally.

  12. Subcutaneous gentamicin injection around the cuff in treatment of resistant exit site infection in peritoneal dialysis patients: a pilot study.

    Science.gov (United States)

    Dizdar, Oguzhan Sıtkı; Ozer, Ozerhan; Erdem, Selahattin; Gunal, Ali Ihsan

    2017-01-01

    One of the most common complications of the peritoneal dialysis (PD) is the infection of the exit site of the peritoneal catheter. The aim of the present study was to evaluate the efficacy of the subcutaneous gentamicin injection around the cuff as a part of routine treatment of the resistant exit site infection (ESI). If the exit site remains infected after a 2-week systemic antibiotics treatment, it is defined as resistant ESI. In these cases, systemic antibiotics were discontinued and a subcutaneous 40-mg gentamicin injection was administered around the external cuff of the PD catheter every 3 days. A total of three or four injections were given to each patient. A subcutaneous gentamicin injection was administered around the cuff in thirteen patients for the treatment of resistant ESI over a 2-year period. The median follow-up time in cured patients was 12 months. Eleven of the thirteen patients had been apparently cured of their resistant ESI, with no recurrence. None of the patients had a gentamicin-resistant species. Subcutaneous gentamicin-related adverse effect was not observed in any patient. Subcutaneous gentamicin injection around the cuff is a well-tolerated and effective strategy for treating resistant ESI. To gain widespread approval of this therapy and reach a consensus about ESI management, additional studies are needed.

  13. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Leng, Bingfeng

    2016-01-01

    mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500......Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby...... in the absence of gentamicin, 12 out of 15 lineages derived from SCVs with point mutations acquired intra-codonic suppressor mutations restoring membrane potential, growth rate, gentamicin susceptibility and colony size to WT levels. For the SCVs carrying deletions, all lineages enhanced fitness independent...

  14. Microbubble-Mediated Ultrasound Enhances the Lethal Effect of Gentamicin on Planktonic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Han-Xiao Zhu

    2014-01-01

    Full Text Available Previous research has found that low-intensity ultrasound enhanced the lethal effect of gentamicin on planktonic E. coli. We aimed to further investigate whether microbubble-mediated low-intensity ultrasound could further enhance the antimicrobial efficacy of gentamicin. The planktonic E. coli (ATCC 25922 was distributed to four different interventions: control (GCON, microbubble only (GMB, ultrasound only (GUS, and microbubble-mediated ultrasound (GMUS. Ultrasound was applied with 100 mW/cm2 (average intensity and 46.5 KHz, which presented no bactericidal activity. After 12 h, plate counting was used to estimate the number of bacteria, and bacterial micromorphology was observed with transmission electron microscope. The results showed that the viable counts of E. coli in GMUS were decreased by 1.01 to 1.42 log10 CFU/mL compared with GUS (P<0.01. The minimal inhibitory concentration (MIC of gentamicin against E. coli was 1 μg/mL in the GMUS and GUS groups, lower than that in the GCON and GMB groups (2 μg/mL. Transmission electron microscopy (TEM images exhibited more destruction and higher thickness of bacterial cell membranes in the GMUS than those in other groups. The reason might be the increased permeability of cell membranes for gentamicin caused by acoustic cavitation.

  15. In vitro antibacterial activity of seven Indian spices against high level gentamicin resistant strains of enterococci

    Science.gov (United States)

    Bipin, Chapagain; Chitra, Pai (Bhat); Minakshi, Bhattacharjee

    2015-01-01

    Introduction The aim of the study was to explore the in vitro antibacterial activity of seven ethanolic extracts of spices against high level gentamicin resistant (HLGR) enterococci isolated from human clinical samples. Material and methods Two hundred and fifteen enterococcal strains were isolated from clinical samples. High level gentamicin resistance in ethanolic extracts of cumin (Cuminum cyminum), cinnamon (Cinnamomum zeylanicum), ginger (Zingiber officinale), fenugreek (Trigonella foenum-graecum), cloves (Syzygium aromaticum), cardamom (Elettaria cardamomum Maton) and black pepper (Piper nigrum) were prepared using Soxhlet apparatus. The antibacterial effect of the extracts was studied using the well diffusion method. Statistical analysis was carried out by χ2 test using SPSS 17 software. Results Only cinnamon and ginger were found to have activity against all the isolates, whereas cumin and cloves had a variable effect on the strains. Fenugreek, black pepper and cardamom did not show any effect on the isolates. The zone diameter of inhibition obtained for cinnamon, ginger, cloves and cumin was in the range 31–34 mm, 27–30 mm, 25–26 mm and 19–20 mm respectively. Conclusions Cinnamomum zeylanicum and Z. officinale showed the maximum antibacterial activity against the enterococcal isolates followed by S. aromaticum and C. cyminum. The findings of the study show that spices used in the study can contribute to the development of potential antimicrobial agents for inclusion in the anti-enterococcal treatment regimen. PMID:26322099

  16. A novel multidrug resistance plasmid isolated from an Escherichia coli strain resistant to aminoglycosides.

    Science.gov (United States)

    Sun, Hui; Li, Shasha; Xie, Zhijing; Yang, Fangfang; Sun, Yani; Zhu, Yanli; Zhao, Xiaomin; Jiang, Shijin

    2012-07-01

    Previous studies have reported several different plasmids that confer multidrug resistance (MDR) including resistance to aminoglycosides. In this study, we investigated the aminoglycoside resistance patterns for 224 Escherichia coli isolates from diseased chickens and ducks in China, characterized a novel MDR plasmid, and collected prevalence data on similar resistance plasmids. Antibiotic susceptibilities were determined using disc diffusion and the microdilution method. The plasmid pXZ was analysed by restriction fragment length polymorphism (RFLP) with EcoRI and SalI, and sequenced. The prevalence of similar resistance plasmids was assessed by multiplex PCR and by RFLP analysis. Among the 224 E. coli isolates, 189 (84.4%) were resistant to streptomycin, 125 (55.8%) were resistant to kanamycin, 116 (51.8%) were resistant to gentamicin, 106 (47.3%) were resistant to neomycin and 98 (43.8%) were resistant to amikacin. Among the 224 E. coli isolates, 17 contained a plasmid with the MDR-encoding region of pXZ, which showed high-level resistance to aminoglycosides (MICs of gentamicin and amikacin ≥ 512 mg/L). The plasmid pXZ was digested into five fragments by EcoRI and six fragments by SalI. The plasmid pXZ was a circular DNA molecule of 76635 bp with a 51.65% guanine + cytosine content and included four resistance genes (rmtB, fosA3, bla(TEM-1) and bla(CTX-M-24)). A novel MDR plasmid, pXZ, harbouring four resistance genes (rmtB, fosA3, bla(TEM-1) and bla(CTX-M)) was identified. To our knowledge, this is the first report of an aminoglycoside resistance plasmid harbouring the fosA3 gene.

  17. Detection of the esp gene in high-level gentamicin resistant Enterococcus faecalis strains from pet animals in Japan.

    Science.gov (United States)

    Harada, Tetsuya; Tsuji, Noboru; Otsuki, Koichi; Murase, Toshiyuki

    2005-03-20

    We investigated the prevalence of the esp gene and the susceptibility to gentamicin in Enterococcus faecalis and E. faecium strains obtained from pet animals. Nine of 30 E. faecalis and 2 of 38 E. faecium strains from the pet animals had the esp gene. Three esp-positive E. faecalis strains, which were isolated from two dogs and a cat, showed gentamicin MICs of > or =256 microg/ml and harbored the high-level gentamicin resistance (HLGR) gene, aac(6')-Ie-aph(2'')-Ia. Of the nine esp-positive E. faecalis strains, five, including the three strains with the HLGR gene, were closely related by numerical analysis of PFGE patterns. Longitudinal investigation needs to elucidate whether the HLGR gene was incorporated into a subpopulation of the esp-positive E. faecalis.

  18. Effect of moxifloxacin combined with cefotaxime compared to cefotaxime-gentamicin combination on prevention of white matter damage associated with Escherichia coli sepsis in neonatal rats.

    Science.gov (United States)

    Le Saché, Nolwenn; Baud, Olivier; Pansiot, Julien; Pham, Hoa; Biran, Valérie; Brunel-Meunier, Nadège; Bidet, Philippe; Kitzis, Marie-Dominique; Gressens, Pierre; Bingen, Edouard; Charriaut-Marlangue, Christiane; Bonacorsi, Stéphane

    2011-07-01

    Relative to the cefotaxime-gentamicin combination, the moxifloxacin-cefotaxime combination significantly reduced microglial activation and immature oligodendrocyte cell death and delayed myelination in the developing white matter of neonatal rats with experimental Escherichia coli sepsis. These neuroprotective effects were not due to differences in in vivo bactericidal activities or in the systemic inflammatory responses and could be related to the intrinsic immunomodulatory properties of moxifloxacin. Molecular mechanisms underlying the neuroprotective effect of moxifloxacin remain to be elucidated.

  19. Effects of ampicillin, gentamicin, and cefotaxime on the release of Shiga toxins from Shiga toxin-producing Escherichia coli isolated during a diarrhea episode in Faisalabad, Pakistan.

    Science.gov (United States)

    Mohsin, Mashkoor; Haque, Abdul; Ali, Aamir; Sarwar, Yasra; Bashir, Saira; Tariq, Ayesha; Afzal, Amna; Iftikhar, Tayyaba; Saeed, Muhammad Azeem

    2010-01-01

    The Shiga toxin-producing Escherichia coli (STEC) is an emerging foodborne pathogen. The proportion of cases attributed to STEC in an episode of diarrhea in the Faisalabad region of Pakistan was investigated. In addition, as increase in Shiga toxin (Stx) release after exposure to various antimicrobial agents is widely reported, we also elucidated the in vitro effects of three commonly used antibiotics (ampicillin, gentamicin, and cefotaxime) on Stx release. Isolation and detection of STEC was done using enzyme-linked immunosorbent assay and polymerase chain reaction, followed by phenotypic characterization. In vitro Stx release from isolated STEC was determined using enzyme-linked immunosorbent assay, and Stx-induced verocytotoxicity was quantified using cytotoxicity detection assay. STEC was detected in 5 (21.7%) of 23 patients. Exposure to minimum inhibitory concentration (MIC) of ampicillin, gentamicin, and cefotaxime resulted in a considerable decrease in toxin release and level of cytotoxicity in most of the STEC isolates when compared with control (without antibiotic exposure). Exposure to sub-MIC of ampicillin resulted in a relative increase in Stx release and cytotoxicity (p cefotaxime. Sub-MIC of gentamicin resulted in largest decrease in Stx release and a similar trend was observed with cefotaxime to a lesser extent. In conclusion, these in vitro observations suggested that sub-MIC of ampicillin may stimulate Stx release and level of cytotoxicity and therefore should be avoided. Gentamicin did not show such effects and therefore may be considered for STEC antimicrobial therapy.

  20. Resistência a antimicrobianos de Escherichia coli isolada de dejetos suínos em esterqueiras Antibiotic-resistance of Escherichia coli isolates from stored pig slurry

    Directory of Open Access Journals (Sweden)

    F.F.P. Silva

    2008-06-01

    Full Text Available The antimicrobial resistance of 96 Escherichia coli strains isolated from a stabilization pond system on a pig-breeding farm was evaluated. Strains were tested for their resistance against 14 antimicrobial using the agar diffusion method. E. coli strains showed resistance to tetracycline (82.3%, nalidixic acid (64%, ampicilin (41%, sulfamethoxazole/trimethoprin (36%, sulfonamide (34%, cloranphenicol (274%, ciprofloxacin (19%, cefaclor (16%, streptomicyn (7.3%, neomicyn (1%, amoxacilin/ clavulanic acid (1%, and amikacin (1%. No resistance was observed to gentamicin and tobramycin, and 37.5% of E. coli strains were resistant to four or more antimicrobials. The multiresistance pattern was found in strains isolated during all sampled period. Strains showed a high variability in the antimicrobial resistance pattern.

  1. RESISTANCE PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGHE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-02-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests.65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics asfeed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials.

  2. ANTIMICROBIAL RESISTANT PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-12-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests. 65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials

  3. Antibiotic Resistance of Escherichia Coli Isolated From Poultry and Poultry Environment of Bangladesh

    Directory of Open Access Journals (Sweden)

    Muhammad A. Akond

    2009-01-01

    Full Text Available Problem statement: Increased emergence in microbial resistance to antibiotics is a growing problem in Bangladesh, a tropical country with a large agrarian population having limited medical facilities. Wide spread use of antimicrobials in poultry farming here is a concern of multi-drug microbial resistance development that can potentially be transmitted to human pathogens even from non-pathogenic carrier strains. Attempt was made to assess drug susceptibility in Escherichia coli from poultry sources of Bangladesh. Approach: Eighty selected strains isolated from poultry sources were thoroughly characterized by standard cultural and biochemical tests followed by final identification using latex agglutination test of polyvalent anti-sera, from which 50 were tested for susceptibility to 13 antibiotics following disk diffusion method. Results: 145 (58%, out of total 250, were found positive for E. coli. 52-88% of tested E. coli strains from poultry sources were found resistant to Penicillin, Ciprofloxacin, Riphampicin, Kanamycin, Streptomycin, Cefixine, Erythromycin, Ampicillin, Tetracycline, and 20% strains showed resistance to both Chloramphenicol and Neomycin. No strains showed resistance to Norfloxacin and Gentamicin. Sensitivity was recorded in case of 60-86% strains to Norfloxacin, Gentamicin, Chloramphenicol, and Neomycin; and 26-36% strains against Tetracycline, Streptomycin, and Ampicillin. Intermediate resistance/ susceptibility to various antibiotics were observed for 12-36% Escherichia coli strains. Both, resistance and susceptibility were exhibited against Chloramphenicol, Ampicillin, Gentamicin, Neomycin, Tetracycline, Streptomycin and Norfloxacin. Multi drug resistance was found in case of 6-10 antibiotics for all strains tested. Conclusion: Further study is required on the role of poultry borne bacteria as vectors in transmitting drug resistance. Attention is to be paid for personnel hygiene in processing and handling of poultry and

  4. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    Science.gov (United States)

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  5. Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children

    Directory of Open Access Journals (Sweden)

    This paper should be cited as: Sedighi I, Alikhani MY, Nakhaee S, Karami P . [ Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children ]. mlj goums . 201 4 ; 8 ( Suppl 4 : 42 - 48 [Article in Per sian] Sedi ghi, I. (MD

    2014-11-01

    Full Text Available Background and Objective: Escherichia coli is the most common cause of urinary tract infections in children and the leading cause of intra-abdominal infections (peritonitis and abscess followed intestinal injuries. Urinary tract infection, including cystitis and pyelonephritis, is a common childhood infection. E. coli causes more than 90 percent of the community acquired and 50% of hospital acquired urinary tract infections; therefore, the determination of E. coli antibiotic susceptibility is a paramount importance to clinical and epidemiological purposes. Material and Methods: In this cross-sectional study, 50 E. coli strains isolated from urine samples of children less than 7 years of age with urinary tract infections. They were compared for drug susceptibility testing by disc diffusion method with 50 strains of Escherichia coli isolated from stool samples of healthy children with the same age and sex pattern. Results: The actual amount of drug sensitivity of uropathogenic and intestinal Escherichia coli strains to amikacin was 94 and 100%, nitrofurantoin 90 and 88%, gentamicin 66 and 94%, cefixime 56 and 60%, nalidixic acid 38 and 44% and to cotrimoxazole 28 and 32%, respectively. Conclusion: the rate of resistance to gentamicin, Cefixime and nalidixic acid in urinary tract infection isolates were more than intestinal strains. The highest rate of drug resistance in urinary Escherichia coli isolates was associated with cotrimoxazole and the lowest one with amikacin.

  6. [Antibiotic resistance of Escherichia coli strains isolated from raw chicken meat in Senegal].

    Science.gov (United States)

    Fofana, A; Bada Alambédji, R; Seydi, M; Akakpo, A J

    2006-01-01

    Antimicrobial-resistant Escherichia coli and others pathogens bacteria can be transferred from animals to humans through consumption of contaminated food and foods products and thus present a public health risk. The increase in E. coli resistance to commonly used antimicrobials both in the public health and veterinary sectors is one of the major threats of health care worldwide. The present study was undertaken to estimate the antimicrobial resistance of E. coli isolates from raw chicken meat in Dakar. Levying of skin and muscle have been carried out on 120 chicken carcasses bought from 13 sale points and 23 flocks beetween November 2003 and April 2004. 102 Escherichia coli strains have been isolated, among which, 90 were tested for their susceptibilities to 16 selected antibiotics by agar diffusion method. All Escherichia coli strains (100%), were resistant to one or more antibiotic; 60 strains (66.66%) being resistant to more than five antibiotics. Those frequently encountererd are: ampicillin, trimethoprim, trimethoprim-sulfametoxazole, tetracycline, sulfonamides, streptomycin, nalidixic acid. Multiple resistances to 12 antibiotics were also observed. The lowest resistances were noted with gentamicin (3.33%) and neomycin (5.56%). This study showed the significance of chicken meat as source of Escherichia coli strains with a simple or multiple resistance to various antibiotics tested. Further studies are necessary in order to determine bacterium mechanisms of resistance.

  7. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

    Directory of Open Access Journals (Sweden)

    Bibi Sedigheh Fazly Bazzaz

    2016-12-01

    Full Text Available Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus and the standard strain of Pseudomonas aeruginosa (P. aeruginosa. Methods: The minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI. Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1. A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains

  8. Factors associated with antimicrobial-resistant Escherichia coli in zoo animals.

    Science.gov (United States)

    Ishihara, Kanako; Hosokawa, Yuko; Makita, Kohei; Noda, Jun; Ueno, Hiroshi; Muramatsu, Yasukazu; Ueno, Hiroshi; Mukai, Takeshi; Yamamoto, Hideaki; Ito, Masaki; Tamura, Yutaka

    2012-10-01

    Factors associated with the carriage of antimicrobial-resistant Escherichia coli isolates were analysed among zoo animals. An association was observed between selection of amoxicillin as the first-line therapy and a significantly higher percentage of resistance to ampicillin (54.5%) from 11 animals treated with antimicrobials, compared with isolates from 32 untreated animals (9.4%). In addition, the percentage resistance to kanamycin (36.4%), gentamicin (27.3%), trimethoprim (27.3%) and tetracycline (63.6%) from 11 treated animals was significantly higher than those from 32 untreated animals (3.1%, 3.1%, 3.1% and 25%, respectively), although these antimicrobials were rarely used. All kanamycin-, gentamicin- and trimethoprim-resistant isolates and more than half of the tetracycline-resistant isolates from treated animals were also resistant to ampicillin. Co-resistance to other antimicrobials with ampicillin was suggested to contribute to an increasing of resistance towards antimicrobials that were rarely administered. The present investigation revealed an association of antimicrobial treatment with the spread of antimicrobial-resistant bacteria among zoo animals.

  9. In vitro activity of RPR 106972 alone and in combination with vancomycin, ampicillin, and gentamicin against multidrug-resistant enterococci.

    Science.gov (United States)

    Messick, C R; Woodward, J; Pendland, S L

    1998-10-01

    This investigation used checkerboard and time-kill assays to evaluate the in vitro activity of RPR 106972 (45% pristinamycin IB and 55% pristinamycin IIB) alone and in combination with vancomycin or ampicillin +/- gentamicin against multidrug-resistant enterococci. The checkerboard procedure resulted in synergistic or additive effects in 91% of the isolates with the combination of RPR 106972 plus vancomycin versus 68% with RPR 106972 plus ampicillin. The addition of gentamicin to either combination resulted in synergistic or additive results in 100% of the isolates. Inhibitory activity was observed with the time-kill assay with mean change in log10 CFU/mL at 24 h of -0.31 for RPR 106972, 3.3 for vancomycin, -0.46 for RPR 106972 plus vancomycin, and -0.35 for RPR 106972 plus vancomycin and gentamicin. No antagonism was noted with any of the combinations. RPR 106972 demonstrates good inhibitory activity against Enterococcus faecium and may prove useful in the treatment of enterococcal infections.

  10. Molecular screening of virulence genes in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical specimens in Northwest Iran

    Directory of Open Access Journals (Sweden)

    A Hasani

    2012-01-01

    Full Text Available Purpose: The present study screened clinical isolates of Enterococcus faecalis and Enterococcus faecium to determine the prevalence of high-level gentamicin-resistant enterococci and the potential virulence genes among them. Materials and Methods: Clinical enterococcal isolates were obtained from three university teaching hospitals in Northwest Iran. Isolated enterococci were identified phenotypically followed by antibiotic susceptibility testing. Multiplex PCR was performed for the detection of genus, species-specific targets, gentamicin resistance, and potential virulence genes. Results: Of 220 enterococcal isolates, 133 (60.45% isolates were identified as high-level gentamicin-resistant. Of these isolates, 79 (59.4% and 54 (40.6% were E. faecalis and E. faecium, respectively. All high-level gentamicin-resistant strains carried aac(6′Ie-aph(2″Ia. Of 220 isolates, 65.9% were positive for gelE, and 55%, 53.6%, 51.8%, and 49.5% of isolates were positive for cpd, asa1, ace, and esp, respectively. Phenotypically detected β-haemolytic strains (19.54% were found to possess cylL ls MAB. Conclusion: The study revealed that high-level gentamicin-resistance was related to the presence of aac(6′Ie-aph(2″Ia. Isolated enterococci harboured potential virulence determinants, which were more common among E. faecalis than among E. faecium strains.

  11. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

    Directory of Open Access Journals (Sweden)

    Wareham David W

    2008-06-01

    Full Text Available Abstract Background Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI. Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period. Methods Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, nitrofurantoin, trimethoprim and cefpodoxime was determined for 11,865 E. coli urinary isolates obtained from community and hospitalised patients in East London. Results Nitrofurantoin was the most active agent (94% susceptible, followed by gentamicin and cefpodoxime. High rates of resistance to ampicillin (55% and trimethoprim (40%, often in combination were observed in both sets of isolates. Although isolates exhibiting resistance to multiple drug classes were rare, resistance to cefpodoxime, indicative of Extended spectrum β-lactamase production, was observed in 5.7% of community and 21.6% of nosocomial isolates. Conclusion With the exception of nitrofurantoin, resistance to agents commonly used as empirical oral treatments for UTI was extremely high. Levels of resistance to trimethoprim and ampicillin render them unsuitable for empirical use. Continued surveillance and investigation of other oral agents for treatment of UTI in the community is required.

  12. Molecular epidemiological survey on aminoglycoside antibiotics-resistant genotype and phenotype of avian Escherichia coli in North China.

    Science.gov (United States)

    Zhang, T; Wang, C G; Jiang, G E; Lv, J C; Zhong, X H

    2012-10-01

    Monitoring drug resistance in Escherichia coli is important for prevention and treatment of colibacillosis. To choose effective drugs to prevent and control avian colibacillosis in North China, we investigated resistance of 205 E. coli isolates (from Beijing, Tianjin, inner Mongolia, Shanxi, and Hebei regions) to commonly used clinical aminoglycoside antibiotics using a drug susceptibility test. The results show that the isolates had varying degrees of resistance to kanamycin, gentamicin, streptomycin, amikacin, neomycin, and spectinomycin. Particularly, the resistance rates of the former 3 antibiotics exceeded 40%. To explore the reasons for wide drug resistance, aminoglycosides modifying enzymes (AME) genes, which are important in generation of aminoglycoside resistance, were detected by PCR. Of the isolates, 60.98% carried AME genes and 38.05% carried commensal multidrug resistance genes. Therefore, resistance of avian E. coli to aminoglycoside antibiotics is very serious in North China, perhaps due to the existence of resistance genes.

  13. Clinical Pharmacokinetics of Gentamicin in Neonates

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2017-03-01

    Full Text Available Gentamicin is a bactericidal aminoglycoside antibiotic, it inhibits the protein synthesis. Gentamicin is active against the majority of aerobic gram-negative bacilli such as Pseudomonas, Klebsiella and Escherichia coli. The gentamicin doses are 3 mg/kg once-daily for preterm newborns 35 weeks of gestation. The monitoring of gentamicin serum concentration is recommended when infants are treated for 48 hours or more. The gentamicin peak concentration must be at least 8 times the minimum inhibitory concentration (MIC to be bactericidal and the gentamicin trough concentration must be < 2 µg/ml to avoid ototoxicity and nephrotoxicity.Once-daily dosing of gentamicin (4 mg/kg, is preferred than twice-daily dose of 2.5 mg/kg gentamicin. A gentamicin loading dose (4 mg/kg, followed by once-daily dosing of 2.5 mg/kg yields safe and target range in neonates. An extended dosing interval of 48-hour (5 mg/kg gentamicin, was compared with twice-daily dose of 2.5 mg/kg gentamicin. Infants in the 48-hour interval and in the twice-daily achieved peak gentamicin concentrations of 9.43 µg/ml and 6.0 µg/ml, respectively, (p

  14. Nucleotide sequence of the aacC2 gene, a gentamicin resistance determinant involved in a hospital epidemic of multiply resistant members of the family Enterobacteriaceae.

    OpenAIRE

    Vliegenthart, J S; Ketelaar-van Gaalen, P A; Van de Klundert, J A

    1989-01-01

    A gentamicin resistance determinant of a conjugative plasmid from Enterobacter cloacae was cloned on a 3.2-kilobase fragment in the PstI site of pBR322. Substrate profiles for eight aminoglycosides at three concentrations showed that the resistance was due to aminoglycoside-(3)-N-acetyltransferase isoenzyme II. Insertion mapping by the gamma-delta transposon revealed that the size of the gene was approximately 1 kilobase. Nucleotide sequencing of the aacC2 gene identified an open reading fram...

  15. Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat.

    Science.gov (United States)

    Miranda, J M; Vázquez, B I; Fente, C A; Calo-Mata, P; Cepeda, A; Franco, C M

    2008-12-01

    The presence of Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes was determined in 55 samples of organic poultry meat and in 61 samples of conventional poultry meat. A total of 220 E. coli, 192 S. aureus, and 71 L. monocytogenes strains were analyzed by an agar disk diffusion assay for their resistance to ampicillin, cephalothin, chloramphenicol, ciprofloxacin, doxycycline, fosfomycin, gentamicin, nitrofurantoin, streptomycin, and sulfisoxazole (E. coli); chloramphenicol, ciprofloxacin, clindamycin, doxycycline, erythromycin, gentamicin, nitrofurantoin, oxacillin, and sulfisoxazole (S. aureus); and chloramphenicol, doxycycline, erythromycin, gentamicin, sulfisoxazole, and vancomycin (L. monocytogenes). The results indicated a significantly higher (P poultry meat as compared with conventional poultry meat. E. coli isolated from organic poultry meat exhibited lower levels of antimicrobial resistance against 7 of the 10 antimicrobials tested as compared with isolates recovered from conventional meat. In the case of S. aureus and L. monocytogenes isolated from conventional poultry, antimicrobial resistance was significantly higher only for doxycycline as compared with strains isolated from organic poultry. In the case of E. coli, the presence of multiresistant strains was significantly higher (P poultry meat as compared with organic poultry meat. Organically farmed poultry samples showed significantly lower development of antimicrobial resistance in intestinal bacteria such as E. coli.

  16. The prevalence and clonal expansion of high-level gentamicin-resistant enterococci isolated from blood cultures in a Dutch university hospital

    NARCIS (Netherlands)

    N.P.W.C.J. van den Braak (Nicole); A.F. van Belkum (Alex); D. Kreft; R. te Witt (René); H.A. Verbrugh (Henri); H.P. Endtz (Hubert)

    1999-01-01

    textabstractWe studied the prevalence and clonality of high-level gentamicin-resistant enterococci (HLGRE) in a Dutch university hospital. Of 238 enterococcal strains isolated from blood cultures between 1991 and 1997, 57 were HLGRE. Genomic analysis of these strains re

  17. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    Directory of Open Access Journals (Sweden)

    Reza Talebiyan

    2014-01-01

    Full Text Available Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%, Erythromycin (71.70%, Oxytetracycline (43.40%, Sulfadimethoxine-Trimethoprim (39.62%, Enrofloxacin (37.74%, Florfenicol (35.85%, Chlortetracycline (33.96%, Doxycycline (16.98%, Difloxacin (32.08%, Danofloxacin (28.30%, Chloramphenicol (20.75%, Ciprofloxacin (7.55%, and Gentamicin (5.66%. This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances.

  18. Echinoderms from Azores islands: an unexpected source of antibiotic resistant Enterococcus spp. and Escherichia coli isolates.

    Science.gov (United States)

    Marinho, Catarina; Silva, Nuno; Pombo, Sofia; Santos, Tiago; Monteiro, Ricardo; Gonçalves, Alexandre; Micael, Joana; Rodrigues, Pedro; Costa, Ana Cristina; Igrejas, Gilberto; Poeta, Patrícia

    2013-04-15

    The prevalence of antibiotic resistance and the implicated mechanisms of resistance were evaluated in Enterococcus spp. and Escherichia coli, isolated from a total of 250 faecal samples of echinoderms collected from Azorean waters (Portugal). A total of 144 enterococci (120 Enterococcus faecium, 14 E. hirae, 8 E. faecalis, 2 E. gallinarum) and 10 E. coli were recovered. High percentages of resistance in enterococci were found for erythromycin, ampicillin, tetracyclin and ciprofloxacin. The erm(A) or erm(B), tet(M) and/or tet(L), vat(D), aac(6')-aph(2″) and aph(3')-IIIa genes were found in isolates resistant to erythromycin, tetracycline, quinupristin/dalfopristin, high-level gentamicin and high-level kanamycin, respectively. Resistance in E. coli isolates was detected for streptomycin, amikacin, tetracycline and tobramycin. The aadA gene was found in streptomycin-resistant isolates and tet(A)+tet(B) genes in tetracycline-resistant isolates. The data recovered are essential to improve knowledge about the dissemination of resistant strains through marine ecosystems and the possible implications involved in transferring these resistances either to other animals or to humans.

  19. Evaluation of Petrifilm™ Select E. coli Count Plate medium to discriminate antimicrobial resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jensen Lars

    2008-09-01

    Full Text Available Abstract Background Screening and enumeration of antimicrobial resistant Escherichia coli directly from samples is needed to identify emerging resistant clones and obtain quantitative data for risk assessment. Aim of this study was to evaluate the performance of 3M™ Petrifilm™ Select E. coli Count Plate (SEC plate supplemented with antimicrobials to discriminate antimicrobial-resistant and non-resistant E. coli. Method A range of E. coli isolates were tested by agar dilution method comparing the Minimal Inhibitory Concentration (MIC for eight antimicrobials obtained by Mueller-Hinton II agar, MacConkey agar and SEC plates. Kappa statistics was used to assess the levels of agreement when classifying strains as resistant, intermediate or susceptible. Results SEC plate showed that 74% of all strains agreed within ± 1 log2 dilution when comparing MICs with Mueller-Hinton II media. High agreement levels were found for gentamicin, ampicillin, chloramphenicol and cefotaxime, resulting in a kappa value of 0.9 and 100% agreement within ± 1 log2 dilution. Significant variances were observed for oxytetracycline and sulphamethoxazole. Further tests showed that the observed discrepancy in classification of susceptibility to oxytetracycline by the two media could be overcome when a plate-dependent breakpoint of 64 mg/L was used for SEC plates. For sulphamethoxazole, SEC plates provided unacceptably high MICs. Conclusion SEC plates showed good agreement with Mueller-Hinton II agar in MIC studies and can be used to screen and discriminate resistant E. coli for ampicillin, cephalothin, streptomycin, chloramphenicol, cefotaxime and gentamicin using CLSI standardized breakpoints, but not for sulphamethoxazole. SEC plates can also be used to discriminate oxytetracycline-resistant E. coli if a plate-dependent breakpoint value of 64 mg/L is used.

  20. [Current antibiotic resistance profile of uropathogenic Escherichia coli strains and therapeutic consequences].

    Science.gov (United States)

    El Bouamri, M C; Arsalane, L; Kamouni, Y; Yahyaoui, H; Bennouar, N; Berraha, M; Zouhair, S

    2014-12-01

    Urinary tract infections (UTI) are a very common reason for consultation and prescription in current practice. Excessive or inappropriate use of antibiotics in treating urinary tract infections is responsible for the emergence and spread of multiresistant uropathogenic bacteria. To evaluate the isolation frequency and antibiotic resistance of uropathogenic Escherichia coli strains isolated at the Marrakech region. We conducted a retrospective study over a period of three years (from 1st January 2010 to 31 December 2012). It included all non-redundant uropathogenic E. coli strains isolated in the microbiology laboratory of the Avicenne hospital of Marrakech, Morocco. During this study, 1472 uropathogenic enterobacteriaceae were isolated including 924 non-repetitive E. coli strains, an overall isolation frequency of 63%. Antibiotic resistance of isolated E. coli strains showed resistance rates to amoxicillin (65%), sulfamethoxazole-triméthropime (55%), amoxicillin-clavulanic acid (43%), ciprofloxacin (22%), gentamicin (14%), nitrofurans (11%), amikacin (8%) and fosfomycin (7%). The number of E. coli strains resistant to C3G by ESBL production was 67, an average frequency of 4.5% of all isolated uropathogenic enterobacteria. The associated antibiotic resistance in the case of ESBL-producing E. coli were 82% for ciprofloxacin, 76% for sulfamethozole trimethoprim, 66% for gentamicin and 56% for amikacin. No resistance to imipenem was recorded for the isolated E. coli strains, which represents an imipenem sensitivity of 100%. Antibiotic resistance of uropathogenic E. coli strains limits treatment options and therefore constitutes a real public health problem. The regular updating of antibiotic susceptibility statistics of E. coli strains allows a better adaptation of the probabilistic antibiotic therapy to local epidemiological data. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Multiple Antimicrobial Resistance and Novel Point Mutation in Fluoroquinolone-Resistant Escherichia coli Isolates from Mangalore, India.

    Science.gov (United States)

    Kogaluru Shivakumaraswamy, Santhosh; Vijaya Kumar, Deekshit; Moleyuru Nagarajappa, Venugopal; Karunasagar, Iddya; Karunasagar, Indrani

    2017-04-26

    Fluoroquinolone resistance in bacteria is usually associated with mutations in the topoisomerase regions. We report a novel point mutation in fluoroquinolone-resistant Escherichia coli strains. E. coli isolated from the environment in and around Mangalore, India, were examined for their antimicrobial resistance profile to 12 antibiotics and for the antibiotic resistance genes by polymerase chain reaction. Of the 67 E. coli isolated, 24 (35.8%) were sensitive to all antibiotics and 43 (64.2%) showed resistance to at least one of the 12 antibiotics used in the study. One isolate (EC10) was resistant to nine of the 12 antibiotics used. Resistance to nalidixic acid was the most common (34.32%), followed by nitrofurantoin (26.86%), tetracycline (22.38%), ampicillin (20.89%), cotrimoxazole (13.43%), ciprofloxacin (11.94%), gentamicin (10.44%), piperacillin/tazobactam (7.46%), chloramphenicol (7.46%), and cefotaxime (4.47%). Least resistance was observed for meropenem (1.49%) and none of the isolates showed resistance to imipenem. All the isolates harbored resistance genes corresponding to their antimicrobial resistance. Few quinolone-resistant isolates carried single point mutation (ser83Leu) and some had double point mutation (Ser83Leu and Asp87Asn) in gyrA. A third novel point mutation was also observed at position 50 with the change in the amino acid from tyrosine to cysteine (Tyr50Cys) in gyrA region. The study throws light on a novel point mutation in fluoroquinolone-resistant isolates. While the study helps to understand the risk and occurrence of antibiotic resistance among gram-negative bacteria from the environment, the alarming rate of antibiotic-resistant bacteria is a cause of concern in addressing infections.

  2. Antibiotic-resistant commensal Escherichia coli in faecal droplets from bats and poultry in Nigeria

    Directory of Open Access Journals (Sweden)

    Anthonia Olufunke Oluduro

    2012-09-01

    Full Text Available The prevalence of antibiotic resistance and plasmid carriage among commensal faecal Escherichia coli isolates of bats, broilers and free-range chickens in Ile-Ife, Osun State, Nigeria was studied. A total of 125 E. coli isolates were recovered from the fresh faecal samples of bats, broilers and free-range chickens on eosin methylene blue agar plates and characterised using standard biochemical tests. The susceptibility of the isolates to antibiotics was performed using the disk diffusion method. All isolates developed resistance to antibiotics to varying degrees; resistance to augumentin, amoxicillin and tetracycline was significantly higher (p0.05 with the exception of ciprofloxacin, pefloxacin gentamicin and ofloxacin. A total of 90% of the bat isolates developed multiple antibiotic resistance with 28 multiple antibiotic resistance patterns. The free-range chicken and broiler isolates displayed 10 and 38 multiple antibiotic resistance patterns, respectively. Resistance was mostly plasmid-mediated with molecular weights ranging between 0.91 kb and 40.42 kb. Antibiotic resistance and plasmid carriage among the commensal E. coli isolates studied was relatively high and may be implicated in zoonotic infections.

  3. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Directory of Open Access Journals (Sweden)

    Emma Sáez-López

    Full Text Available Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (p<0.0001. Sixty-five percent of the strains were ampicillin-resistant. The E. coli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001. The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the

  4. Characterization and study the antibiotic resistance of Uropathogenic Escherichia coli isolated from pediatrics with pyelonephritis and cystitis in Iran

    Directory of Open Access Journals (Sweden)

    banafshe dormanesh

    2013-09-01

    which encode antibiotic resistance against gentamicin (aac(3-IV (96.7%, beta-lactams (blaSHV and CITM (90.3% and 88.7%, respectively, tetracycline (tetA (82.2%, had the highest incidence in the bacterial isolates. Escherichia coli isolates had the highest antibiotic resistance against gentamicin (95.1%, ampicillin (91.9%, amikacin (85.4% and ciprofloxacin (83.8%. Discussion: Determination of the antibiotic resistance pattern in uropathogenic Escherichia coli isolated from children with urinary infections is important in each area or in hospital. Imipenem, due to its low antibiotic resistance, can be an effective drug for treatments of children with pyelonephritis and cystitis.

  5. Decrease in Shiga toxin expression using a minimal inhibitory concentration of rifampicin followed by bactericidal gentamicin treatment enhances survival of Escherichia coli O157:H7-infected BALB/c mice

    Directory of Open Access Journals (Sweden)

    Abdelnoor Alexander M

    2011-09-01

    Full Text Available Abstract Background Treatment of Escherichia coli O157:H7 infections with antimicrobial agents is controversial due to an association with potentially fatal sequelae. The production of Shiga toxins is believed to be central to the pathogenesis of this organism. Therefore, decreasing the expression of these toxins prior to bacterial eradication may provide a safer course of therapy. Methods The utility of decreasing Shiga toxin gene expression in E. coli O157:H7 with rifampicin prior to bacterial eradication with gentamicin was evaluated in vitro using real-time reverse-transcription polymerase chain reaction. Toxin release from treated bacterial cells was assayed for with reverse passive latex agglutination. The effect of this treatment on the survival of E. coli O157:H7-infected BALB/c mice was also monitored. Results Transcription of Shiga toxin-encoding genes was considerably decreased as an effect of treating E. coli O157:H7 in vitro with the minimum inhibitory concentration (MIC of rifampicin followed by the minimum bactericidal concentration (MBC of gentamicin (> 99% decrease compared to treatment with gentamicin alone (50-75% decrease. The release of Shiga toxins from E. coli O157:H7 incubated with the MIC of rifampicin followed by addition of the MBC of gentamicin was decreased as well. On the other hand, the highest survival rate in BALB/c mice infected with E. coli O157:H7 was observed in those treated with the in vivo MIC equivalent dose of rifampicin followed by the in vivo MBC equivalent dose of gentamicin compared to mice treated with gentamicin or rifampicin alone. Conclusions The use of non-lethal expression-inhibitory doses of antimicrobial agents prior to bactericidal ones in treating E. coli O157:H7 infection is effective and may be potentially useful in human infections with this agent in addition to other Shiga toxin producing E. coli strains.

  6. Norfloxacin resistance in a clinical isolate of Escherichia coli.

    OpenAIRE

    Aoyama, H; Sato, K; Kato, T.; Hirai, K; Mitsuhashi, S.

    1987-01-01

    Analysis of DNA gyrase supercoiling and of norfloxacin uptake in Escherichia coli GN14176, a moderately norfloxacin-resistant clinical isolate, indicated that resistance was associated with both an altered drug target and a reduction in drug uptake.

  7. Antimicrobial Resistance of Escherichia coli Isolated from Chickens in West of Algeria

    Directory of Open Access Journals (Sweden)

    Q. Benameur

    2014-05-01

    Full Text Available Modern poultry flocks undergo strong microbial pressure. Antibiotics can contribute to reduce bacterial infections. Their use increased these last years. Studies performed in Morocco and Algeria highlighted the importance of antibioresistance after excessive use of antibiotics in poultry breeding. In western Algeria, 240 strains of enterobacteriaceae were isolated according to usual bacteriological procedures. In order to assess antimicrobial resistance, the disc diffusion method for antibiotic susceptibility (tetracycline (TE, enrofloxacin (ENR, trimethoprim+sulfamethoxazole (SXT, amoxicillin+clavulanic acid (AMC, ceftiofur (KF, colistin (CT, neomycin (N, gentamicin (GN and chloramphenicol (C was applied (Antibioresistance Committee of the French Microbiology Society, 2010. All enterobacteriaceae strains isolated presented at least one resistance to those antibiotics. Escherichia coli counted for 47.5% of these strains (N=114. By omitting intermediate resistances, 28% of E. coli presented a resistance to at least 6 antibiotics and 31.6% to 5 antibiotics. In general, 90.35%, 79.82%, 70.17%, 92.10%, 62.28%, 31.57% and 21.05% of E. coli were resistant to, respectively, TE, ENR, SXT, AMC, KF, CT and N. Considering such a high resistance rate, it is strongly advised to implement epidemiological survey of bacterial resistances at the regional level.

  8. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile.

    Science.gov (United States)

    Sáez-López, Emma; Guiral, Elisabet; Fernández-Orth, Dietmar; Villanueva, Sonia; Goncé, Anna; López, Marta; Teixidó, Irene; Pericot, Anna; Figueras, Francesc; Palacio, Montse; Cobo, Teresa; Bosch, Jordi; Soto, Sara M

    2016-01-01

    Vaginal Escherichia coli colonization is related to obstetric infections and the consequent development of infections in newborns. Ampicillin resistance among E. coli strains is increasing, which is the main choice for treating empirically many obstetric and neonatal infections. Vaginal E. coli strains are very similar to extraintestinal pathogenic E. coli with regards to the virulence factors and the belonging to phylogroup B2. We studied the antimicrobial resistance and the genetic virulence profile of 82 E. coli isolates from 638 vaginal samples and 63 isolated from endometrial aspirate, placental and amniotic fluid samples from pregnant women with obstetric infections. The prevalence of E. coli in the vaginal samples was 13%, which was significant among women with associated risk factors during pregnancy, especially premature preterm rupture of membranes (pcoli isolates causing obstetric infections showed higher resistance levels than vaginal isolates, particularly for gentamicin (p = 0.001). The most prevalent virulence factor genes were those related to the iron uptake systems revealing clear targets for interventions. More than 50% of the isolates belonged to the virulent B2 group possessing the highest number of virulence factor genes. The ampicillin-resistant isolates had high number of virulence factors primarily related to pathogenicity islands, and the remarkable gentamicin resistance in E. coli isolates from women presenting obstetric infections, the choice of the most appropriate empiric treatment and clinical management of pregnant women and neonates should be carefully made. Taking into account host-susceptibility, the heterogeneity of E. coli due to evolution over time and the geographical area, characterization of E. coli isolates colonizing the vagina and causing obstetric infections in different regions may help to develop interventions and avoid the aetiological link between maternal carriage and obstetric and subsequent puerperal infections.

  9. Comparative Study of Bacteremias Caused by Enterococcus spp. with and without High-Level Resistance to Gentamicin

    Science.gov (United States)

    Caballero-Granado, Francisco Javier; Cisneros, J. M.; Luque, R.; Torres-Tortosa, M.; Gamboa, F.; Díez, F.; Villanueva, J. L.; Pérez-Cano, R.; Pasquau, J.; Merino, D.; Menchero, A.; Mora, D.; López-Ruz, M. A.; Vergara, A.; Infecciosas, for the Grupo Andaluz Para El Estudio De Las Enfermedades

    1998-01-01

    A prospective, multicenter study was carried out over a period of 10 months. All patients with clinically significant bacteremia caused by Enterococcus spp. were included. The epidemiological, microbiological, clinical, and prognostic features and the relationship of these features to the presence of high-level resistance to gentamicin (HLRG) were studied. Ninety-three patients with enterococcal bacteremia were included, and 31 of these cases were caused by HLRG (33%). The multivariate analysis selected chronic renal failure, intensive care unit stay, previous use of antimicrobial agents, and Enterococcus faecalis species as the independent risk factors that influenced the development of HLRG. The strains with HLRG showed lower levels of susceptibility to penicillin and ciprofloxacin. Clinical features (except for chronic renal failure) were similar in both groups of patients. HLRG did not influence the prognosis for patients with enterococcal bacteremia in terms of either the crude mortality rate (29% for patients with bacteremia caused by enterococci with HLRG and 28% for patients not infected with strains with HLRG) or the hospital stay after the acquisition of enterococcal bacteremia. Hemodynamic compromise, inappropriate antimicrobial therapy, and mechanical ventilation were revealed in the multivariate analysis to be the independent risk factors for mortality. Prolonged hospitalization was associated with the nosocomial acquisition of bacteremia and polymicrobial infections. PMID:9466769

  10. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs.

    Directory of Open Access Journals (Sweden)

    Peng Li

    Full Text Available OBJECTIVES: This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance. METHODS: A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available. RESULTS: A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%, ampicillin (27.9%, sulfamethoxazole/trimethoprim (19.4%, nalidixic acid (19.4%, streptomycin (16.2% and ceftiofur (10.9%, and very low resistance rates to ciprofloxacin (7.8%, gentamicin (6.9%, and spectinomycin (2.3% were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%, clindamycin (82.1%, tetracycline (64.3%, and erythromycin (48.8%. Resistance rates to florfenicol (17.9%, penicillin (6.0%, ciprofloxacin (3.6%, levofloxacin (1.2%, and ampicillin (1.2% were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant. CONCLUSIONS: In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are

  11. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs.

    Science.gov (United States)

    Li, Peng; Wu, Dongfang; Liu, Kunyao; Suolang, Sizhu; He, Tao; Liu, Xuan; Wu, Congming; Wang, Yang; Lin, Degui

    2014-01-01

    This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance. A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available. A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%), ampicillin (27.9%), sulfamethoxazole/trimethoprim (19.4%), nalidixic acid (19.4%), streptomycin (16.2%) and ceftiofur (10.9%), and very low resistance rates to ciprofloxacin (7.8%), gentamicin (6.9%), and spectinomycin (2.3%) were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%), clindamycin (82.1%), tetracycline (64.3%), and erythromycin (48.8%). Resistance rates to florfenicol (17.9%), penicillin (6.0%), ciprofloxacin (3.6%), levofloxacin (1.2%), and ampicillin (1.2%) were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant. In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are used. These results also revealed that free

  12. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Science.gov (United States)

    Österberg, Julia; Wingstrand, Anne; Nygaard Jensen, Annette; Kerouanton, Annaelle; Cibin, Veronica; Barco, Lisa; Denis, Martine; Aabo, Sören; Bengtsson, Björn

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance.

  13. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Directory of Open Access Journals (Sweden)

    Julia Österberg

    Full Text Available Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance.

  14. Prevalence and molecular epidemiological characterization of antimicrobial-resistant Escherichia coli isolates from Japanese black beef cattle.

    Science.gov (United States)

    Yamamoto, Shiori; Iwabuchi, Eriko; Hasegawa, Megumi; Esaki, Hidetake; Muramatsu, Masatake; Hirayama, Norio; Hirai, Katsuya

    2013-03-01

    We investigated the prevalence of antimicrobial-resistant Escherichia coli in Japanese black beef cattle from the three major production regions of Japan. We collected and examined 291 fecal samples from Japanese black beef cattle in Hokkaido, Chubu, and Kyushu. Of the 3,147 E. coli isolates, 1,397 (44.4%) were resistant to one or more antibiotics; these included 553 (39.8%) of 1,388 isolates from Hokkaido, 352 (54.4%) of 647 isolates from Chubu, and 492 (44.2%) of 1,112 isolates from Kyushu. The difference in resistance rates between the three regions was significant. The antibiotics with the highest rates of resistance were oxytetracycline and dihydrostreptomycin (35.8% each), followed by ampicillin (21.4%). Further, E. coli isolates from calves had higher resistance rates than those from growing cattle and mature cattle, and the calf isolates showed high rates of resistance to gentamicin (20.2%), enrofloxacin (9.4%), and ceftiofur (4.2%). In addition, the high degrees of similarity in the genotypes of the isolates and in the resistance patterns on each farm suggest that resistance bacteria and resistance genes were horizontally transferred. Most isolates, in each of the three regions, harbored resistance genes such as blaTEM, strA, strB, aphA1, aphAI-IAB, and catI. In contrast to the isolates from Kyushu, most of which harbored aacC2, tetB, and dfrA12, the isolates from Hokkaido and Chubu harbored a variety of resistance genes. Furthermore, the prevalence of genes for resistance to dihydrostreptomycin, gentamicin, chloramphenicol, and trimethoprim differed significantly between the regions. This is the first large-scale study describing and comparing antimicrobial-resistant bacteria from different regions in Japan. The results will contribute to improving food safety and promoting careful usage of antimicrobial agents.

  15. Epidemiology of Antimicrobial Resistance among Escherichia coli Strains in Trans-Nzoia County, Kenya

    Directory of Open Access Journals (Sweden)

    Collins Kibenei Kipkorir, Philip Bett, Patrick O. Onyango

    2016-09-01

    Full Text Available Objective: This study aimed to determine prevalence, antimicrobial susceptibility profile and the genetic basis to antimicrobial resistance, targeting blaTEM gene expression of diarrheagenic Escherichia coli among patients suffering from gastroenteritis in Kitale County Referral Hospital. Methods: A cross-sectional study design was adopted. A total of 103 fecal specimens were collected from participants ranging in age from two weeks to 82 years. E. coli was isolated and identified based on phenotypic and biochemical properties. Antimicrobial susceptibility was determined by Kirby-Bauer disk diffusion method. Polymerase chain reaction was used to detect the presence of blaTEM gene. Results: The prevalence of E. coli was 90.2% and age of the patient explained 53% of variation in prevalence. Isolates of diarrheagenic E. coli showed varied degree of susceptibility with sulfamethoxazole at 97%, co-trimoxazole 96%, ampicillin 84%, chloramphenicol 27%, tetracycline 16%, kanamycin 10% and streptomycin 9%. However, E. coli was highly sensitive to gentamicin at 96.8%. Approximately 42.2% of E. coli isolates were multidrug resistant to sulfamethoxazole, co-trimoxazole, ampicillin, chloramphenicol, tetracycline, kanamycin and streptomycin. All isolates that were resistant to ampicillin harbored blaTEM gene suggesting genetic mediation. Conclusion: The observed pattern of resistance to antibiotics points to the need to regulate their use and arrest buildup of resistant genes within the population. J Microbiol Infect Dis 2016;6(3: 107-112

  16. Antibiotic Resistance Patterns of Escherichia coli Isolates from Hospitals in Kumasi, Ghana.

    Science.gov (United States)

    George, Duredoh Freeman; Gbedema, Stephen Yao; Agyare, Christian; Adu, Francis; Boamah, Vivian Etsiapa; Tawiah, Adelaide Ama; Saana, Sixtus Bieranye Bayaa Martin

    2012-01-01

    Nosocomial infections are infections acquired by a patient as a result of treatment in a hospital or healthcare service providing center and symptoms occurs within a short period of hospitalization. The study was to determine the antibiotic resistance patterns of Escherichia coli isolated from Kumasi-South, Tafo and Suntreso Hospitals, Kumasi, Ghana. Total of 600 swabs samples from the hospitals were collected between January and June, 2010. The isolates were identified using morphological and biochemical means. A total of 97 E. coli isolates were obtained from the hospitals. Beds in hospital wards had the highest number of E. coli strains (53.6%), followed by floors (20.6%) while drainages had the least isolates (3.1%). Majority of the E. coli isolates (90.7%) exhibited resistance to ampicillin while 6.2 and 3.1% showed intermediate and sensitive respectively. Co-trimoxazole, 78.4% of the isolates were resistant while 9.3 and 12.4% exhibited intermediate and sensitive responses respectively. E. coli isolates (28.6 to 46.4%) were resistant to gentamicin, ciprofloxacin and ceftriaxone while 14.4 to 47.4% gave intermediate responses. Most isolates (80.4%) exhibited multi-drug resistance. There is a need to observe proper personal hygiene, use of effective disinfectants and proper disposal of contaminated/pathogenic materials in these hospitals to control nosocomial infections.

  17. Detection and coexistence of six categories of resistance genes in Escherichia coli strains from chickens in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Lin Li

    2015-12-01

    Full Text Available The aim of this study was to characterise the prevalence of class 1 integrons and gene cassettes, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants in 184 Escherichia coli isolates from chickens in Anhui Province, China. Susceptibility to 15 antimicrobials was determined using broth micro-dilution. Polymerase chain reaction and DNA sequencing were used to characterise the molecular basis of the antibiotic resistance. High rates of antimicrobial resistance were observed; 131 out of the 184 (72.3% isolates were resistant to at least six antimicrobial agents. The prevalences of class 1 integrons, tetracycline-resistance genes, phenicol-resistance genes, 16S rRNA methylase genes, extended-spectrum β-lactamase genes and plasmid-mediated fluoroquinolone resistance determinants were 49.5, 17.4, 15.8, 0.5, 57.6 and 46.2%, respectively. In 82 isolates, 48 different kinds of coexistence of the different genes were identified. Statistical (χ2 analysis showed that the resistance to amoxicillin, doxycycline, florfenicol, ofloxacin and gentamicin had significant differences (P<0.01 or 0.01resistance genes, which showed a certain correlation between antimicrobial resistance and the presence of resistance genes.

  18. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience.

    Science.gov (United States)

    Lübbert, Christoph; Faucheux, Sarah; Becker-Rux, Diana; Laudi, Sven; Dürrbeck, Axel; Busch, Thilo; Gastmeier, Petra; Eckmanns, Tim; Rodloff, Arne C; Kaisers, Udo X

    2013-12-01

    After a single patient was transferred to Leipzig University Hospital from a hospital in Rhodes, Greece, the hospital experienced the largest outbreak due to a KPC-2-producing Klebsiella pneumoniae (KPC-2-KP) strain thus far observed in Germany. Ninety patients hospitalised between July 2010 and October 2012 were affected. In an attempt to eliminate KPC-2-KP from their digestive tracts, 14 consecutive patients (16%) were treated with a short course (7 days) of selective digestive decontamination (SDD), employing colistin (1 million units q.i.d.) and gentamicin (80 mg q.i.d.) as oral solutions, and applying colistin/gentamicin gel (0.5 g) to the oral cavity. In a retrospective analysis, these 14 SDD patients were compared with the remaining 76 patients harbouring KPC-2-KP. KPC-2-KP carrier status was followed in all 14 SDD patients by submitting stool samples to KPC-specific PCR. The mean follow-up period was 48 days (range 12-103 days). Successful elimination of KPC-2-KP was defined as a minimum of three consecutive negative PCR test results separated by ≥48 h each. Decolonisation of KPC-2-KP was achieved in 6/14 patients (43%) after a mean of 21 days (range 12-40 days), but was also observed in 23/76 (30%) of the non-SDD controls (P = 0.102). SDD treatment resulted in the development of secondary resistance to colistin (19% increase in resistance rate) and gentamicin (45% increase) in post-treatment isolates. In the control group, no secondary resistance occurred. We conclude that the SDD protocol applied in this study was not sufficiently effective for decolonisation and was associated with resistance development.

  19. Association of some virulence genes with antibiotic resistance among uropathogenic Escherichia coli isolated from urinary tract infection patients in Alexandria, Egypt: A hospital-based study.

    Science.gov (United States)

    Alabsi, Mogeeb S; Ghazal, Abeer; Sabry, Soraya A; Alasaly, Monasr M

    2014-06-01

    Uropathogenic Escherichia coli (UPEC) is the infecting agent most frequently involved in urinary tract infections (UTIs) worldwide. UPEC resistance to commonly used antibiotics represents a major health problem all over the world. Several factors have been associated with UPEC resistance to antibiotics. The present study deployed a molecular approach to explore the association between some UPEC virulence genes and antibiotic resistance among patients with UTI in Alexandria, Egypt. The study revealed a significant association between presence of the pap gene and resistance to gentamicin; however, it was not significantly associated with resistance to β-lactam antibiotics, quinolones, aminoglycosides, nitrofurantoin and trimethoprim/sulfamethoxazole. The genes sfa, aer and cnf1 were not significantly associated with UPEC resistance to any of the tested antibiotics. In conclusion, resistance of UPEC isolates in the present study could be attributed to other virulence factors.

  20. Antimicrobial Resistant Pattern of Escherichia Coli Strains Isolated from Pediatric Patients in Jordan

    Directory of Open Access Journals (Sweden)

    Mohammad Alshara

    2011-05-01

    Full Text Available The present study was conducted to investigate antimicrobial resistant pattern of Escherichia coli (E. coli strains isolated from clinical specimens of Jordanian pediatric patients during the period from January to December 2008. A total of 444 E. coli strains were isolated from clinical specimens and tested for their susceptibility to different antimicrobial drugs. Overall, high resistance rate was observed for ampicillin (84%, followed by amoxicillin-clavulanic acid (74.3%, cotrimoxazole (71%, nalidixic acid (47.3%, cephalothin (41%. Lower resistance rates were observed for amikacin (0% followed by Cefotaxime (11%, Ceftriaxone (11.7%, ciprofloxacin (14.5%, Norfloxacin (16.5%, gentamicin (17.3% cephalexin (20.9%, Ceftazidime (22.5%, cefixime (29.6%, and cefaclor (32.8%. Ampicillin, amoxicillin-clavulanic acid and cotrimoxazole were found to be ineffective at in vitro inhibition of the E. coli of pediatric origin. Amikacin was highly effective for E. coli with susceptibility rate of 100%. The majority of E. coli strains were susceptible to third generation cephalosporins and fluoroquinolones.

  1. Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent Escherichia coli.

    Science.gov (United States)

    Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L

    2016-01-01

    Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.

  2. armA and aminoglycoside resistance in Escherichia coli.

    Science.gov (United States)

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C; Moreno, Miguel A; Courvalin, Patrice; Domínguez, Lucas

    2005-06-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  3. armA and Aminoglycoside Resistance in Escherichia coli

    OpenAIRE

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C.; Moreno, Miguel A.; Courvalin, Patrice; Domínguez, Lucas

    2005-01-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  4. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Science.gov (United States)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  5. Norfloxacin resistance in a clinical isolate of Escherichia coli.

    Science.gov (United States)

    Aoyama, H; Sato, K; Kato, T; Hirai, K; Mitsuhashi, S

    1987-01-01

    Analysis of DNA gyrase supercoiling and of norfloxacin uptake in Escherichia coli GN14176, a moderately norfloxacin-resistant clinical isolate, indicated that resistance was associated with both an altered drug target and a reduction in drug uptake. Images PMID:2829712

  6. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Potohar region of Pakistan

    Institute of Scientific and Technical Information of China (English)

    Ihsan Ali; Zara Rafaque; Safia Ahmed; Sajid Malik; Javid Iqbal Dasti

    2016-01-01

    Objective: To scrutinize patterns of multi-drug-resistant uropathogenic Escherichia coli (UPEC) strains and particularly of fluoroquinolone-resistance this is an alternative choice for the treatment of urinary tract infections. Methods: Bacterial samples (n = 250) were collected from out-patients from August 2012 to August 2014 Islamabad. Antibiotic susceptibility profiling and determination of mini-mum inhibitory concentrations (MICs) and minimum bactericidal concentrations were performed according to the guidelines of Clinical and Laboratory Standards Institute (CLSI, 2012). Genes, qnrA, qnrB and qnrS were identified by DNA amplification and sequencing. Results: The highest percentage of UPEC isolates were resistant to co-trimoxazole (82%) followed by cephalothin (80%), 2nd Gen, 3rd Gen and 4th Gen cephalosporins, respectively. Resistance against gentamicin, amikacin remained 29% and 4%. For other drugs including nitrofurantoin, tetracycline, carbapenem and beta-lactam inhibitors remained below 10%. Altogether, 59% of the isolates were resistant to at least three antibiotics including one fluoroquinolone. Overall, MICs for ciprofloxacin remained (MIC≥256 mg/mL) and for levofloxacin (MIC≥16 mg/mL and 32 mg/mL). No significant differences were observed regarding MIC values of extended spectrum b-lactamase (ESBL) and non-ESBL producers. For qnrS and qnrB positive isolates MICs remained above 32 mg/mL. Prevalence of UPEC was significantly higher among females and 40% of the isolates were ESBL producers. Conclusions: Higher percentages of ESBL producing UPEC were associated with uri-nary tract infections. Moreover, the majority of these isolates were multi-drug resistant and fluoroquinolone-resistant.

  7. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Potohar region of Pakistan

    Institute of Scientific and Technical Information of China (English)

    Ihsan Ali; Zara Rafaque; Safia Ahmed; Sajid Malik; Javid Iqbal Dasti

    2016-01-01

    Objective:To scrutinize patterns of multi-drug-resistant uropathogenic Escherichia coli(UPEC) strains and particularly of fluoroquinolone-resistance this is an alternative choice for the treatment of urinary tract infections.Methods:Bacterial samples(n = 250) were collected from out-patients from August 2012 to August 2014 Islamabad.Antibiotic susceptibility profiling and determination of minimum inhibitory concentrations(MICs) and minimum bactericidal concentrations were performed according to the guidelines of Clinical and Laboratory Standards Institute(CLSI,2012).Genes,qnrA,qnrB and qnrS were identified by DNA amplification and sequencing.Results:The highest percentage of UPEC isolates were resistant to co-trimoxazole(82%) followed by cephalothin(80%),2nd Gen,3rd Gen and 4th Gen cephalosporins,respectively.Resistance against gentamicin,amikacin remained 29% and 4%.For other drugs including nitrofurantoin,tetracycline,carbapenem and beta-lactam inhibitors remained below 10%.Altogether,59% of the isolates were resistant to at least three antibiotics including one fluoroquinolone.Overall,MICs for ciprofloxacin remained(MIC≥256 μg/mL) and for levofloxacin(MIC≥16 μg/mL and 32 μg/mL).No significant differences were observed regarding MIC values of extended spectrumβ-lactamase(ESBL) and non-ESBL producers.For qnrS and qnrB positive isolates MICs remained above 32 μg/mL.Prevalence of UPEC was significantly higher among females and 40% of the isolates were ESBL producers.Conclusions:Higher percentages of ESBL producing UPEC were associated with urinary tract infections.Moreover,the majority of these isolates were multi-drug resistant and fluoroquinolone-resistant.

  8. Escherichia coli of poultry food origin as reservoir of sulphonamide resistance genes and integrons.

    Science.gov (United States)

    Soufi, Leila; Sáenz, Yolanda; Vinué, Laura; Abbassi, Mohamed Salah; Ruiz, Elena; Zarazaga, Myriam; Ben Hassen, Assia; Hammami, Salah; Torres, Carmen

    2011-01-05

    The antimicrobial resistance phenotype and genotype, the flanking regions of sulphonamide resistance genes and the integrons were analyzed in 166 Escherichia coli isolates recovered from poultry meat in Tunisia. High percentages of resistance were detected to ampicillin, streptomycin, nalidixic acid, sulphonamide and tetracycline (66-95%), and lower percentages to gentamicin, amoxicillin-clavulanic acid and cefoxitin (1-4%). The bla(TEM), tet(A)/tet(B), aph(3')-Ia, aac(6')-Ib-cr, aac(3)-II and cmlA genes were identified in 92, 82, 29, 2, 2 and 7 isolates, respectively. Class 1 and/or class 2 integrons were detected in 52% of E. coli isolates and five different gene cassette arrangements were identified in the variable regions of class 1 integrons, which included antimicrobial resistance determinants. Sixty-eight isolates contained the sul1 gene and 37 of them presented this gene into a class 1 integron structure. The sul3 gene was detected associated with non-classic class 1 integrons in 4 out of 46 sul3-positive isolates. The sul2 gene was detected in 66 isolates, 51 of them were linked to strA/B genes in seven different genetic structures. Seventy-three-per-cent of integron-positive isolates presented resistance to at least five different antimicrobial families versus 38.7% of integron-negative isolates. Our study highlights the role of commensal E. coli isolates from poultry meat as an important reservoir for sulphonamide resistance genes and integrons carrying antimicrobial resistance genes.

  9. Antimicrobial Resistance Pattern in Escherichia coli Isolates Obtained from a Specialized Women and Children Hospital in Shiraz, Iran: A Prevalence Study

    Directory of Open Access Journals (Sweden)

    Mahtab Hadadi

    2016-10-01

    Full Text Available Abstract Background: Escherichia coli, known as a clinically significant bacteria, can cause a wide range of infections, including urinary tract infections (UTIs, blood stream infections (BSIs, and can frequently be isolated from various clinical specimens. Evaluation of antimicrobial resistant pattern is a necessary action, especially about such bacteria which are frequent and life threatening. The aim of this study was to determine the frequency and antimicrobial resistance pattern of E. coli isolates obtained from various clinical specimens. Methods: This retrospective study was performed within a seven month period from January 2015 to August 2015 at a specialized women and children hospital in Shiraz, Iran. E. coli isolates were obtained from various clinical specimens and identified using standard microbiological procedure. Antimicrobial susceptibility patterns were determined using disk diffusion method in accordance with CLSI recommendation. Results: Of the total 130 positive cultures, the majority of E. coli isolates were obtained from urine (96=73.8% and blood (11=8.5% specimens. Overall, gentamicin (70.8% was the effective antibiotic for the tested E. coli isolates. E. coli isolates obtained from urine specimens showed the highest resistance rates against ampicillin (84.4% and nalidixic acid (61.5%; while they showed the most sensitivity to gentamicin (79.2%, nitrofurantoin (70.8% and ciprofloxacin (66.7%. Moreover, the highest antibiotic resistance rates belonged to the isolates recovered from endotracheal tube (ETT. Conclusion: The results showed that gentamicin was the most effective antibiotic against E. coli infections. However, in addition to the gentamicin, we can recommend nitrofurantoin and ciprofloxacin as the other effective agents for UTIs

  10. Silica-Gentamicin Nanohybrids: Synthesis and Antimicrobial Action

    Directory of Open Access Journals (Sweden)

    Dina Ahmed Mosselhy

    2016-03-01

    Full Text Available Orthopedic applications commonly require the administration of systemic antibiotics. Gentamicin is one of the most commonly used aminoglycosides in the treatment and prophylaxis of infections associated with orthopedic applications, but gentamicin has a short half-life. However, silica nanoparticles (SiO2 NPs can be used as elegant carriers for antibiotics to prolong their release. Our goal is the preparation and characterization of SiO2-gentamicin nanohybrids for their potential antimicrobial administration in orthopedic applications. In vitro gentamicin release profile from the nanohybrids (gentamicin-conjugated SiO2 NPs prepared by the base-catalyzed precipitation exhibited fast release (21.4% during the first 24 h and further extension with 43.9% release during the five-day experiment. Antimicrobial studies of the SiO2-gentamicin nanohybrids versus native SiO2 NPs and free gentamicin were performed against Bacillus subtilis (B. subtilis, Pseudomonas fluorescens (P. fluorescens and Escherichia coli (E. coli. SiO2-gentamicin nanohybrids were most effective against B. subtilis. SiO2 NPs play no antimicrobial role. Parallel antimicrobial studies for the filter-sterilized gentamicin were performed to assess the effect of ultraviolet (UV-irradiation on gentamicin. In summary, the initial fast gentamicin release fits the need for high concentration of antibiotics after orthopedic surgical interventions. Moreover, the extended release justifies the promising antimicrobial administration of the nanohybrids in bone applications.

  11. Antimicrobial-resistant and ESBL-producing Escherichia coli in different ecological niches in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mahmudur Rashid

    2015-07-01

    Full Text Available Introduction: The rapid and wide-scale environmental spread of multidrug-resistant bacteria in different ecosystems has become a serious issue in recent years. Objectives: To investigate the epidemiology of antimicrobial resistance and extended spectrum beta-lactamase (ESBL in Bangladeshi wild birds and aquatic environments, samples were taken from Open Bill Stork (Anastomus oscitans (OBS and the nearby water sources. Methods: Water and fresh fecal samples were collected from several locations. All samples were processed and cultured for Escherichia coli and tested for antibiotic susceptibility against commonly used antibiotics. ESBL producers were characterized at genotypic level using polymerase chain reaction (PCR, sequencing, multilocus sequence typing, and rep-PCR. Results and discussion: A total of 76 E. coli isolates from the 170 OBS and 8 E. coli isolates from three river sources were isolated. In total, 29% of E. coli isolated from OBS and all of the E. coli isolated from water sources were resistant to at least one of the tested antimicrobials. Resistant phenotypes were observed with all antimicrobials except tigecycline, gentamicin, imipenem, and chloramphenicol. Multidrug resistance was observed in 2.6% of OBS and 37.5% of the water isolates. Also, 1.2% of the ESBL-producing E. coli were isolated from OBS, whereas 50% of the E. coli isolated from water sources were ESBL producers possessing the CTX-M-15 gene. The most concerning aspect of our findings was the presence of human-associated E. coli sequence types in the water samples, for example, ST156-complex156, ST10-complex10 and ST46. Conclusion: This study reports the presence of multidrug-resistant ESBL-producing E. coli in OBSs and nearby aquatic sources in Bangladesh.

  12. Virulence Factors and Antibiotic Resistance in Uropathogenic and Commensal Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Iraj Sedighi

    2016-10-01

    Full Text Available Background: Urinary Tract Infections (UTIs, including cystitis and pyelonephritis, are the most common infectious diseases in childhood. Aim and Objectives: Escherichia coli (E. coli account for as much as 90% of the community-acquired and also 50% of nosocomial UTIs. Therefore, the identification of E. coli strains and antibiotic resistance patterns is important for both clinical and epidemiological implications. Material and Methods: To characterize uropathogenic strains E. coli, we studied 100 strains recovered from both urine samples of children aged less than 7 years with community-acquired UTIs and stool samples of healthy children, respectively. Results: We assessed Virulence Factors (VFs and drug sensitivities of E. coli isolates. Drug sensitivities of the isolates were 94% (amikacin, 90% (nitrofurantoin, 66% (gentamicin, 56% (cefixime, 40% (nalidixic acid and 28% (cotrimoxazol. Laboratory tests showed that the prevalence of virulence factors ranged from 18% for hemolysin and P-fimbriae to 2% for type1-fimbriae. Most drug resistance was cotrimoxazole and amikacin was the lowest. P-fimbriae and hemolysin in uropathogenic E. coli were more frequent than non-pathogen type of E. coli. Conclusion: Although amikacin appeared to be the first choice for UTI in children, but nitrofurantoin seems to be practical and could be considered as the selective choice for uncomplicated lower UTIs.

  13. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle.

    Science.gov (United States)

    Alexander, T W; Yanke, L J; Topp, E; Olson, M E; Read, R R; Morck, D W; McAllister, T A

    2008-07-01

    Antibiotic-resistant Escherichia coli in 300 feedlot steers receiving subtherapeutic levels of antibiotics was investigated through the collection of 3,300 fecal samples over a 314-day period. Antibiotics were selected based on the commonality of use in the industry and included chlortetracycline plus sulfamethazine (TET-SUL), chlortetracycline (TET), virginiamycin, monensin, tylosin, or no antibiotic supplementation (control). Steers were initially fed a barley silage-based diet, followed by transition to a barley grain-based diet. Despite not being administered antibiotics prior to arrival at the feedlot, the prevalences of steers shedding TET- and ampicillin (AMP)-resistant E. coli were >40 and antibiotics. Across antibiotic treatments, 1,009 (13.9%), 7 (0.1%), and 3,413 (47.1%) E. coli isolates were resistant to AMP, gentamicin, or TET, respectively. In addition, 131 (1.8%) and 143 (2.0%) isolates exhibited potential resistance to extended-spectrum beta-lactamases, as indicated by either ceftazidime or cefpodoxime resistance. No isolates were resistant to ciprofloxacin. The findings of the present study indicated that subtherapeutic administration of tetracycline in combination with sulfamethazine increased the prevalence of tetracycline- and AMP-resistant E. coli in cattle. However, resistance to antibiotics may be related to additional environmental factors such as diet.

  14. [Status of emerging drug resistance in Shiga toxin-producing Escherichia coli in Japan during 1996: a minireview].

    Science.gov (United States)

    Yamamoto, T; Wakisaka, N

    1998-10-01

    A total of 192 Shiga toxin-producing Escherichia coli (STEC) strains isolated from the 1996 episodes in Japan were tested for their in vitro susceptibilities to 41 antimicrobial agents. Drug resistance was found with kanamycin, tetracycline, nalidixic acid, ampicillin, streptomycin, sulfamethoxazole, and fosfomycin. The expression of fosfomycin resistance was greatly dependent on culture conditions and resistance was detected (e.g.) when Mueller-Hinton agar or nutrient agar supplemented with horse blood (or glucose-6-phosphate) was used as test media. All the STEC strains belonging to serotype O26 exhibited fosfomycin resistance. Multiple drug-resistant strains spread 8 of 18 prefectures examined. Out of eleven O157: H7 outbreaks, only one outbreak revealed infections due to multiple drug-resistant strains which carried an R plasmid. Tetracycline, streptomycin, and sulfamethoxazole resistance, which was previously described with O157: H7 strains isolated from a large outbreak as well as sporadic cases in the United States, were also found in Japan with human and bovine isolates (but not with porcine isolates). In contrast, the STEC strains were highly susceptible to newer quinolones, cephems, trimethoprim, gentamicin, and azithromycin. No drug resistance was observed with dibekacin and minocycline.

  15. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Wee Xian Lee

    2017-03-01

    Full Text Available The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5 against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  16. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria.

    Science.gov (United States)

    Lee, Wee Xian; Basri, Dayang Fredalina; Ghazali, Ahmad Rohi

    2017-03-17

    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5) against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  17. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    Science.gov (United States)

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  18. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India

    Directory of Open Access Journals (Sweden)

    Shakti Rath

    2014-04-01

    Full Text Available Objective: To record nosocomial and community-acquired accounts of antibiotic resistance in Escherichia coli (E. coli strains, isolated from clinical samples of a teaching hospital by surveillance, over a period of 39 months (November 2009-January 2013. Methods: Clinical samples from nosocomial sources, i.e., wards and cabins, intensive care unit (ICU and neonatal intensive care unit (NICU, and community (outpatient department, OPD sources of the hospital, were used for isolating strains of E. coli, which were subjected for testing for production of ‘extended spectrum beta-lactamase’-(ESBL enzyme as well as determining antibiotic sensitivity pattern with 23 antibiotics. Results: Of the total 1642 (100% isolates, 810 (49.33% strains were from OPD and 832 (50.66% were from hospital settings. Occurrence of infectious E. coli strains increased in a mathematical progression in community sources, but in nosocomial infections, such values remained almost constant in each quarter. A total of 395 (24.05% ESBL strains were isolated from the total 810 isolates of community; of the total of 464 (28.25% isolates of wards and cabins, 199 (12.11% were ESBL strains; and among the total of 368 (22.41% isolates of ICU and NICU, ESBLs were 170 (10.35%; the total nosocomial ESBL isolates, 369 (22.47% were from the nosocomial total of 832 (50.66% isolates. Statistically, it was confirmed that ESBL strains were equally distributed in community or hospital units. Antibiogram of 23 antibiotics revealed progressive increases of drug-resistance against each antibiotic with the maximum resistance values were recorded against gentamicin: 92% and 79%, oxacillin: 94% and 69%, ceftriaxone: 85% and 58%, and norfloxacin 97% and 69% resistance, in nosocomial and community isolates, respectively. Conclusions: This study revealed the daunting state of occurrence of multidrug resistant E. coli and its infection dynamics in both community and hospital settings.

  19. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  20. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    -lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding...

  1. prevalence and antibiotic resistance patterns of escherichia coli ...

    African Journals Online (AJOL)

    2014-06-01

    Jun 1, 2014 ... 91 No. 6 June 2014 ... Resistance for imipenem and tazobactam was 7% and 12 % respectively. Conclusion: Due to ... urinary tract infections (2). Escherichia ... Information sheets explaining the purpose of the ... Quality control organisms used to test for disc potency ... Ms excel and STATA tool respectively.

  2. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  3. Apramycin treatment affects selection and spread of a multidrug-resistant Escherichia coli strain able to colonize the human gut in the intestinal microbiota of pigs

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Zachariasen, Camilla; Hansen, Monica Hegstad;

    2016-01-01

    The effect of apramycin treatment on transfer and selection of an Escherichia coli strain (E. coli 912) in the intestine of pigs was analyzed through an in vivo experiment. The strain was sequenced and assigned to the sequence type ST101 and serotype O11. It carried resistance genes to apramycin...... of treatment, and apramycin treatment resulted in significantly higher counts compared to the non-treated group. This represents the first demonstration of how antimicrobial treatment affects spread of resistant bacteria in pig production. The use of apramycin may lead to enhanced spread of gentamicin-resistant......-treated (pen 3), along with a non-inoculated control group (pen 1). Two pigs of pen 2 and 3 were inoculated intragastrically with a rifampicin resistant variant of the strain. Apramycin treatment in pen 2 was initiated immediately after inoculation. Strain colonization was assessed in the feces from all pigs...

  4. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems.

    Science.gov (United States)

    Mainda, Geoffrey; Bessell, Paul R; Bessell, Paul B; Muma, John B; McAteer, Sean P; Chase-Topping, Margo E; Gibbons, James; Stevens, Mark P; Gally, David L; deC Bronsvoort, Barend M

    2015-07-27

    This study focused on the use of antibiotics on small, medium and commercial-sized dairy farms in the central region of Zambia and its relationship to antibiotic resistance in Escherichia coli. A stratified random sample of 104 farms was studied, representing approximately 20% of all dairy farms in the region. On each farm, faecal samples were collected from a random sample of animals and a standardised questionnaire on the usage of antibiotics was completed. An E. coli isolate was obtained from 98.67% (371/376) of the sampled animals and tested for resistance to six classes of antibiotics. The estimated prevalence of resistance across the different farming systems was: tetracycline (10.61; 95%CI: 7.40-13.82), ampicillin (6.02; 95%CI: 3.31-8.73), sulfamethoxazole/ trimethoprim (4.49; 95%CI: 2.42-6.56), cefpodoxime (1.91; 95%CI: 0.46-3.36), gentamicin (0.89; 95%CI: 0.06-1.84) and ciprofloxacin (0%). Univariate analyses indicated certain diseases, exotic breeds, location, farm size and certain management practices as risk factors for detection of resistance, whereas multivariate analyses showed an association with lumpy skin disease and a protective effect for older animals (>25 months). This study has provided novel insights into the drivers of antibiotic use and their association with antibiotic resistance in an under-studied region of Southern Africa.

  5. Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin.

    Science.gov (United States)

    Anago, Eugénie; Ayi-Fanou, Lucie; Akpovi, Casimir D; Hounkpe, Wilfried B; Agassounon-Djikpo Tchibozo, Micheline; Bankole, Honoré S; Sanni, Ambaliou

    2015-01-17

    Beta lactams are the most commonly used group of antimicrobials worldwide. The presence of extended-spectrum lactamases (ESBL) affects significantly the treatment of infections due to multidrug resistant strains of gram-negative bacilli. The aim of this study was to characterize the beta-lactamase resistance genes in Escherichia coli isolated from nosocomial infections in Cotonou, Benin. Escherichia coli strains were isolated from various biological samples such as urine, pus, vaginal swab, sperm, blood, spinal fluid and catheter. Isolated bacteria were submitted to eleven usual antibiotics, using disc diffusion method according to NCCLS criteria, for resistance analysis. Beta-lactamase production was determined by an acidimetric method with benzylpenicillin. Microbiological characterization of ESBL enzymes was done by double disc synergy test and the resistance genes TEM and SHV were screened by specific PCR. ESBL phenotype was detected in 29 isolates (35.5%). The most active antibiotic was imipenem (96.4% as susceptibility rate) followed by ceftriaxone (58.3%) and gentamicin (54.8%). High resistance rates were observed with amoxicillin (92.8%), ampicillin (94%) and trimethoprim/sulfamethoxazole (85.7%). The genotype TEM was predominant in ESBL and non ESBL isolates with respectively 72.4% and 80%. SHV-type beta-lactamase genes occurred in 24.1% ESBL strains and in 18.1% of non ESBL isolates. This study revealed the presence of ESBL producing Eschericiha coli in Cotonou. It demonstrated also high resistance rate to antibiotics commonly used for infections treatment. Continuous monitoring and judicious antibiotic usage are required.

  6. A response regulator from a soil metagenome enhances resistance to the β-lactam antibiotic carbenicillin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Heather K Allen

    Full Text Available Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16 harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins, rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

  7. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  8. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  9. Identification of heat resistant Escherichia coli by qPCR for the locus of heat resistance.

    Science.gov (United States)

    Ma, Angela; Chui, Linda

    2017-02-01

    Three qPCR assays targeting the locus of heat resistance to identify heat resistant clinical Escherichia coli isolates are described. Of 613 isolates, 3 (0.5%) possessed the locus. The assays are a rapid, highly sensitive and specific alternative to screening by heat shock and can be used in food safety surveillance.

  10. PROFILE OF RESISTANCE OF Escherichia coli ISOLATED FROM CANINE PYOMETRA

    Directory of Open Access Journals (Sweden)

    Fernanda Santana Oliveira

    2016-10-01

    Full Text Available The endothelial pyometra is a disease that affects more frequently reproductively active adult females. Characterized by inflammation and accumulation of exudate in the uterine cavity, generally associated with bacterial infections. The present study aimed to evaluate the resistance profile of Escherichia coli isolates from 42 female dogs diagnosed with pyometra, seen at the Department of Small Animal Surgery, Hospital of Veterinary Medicine, Federal University of Bahia. To perform the bacteriological analysis, a sample of the contents of the uterus was obtained immediately after surgery of ovariosalpingohisterectomy therapy (OSH and sent to the laboratory. Microbiological analysis showed a predominance of the bacterium Escherichia coli in 40.5% (15/37. Strains of Escherichia coli isolates showed higher rates of resistance to antimicrobial erythromycin (93.3 %, azithromycin (80 %, ampicillin, amoxicillin, and cephalothin (40% each. This study reinforces the need to perform the microbiological examination for epidemiological purposes and the correct therapeutic application, thereby avoiding the indiscriminate use of antimicrobials and the potential emergence of multidrug-resistant  strains. Keywords: bacteria; multiresistant;  uterus.

  11. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Objectives: This study was carried out to determine the resistant plasmids of ... resistance pattern of micro-organisms to common an- tibiotics1 ... ment has necessitated the need for regular monitoring of antibiotics susceptibility trends to provide the basis for developing rational prescription programs, mak- ..... Paediatrics and.

  12. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  13. Antimicrobial resistance in Escherichia coli isolated from bitches with pyometra and from urine samples from other dogs.

    Science.gov (United States)

    Hagman, R; Greko, C

    2005-08-13

    To assess whether the rates of antimicrobial susceptibility in bacteria isolated from the urine of dogs with urinary tract infections are similar to those of bacteria isolated from bitches with pyometra, the antimicrobial resistance of Escherichia coli isolated from the two groups were determined and compared. The samples were collected in Sweden between April 2002 and March 2003, and potential changes over time were assessed by comparing the results with corresponding data from 1991 to 1993. Among 80 isolates of E coli from cases of pyometra, the proportions that were resistant to the antimicrobials used in canine practice were generally low (ampicillin 10 per cent, enrofloxacin 4 per cent, gentamicin 0 per cent, streptomycin 5 per cent, sulfamethoxazole 8 per cent, tetracycline 4 per cent and trimethoprim 2 per cent) and similar to the proportions reported previously. Significantly lower proportions of resistance were recorded among the pyometra isolates than among 92 isolates from urine samples submitted by animal hospitals to ampicillin (P=0.04), streptomycin (P=0.002) and tetracycline (P=0.03), but there were no differences between the pyometra isolates and 113 isolates from urine samples submitted by animal clinics.

  14. Comparative Research on Serogroups Distribution and Antimicrobial Resistance of Escherichia coil Isolates from Poultry in Different Areas of China

    Institute of Scientific and Technical Information of China (English)

    SONG Li; FENG Zhong-wu; NING Yi-bao; ZHANG Xiu-ying; SHENG Qing-chun; ZHANG Guang-chuan; LIN Shu-mao; WU Hao-ting; ZHAO Hui; GAO Guang

    2008-01-01

    A total of 241 Escherichia coli(E. coli)isolates from 349 avian samples(292 from cloacae,29 from feed and water,28 from dust and padding)were collected from Northeast,South,North,and Central China in recent years.The percentage of isolation was 69.1%.There are 67 serogroups each with 1-2 isolates distributed in different regions.and some of these regions had the preponderant serogroups.Antimicrobial-resistance(AR)of E. coli was so severe that the majority were multi-AR.Fifty percent strains were resistant to 10-19 antimicrobial drugs.Overall,the isolates represented resistance to nalidixic acid(88.1%),tetracycline(85.7%),sulfamethoxazole(81.0%),trimethoprim-sulfamethpxazole(77.1%),ampicillin (76.2%),amoxilline(74.3%),streplomycin(66.2%),fluoroquinolones(57.1-66.7%),chloramphenicol(52.9%),gentamicin (39.0%),and kanamycin(36.2%).The isolates were sensitive to cefalexin,amoxilline-clavulanic acid,amikacin,and florfenicol with all AR rate of 0-19.5%only.The results showed that the AR was more severe in chicken farms in which the antibiotics were used broadly and repeatedly.This study indicated the AR characterization of E. coli in different areas of China.It will be a foundation for studying AR mechanism and regulating the usage of antimicrobial in the poultry industry.

  15. Quinolone-resistant Escherichia coli in Poultry Farming.

    Science.gov (United States)

    Hricová, Kristýna; Röderová, Magdaléna; Pudová, Vendula; Hanulík, Vojtěch; Halová, Dana; Julínková, Pavla; Dolejská, Monika; Papoušek, Ivo; Bardoň, Jan

    2017-06-01

    Increasing bacterial resistance to quinolone antibiotics is apparent in both humans and animals. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. Between July 2013 and September 2014, samples were collected and analyzed in the Moravian regions of the Czech Republic to isolate the bacterium Escherichia coli. As a result, 212 E. coli isolates were obtained comprising 126 environmental isolates from poultry houses and 86 isolates from cloacal swabs from market-weight turkeys. Subsequently, the E. coli isolates were tested for susceptibility to selected antibiotics. Resistance of the poultry isolates to quinolones ranged from 53% to 73%. Additionally, the presence of plasmid-mediated resistance genes was studied. The genes were confirmed in 58% of the tested strains. The data on resistance of isolates from poultry were compared with results of resistance tests in human isolates obtained in the same regions. The high levels of resistance determined by both phenotyping and genotyping methods and reported in the present study confirm the fact that the use of fluoroquinolones in poultry should be closely monitored. Copyright© by the National Institute of Public Health, Prague 2017.

  16. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris.

    Science.gov (United States)

    Shobrak, Mohammed Y; Abo-Amer, Aly E

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  17. [Drug resistance of Escherichia coli strains isolated from poultry].

    Science.gov (United States)

    Giurov, B; Korudzhiĭski, N; Bineva, I

    1981-01-01

    Studied was the sensitivity of a total of 143 strains of Escherichia coli, isolated from young birds and broilers died from coli septicaemia, to antibiotics and chemotherapeutics. The following descending order was established: gentamycin, carbenicillin, ampicillin, furazolidon, borgal, kanamycin, strep tomycin, chloramphenicol, neomycin sulphathiazole, and tetracycline. Markers of resistance were established with all strains with regard to the therapeutic agents in current and prospective use in industrial poultry farming. It is stated that a preliminary antibiogram is indispensable in order to obtain dependable results in the treatment of animals affected with colibacteriosis. An alternative is to apply directly those drugs to which the strains have shown highest sensitivity.

  18. Multiple antimicrobial resistance among Avian Escherichia coli strains in Albania

    Directory of Open Access Journals (Sweden)

    Antonio Camarda

    2010-01-01

    Full Text Available In this study, 101 Escherichia (E. coli isolates from broilers, laying hens and turkeys which had died from colibacillosis, collected from 37 intensive and rural farms in Albania, were tested for antimicrobial susceptibility toward 12 different molecules. The highest levels of resistance were observed for Erythromycin (E (100% Amoxicillin (AMX (99.1%, Tetracycline (TE 30 (96.07%, Streptomycin (STR (93.07% and Neomycin (N30 (85.15%. Considerable resistance was also detected for fluoroquinolones. Moreover, 73.33% of E. coli resistant to at least one fluoroquinolone were also resistant to the two other fluoroquinolones checked. No evident differences were found between the E. coli from intensive and from rural farms. Multiple antibiotic resistance was expressed by all the E. coli tested. 23.63% and 17.39% of E. coli isolated from intensive and rural farms, respectively, were resistant towards all the drugs tested. These data would seem to indicate incorrect use of antibiotics on poultry farms in Albania.

  19. Dynamics of extended-spectrum cephalosporin resistance in pathogenic Escherichia coli isolated from diseased pigs in Quebec, Canada.

    Science.gov (United States)

    Jahanbakhsh, Seyedehameneh; Smith, Matthew G; Kohan-Ghadr, Hamid-Reza; Letellier, Ann; Abraham, Sam; Trott, Darren J; Fairbrother, John Morris

    2016-08-01

    The aim of this study was to investigate the evolution with time of ceftiofur-resistant Escherichia coli clinical isolates from pigs in Québec, Canada, between 1997 and 2012 with respect to pathotypes, clones and antimicrobial resistance. Eighty-five ceftiofur-resistant E. coli isolates were obtained from the OIE (World Organisation for Animal Health) Reference Laboratory for Escherichia coli. The most prevalent pathovirotypes were enterotoxigenic E. coli (ETEC):F4 (40%), extraintestinal pathogenic E. coli (ExPEC) (16.5%) and Shiga toxin-producing E. coli (STEC):F18 (8.2%). Susceptibility testing to 15 antimicrobial agents revealed a high prevalence of resistance to 13 antimicrobials, with all isolates being multidrug-resistant. blaCMY-2 (96.5%) was the most frequently detected β-lactamase gene, followed by blaTEM (49.4%) and blaCTX-M (3.5%). Pulsed-field gel electrophoresis (PFGE) applied to 45 representative E. coli isolates revealed that resistance to ceftiofur is spread both horizontally and clonally. In addition, the emergence of extended-spectrum β-lactamase-producing E. coli isolates carrying blaCTX-M was observed in 2011 and 2012 in distinct clones. The most predominant plasmid incompatibility (Inc) groups were IncFIB, IncI1, IncA/C and IncFIC. Resistance to gentamicin, kanamycin and chloramphenicol as well as the frequency of blaTEM and IncA/C significantly decreased over the study period, whereas the frequency of IncI1 and multidrug resistance to seven antimicrobial categories significantly increased. These findings reveal that extended-spectrum cephalosporin-resistant porcine E. coli isolates in Québec belong to several different clones with diverse antimicrobial resistance patterns and plasmids. Furthermore, blaCMY-2 was the major β-lactamase gene in these isolates. From 2011, we report the emergence of blaCTX-M in distinct clones.

  20. Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin. The Grupo Andaluz para el estudio de las Enfermedades Infecciosas.

    Science.gov (United States)

    Caballero-Granado, F J; Cisneros, J M; Luque, R; Torres-Tortosa, M; Gamboa, F; Díez, F; Villanueva, J L; Pérez-Cano, R; Pasquau, J; Merino, D; Menchero, A; Mora, D; López-Ruz, M A; Vergara, A

    1998-02-01

    A prospective, multicenter study was carried out over a period of 10 months. All patients with clinically significant bacteremia caused by Enterococcus spp. were included. The epidemiological, microbiological, clinical, and prognostic features and the relationship of these features to the presence of high-level resistance to gentamicin (HLRG) were studied. Ninety-three patients with enterococcal bacteremia were included, and 31 of these cases were caused by HLRG (33%). The multivariate analysis selected chronic renal failure, intensive care unit stay, previous use of antimicrobial agents, and Enterococcus faecalis species as the independent risk factors that influenced the development of HLRG. The strains with HLRG showed lower levels of susceptibility to penicillin and ciprofloxacin. Clinical features (except for chronic renal failure) were similar in both groups of patients. HLRG did not influence the prognosis for patients with enterococcal bacteremia in terms of either the crude mortality rate (29% for patients with bacteremia caused by enterococci with HLRG and 28% for patients not infected with strains with HLRG) or the hospital stay after the acquisition of enterococcal bacteremia. Hemodynamic compromise, inappropriate antimicrobial therapy, and mechanical ventilation were revealed in the multivariate analysis to be the independent risk factors for mortality. Prolonged hospitalization was associated with the nosocomial acquisition of bacteremia and polymicrobial infections.

  1. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens.

    Science.gov (United States)

    Simmons, Karen; Islam, M Rashedul; Rempel, Heidi; Block, Glenn; Topp, Edward; Diarra, Moussa S

    2016-06-01

    The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.

  2. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis

    Science.gov (United States)

    Aim: Plasmid characterization has particular clinical importance because genes encoding significant traits including antimicrobial resistance are frequently carried on plasmids. The objective of this study was to examine the distribution of multidrug resistance (MDR) in Escherichia coli in relation ...

  3. Molecular characterization and antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurized cheeses

    Directory of Open Access Journals (Sweden)

    Mojtaba Bonyadian

    2014-04-01

    Full Text Available The aim of this study was to determine the occurrence of enterotoxigenic and enteroaggregative Escherichia coli strains and antibiotic resistance of the isolates in raw milk and unpasteurized cheese. Out of 200 samples of raw milk and 50 samples of unpasteurized cheeses, 96 and 24 strains of E. coli were isolated, respectively. Polymerase chain reaction (PCR was used to detect the genes encoding heat-stable enterotoxin a (STa, heat-stable enterotoxin b (STb, heat labile toxin (LT and enteroaggregative heat-stable toxin1 (EAST1. Twelve out of 120 (10.00% isolates harbored the gene for EAST1, 2(1.66% isolates were detected as producing STb and LT toxins and 12 (10.00% strains contained STb and EAST1 genes. None of the strains contain the STa gene. All of the strains were tested for antibiotic resistance by disk diffusion method. Disks included: ciprofloxacin (CFN, trimetoprim-sulfamethoxazole (TSX, oxytetracycline (OTC, gentamicin (GMN, cephalexin (CPN, nalidixic acid (NDA and nitrofurantoin (NFN, ampicillin (AMP, neomycin (NEO and streptomycin (STM. Among 120 isolated strains of E. coli, the resistance to each antibiotics were as follows: OTC100%, CPN 86.00%, NDA 56.00%, NFN 42.00%, GMN 30.00%, TSX 28.00%, CFN 20%, AM 23.40% and STM 4.25%. None of the isolates were resistant to NEO. The present data indicate that different resistant E. coli pathogens may be found in raw milk and unpasteurized cheese. It poses an infection risk for human and transferring the resistant factors to microflora of the consumers gut.

  4. The occurrence of antimicrobial resistance and class 1 integrons among commensal Escherichia coli isolates from infants and elderly persons

    Directory of Open Access Journals (Sweden)

    Kõljalg Siiri

    2009-12-01

    Full Text Available Abstract Background The aim of our study was to compare the presence of the intI1 gene and its associations with the antibiotic resistance of commensal Escherichia coli strains in children with/without previous antibiotic treatments and elderly hospitalized/healthy individuals. Methods One-hundred-and-fifteen intestinal E. coli strains were analyzed: 30 strains from 10 antibiotic-naive infants; 27 from 9 antibiotic-treated outpatient infants; 30 from 9 healthy elderly volunteers; and 28 from 9 hospitalized elderly patients. The MIC values of ampicillin, cefuroxime, cefotaxime, gentamicin, ciprofloxacin, and sulfamethoxazole were measured by E-test and IntI1 was detected by PCR. Results Out of the 115 strains, 56 (49% carried class 1 integron genes. Comparing persons without medical interventions, we found in antibiotic-naive children a significantly higher frequency of integron-bearing strains and MIC values than in healthy elderly persons (53% versus 17%; p Conclusion The prevalence of integrons in commensal E. coli strains in persons without previous medical intervention depended on age. The resistance of integron-carrying and non-carrying strains is more dependent on influencing factors (hospitalization and antibiotic administration in particular groups than merely the presence or absence of integrons.

  5. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci

    NARCIS (Netherlands)

    Subbiandoss, Guruprakash; Sharifi, Shahriar; Grijpma, Dirk W.; Laurent, Sophie; van der Mei, Henny C.; Mahmoudi, Morteza; Busscher, Henk J.

    2012-01-01

    Biofilms on biomaterial implants are hard to eradicate with antibiotics due to the protection offered by the biofilm mode of growth, especially when caused by antibiotic-resistant strains. Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used in various biomedical applications, such as

  6. Prevalence and antimicrobial resistance in Escherichia coli from food and animals in Lagos, Nigeria

    Science.gov (United States)

    Background Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing ...

  7. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Directory of Open Access Journals (Sweden)

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  8. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller;

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  9. Dose-related selection of fluoroquinolone-resistant Escherichia coli.

    Science.gov (United States)

    Olofsson, Sara K; Marcusson, Linda L; Strömbäck, Ann; Hughes, Diarmaid; Cars, Otto

    2007-10-01

    To investigate the effects of clinically used doses of norfloxacin, ciprofloxacin and moxifloxacin on survival and selection in Escherichia coli populations containing fluoroquinolone-resistant subpopulations and to measure the value of the pharmacodynamic index AUC/mutant prevention concentration (MPC) that prevents the growth of pre-existing resistant mutants. Mixed cultures of susceptible wild-type and isogenic single (gyrA S83L) or double (gyrA S83L, Delta marR) fluoroquinolone-resistant mutants were exposed to fluoroquinolones for 24 h in an in vitro kinetic model. Antibiotic concentrations modelled pharmacokinetics attained with clinical doses. All tested doses eradicated the susceptible wild-type strain. Norfloxacin 200 mg administered twice daily selected for both single and double mutants. Ciprofloxacin 250 mg administered twice daily eradicated the single mutant, but not the double mutant. For that, 750 mg administered twice daily was required. Moxifloxacin 400 mg once daily eliminated the single mutant, but did not completely remove the double mutant. The MPC of ciprofloxacin was determined and based on those dose simulations that eradicated mutant subpopulations, an AUC/MPC(wild-type) of 35 prevented selection of the single mutant, whereas an AUC/MPC(single mutant) of 14 (equivalent to an AUC/MPC(wild-type) of 105) prevented selection of the double mutant. All tested clinical dosing regimens were effective in eradicating susceptible bacteria, but ciprofloxacin 750 mg twice daily was the only dose that prevented the selection of single- and double-resistant E. coli mutants. Thus, among approved fluoroquinolone dosing regimens, some are significantly more effective than others in exceeding the mutant selection window and preventing the enrichment of resistant mutants.

  10. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.

    Science.gov (United States)

    Melançon, P; Lemieux, C; Brakier-Gingras, L

    1988-10-25

    Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting related aminoglycoside antibiotics such as neomycin, kanamycin or gentamicin, which do not compete for the streptomycin binding site. The 530 loop where the mutation in the 16S rRNA is located has been mapped at the external surface of the 30S subunit, and is therefore distal from the streptomycin binding site at the subunit interface. Our results support the conclusion that the mutation at position 523 in the 16S rRNA does not interfere with the binding of streptomycin, but prevents the drug from inducing conformational changes in the 530 loop which account for its miscoding effect. Since this effect primarily results from a perturbation of the translational proofreading control, our results also provide evidence that the 530 loop of the 16S rRNA is involved in this accuracy control.

  11. Colistin- and Carbapenem-Resistant Escherichia coli Harboring mcr-1 and blaNDM-5, Causing a Complicated Urinary Tract Infection in a Patient from the United States

    Directory of Open Access Journals (Sweden)

    José R. Mediavilla

    2016-08-01

    Full Text Available Colistin is increasingly used as an antibiotic of last resort for the treatment of carbapenem-resistant Gram-negative infections. The plasmid-borne colistin resistance gene mcr-1 was initially identified in animal and clinical samples from China and subsequently reported worldwide, including in the United States. Of particular concern is the spread of mcr-1 into carbapenem-resistant bacteria, thereby creating strains that approach pan-resistance. While several reports of mcr-1 have involved carbapenem-resistant strains, no such isolates have been described in the United States. Here, we report the isolation and identification of an Escherichia coli strain harboring both mcr-1 and carbapenemase gene blaNDM-5 from a urine sample in a patient without recent travel outside the United States. The isolate exhibited resistance to both colistin and carbapenems, but was susceptible to amikacin, aztreonam, gentamicin, nitrofurantoin, tigecycline, and trimethoprim-sulfamethoxazole. The mcr-1- and blaNDM-5-harboring plasmids were completely sequenced and shown to be highly similar to plasmids previously reported from China. The strain in this report was first isolated in August 2014, highlighting an earlier presence of mcr-1 within the United States than previously recognized.

  12. Prevalence of antimicrobial resistance and integrons in Escherichia Coli from Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-06-01

    Full Text Available Antimicrobial resistance was studied in Escherichia coli strains isolated from urine samples of 457 patients suffering from urinary tract infection. High prevalence of class 1 integrons (43.56%, sulfamethoxazole resistance genes sul1 (45.54% and sul2 (51.48% along with occurrence of quinolone resistance genes was detected in multi drug resistance isolates.

  13. Experimental evolution of silver nanoparticle resistance in Escherichia coli

    Science.gov (United States)

    Tajkarimi, Mehrdad

    The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides; unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics.) Many of these eNPs include heavy metals or metal oxides such as titanium dioxide, silver, gold, zinc and zinc oxide. The fact that early studies of the impact of metallic nanoparticles achieved approximately 90% lethality to Ag, Cu eNPs, suggests that genetic variants are already circulating in bacteria that can be co-opted to provide heavy metal eNP resistance. This project has utilized laboratory experimental evolution to evolve eNP resistance in the bacterium Escherichia coli (K12 MG1655 strain.). This is currently being validated by demonstrating the greater fitness of evolved strains versus ancestral strains in the presence of different sized and coated silver nanoparticles (10nm, 40nm, citrate-coated, PVP-coated) as well as phenotypic changes in the bacterial cell wall (as measured by Atomic Force Microscopy, AFM.). Finally, the bacterial genomes of the evolved and ancestral strains were resequenced. The genomic basis of this complex phenotype was determined. The practical application of such knowledge cannot be underestimated since nature is already evolving nanoparticle resistant bacteria. Thus knowledge of the nature of the physiological, morphological, and genomic mechanisms of resistance will be essential to deploy sustainable use of NPs as biocides, and to prevent unintentional environmental damage.

  14. Dynamics of Quinolone Resistance in Fecal Escherichia coli of Finishing Pigs after Ciprofloxacin Administration

    OpenAIRE

    Huang, Kang; Xu, Chang-Wen; Zeng, Bo; XIA, Qing-Qing; Zhang, An-Yun; LEI, Chang-Wei; Guan, Zhong-Bin; Cheng, Han; Wang, Hong-ning

    2014-01-01

    ABSTRACT Escherichia coli resistance to quinolones has now become a serious issue in large-scale pig farms of China. It is necessary to study the dynamics of quinolone resistance in fecal Escherichia coli of pigs after antimicrobial administration. Here, we present the hypothesis that the emergence of resistance in pigs requires drug accumulation for 7 days or more. To test this hypothesis, 26 pigs (90 days old, about 30 kg) not fed any antimicrobial after weaning were selected and divided in...

  15. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Resistant plasmid profile analysis of multidrug resistant Escherichia coli isolated from urinary tract infections in Abeokuta, Nigeria.

    Science.gov (United States)

    Akingbade, O; Balogun, S; Ojo, D; Akinduti, P; Okerentugba, P O; Nwanze, J C; Okonko, I O

    2014-12-01

    Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta. A total of 120 Escherichia coli isolates were obtained from urine samples collected from patients attending inpatient and outpatient clinics presenting UTI; with their biodata. Antibiotics susceptibility was performed and multi-drug resistant isolates were selected for plasmid profiling. Plasmids were extracted by the alkaline lysis method, electrophoresed on 0.8% agarose gel and profiled using a gel-photo documentation system gel. Escherichia coli isolates obtained shows high resistance to cloxacillin (92.5%), amoxicillin (90.8%), ampicillin (90.8%), erythromycin (75.8%), cotrimoxazole (70.0%), streptomycin (70.0%) and tetracycline (68.3%) while 85.8% and 84.2% were susceptible to gentamycin and ceftazidime respectively. Sixteen Escherichia coli strains were observed to be resistant to more than two classes of antibiotics. The resistant plasmid DNA was detectable in 6(37.5%) of the 16 multidrug resistant Escherichia coli having single sized plasmids of the same weight 854bp and were all resistant to erythromycin, cefuroxime, cloxacillin, amoxicillin, ampicillin and cotrimoxazole. This study has highlighted the emergence of multidrug resistant R-plasmids among Escherichia coli causing urinary tract infections in Abeokuta, Nigeria. There is a high level of resistance to many antimicrobials that are frequently used in Abeokuta, Nigeria.

  17. Study of the Resistance of Escherichia Coli Which Creates Community-Acquired Urinary Tract Infections to Ciprofloxacin and Co-Trimoxazole Antibiotics in Sari Hospitals, Iran

    Directory of Open Access Journals (Sweden)

    Ghasemian Roya

    2015-04-01

    Full Text Available Objective: Escherichia coli is the most important etiologic factor in urinary tract infection (UTI, which is becoming resistant to the common antibiotics. The aim of this study was to evaluate the resistance of this bacterium to the antibiotics that are commonly used. Materials and Methods: A descriptive study conducted in patients with uncomplicated UTI referring to Sari hospitals during 2013-2014. For this purpose, samples that had positive urine culture were selected and evaluated with antibiogram. In addition, E-Test MIC method was used for antibiotics ciprofloxacin and co-trimoxazole. SPSS software was used for data analysis. Results: Of the 101 patients studied, 83 (82.2% were females and 18 (17.8% were male. The mean age of patients was 40.32 ± 3.22 years. The most sensitivity was seen to nitrofurantoin (92.07%, gentamicin (76.23%. Most resistance was also seen to the antibiotics amoxicillin (74.25%, co-trimoxazole (64.35% and ciprofloxacin (36.63%. In E-Test MIC method, 23.7% were resistant to the ciprofloxacin and 43.5% to co-trimoxazole. Conclusion: Due to the high antibiotic resistance that was observed to ciprofloxacin and co-trimoxazole in this study, it seems a better alternative antibiotic such as nitrofurantoin should be used for the empirical treatment of patients with UTIs.

  18. Detection of the colistin resistance gene mcr-1 in pathogenic Escherichia coli from pigs affected by post-weaning diarrhoea in Italy.

    Science.gov (United States)

    Curcio, Ludovica; Luppi, Andrea; Bonilauri, Paolo; Gherpelli, Yuri; Pezzotti, Giovanni; Pesciaroli, Michele; Magistrali, Chiara Francesca

    2017-09-01

    The aim of this study was to investigate the presence of plasmid-mediated colistin resistance genes in Escherichia coli from pigs affected by post-weaning diarrhoea (PWD). DNA samples collected from 51 E. coli isolates from Italian pigs affected by PWD in 2015-2016 were studied. Isolates were classified as presumptively resistant to colistin by routine susceptibility testing and were investigated for the presence of the mcr-1 gene of plasmid origin by PCR. E. coli isolates testing negative for mcr-1 were analysed for the presence of a novel plasmid-mediated gene, mcr-2. Isolates were characterised for fimbrial [F4 (k88), F5 (k99), F6 (987P), F18 and F41] and toxin (LT, STa, STb and Stx2e) determinants by PCR as well as for the occurrence of haemolysis by phenotypic observation. Susceptibility to apramycin, cefquinome, enrofloxacin, florfenicol, gentamicin, tetracycline and trimethoprim/sulfamethoxazole (SXT) was also determined by disk diffusion. Most of the isolates showed the presence of at least one virulence factor, confirming their pathogenic potential. The presence of mcr-1 was shown in 37 (72.5%) of the 51 isolates. All of the mcr-1-negative isolates tested negative for the mcr-2 gene. Moreover, 80.4% of the isolates were resistant to apramycin, 9.8% to cefquinome, 54.9% to enrofloxacin, 52.9% to florfenicol, 76.5% to gentamicin, 96.1% to tetracycline and 78.4% to SXT. This is the first report documenting the presence of the mcr-1 gene in pathogenic E. coli isolated from pigs affected by PWD in Italy. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  19. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates.

    Science.gov (United States)

    Diarra, Moussa S; Silversides, Fred G; Diarrassouba, Fatoumata; Pritchard, Jane; Masson, Luke; Brousseau, Roland; Bonnet, Claudie; Delaquis, Pascal; Bach, Susan; Skura, Brent J; Topp, Edward

    2007-10-01

    The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P chickens receiving feed supplemented with salinomycin than from the other feeds (P chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla(TEM), sulI, and aadA and class 1 integron from days 7 to 35 (P chickens than in the control or other treatment groups (P chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.

  20. [Transmissivity of antibiotic resistance factors in intergeneric crossing of salmonellae and Escherichia Crimea].

    Science.gov (United States)

    Kharchenko, G I; Zadorina, T M; Belova, N N

    1981-11-01

    The results of the crosses between Salmonella and Escherichia 0151C are presented. Transmissive determinants resistant to ampicillin, dentamicin, kanamycin, neomycin, monomycin, streptomycin, morphocyclin, tetracycline and chloramphenicol were detected. It was shown that almost 50 per cent of Escherichia 0151K except the transmissive R factors were able to transferring the colicinogenic determinants.

  1. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. The Plasmid-Encoded Regulator Activates Factors Conferring Lysozyme Resistance on Enteropathogenic Escherichia coli Strains▿

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N.

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified. PMID:18997020

  3. The plasmid-encoded regulator activates factors conferring lysozyme resistance on enteropathogenic Escherichia coli strains.

    Science.gov (United States)

    Salinger, Nina; Kokona, Bashkim; Fairman, Robert; Okeke, Iruka N

    2009-01-01

    We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.

  4. A survey of the frequency of aminoglycoside antibiotic-resistant genotypes and phenotypes in Escherichia coli in broilers with septicaemia in Hebei, China.

    Science.gov (United States)

    Zhang, F Y; Huo, S Y; Li, Y R; Xie, R; Wu, X J; Chen, L G; Gao, Y H

    2014-01-01

    1. The aim of this study was to investigate the occurrence of aminoglycoside resistance and the prevalence of 6 important modifying enzyme genes, i.e. (strA, strB, aph(3')-IIa, aac(3)-IIa, aac(6')-Ib and ant(3")-Ia), in Escherichia coli strains in broilers with septicaemia in Hebei, China. 2. A total of 111 clinical isolates of E. coli were collected from 46 large-scale farms. Antimicrobial susceptibility tests, using the Kirby-Bauer disc diffusion method, were performed on all 111 isolates. In addition, all were screened for the presence of modifying enzyme genes using the polymerase chain reaction (PCR). 3. The results show that the rates of resistance were as follows: streptomycin: 97.3%, kanamycin: 97.0%, gentamicin: 95.5%, neomycin: 50.5%, amikacin: 46.0%, spectinomycin: 22.5%. Of the genes examined, strB (73.9%) was the most frequently identified gene in the phenotypic resistant isolates, followed in order by: ant(3")-Ia, aac(3)-IIa, aac(6')-Ib, aph(3')-IIa and strA. 4. It is concluded that aminoglycoside resistance in E. coli from broilers with septicaemia remains a serious problem in Hebei, China. This emphasises the need to ban the non-therapeutic use of antibiotics, discourage their misuse and to be continually vigilant by providing appropriate scientific and technological support for the poultry industry.

  5. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    OpenAIRE

    Reza Talebiyan; Mehdi Kheradmand; Faham Khamesipour; Mohammad Rabiee-Faradonbeh

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88....

  6. Characterization of Antimicrobial Resistance Pattern and Molecular Analysis among Extended Spectrum β-Lactamase-Producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Hossein Kazemian 1,2, Hamid Heidari 3, Roya Ghanavati 4, Reza Mohebi 2, Sobhan Ghafourian 2, Aref Shavalipour 5, Asieh Taji 3, Hamidreza Houri 5 *

    2016-12-01

    Full Text Available Background: Infection is a serious problem in medicine and appropriate antibiotic therapy is very important. Because of broad spectrum activity and low toxicity of β-lactam antibiotics, they are the most commonly used drugs. But, bacterial resistance to β-lactam antibiotics, has been considered as the global healthcare concern. The aim of study was to evaluate the antimicrobial resistance pattern and molecular characterization among ESBL-producing Escherichia coli isolated from patients with diarrhea admitted to a hospital in Ilam, Iran. Methods: Totally, fifty E. coli isolates were investigated. Confirmatory tests for phenotypic detection of ESBLs were performed. Molecular identification of the blaTEM and blaSHV genes was carried out by PCR method. To identify genetic relatedness among isolates, Randomly Amplified Polymorphic DNA (RAPD analysis was performed. Results: The antibiotic susceptibility results showed that the most effective antibiotic was imipenem and minimum effect was related to gentamicin. Thirty-one isolates (62% were ESBL-producing organisms according to phenotypic method. The distribution of blaTEM and blaSHV genes among ESBL-producing isolates were 20 (64.5% and 6 (19.3%, respectively. RAPD-PCR typing among isolates gave us eight different types. Twelve isolates were clustered in genotype A and all of them were ESBL-producer. Conclusion: The present study showed noticeable incidence of ESBL-producing E. coli isolated from outpatients and hospitalized patients with diarrhea. Therefore, it seems that constant supervision is crucial to monitor the ESBL-producing microorganisms in hospitals and community.

  7. Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification

    Directory of Open Access Journals (Sweden)

    Mavroidi Angeliki

    2012-12-01

    Full Text Available Abstract Background Fluoroquinolone resistant E. coli isolates, that are also resistant to other classes of antibiotics, is a significant challenge to antibiotic treatment and infection control policies. In Central Greece a significant increase of ciprofloxacin-resistant Escherichia coli has occurred during 2011, indicating the need for further analysis. Methods A total of 106 ciprofloxacin-resistant out of 505 E. coli isolates consecutively collected during an eight months period in a tertiary Greek hospital of Central Greece were studied. Antimicrobial susceptibility patterns and mechanisms of resistance to quinolones were assessed, whereas selected isolates were further characterized by multilocus sequence typing and β-lactamase content. Results Sequence analysis of the quinolone-resistance determining region of the gyrA and parC genes has revealed that 63% of the ciprofloxacin-resistant E. coli harbored a distinct amino acid substitution pattern (GyrA:S83L + D87N; ParC:S80I + E84V, while 34% and 3% carried the patterns GyrA:S83L + D87N; ParC:S80I and GyrA:S83L + D87N; ParC:S80I + E84G respectively. The aac (6’-1b-cr plasmid-mediated quinolone resistance determinant was also detected; none of the isolates was found to carry the qnrA, qnrB and qnrS. Genotyping of a subset of 35 selected ciprofloxacin-resistant E. coli by multilocus sequence typing has revealed the presence of nine sequence types; ST131 and ST410 were the most prevalent and were exclusively correlated with hospital and health care associated infections, while strains belonging to STs 393, 361 and 162 were associated with community acquired infections. The GyrA:S83L + D87N; ParC:S80I + E84V substitution pattern was found exclusively among ST131 ciprofloxacin-resistant E. coli. Extended-spectrum β-lactamase-positive ST131 ciprofloxacin-resistant isolates produced CTX-M-type enzymes; eight the CTX-M-15 and one the CTX-M-3 variant. CTX-M-1 like and KPC-2 enzymes were detected

  8. Colistin- and Carbapenem-Resistant Escherichia coli Harboring mcr-1 and blaNDM-5, Causing a Complicated Urinary Tract Infection in a Patient from the United States.

    Science.gov (United States)

    Mediavilla, José R; Patrawalla, Amee; Chen, Liang; Chavda, Kalyan D; Mathema, Barun; Vinnard, Christopher; Dever, Lisa L; Kreiswirth, Barry N

    2016-08-30

    Colistin is increasingly used as an antibiotic of last resort for the treatment of carbapenem-resistant Gram-negative infections. The plasmid-borne colistin resistance gene mcr-1 was initially identified in animal and clinical samples from China and subsequently reported worldwide, including in the United States. Of particular concern is the spread of mcr-1 into carbapenem-resistant bacteria, thereby creating strains that approach pan-resistance. While several reports of mcr-1 have involved carbapenem-resistant strains, no such isolates have been described in the United States. Here, we report the isolation and identification of an Escherichia coli strain harboring both mcr-1 and carbapenemase gene blaNDM-5 from a urine sample in a patient without recent travel outside the United States. The isolate exhibited resistance to both colistin and carbapenems, but was susceptible to amikacin, aztreonam, gentamicin, nitrofurantoin, tigecycline, and trimethoprim-sulfamethoxazole. The mcr-1- and blaNDM-5-harboring plasmids were completely sequenced and shown to be highly similar to plasmids previously reported from China. The strain in this report was first isolated in August 2014, highlighting an earlier presence of mcr-1 within the United States than previously recognized. Colistin has become the last line of defense for the treatment of infections caused by Gram-negative bacteria resistant to multiple classes of antibiotics, in particular carbapenem-resistant Enterobacteriaceae (CRE). Resistance to colistin, encoded by the plasmid-borne gene mcr-1, was first identified in animal and clinical samples from China in November 2015 and has subsequently been reported from numerous other countries. In April 2016, mcr-1 was identified in a carbapenem-susceptible Escherichia coli strain from a clinical sample in the United States, followed by a second report from a carbapenem-susceptible E. coli strain originally isolated in May 2015. We report the isolation and identification of

  9. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada

    Science.gov (United States)

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry. PMID:26733732

  10. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada.

    Science.gov (United States)

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.

  11. Prevalence and risk factor analysis of resistant Escherichia coli urinary tract infections in the emergency department.

    OpenAIRE

    Bailey AM; Weant KA; Baker SN

    2013-01-01

    Background: Escherichia coli (E. coli) is a frequent uropathogen in urinary tract infections (UTI). Widespread resistance to sulfamethoxazole-trimethoprim (SMX-TMP) and increasing resistance to fluoroquinolones amongst these isolates has been recognized. There are limited data demonstrating risk factors for resistance to both SMX-TMP and fluoroquinolones.Objectives: This study was conducted to assess for the prevalence of community resistance amongst E. coli isolates to SMX-TMP and levofloxac...

  12. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria.

    Science.gov (United States)

    Nguyen, Nhung T; Nguyen, Hoa M; Nguyen, Cuong V; Nguyen, Trung V; Nguyen, Men T; Thai, Hieu Q; Ho, Mai H; Thwaites, Guy; Ngo, Hoa T; Baker, Stephen; Carrique-Mas, Juan

    2016-07-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180 Escherichia coli isolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms. E. coli isolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene, mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37 mcr-1 gene-positive E. coli isolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role of mcr-1 in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam. Our study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance among E. coli over the different stages of production in emerging pig and poultry production

  13. Antimicrobial Resistance, Extended-Spectrum β-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine.

    Science.gov (United States)

    Changkaew, Kanjana; Intarapuk, Apiradee; Utrarachkij, Fuangfa; Nakajima, Chie; Suthienkul, Orasa; Suzuki, Yasuhiko

    2015-08-01

    Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)-producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.

  14. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...

  15. Prevalence and antimicrobial resistance in Escherichia coli from food animals in Lagos, Nigeria

    Science.gov (United States)

    Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing animals fr...

  16. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry.

    Science.gov (United States)

    Obeng, Akua Serwaah; Rickard, Heather; Ndi, Olasumbo; Sexton, Margaret; Barton, Mary

    2012-01-27

    Antibiotic use in poultry production is a risk factor for promoting the emergence of resistant Escherichia coli. To ascertain differences in different classes of chickens, the resistance profile, some virulence genes and phylogenetic grouping on 251 E. coli isolates from intensive meat (free range and indoor commercial) and free range egg layer chickens collected between December 2008 and June 2009 in South Australia were performed. Among the 251 strains, 102 (40.6%) and 67 (26.7%) were found to be resistant to tetracycline and ampicillin respectively. Resistance was also observed to trimethoprim-sulfamethoxazole (12.4%), streptomycin (10.8%), spectinomycin (9.6%), neomycin (6.0%) and florfenicol (2.0%) but no resistance was found to ceftiofur, ciprofloxacin or gentamicin. Amplification of DNA of the isolates by polymerase chain reaction revealed the presence of genes that code for resistant determinants: tetracycline (tet(A), tet(B) and tet(C)), ampicillin (bla(TEM) and bla(SHV)), trimethoprim (dhfrV and dhfrXIII), sulphonamide (sulI and sulII), neomycin (aph(3)-Ia(aphA1)), and spectinomycin-streptinomycin (aadA2). In addition, 32.3-39.4% of the isolates were found to belong to commensal groups (A and B1) and 11.2-17.1% belonged to the virulent groups (B2 and D). Among the 251 E. coli isolates, 25 (10.0%) carried two or more virulence genes typical of Extraintestinal pathogenic E. coli (ExPEC). Furthermore, 17 of the isolates with multi-resistance were identified to be groups B2 and D. Although no significant difference was observed between isolates from free range and indoor commercial meat chickens (P>0.05), significant differences was observed between the different classes of meat chickens (free range and indoor commercial) and egg layers (Ppoultry E. coli isolates. Copyright © 2011. Published by Elsevier B.V.

  17. Agentes bacterianos enteropatogênicos em suínos de diferentes faixas etárias e perfil de resistência a antimicrobianos de cepas de Escherichia coli e Salmonella spp Enteropathogenic bacterial agents in pigs of different age groups and profile of resistance in strains of Escherichia coli and Salmonella spp. to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Álvaro Menin

    2008-09-01

    Full Text Available As enterites infecciosas bacterianas provocam severas perdas para a indústria suína em todo o mundo. Os objetivos deste trabalho foram determinar os agentes bacterianos, associados com a ocorrência de diarréia em suínos, em diferentes faixas etárias, no Estado de Santa Catarina, Brasil, e verificar o perfil de resistência das cepas de Escherichia coli e Salmonella spp, frente aos principais antimicrobianos utilizados em granjas de suínos. Os principais gêneros/espécies bacterianos diagnosticados foram Escherichia coli, Clostridium spp, Salmonella spp Brachyspira hyodysenteriae, Brachyspira pilosicoli e Lawsonia intracellularis. Os fatores de virulência de E. coli mais prevalentes na fase de maternidade foram F5 / (K99 20%, F6 / (987P 16,3%, F42 6,8% e F41 5,7%, já nas fases de creche e terminação, predominaram cepas com fimbrias F4 (K88 11,2% e 5,4%, respectivamente. Para E. coli os maiores índices de resistência foram encontrados para oxitetraciclina (94% e tetraciclina (89,5% e os menores índices de resistência para neomicina (55%, ceftiofur (57,4%. Quanto às amostras de Salmonella spp, estas apresentaram maior resistência à oxitetraciclina (77%, e à tetraciclina (42,1% e menor à gentamicina (3,5% e amoxicilina (4,8%.Infectious bacterial enteritis causes severe losses to the swine industry worldwide. The objective of this study was to determine the epidemiology of bacterial agents that are associated with the occurrence of diarrhea in pigs at different age groups, and to verify the profile of resistance of strains of Escherichia coli and Salmonella spp to the main antimicrobial agents. The main bacterial species diagnosed were Escherichia coli, Clostridium spp, Salmonella spp, Brachyspira hyodysenteriae, Brachyspira pilosicoli and Lawsonia intracellularis. The E. coli virulence factors of higher prevalence in preweaning piglets were F5 / (K99 20%, F6 / (987P 16.3%, F42 6.8% and F41 5.7%, whereas at the nursery and with

  18. Development of quinoxaline 1, 4-dioxides resistance in Escherichia coli and molecular change under resistance selection.

    Directory of Open Access Journals (Sweden)

    Wentao Guo

    Full Text Available Quinoxaline 1, 4-dioxides (QdNOs has been used in animals as antimicrobial agents and growth promoters for decades. However, the resistance to QdNOs in pathogenic bacteria raises worldwide concern but it is barely known. To explore the molecular mechanism involved in development of QdNOs resistance in Escherichia coli, 6 strains selected by QdNOs in vitro and 21 strains isolated from QdNOs-used swine farm were subjected to MIC determination and PCR amplification of oqxA gene. A conjugative transfer was carried out to evaluate the transfer risk of QdNOs resistant determinant. Furthermore, the transcriptional profile of a QdNOs-resistant E. coli (79O4-2 selected in vitro with its parent strain 79-161 was assayed with a prokaryotic suppression subtractive hybridization (SSH PCR cDNA subtraction. The result showed that more than 95% (20/21 clinical isolates were oqxA positive, while all the 6 induced QdNOs-resistant strains carried no oqxA gene and exhibited low frequency of conjugation. 44 fragments were identified by SSH PCR subtraction in the QdNOs-resistant strain 79O4-2. 18 cDNAs were involved in biosynthesis of Fe-S cluster (narH, protein (rpoA, trmD, truA, glyS, ileS, rplFCX, rpsH, fusA, lipoate (lipA, lipid A (lpxC, trehalose (otsA, CTP(pyrG and others molecular. The 11 cDNAs were related to metabolism or degradation of glycolysis (gpmA and pgi and proteins (clpX, clpA, pepN and fkpB. The atpADG and ubiB genes were associated with ATP biosynthesis and electron transport chain. The pathway of the functional genes revealed that E. coli may adapt the stress generated by QdNOs or develop specific QdNOs-resistance by activation of antioxidative agents biosynthesis (lipoate and trehalose, protein biosynthesis, glycolysis and oxidative phosphorylation. This study initially reveals the possible molecular mechanism involved in the development of QdNOs-resistance in E. coli, providing with novel insights in prediction and assessment of the emergency

  19. Gentamicin nephrotoxicity: Animal experimental correlate with human pharmacovigilance outcome

    Directory of Open Access Journals (Sweden)

    Olufunsho Awodele

    2015-04-01

    Full Text Available Background: National Agency for Food and Drugs Administration and Control (NAFDAC, which is responsible for pharmacovigilance activity in Nigeria, recently withdrew injection gentamicin 280 mg, used in the management of life-threatening and multidrug-resistant infections from circulation, due to reported toxicity. Thus, this study aimed to investigate the toxicity profile of the commonly used strengths (80 mg and 280 mg of gentamicin on kidney using animal models. Methods: Animals were divided into five groups of 16 rats each. For rats of groups 1 and 2, gentamicin (1.14 mg/kg each group was administered intramuscularly twice daily for 7 and 14 days, respectively, after which eight of them were sacrificed by cervical dislocation. Blood was collected via cardiac puncture and the kidneys were carefully removed and weighed immediately. The remaining eight animals were kept for reversibility study for another 7 and 14 days, respectively. For groups 3 and 4, gentamicin (4 mg/kg each group was administered as a single daily dose for 7 and 14 days, respectively, and eight animals from the groups were subjected to reversibility study for 7 and 14 days, respectively. Group 5, the control group animals, were given 10 ml/kg distilled water for 14 days. Histopathology of the kidneys, serum creatinine levels, and antioxidant enzyme activities were investigated. Results: Significant increase (p ≤ 0.001 in the level of creatinine of rats administered 4.0 mg/kg for 14 days was observed compared with all other groups. Significant (p ≤ 0.001 elevations in the lipid peroxidation in all gentamicin-administered animals and acute tubular necrosis in most of the gentamicin-administered animals were observed. Conclusion: Toxicity profile of gentamicin on the kidneys is dependent on both dose and duration of administration. The findings justify the decision made by NAFDAC to ban the use of high-dose inj. gentamicin 280 mg in Nigeria.

  20. Biochemical aspects of the resistance to nourseothricin (streptothricin) of Escherichia coli strains.

    Science.gov (United States)

    Seltmann, G

    1989-01-01

    In most cases Escherichia coli strains phenotypically resistant against nourseothricin (streptothricin) harbour a plasmid which codes for an acetyltransferase. This enzyme transfers an acetyl group from acetyl-coenzyme A to an amino group of the beta-lysine (peptide) chain of the antibiotic, thus inactivating it. Additionally, the penetrability for nourseothricin of the cell wall is drastically reduced in a high percentage of the resistant strains. Both resistance mechanisms seem to be independent of each other.

  1. No Development of Imipenem Resistance in Pneumonia Caused by Escherichia coli

    OpenAIRE

    2015-01-01

    Background: Antibiotic resistance continues to rise due to the increased number of antibiotic prescriptions and is now a major threat to public health. In particular, there is an increase in antibiotic resistance to Escherichia coli according to the latest reports. Trial Design: This article examines, retrospectively, antibiotic resistance in patients with community- and nosocomial-acquired pneumonia caused by E coli. Methods: The data of all patients with community- and nosocomial-acquired p...

  2. Antimicrobial-Resistant Escherichia coli in Public Beach Waters in Quebec

    Directory of Open Access Journals (Sweden)

    Patricia Turgeon

    2012-01-01

    Full Text Available INTRODUCTION: Human exposure to antimicrobial-resistant bacteria may result in the transfer of resistance to commensal or pathogenic microbes present in the gastrointestinal tract, which may lead to severe health consequences and difficulties in treatment of future bacterial infections. It was hypothesized that the recreational waters from beaches represent a source of antimicrobial-resistant Escherichia coli for people engaging in water activities.

  3. Evaluation of the antimicrobian resistance of Escherichia coli isolated of healthy hens (Gallus gallus).

    OpenAIRE

    Okamoto, Adriano Sakai [UNESP; Andreatti Filho,Raphael Lucio; Baptista, Ana Angelita Sampaio [UNESP; Rocha, Ticiana Silva

    2012-01-01

    Intestinal microbiota of the chickens is composed by many species of bacteria that benefit the host in many ways during its life. When the host is submitted to inadequate treatments with antibiotics, this microbiota suffers a selection trial, becoming resistant to these drugs. It was evaluated the resistance profile of Escherichia coli isolated from intestine of healthy posture hens to the antibiotics. From 100 samples analyzed, 83 showed resistance to more than three antibiotics, and two wer...

  4. Occurrence and antimicrobial resistance of pathogenic Escherichia coli and Salmonella spp. in retail raw table eggs sold for human consumption in Enugu state, Nigeria

    Science.gov (United States)

    Okorie-Kanu, O. Josephine; Ezenduka, E. Vivienne; Okorie-Kanu, C. Onwuchokwe; Ugwu, L. Chinweokwu; Nnamani, U. John

    2016-01-01

    Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human

  5. Occurrence and antimicrobial resistance of pathogenic Escherichia coli and Salmonella spp. in retail raw table eggs sold for human consumption in Enugu state, Nigeria

    Directory of Open Access Journals (Sweden)

    O. Josephine Okorie-Kanu

    2016-11-01

    Full Text Available Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample were collected from five selected farms (13 composite samples from the farms and 10 retail outlets (55 composite samples from the retail outlets in the study area over a period of 4-month (March-June, 2014. The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4% and 7 (10.3% of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p0.05. The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/ trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in

  6. Molecular identification of aminoglycoside-modifying enzymes in clinical isolates of Escherichia coli resistant to amoxicillin/clavulanic acid isolated in Spain.

    Science.gov (United States)

    Fernández-Martínez, Marta; Miró, Elisenda; Ortega, Adriana; Bou, Germán; González-López, Juan José; Oliver, Antonio; Pascual, Alvaro; Cercenado, Emilia; Oteo, Jesús; Martínez-Martínez, Luis; Navarro, Ferran

    2015-08-01

    The activity of eight aminoglycosides (amikacin, apramycin, arbekacin, gentamicin, kanamycin, neomycin, netilmicin and tobramycin) against a collection of 257 amoxicillin/clavulanic acid (AMC)-resistant Escherichia coli isolates was determined by microdilution. Aminoglycoside resistance rates, the prevalence of aminoglycoside-modifying enzyme (AME) genes, the relationship between AME gene detection and resistance phenotype to aminoglycosides, and the association of AME genes with mechanisms of AMC resistance in E. coli isolates in Spain were investigated. Aminoglycoside-resistant isolates were screened for the presence of genes encoding common AMEs [aac(3)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, ant(2″)-Ia, ant(4')-IIa and aph(3')-Ia] or 16S rRNA methylases (armA, rmtB, rmtC and npmA). In total, 105 isolates (40.9%) were resistant to at least one of the aminoglycosides tested. Amikacin, apramycin and arbekacin showed better activity, with MIC90 values of 2mg/L (arbekacin) and 8mg/L (amikacin and apramycin). Kanamycin presented the highest MIC90 (128mg/L). The most common AME gene was aac(6')-Ib (36 strains; 34.3%), followed by aph(3')-Ia (31 strains; 29.5%), ant(2″)-Ia (29 strains; 27.6%) and aac(3)-IIa (23 strains; 21.9%). aac(3)-Ia, aac(3)-IVa, ant(4')-IIa and the four methylases were not detected. The ant(2″)-Ia gene was usually associated with OXA-1 [21/30; 70%], whilst 23/25 (92%) strains producing CTX-M-15 had the aac(6')-Ib gene. The most prevalent AME gene was aac(6')-Ib (18/41; 44%) in nosocomial isolates, whilst ant(2″)-Ia and aph(3')-Ia genes (20/64; 31%) were more frequent in strains of community origin. In 64.6% isolates the phenotypic profile correlated with the presence of commonly encountered AMEs.

  7. In vitro release and antibacterial activity of poly(oleic/linoleic acid dimer:sebacic acid)-gentamicin

    Institute of Scientific and Technical Information of China (English)

    YANGXiu-Fen; ZHOUZhi-Bin; 等

    2003-01-01

    AIM:To investigate whether poly(oleic/linoleic acid dimer:sebacic acid)-getamicin[Poly(OAD/LOAD:SA)-gentamicin]delivery system was useful to treat chronic osteomyelitis.METHODS:Drug delivery system consisted of gentamicin sufate dispersed in a copolymer containing oleic/linoleic acid dimer(OAD/LOAD)and sebacic acid(SA)in a 1:1 weight ration.The gentamicin releast from[Poly(OAD/LOAD:SA)-gentamicin]was tested in water 0.9% saline,and phosphate buffer 0.1mol/L,RESULTS:The gentamicin concentration peak was found on d2,then slowly decreased.considerable amout of gentamicin was still released on d 50.From d 2 o d 50,the gentamicin concentration in the releasing fluids was from 59 to 42128-fold and 1.8 to 1314-fold of the MIC for Staphylococcus aureus and Escherichia coli,respectively.Staphylococcus aureus and Escherichia coli were strongly inhibited by the releasing fluids for 50d.The gentamicin release and anti-bacterial activity in the three media were similar.only in 0.1mol/L phosphate buffer,from d 2 to 14 it was lower.CONCLUSION:Poly(OAD/LOAD:SA)-gentamicin was useful to treat chronic osteomyelitis.

  8. A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses

    Directory of Open Access Journals (Sweden)

    D Neut

    2015-01-01

    Full Text Available A degradable, poly (lactic-co-glycolic acid (PLGA, gentamicin-loaded prophylactic coating for hydroxyapatite (HA-coated cementless hip prostheses is developed with similar antibacterial efficacy as offered by gentamicin-loaded cements for fixing traditional, cemented prostheses in bone. We describe the development pathway, from in vitro investigation of antibiotic release and antibacterial properties of this PLGA-gentamicin-HA-coating in different in vitro models to an evaluation of its efficacy in preventing implant-related infection in rabbits. Bone in-growth in the absence and presence of the coating was investigated in a canine model. The PLGA-gentamicin-HA-coating showed high-burst release, with antibacterial efficacy in agar-assays completely disappearing after 4 days, minimising risk of inducing antibiotic resistance. Gentamicin-sensitive and gentamicin-resistant staphylococci were killed by the antibiotic-loaded coating, in a simulated prosthesis-related interfacial gap. PLGA-gentamicin-HA-coatings prevented growth of bioluminescent staphylococci around a miniature-stem mounted in bacterially contaminated agar, as observed using bio-optical imaging. PLGA-gentamicin-HA-coated pins inserted in bacterially contaminated medullary canals in rabbits caused a statistically significant reduction in infection rates compared to HA-coated pins without gentamicin. Bone ingrowth to PLGA-gentamicin-HA-coated pins, in condylar defects of Beagle dogs was not impaired by the presence of the degradable, gentamicin-loaded coating. In conclusion, the PLGA-gentamicin-HA-coating constitutes an effective strategy for infection prophylaxis in cementless prostheses.

  9. Contamination rates and antimicrobial resistance in Enterococcus spp., Escherichia coli, and Salmonella isolated from "no antibiotics added"-labeled chicken products.

    Science.gov (United States)

    Zhang, Jiayi; Massow, Amanda; Stanley, Megan; Papariella, Melanie; Chen, Xi; Kraft, Brittany; Ebner, Paul

    2011-11-01

    In the United States, products from chickens that were not administered antimicrobial medications during growout can contain labels stating "no antibiotics added." Here we compared microbial profiles of chicken products labeled as coming from birds raised without antimicrobial medications (N=201; NON) with chicken products carrying conventional labels (N=201; CONV). There were no differences in percentages of samples positive for Enterococcus spp. (CONV: 17.4%; NON: 21.3%) or Escherichia coli (CONV: 25.9%; NON: 22.3%). The number of samples positive for Salmonella was low in both groups, but statistically higher in the NON samples (5.0%) versus CONV samples (1.5%; p<0.05). Conversely, CONV samples contained higher concentrations of coliforms (CONV: 3.0 log(10)CFU/mL; NON: 2.5 log(10)CFU/mL; p<0.05). E. coli (N=190) and Enterococcus spp. isolates (N=113) were tested for resistance to common antimicrobials. E. coli isolates from CONV samples were more frequently resistant to at least one antimicrobial (CONV: 61.3%; NON: 41.2%; p<0.05). Enterococcus spp. isolates from both groups were equally likely to be resistant to at least one antimicrobial, but Enterococcus spp. isolates from CONV samples were more likely to be resistant to erythromycin, kanamycin, and gentamicin (p<0.05). Taken together, these data suggest that NON samples may more frequently carry Salmonella; however, E. coli and Enterococcus spp. found on CONV are more likely to be resistant to some antimicrobials.

  10. TRENDS IN ANTIMICROBIAL RESISTANCE AMONG UROPATHOGENS WITH SPECIAL REFERENCE TO ESCHERICHIA COLI IN COMMUNITY ACQUIRED PEDIATRIC URINARY TRACT INFECTIONS FROM KERALA

    Directory of Open Access Journals (Sweden)

    Nisha

    2015-07-01

    Full Text Available CONTEXT: Resistance of uropathogens to commonly used antibiotics is increasingly reported from India in adults. There is little data on resistance patterns in childhood community acquired urinary tract infections (UTI. AIMS: To study antibiotic resistanc e trends of uropathogens isolated in community acquired UTI in children from a geographic area. SETTINGS AND DESIGN: Prospective study conducted in a northern Kerala tertiary pediatric centre between November 2012 and October 2014. METHODS : Urine samples were obtained by clean catch midstream, bladder catheterization or supra - pubic aspiration. Bacterial growth, when significant were identified by standard biochemical reactions with antibiogram by Kirby Bauers disc diffusion method. STATISTICAL ANALYSIS : P roportions were calculated and statistical significance obtained by Chi - square. RESULTS : Of the 1387 cultures with suspected community acquired UTI, 274 (19.75% were positive. Mean age of study group was 28.52 months and 64.6% were boys. Escherichia coli (E.coli was the predominant pathogen [189(69%] followed by Klebsiella 50(18.2%. Citrobacter, Enterococcus, Proteus and Pseudomonas constituted less than 6%. All urinary isolates showed high combined resistance to most commonly used antimicrobials inclu ding beta - lactam antibiotics (84.3% to cefotaxime, 83.2% to cefixime, 74.5% to ampicillin, quinolones (54.2% to ciprofloxacin, 46.4% to norfloxacin, 32.8% to levofloxacin, 52.9% to co - trimoxazole, 30.2% to gentamicin, 24.1% to nitrofurantoin and 14.2% to netilmicin. E.coli was highly resistant tocephalosporins and ampicillin (>80%. CONCLUSIONS: There is increasing resistance amongst E.coli coli and Klebsiella to third generation cephalosporins in pediatric age group. It is important to generate regional data on antibiogram pattern to guide therapy.

  11. Resistencia a antimicrobianos en aislamientos de Escherichia coli de origen animal Antimicrobial resistance of Escherichia coli isolated from animals

    Directory of Open Access Journals (Sweden)

    G. Carloni

    2011-12-01

    Full Text Available Se determinó el perfil de susceptibilidad a antimicrobianos de 100 aislamientos de E.coli provenientes de diversas patologías en bovinos, equinos, caninos y felinos, siguiendo metodología del Clinical and Laboratory Standards Institute y detectando la aparición de aislamientos multiresistentes. El panel de antibióticos ensayados incluyó amicacina, ampicilina/sulbactama, cefotaxima, ciprofloxacina, cloranfenicol, colistina, estreptomicina, gentamicina, nitrofurantoína, tetraciclina, trimetoprima/ sulfametoxazol. El mayor porcentaje de resistencia (R se detectó frente a tetraciclina en aislamientos de todas las especies animales (entre 34% en los de origen felino y 75% de origen equino. En las cepas de origen canino y felino se encontraron porcentajes considerables frente ampicilina/ sulbactama (27% de caninos y 53% de felinos y ante ciprofloxacina (30% y 67% respectivamente. En estos aislamientos también, se detectó el mayor porcentaje de multiresistencia (29% en caninos y 67% en felinos. La presión selectiva originada por la aplicación inadecuada de antibióticos puede resultar un factor, aunque no el único, responsable de la aparición de R. Además existe la posibilidad de que E.coli pueda constituirse en un eslabón de transmisión de genes de R a antimicrobianos, aunque no se conoce hasta el momento, el origen de ellos, humano o animal y, su permanencia en el tiempo.Antimicrobial susceptibility tests were determined in 100 isolates of E.coli from differents patologies in cattle, horses, dogs and cats, according to Clinical and Laboratory Standards Institute. Multiresistance isolates were detected in this assay. The antibiotics selected were amikacin, ampicillin /sulbactam, cefotaxime, ciprofloxacin, chloramphenicol, colistin, gentamicin, nitrofurantoin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole. The antibiotic with the highest resistance was tetracycline (34% in cats and 75% in dogs. In isolated strains from dogs

  12. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  13. [A rare mechanism of resistance to colistin in Escherichia coli isolated from raw poultry meat].

    Science.gov (United States)

    Karpíšková, Renáta; Koláčková, Ivana; Gelbíčová, Tereza; Zobaníková, Marie

    2017-06-01

    Plasmid-mediated resistance to colistin is a recently described phenomenon. The study reports this new type of colistin resistance in food isolates of Escherichia coli in the Czech Republic. Strains with phenotypically determined colistin resistance were studied for presence of the mcr-1 and mcr-2 genes. A positive finding of E. coli harboring the mcr-1 gene was confirmed in a sample of raw minced turkey meat imported from Poland. Two different strains of E. coli carrying the mcr-1 gene were detected in the same sample. This is the first reported case of this type of resistance in E. coli strains isolated from foods at retail in the Czech Republic.

  14. Occurrence of carbapenem-resistant Escherichia coli from ...

    Science.gov (United States)

    E. coli isolates from primary and secondary effluents collected from seven WWTPs between 2003 and 2004 were recovered and then screened using one of four antibiotics (trimethoprim-sulfamethoxazole, ampicillin, tetracycline, and trimethoprim). We now report on the testing of a subset of these isolates to determine whether they met the Centers for Disease Control and Prevention (CDC) 2012 CRE definition (intermediate or full resistance to one or more carbapenem antibiotics (imipenem) and resistant to at least two extended-spectrum cephalosporins (cefotaxime, ceftazidime)) or the updated CDC 2015 definition (resistant to a carbapenem antibiotic or producing a carbapenemase). Based on minimum inhibitory concentrations (MICs), isolates classified as nonsusceptible to imipenem or resistant to the two cephalosporin antibiotics or resistant to a fluoroquinolone (ciprofloxacin) were used for PCR assays targeting nine carbapenemase and extended-spectrum -lactamase (ESBL) genes. Of the 500 antibiotic-resistant E. coli isolates tested, the most prevalent resistance was to cefotaxime (3.6%), followed by ciprofloxacin (2.6%), ceftazidime (2.2%) and imipenem (1.8%). Six (1.2%) isolates were nonsusceptible to imipenem, and resistant to cefotaxime and ceftazidime, meeting the CDC 2012 CRE definition. According to the CDC’s updated definition, eight (1.6%) isolates were CRE with full resistance to imipenem; only two of these eight isolates were also determined to be CRE acco

  15. OCCURRENCE OF ANTIBIOTIC-RESISTANT UROPATHOGENIC ESCHERICHIA COLI CLONAL GROUP A IN WASTEWATER EFFLUENTS

    Science.gov (United States)

    Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. ...

  16. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Science.gov (United States)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  17. OCCURRENCE OF ANTIBIOTIC-RESISTANT UROPATHOGENIC ESCHERICHIA COLI CLONAL GROUP A IN WASTEWATER EFFLUENTS

    Science.gov (United States)

    Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. ...

  18. Hospitalization, a risk factor for antibiotic-resistant Escherichia coli in the community?

    NARCIS (Netherlands)

    Bruinsma, N; Filius, PMG; van den Bogaard, AE; Nys, S; Degener, J; Endtz, HP; Stobberingh, EE

    2003-01-01

    Objective: The impact of hospitalization on the prevalence of resistant Escherichia coli in the intestinal flora of patients admitted to the surgical wards of three Dutch university-affiliated hospitals was analysed prospectively. Methods: Faecal samples were obtained on admission to the hospital, a

  19. Evaluation of Eight Different Cephalosporins for Detection of Cephalosporin Resistance in Salmonella enterica and Escherichia coli

    NARCIS (Netherlands)

    Aarestrup, F.M.; Hasman, H.; Veldman, K.T.; Mevius, D.J.

    2010-01-01

    This study evaluates the efficacy of eight different cephalosporins for detection of cephalosporin resistance mediated by extended spectrum beta-lactamases (ESBL) and plasmidic AmpC beta-lactamases in Salmonella and Escherichia coli. A total of 138 E. coli and 86 Salmonella isolates with known beta-

  20. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, J.A.; Vernooij, J.C.M.; Mevius, D.J.

    2014-01-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for the

  1. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels;

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  2. Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands

    NARCIS (Netherlands)

    Veldman, K.T.; Tulden, P.; Kant, A.; Testerink, J.J.; Mevius, D.J.

    2013-01-01

    Cloacal swabs from carcasses of Dutch wild birds obtained in 2010 and 2011 were selectively cultured on media with cefotaxime to screen for the presence of extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli. Subsequently, all cefotaxime-resistant E. coli isolates were tested by

  3. Colonization with Extraintestinal Pathogenic Escherichia coli among Nursing Home Residents and Its Relationship to Fluoroquinolone Resistance

    Science.gov (United States)

    Maslow, Joel N.; Lautenbach, Ebbing; Glaze, Thomas; Bilker, Warren; Johnson, James R.

    2004-01-01

    In a cross-sectional fecal prevalence survey involving 49 residents of a Veterans Affairs nursing home, 59% of subjects were colonized with extraintestinal pathogenic Escherichia coli (ExPEC), 22% were colonized with adhesin-positive E. coli, and 51% were colonized with fluoroquinolone-resistant E. coli. Among 80 unique isolates, adhesins correlated negatively and aerobactin correlated positively with fluoroquinolone resistance. PMID:15328142

  4. Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr-1 in Vietnam.

    Science.gov (United States)

    Tada, Tatsuya; Nhung, Pham Hong; Shimada, Kayo; Tsuchiya, Mitsuhiro; Phuong, Doan Mai; Anh, Nguyen Quoc; Ohmagari, Norio; Kirikae, Teruo

    2017-07-10

    The mcr-1 was first detected on a plasmid in colistin-resistant Escherichia coli from livestock and patients in China. We described here the emergence of colistin-resistant E. coli clinical isolates harboring mcr-1 on the chromosomes in Vietnam. To our knowledge, this is the first report of hospital-acquired E. coli isolates harboring mcr-1 in a medical setting in Vietnam. Copyright © 2017. Published by Elsevier Ltd.

  5. Emergence of a colistin-resistant Escherichia coli clinical isolate harboring mcr-1 in Japan.

    Science.gov (United States)

    Tada, Tatsuya; Uechi, Kohei; Nakasone, Isamu; Shimada, Kayo; Nakamatsu, Masashi; Kirikae, Teruo; Fujita, Jiro

    2017-08-02

    The mcr-1 is a gene encoding a phosphoethanolamine transferase, which confers resistance to colistin by transferring phosphoethanolamine to lipid A. We describe here the emergence of a colistin-resistant Escherichia coli clinical isolate harboring plasmid-mediated mcr-1 in Japan. The isolate belonged to ST5702 and is suspected to come from livestock and transmitted to human. This is the first report of a clinical isolate harboring mcr-1 in Japan. Copyright © 2017. Published by Elsevier Ltd.

  6. Wastewater as a Source of Carbapenem Resistant Escherichia coli

    Science.gov (United States)

    Clinical studies have reported that the occurrence of carbapenem resistant E. coli is on the rise. This is of concern because carbapenem antibiotics are typically reserved for treating infections caused by bacteria resistant to other classes of antibiotics. Current literature st...

  7. Antimicrobial resistance in commensal faecal Escherichia coli of hospitalised horses

    Directory of Open Access Journals (Sweden)

    Bryan Jill

    2010-06-01

    Full Text Available Abstract The objective of this study was to examine the impact of hospitalisation and antimicrobial drug administration on the prevalence of resistance in commensal faecal E. coli of horses. Faecal samples were collected from ten hospitalised horses treated with antimicrobials, ten hospitalised horses not treated with antimicrobials and nine non-hospitalised horses over a consecutive five day period and susceptibility testing was performed on isolated E. coli. Results revealed that hospitalisation alone was associated with increased prevalence of antimicrobial resistance and multidrug resistance in commensal E. coli of horses. Due to the risk of transfer of resistance between commensal and pathogenic bacteria, veterinarians need to be aware of possible resistance in commensal bacteria when treating hospitalised horses.

  8. Recovery of Cephalosporin Resistant Escherichia coli and Salmonella from Pork, Beef and Chicken Marketed in Nova Scotia

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    2004-01-01

    Full Text Available BACKGROUND: Antimicrobial use in farm animals is a potentially important contributor to the emergence of antimicrobial resistance. Resistant Salmonella may lead to serious human infections and resistant Escherichia coli may transfer plasmid-encoded resistance genes to other pathogens.

  9. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

    OpenAIRE

    Bibi Sedigheh Fazly Bazzaz; Sahar Sarabandi; Bahman Khameneh; Hossein Hosseinzadeh

    2016-01-01

    Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in com...

  10. A prospective study of gentamicin ototoxicity

    DEFF Research Database (Denmark)

    Winkel, O; Hansen, M M; Kaaber-Bühler, Søren;

    1978-01-01

    Twenty patients were included in a prospective otoneurological study performed to assess the ototoxicity in gentamicin therapy. Gentamicin was administered intravenously, and the serum level was currently determined. Audiographic and electronystagmographic studies were carried out at the institut...

  11. Gentamicin in vitro activity and tentative gentamicin interpretation criteria for the CLSI and calibrated dichotomous sensitivity disc diffusion methods for Neisseria gonorrhoeae.

    Science.gov (United States)

    Bala, Manju; Singh, Vikram; Philipova, Ivva; Bhargava, Aradhana; Chandra Joshi, Naveen; Unemo, Magnus

    2016-07-01

    XDR Neisseria gonorrhoeae imposes the threat of untreatable gonorrhoea. Gentamicin is considered for future treatment; however, no interpretation criteria for the CLSI and calibrated dichotomous sensitivity (CDS) disc diffusion (DD) techniques are available for N. gonorrhoeae. We investigated the in vitro gentamicin activity by MIC and DD methods, proposed DD breakpoints and determined DD ranges for 10 international quality control (QC) strains. Gentamicin susceptibility of 333 N. gonorrhoeae isolates, including 323 clinical isolates and 10 QC strains, was determined. MIC determination (Etest) and DD methods (CLSI and CDS) were performed. The relationship between MIC, inhibition zone diameter and annular radius was determined by linear regression analysis and the correlation coefficient (r) was calculated. Gentamicin MICs for the QC strains were within published ranges. Of the 323 clinical isolates, according to published breakpoints 75.9%, 23.5% and 0.6% were susceptible, intermediately susceptible and resistant, respectively. Based on error minimization with MICs of ≤4, 8-16 and ≥32 mg/L, breakpoints proposed are susceptible ≥16 mm, intermediately susceptible 13-15 mm and resistant ≤12 mm for the CLSI method and susceptible ≥6 mm, less susceptible 3-5 mm and resistant ≤2 mm for the CDS technique. Low resistance to gentamicin was identified and gentamicin might be a future treatment option for gonorrhoea. Tentative gentamicin zone breakpoints were defined for two DD methods and QC ranges for 10 international reference strains were established. Our findings suggest that in resource-poor settings where MIC testing is not a feasible option, the DD methods can be used to indicate gentamicin resistance. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Fluoroquinolone-resistant Escherichia coli carriage in long-term care facility.

    Science.gov (United States)

    Maslow, Joel N; Lee, Betsy; Lautenbach, Ebbing

    2005-06-01

    We conducted a cross-sectional study to determine the prevalence of, and risk factors for, colonization with fluoroquinolone (FQ)-resistant Escherichia coli in residents in a long-term care facility. FQ-resistant E. coli were identified from rectal swabs for 25 (51%) of 49 participants at study entry. On multivariable analyses, prior FQ use was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures in the previous 3, 6, 9, or 12 months. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified clonal spread of 1 strain among 16 residents. Loss (6 residents) or acquisition (7 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. Unlike the case in the hospital setting, FQ-resistant E. coli carriage in long-term care facilities is associated with clonal spread.

  13. Vegetables and Restaurant Salads as a Reservoir for Shiga Toxigenic Escherichia coli: Distribution of Virulence Factors, O-Serogroups, and Antibiotic Resistance Properties.

    Science.gov (United States)

    Shakerian, Amir; Rahimi, Ebrahim; Emad, Pardis

    2016-07-01

    Close contact of vegetables with soil, polluted water, and animal manure and unsanitary conditions during processing of restaurant salads led us to study the distribution of virulence factors, O-serogroups, and antibiotic resistance properties in Shiga toxigenic Escherichia coli (STEC) isolated from vegetables and salads. Samples of vegetables and salad (n = 420) were collected and evaluated for the presence of E. coli using culture and a PCR assay. Total prevalence of E. coli in studied samples was 49.5%. E. coli was found in 49.6% of vegetable samples and 49% of salad samples. Leek and traditional salad had the highest incidence of E. coli. Significant differences in the incidence of E. coli were found between the hot and cold seasons. Of the 149 E. coli isolates from vegetable samples, 130 (87%) were STEC, and of the 59 E. coli isolates from salad samples, 50 (84%) were STEC. The most commonly detected virulence factors were stx1 and eaeA. A significant difference was found between the frequency of the attaching and effacing and the enterohemorrhagic E. coli subtypes. Serogroups O26 (46% of isolates), O157 (14%), O121 (10%), and O128 (9%) were the most commonly detected serogroups among the STEC strains. The tetA, sul1, aac(3)-IV, dfrA1, blaSHV, and CITM antibiotic resistance genes were found in 96, 47.7, 90, 51, 27, and 93% of isolates, respectively. The highest levels of resistance were found against ampicillin (96.6% of isolates), tetracycline (87%), and gentamicin (90%). This study shows the importance of vegetables and salads as potential sources of E. coli infection.

  14. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use

    Science.gov (United States)

    2011-01-01

    Background Antibiotic resistance has necessitated fluoroquinolone use but little is known about the selective forces and resistance trajectory in malaria-endemic settings, where selection from the antimalarial chloroquine for fluoroquinolone-resistant bacteria has been proposed. Methods Antimicrobial resistance was studied in fecal Escherichia coli isolates in a Nigerian community. Quinolone-resistance determining regions of gyrA and parC were sequenced in nalidixic acid resistant strains and horizontally-transmitted quinolone-resistance genes were sought by PCR. Antimicrobial prescription practices were compared with antimicrobial resistance rates over a period spanning three decades. Results Before 2005, quinolone resistance was limited to low-level nalixidic acid resistance in fewer than 4% of E. coli isolates. In 2005, the proportion of isolates demonstrating low-level quinolone resistance due to elevated efflux increased and high-level quinolone resistance and resistance to the fluoroquinolones appeared. Fluoroquinolone resistance was attributable to single nucleotide polymorphisms in quinolone target genes gyrA and/or parC. By 2009, 35 (34.5%) of isolates were quinolone non-susceptible with nine carrying gyrA and parC SNPs and six bearing identical qnrS1 alleles. The antimalarial chloroquine was heavily used throughout the entire period but E. coli with quinolone-specific resistance mechanisms were only detected in the final half decade, immediately following the introduction of the fluoroquinolone antibacterial ciprofloxacin. Conclusions Fluoroquinolones, and not chloroquine, appear to be the selective force for fluoroquinolone-resistant fecal E. coli in this setting. Rapid evolution to resistance following fluoroquinolone introduction points the need to implement resistant containment strategies when new antibacterials are introduced into resource-poor settings with high infectious disease burdens. PMID:22060770

  15. [Verocytotoxigenic Escherichia coli--epidemiology, pathogenicity and antimicrobial resistance].

    Science.gov (United States)

    Januszkiewicz, Aleksandra

    2012-01-01

    Verocytotoxigenic E. coli (VTEC) are one of the most common foodborne pathogen in human worldwide. High pathogenic potential of these organisms makes it often the cause of international outbreaks with numerous fatalities. This study presents the current knowledge on verocytotoxigenic E. coli: pathogenicity, drug resistance as well as the epidemiology of infections.

  16. Antibiotic Resistance in Escherichia Coli Strains Isolated from Urine of Inpatients and Outpatients

    Directory of Open Access Journals (Sweden)

    Abolfazl Davoodabadi

    2012-08-01

    Full Text Available The urinary tract infections regarded as a health problem around the world and not only as an agent of nosocomial infections but also infections in the community. Community acquired UTIs cause significant illness in the first 2 years of life [1]. Urinary tract infections in both inpatient and outpatient are common and widespread use of antibiotics is often the cause of emerging one or more antibiotic-resistant microorganisms [2]. Most studies have shown higher antibiotic resistance in bacterial strains isolated from hospitalized patients than outpatients. In this study, antibiogram was performed using disk diffusion susceptibility method according to NCCLS standards of the International Committee [3]. 8 different antibiotics, including ciprofloxacin (CP: 30 μg, ceftriaxone (CRO: 30 μg, cephalotin (CF: 30 μg, cefixime (CFM: 5 μg, cotrimoxazole (SXT, nalidixic acid (NA: 30 μg, nitrofurantoin (FM: 300 μg, gentamicin (GM: 10 μg were used for antibiogram. During 1388 the total number of urine samples sent to hospital microbiology laboratories valiasr (aj of Arak was 5156, of which 446 samples (65.8% were positive for E. coli culture.

  17. Genome-wide transcriptome analysis of fluoroquinolone resistance in clinical isolates of Escherichia coli.

    Science.gov (United States)

    Yamane, Takashi; Enokida, Hideki; Hayami, Hiroshi; Kawahara, Motoshi; Nakagawa, Masayuki

    2012-04-01

    Coincident with their worldwide use, resistance to fluoroquinolones in Escherichia coli has increased. To identify the gene expression profiles underlying fluoroquinolone resistance, we carried out genome-wide transcriptome analysis of fluoroquinolone-sensitive E. coli. Four fluoroquinolone-sensitive E. coli and five fluoroquinolone-resistant E. coli clinical isolates were subjected to complementary deoxyribonucleic acid microarray analysis. Some upregulated genes' expression was verified by real-time polymerase chain reaction using 104 E. coli clinical isolates, and minimum inhibitory concentration tests were carried out by using their transformants. A total of 40 genes were significantly upregulated in fluoroquinolone-resistant E. coli isolates (P fluoroquinolone-resistant E. coli. One of the phage shock protein operons, pspC, was significantly upregulated in 50 fluoroquinolone-resistant E. coli isolates (P fluoroquinolone-resistant E. coli. Deoxyribonucleic acid adenine methyltransferase (dam), which represses type I fimbriae genes, was significantly upregulated in the clinical fluoroquinolone-resistant E. coli isolates (P = 0.007). We established pspC- and dam-expressing E. coli transformants from fluoroquinolone-sensitive E. coli, and the minimum inhibitory concentration tests showed that the transformants acquired fluoroquinolone resistance, suggesting that upregulation of these genes contributes to acquiring fluoroquinolone resistance. Upregulation of psp operones and dam underlying pilus operons downregulation might be associated with fluoroquinolone resistance in E. coli. © 2011 The Japanese Urological Association.

  18. Antimicrobial resistance of Escherichia coli isolated from chickens with colibacillosis in and around Harare, Zimbabwe.

    Science.gov (United States)

    Saidi, Bamusi; Mafirakureva, Prettimore; Mbanga, Joshua

    2013-03-01

    Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC), can lead to great economic losses in the poultry industry. The aim of this study was to determine the prevalence of antibiotic resistance and antibiotic resistance patterns in APEC in Zimbabwe. From 503 chickens diagnosed with colibacillosis, 103 E. coli isolates were obtained. Isolation and identification of E. coli were carried out using microscopy and biochemical tests. The disc diffusion method was used to determine antibiotic susceptibility of the isolates to 8 commercial antibiotics. Many isolates exhibited resistance to more than one antibiotic. Antibiogram profiles indicated maximum resistance to tetracycline (100%), bacitracin (100%), and cloxacillin (100%) and a high prevalence of resistance to ampicillin (94.1%). However; there were high prevalences of sensitivity to ciprofloxacin (100%) and gentamycin (97.1%). The isolates showed moderate rates of sensitivity to chloramphenicol and neomycin. All isolates in this study showed multidrug resistance because they were all resistant to 3 or more antibiotics. Seven multidrug resistance patterns were observed. The most common pattern (resistance to ampicillin, bacitracin, cloxacillin, and tetracycline) was exhibited by 30 isolates. Our findings show that there is emerging drug resistance in APEC associated with colibacillosis in Zimbabwe. The observed high level of multidrug resistance could hamper the treatment of colibacillosis in Zimbabwe.

  19. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli.

    Science.gov (United States)

    Huang, Jing-Jing; Hu, Hong-Ying; Wu, Yin-Hu; Wei, Bin; Lu, Yun

    2013-02-01

    Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC(50)) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC(50) of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses.

    Science.gov (United States)

    Teshager, T; Herrero, I A; Porrero, M C; Garde, J; Moreno, M A; Domínguez, L

    2000-07-01

    Antimicrobial resistance can make the efficient treatment of bacterial infections in humans and animals more difficult. Antimicrobial use in food animals may be one of the factors contributing to resistance. The Spanish surveillance network VAV has established a baseline of antimicrobial resistance in Escherichia coli strains from healthy pigs. Minimum inhibitory concentration and patterns of resistance to antimicrobials used in animals and humans were determined for 205 faecal strains isolated in a sampling frame of four slaughterhouses in Spain from 220 pigs in 1998. Higher levels of resistance were seen against antimicrobial agents authorised for use in food animals especially tetracycline, sulphonamides, trimethoprim and amoxycillin. All isolates were susceptible to antimicrobials employed mainly in humans such as ceftazidime, cefotaxime, imipenem, aztreonam and amikacin.

  1. Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs

    DEFF Research Database (Denmark)

    Gongora, Carmen Espinosa; Shah, Syed Qaswar Ali; Jessen, Lisbeth Rem

    2015-01-01

    Quantitative data on faecal shedding of antimicrobial resistant bacteria are crucial to assess the risk of transmission from dogs to other animals as well as humans. In this study we investigated prevalence and concentrations of β-lactam-resistant Escherichia coli and enterococci in the faeces...... of 108 dogs presenting at a veterinary hospital in Denmark. The dogs had not been treated with antimicrobials for 4 weeks prior to the study. Total E. coli and enterococci were quantified by counts on MacConkey and Slanetz-Bartley, respectively. Resistant E. coli and enterococci were counted on the same...... media containing relevant antibiotic concentrations, followed by species identification using MALDI-TOF. Ampicillin- and cefotaxime-resistant E. coli were detected in 40% and 8% of the dogs, respectively, whereas approximately 15% carried ampicillin-resistant enterococci, mainly Enterococcus faecium...

  2. Drug resistance and adherence to human intestines of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Yamamoto, T; Echeverria, P; Yokota, T

    1992-04-01

    Clinical isolates of enteroaggregative Escherichia coli (EAggEC) were tested for their in vitro susceptibilities to 27 antimicrobial agents. Marked drug resistance was observed with sulfamethoxazole, ampicillin, and chloramphenicol in contrast to such antimicrobial agents as cefixime, sparfloxacin, and ciprofloxacin. One of the EAggEC strains carried a plasmid that conferred on its host resistance to ampicillin, tetracycline, sulfamethoxazole, streptomycin, and spectinomycin and an ability to adhere to child ileal villi or HeLa cells in the characteristic aggregative pattern. This plasmid also mediated D-mannose-resistant hemagglutinin production and bacterial clump formation (autoagglutination). The data demonstrate appearance of marked drug resistance and an intestine-adherence and drug-resistance plasmid in the newest category of diarrheagenic E. coli.

  3. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries

    DEFF Research Database (Denmark)

    Österberg, Julia; Wingstrand, Anne; Jensen, Annette Nygaard

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance...... in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon...... in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions...

  4. Plasmid-determined resistance to fosfomycin in Serratia marcescens.

    Science.gov (United States)

    Mendoza, C; Garcia, J M; Llaneza, J; Mendez, F J; Hardisson, C; Ortiz, J M

    1980-08-01

    Multiple-antibiotic-resistant strains of Serratia marcescens isolated from hospitalized patients were examined for their ability to transfer antibiotic resistance to Escherichia coli by conjugation. Two different patterns of linked transferable resistance were found among the transconjugants. The first comprised resistance to carbenicillin, streptomycin, and fosfomycin; the second, and more common, pattern included resistance to carbenicillin, streptomycin, kanamycin, gentamicin, tetracycline, chloramphenicol, sulfonamide, and fosfomycin. The two types of transconjugant strains carried a single plasmid of either 57 or 97 megadaltons in size. Both of these plasmids are present in parental S. marcescens strains resistant to fosfomycin. The 57-megadalton plasmid was transformed into E. coli.

  5. Colistin Resistance mcr-1-Gene-Bearing Escherichia coli Strain from the United States.

    Science.gov (United States)

    Meinersmann, Richard J; Ladely, Scott R; Plumblee, Jodie R; Hall, M Carolina; Simpson, Sheron A; Ballard, Linda L; Scheffler, Brian E; Genzlinger, Linda L; Cook, Kimberly L

    2016-09-01

    Transmissible colistin resistance in the form of an mcr-1-gene-bearing plasmid has been recently reported in Enterobacteriaceae in several parts of the world. We report here the completed genome sequence of an Escherichia coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid. Copyright © 2016 Meinersmann et al.

  6. Effects of in-feed chlortetracycline prophylaxis of beef cattle on animal health and antimicrobial-resistant Escherichia coli

    Science.gov (United States)

    Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli, and third-generation cephalosporin-resistant (3GCr) E. coli. We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal h...

  7. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  8. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496

  9. An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis.

    Science.gov (United States)

    Collis, C M; Grigg, G W

    1989-01-01

    A mutant of Escherichia coli, selected for resistance to the antibiotic and antitumor agent phleomycin, has been characterized, and the phleomycin resistance determinant has been identified. The mutant is equally resistant to bleomycins. The resistance to phleomycin is strongly dependent on the nature of the C-terminal amine of the drug, with the greatest resistance being shown to phleomycins and bleomycins with the most basic terminal amines. The mutation also confers resistance to the lethal effects of heating at 52 degrees C. Other characteristics of the phleomycin-resistant strain include a slow growth rate, an inability to grow on succinate as the sole carbon source (Suc- phenotype), cross resistance to aminoglycoside antibiotics, and a slight sensitivity to hydrogen peroxide, methyl methanesulfonate, and gamma-irradiation. Some of these characteristics, together with mapping data, suggested that the phleomycin resistance and Suc- determinant probably lies within the ubiF gene coding for an enzyme effecting a step in the biosynthesis of ubiquinone. The phenotypes of known mutants defective in this and other steps of the ubiquinone pathway were found to be closely similar to those of the original phleomycin-resistant strain. PMID:2475481

  10. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Tazzyman, Samuel J; Hall, Alex R

    2015-03-17

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.

  11. Antimicrobial resistance and molecular characterization of virulence genes, phylogenetic groups of Escherichia coli isolated from diarrheic and healthy camel-calves in Tunisia.

    Science.gov (United States)

    Bessalah, Salma; Fairbrother, John Morris; Salhi, Imed; Vanier, Ghyslaine; Khorchani, Touhami; Seddik, Mouldi Mabrouk; Hammadi, Mohamed

    2016-12-01

    This study was conducted to determine the prevalence of virulence genes, serogroups, antimicrobial resistance and phylogenetic groups of Escherichia coli strains isolated from diarrheic and healthy camel calves in Tunisia. From 120 fecal samples (62 healthy and 58 diarrheic camel calves aged less than 3 months), 70 E. coli isolates (53 from diarrheic herds and 17 from healthy herds) were examined by PCR for detection of the virulence genes associated with pathogenic E. coli in animals. A significantly greater frequency of the f17 gene was observed in individual camels and in herds with diarrhea, this gene being found in 44.7% and 41.5% of isolates from camels and herds with diarrhea versus 22.5% and 11.7% in camels (p=0.05) and herds without diarrhea (p=0.02). The aida, cnf1/2, f18, stx2 and paa genes were found only in isolates from camels with diarrhea, although at a low prevalence, 1.8%, 3.7%, 1.8%, 3.7% and 11.3%, respectively. Prevalence of afa8, cdtB, eae, east1, iroN, iss, kpsMTII, paa, sfa, tsh and papC genes did not differ significantly between herds with or without diarrhea. Genes coding for faeG, fanC, f41, estI, estII, CS31a and eltA were not detected in any isolates. All isolates were sensitive to amikacin, chloramphenicol, ciprofloxacin, gentamicin and ceftiofur and the highest frequency of resistance was observed to tetracycline, and ampicillin (52.8% and 37.1% respectively). The phylogenetic groups were identified by conventional triplex PCR. Results showed that E. coli strains segregated mainly in phylogenetic group B1, 52.8% in diarrheic herds and 52.9% in healthy herds.

  12. Reduction of chlortetracycline-resistant Escherichia coli in weaned piglets fed fermented liquid feed.

    Science.gov (United States)

    Kobashi, Yuri; Ohmori, Hideyuki; Tajima, Kiyoshi; Kawashima, Tomoyuki; Uchiyama, Hiroo

    2008-10-01

    We investigated the change in chlortetracycline resistance in 360 Escherichia coli strains separated from the feces of piglets fed fermented liquid feed (FLF) in comparison with those fed dry feed (control). The total amount of lactic acid bacteria in feces was 8.77 x 10(8) CFU/g DM at weaning, which increased to 1.23 x 10(12) CFU/g DM (FLF) at 28 days after weaning (Pfeeding of FLF can possibly reduce antibiotic-resistance bacteria.

  13. u-CARE: user-friendly Comprehensive Antibiotic resistance Repository of Escherichia coli.

    Science.gov (United States)

    Saha, Saurav B; Uttam, Vishwas; Verma, Vivek

    2015-08-01

    Despite medical advancements, Escherichia coli-associated infections remain a major public health concern and although an abundant information about E. coli and its antibiotic resistance mechanisms is available, no effective tool exists that integrates gene and genomic data in context to drug resistance, thus raising a need to develop a repository that facilitates integration and assimilation of factors governing drug resistance in E. coli. User-friendly Comprehensive Antibiotic resistance Repository of Escherichia coli (u-CARE) is a manually curated catalogue of 52 antibiotics with reported resistance, 107 genes, transcription factors and single nucleotide polymorphism (SNPs) involved in multiple drug resistance of this pathogen. Each gene page provides detailed information about its resistance mechanisms, while antibiotic page consists of summary, chemical description and structural descriptors with links to external public databases like GO, CDD, DEG, Ecocyc, KEGG, Drug Bank, PubChem and UniProt. Moreover, the database integrates this reductive information to holistic data such as strain-specific and segment-specific pathogenic islands and operons. In addition, the database offers rich user interface for the visualisation and retrieval of information using various search criteria such as sequence, keyword, image and class search. u-CARE is aimed to cater to the needs of researchers working in the field of antimicrobial drug resistance with minimal knowledge of bioinformatics. This database is also intended as a guide book to medical practitioners to avoid use of antibiotics against which resistance has already been reported in E. coli. The database is available from: http://www.e-bioinformatics.net/ucare. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014-2015).

    Science.gov (United States)

    Brand, P; Gobeli, S; Perreten, V

    2017-07-01

    A total of 131 porcine E. coli were isolated in 2014 and 2015 from the gut of 115 pigs raised in Switzerland and suffering from diarrhea. The isolates were tested for antibiotic resistance, serotypes, virulence factors and genetic diversity. Serotypes were assigned by agglutination tests and virulence genes were identified by polymerase chain reaction (PCR). Antibiotic resistance profile was determined by the measurement of the MIC of 14 antibiotics and by the detection of the corresponding genes using microarray and PCR approaches. Genetic diversity was determined by repetitive palindromic PCR (rep- PCR) revealing a heterogenous population. Half of the E. coli isolates possessing virulence factors could not be assigned to any of the 19 serotypes tested, but contained toxins and adhesins similarly to the sero-typable E. coli isolates. The most prevalent E. coli serotypes found were K88ac (18%), O139:K82 (6%), O141:K85ac (5%), O108:K`V189` (5%), O119:K`V113` (3%) and O157:K`V17` (2%). The combination of toxins EAST-1, STb and LT-I and adhesin F4 characterizing ETEC was the most frequent. The shigatoxin Stx2e (STEC) and intimin Eae (EPEC) were also detected, but less frequently. Seventy percent of the isolates were resistant to at least one antibiotic and 29% were resistant to more than 3 antibiotics. Isolates exhibited resistance to tetracycline (50%) associated to resistance genes tet(A), tet(B) and tet(C), sulfamethoxazole (49%) [sul1, sul2 and sul3], trimethoprim (34%) [dfr], nalidixic acid (29%), ampicillin (26%) [blaTEM-1], gentamicin (17%) [aac(3) -IIc, aac(3) -IVa and aac(3) -VIa], chloramphenicol (17%) [catAI and catAIII], and ciprofloxacin (8%) [mutations in GyrA (S83L) and ParC (S80I)]. All isolates were susceptible to 3rd generation cephalosporins, carbapenems, colistin and tigecycline. Pathogenic E. coli isolates from pigs in Switzerland could frequently not be assigned to a known serotype even if they contained diarrhea-causing virulence factors. They

  15. Diversity of Mercury Resistant Escherichia coli Strains Isolated from Aquatic Systems in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Raquel Costa de Luca Rebello

    2013-01-01

    Full Text Available Escherichia coli may harbor genetic mercury resistance markers which makes this bacterial species a promising alternative for bioremediation processes. The objective of this study was to investigate phenotypic and genetic characteristics related to diversity and mercury resistance among 178 Escherichia coli strains isolated from residential, industrial, agricultural, and hospital wastewaters and recreational waters at Rio de Janeiro city. Genetic and conventional methods were carried out in order to determine mercury resistance. Random amplification of polymorphic DNA (RAPD-PCR and denaturing gradient gel electrophoresis (DGGE were used to investigate genetic variability. RAPD data revealed a high degree of polymorphism among E. coli mercury resistant strains and showed reproducibility and good discriminative results. DGGE typing detected diversity within the merA gene fragment. Our findings represent an improvement in epidemiological studies of HgR  E. coli and support the evidence of nonclonal nature of mercury resistant E. coli strains circulating in rural and urban aquatic systems in Rio de Janeiro city.

  16. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans

    Science.gov (United States)

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-01-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. PMID:26613786

  17. Molecular mechanisms of antibiotic resistance in diarrhoeagenic Escherichia coli isolated from children.

    Science.gov (United States)

    Mosquito, Susan; Ruiz, Joaquim; Pons, María J; Durand, David; Barletta, Francesca; Ochoa, Theresa J

    2012-12-01

    Diarrhoeagenic Escherichia coli (DEC) are an important cause of diarrhoea in children and are associated with high antibiotic resistance. However, there are few studies on the molecular mechanisms of resistance in this group of bacteria. The aim of this study was to determine the mechanisms associated with antibiotic resistance in the most common phenotypes of DEC. A total of 369 E. coli strains [commensal strains and DEC from children with ('DEC-diarrhoea') or without ('DEC-control') diarrhoea] isolated from children aged resistant strains (36 commensals, 33 DEC-control and 85 DEC-diarrhoea) were studied by PCR for the most prevalent resistance mechanisms to ampicillin, trimethoprim/sulfamethoxazole (SXT), tetracycline and chloramphenicol as well as for integrase types 1 and 2. In addition, restriction fragment length polymorphism was performed for SXT-resistant strains. Commensal strains were more frequently resistant to nalidixic acid and ciprofloxacin (68% and 28%, respectively) than DEC strains (23% and 2%, respectively) (Presistant (78%) compared with DEC-control strains (65%) and commensal strains (60%) (Pmechanisms of antibiotic resistance in DEC strains were: for β-lactams, bla(TEM) (31%; 37/118); for SXT, sul2 (48%; 49/103); for tetracycline, tetA (27%; 23/84); and for chloramphenicol, cat (80%; 28/35). The genes sul1 and dfrA1, related to SXT resistance, were more frequent in the DEC-diarrhoea group (41% and 28%, respectively) than in the other two groups (Presistance genes in DEC, including symptomatic strains.

  18. Introduction of quinolone resistant Escherichia coli to Swedish broiler population by imported breeding animals.

    Science.gov (United States)

    Börjesson, Stefan; Guillard, Thomas; Landén, Annica; Bengtsson, Björn; Nilsson, Oskar

    2016-10-15

    During recent years a rapid increase of quinolone resistant Escherichia coli have been noted in the Swedish broiler population, despite the lack of a known selective pressure. The current study wanted to investigate if imported breeding birds could be a source for the quinolone resistant E. coli. The occurrence of quinolone resistant E. coli was investigated, using selective cultivation with nalidixic acid, in grand-parent birds on arrival to Sweden and their progeny. In addition, sampling in hatcheries and empty cleaned poultry houses was performed. Clonality of isolates was investigated using a 10-loci multiple-locus variable number tandem repeat analysis (MLVA). To identify the genetic basis for the resistance isolates were also analysed for occurrence of plasmid-mediated quinolone resistance (PMQR) determinants and characterization of chromosomal mutations. E. coli resistant to nalidixic acid occurred in grandparent birds imported to Sweden for breeding purposes. Four predominant MLVA types were identified in isolates from grandparent birds, parent birds and broilers. However, resistant E. coli with identical MLVA patterns were also present in hatcheries and poultry houses suggesting that the environment plays a role in the occurrence. Nalidixic acid resistance was due to a mutation in the gyrA gene and no PMQR could be identified. The occurrence of identical clones in all levels of the production pyramid points to that quinolone resistant E. coli can be introduced through imported breeding birds and spread by vertical transmission to all levels of the broiler production pyramid.

  19. Intracellular polyamine pools, oligopeptide-binding protein A expression, and resistance to aminoglycosides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maria BR Acosta

    2005-11-01

    Full Text Available The role of intracellular free polyamine (putrescine and spermidine pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA levels and/or defective ornithine decarboxylase (ODC activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.

  20. Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador.

    Science.gov (United States)

    Ortega-Paredes, D; Barba, P; Zurita, J

    2016-10-01

    Colistin resistance mediated by the mcr-1 gene has been reported worldwide, but to date not from the Andean region, South America. We report the first clinical isolate of Escherichia coli harbouring the mcr-1 gene in Ecuador. The strain was isolated from peritoneal fluid from a 14-year-old male with acute appendicitis, and subjected to molecular analysis. The minimum inhibitory concentration of colistin for the strain was 8 mg/ml and it was susceptible to carbapenems but resistant to tigecycline. The strain harboured mcr-1 and bla CTX-M-55 genes and was of sequence type 609. The recognition of an apparently commensal strain of E. coli harbouring mcr-1 serves as an alert to the presence in the region of this recently described resistance mechanism to one of the last line of drugs available for the treatment of multi-resistant Gram-negative infections.

  1. Antimicrobial resistance of ESBLand AmpC-producing Escherichia coli isolated from meat

    Directory of Open Access Journals (Sweden)

    Wasiński Bernard

    2014-12-01

    Full Text Available In the present study, 25 Escherichia coli strains isolated from beef, pork, and poultry meat, and producing extendedspectrum β-lactamases (ESBL (18 strains or AmpC- cephalosporinases (7 strains were tested for antimicrobial resistance using the minimum inhibitory concentration method with 16 antimicrobial agents. All examined strains were resistant to ampicillin and the first-generation cephalosporins. Variable resistance to the third-generation cephalosporins (40%-100% among ESBLproducing strains and 0-72% among AmpC-producing strains was noted. Less than 30% of examined strains were resistant to ciprofloxacin. All isolates were susceptible to the fourth-generation cephalosporins, cephalosporins connected with inhibitors of β-lactamases, carbapenems, and gentamycin

  2. Monitoring and Analysis on Multi Drug Resistance of Escherichia coli from Captive Population Amur Tiger

    Institute of Scientific and Technical Information of China (English)

    Xue; Yuan; Li; Fengyong; Sun; Jing; Cai; Longhui; Wu; Qingming; Zhou; Ming; Huang; Xianguang; Hua; Yuping

    2014-01-01

    In order to investigate the multi drug resistance to Escherichia coli from captive population Amur tiger,E. coli strains were isolated from the fecal samples of tiger in Heilongjiang Amur Tiger Park in Harbin. The sensitivity of E. coli isolates to 14 antibiotics was determined by scrip diffusion method. The results indicated that all the isolates varied in drug resistance to different antibiotics; the isolates gave high resistance to ampicillin,with a drug fast rate of 100%; over80% of the isolates were resistant to tetracycline and Paediatric Compound Sulfamethoxazole Tablets(SMZ- TMP),and over 70% of the isolates were sensitive to aztreonam,amoxicillin /potassium clavulanate. Most of the isolates had high sensitive to aztreonam and amoxicillin / clavulanate acid.

  3. Multirresistência antimicrobiana em cepas de Escherichia coli isoladas de cadelas com piometra Antimicrobial multi-resistance of Escherichia coli strains isolated from bitches with pyometra

    Directory of Open Access Journals (Sweden)

    V.M. Lara

    2008-08-01

    Full Text Available The antimicrobial sensibility of Escherichia coli strains isolated from the uterine content of bitches was evaluated. Fifteen E. coli strains were tested in relation to their susceptibility to different antimicrobials. The results demonstrated 100% of resistance to all tested drugs, being a quite conflicting finding compared to other works, which observed variable resistance of those bacteria to different antimicrobials but not the same multi-resistance pattern. The detection of those multi-resistance strains configures a problem, with important implications on the antimicrobial therapy. Therefore, additional investigations for a best characterization and extension of this problem are needed.

  4. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations

    Science.gov (United States)

    Blyton, Michaela D. J.; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J.; Johnson, James R.

    2015-01-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed. PMID:26002899

  5. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Singh, Renu; Swick, Michelle C; Ledesma, Kimberly R; Yang, Zhen; Hu, Ming; Zechiedrich, Lynn; Tam, Vincent H

    2012-04-01

    The emergence of resistance presents a debilitating change in the management of infectious diseases. Currently, the temporal relationship and interplay between various mechanisms of drug resistance are not well understood. A thorough understanding of the resistance development process is needed to facilitate rational design of countermeasure strategies. Using an in vitro hollow-fiber infection model that simulates human drug treatment, we examined the appearance of efflux pump (acrAB) overexpression and target topoisomerase gene (gyrA and parC) mutations over time in the emergence of quinolone resistance in Escherichia coli. Drug-resistant isolates recovered early (24 h) had 2- to 8-fold elevation in the MIC due to acrAB overexpression, but no point mutations were noted. In contrast, high-level (≥ 64× MIC) resistant isolates with target site mutations (gyrA S83L with or without parC E84K) were selected more readily after 120 h, and regression of acrAB overexpression was observed at 240 h. Using a similar dosing selection pressure, the emergence of levofloxacin resistance was delayed in a strain with acrAB deleted compared to the isogenic parent. The role of efflux pumps in bacterial resistance development may have been underappreciated. Our data revealed the interplay between two mechanisms of quinolone resistance and provided a new mechanistic framework in the development of high-level resistance. Early low-level levofloxacin resistance conferred by acrAB overexpression preceded and facilitated high-level resistance development mediated by target site mutation(s). If this interpretation is correct, then these findings represent a paradigm shift in the way quinolone resistance is thought to develop.

  6. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter

    Science.gov (United States)

    Wasyl, Dariusz; Hoszowski, Andrzej; Zając, Magdalena; Szulowski, Krzysztof

    2013-01-01

    Monitoring of antimicrobial resistance in commensal Escherichia coli (N = 3430) isolated from slaughtered broilers, laying hens, turkeys, swine, and cattle in Poland has been run between 2009 and 2012. Based on minimal inhibitory concentration (MIC) microbiological resistance to each of 14 tested antimicrobials was found reaching the highest values for tetracycline (43.3%), ampicillin (42.3%), and ciprofloxacin (39.0%) whereas the lowest for colistin (0.9%), cephalosporins (3.6 ÷ 3.8%), and florfenicol (3.8%). The highest prevalence of resistance was noted in broiler and turkey isolates, whereas it was rare in cattle. That finding along with resistance patterns specific to isolation source might reflect antimicrobial consumption, usage preferences or management practices in specific animals. Regression analysis has identified changes in prevalence of microbiological resistance and shifts of MIC values. Critically important fluoroquinolone resistance was worrisome in poultry isolates, but did not change over the study period. The difference (4.7%) between resistance to ciprofloxacin and nalidixic acid indicated the scale of plasmid-mediated quinolone resistance. Cephalosporin resistance were found in less than 3.8% of the isolates but an increasing trends were observed in poultry and MIC shift in the ones from cattle. Gentamycin resistance was also increasing in E. coli of turkey and cattle origin although prevalence of streptomycin resistance in laying hens decreased considerably. Simultaneously, decreasing MIC for phenicols observed in cattle and layers isolates as well as tetracycline values in E. coli from laying hens prove that antimicrobial resistance is multivariable phenomenon not only directly related to antimicrobial usage. Further studies should elucidate the scope of commensal E. coli as reservoirs of resistance genes, their spread and possible threats for human and animal health. PMID:23935596

  7. Temporal Interplay between Efflux Pumps and Target Mutations in Development of Antibiotic Resistance in Escherichia coli

    Science.gov (United States)

    Singh, Renu; Swick, Michelle C.; Ledesma, Kimberly R.; Yang, Zhen; Hu, Ming; Zechiedrich, Lynn

    2012-01-01

    The emergence of resistance presents a debilitating change in the management of infectious diseases. Currently, the temporal relationship and interplay between various mechanisms of drug resistance are not well understood. A thorough understanding of the resistance development process is needed to facilitate rational design of countermeasure strategies. Using an in vitro hollow-fiber infection model that simulates human drug treatment, we examined the appearance of efflux pump (acrAB) overexpression and target topoisomerase gene (gyrA and parC) mutations over time in the emergence of quinolone resistance in Escherichia coli. Drug-resistant isolates recovered early (24 h) had 2- to 8-fold elevation in the MIC due to acrAB overexpression, but no point mutations were noted. In contrast, high-level (≥64× MIC) resistant isolates with target site mutations (gyrA S83L with or without parC E84K) were selected more readily after 120 h, and regression of acrAB overexpression was observed at 240 h. Using a similar dosing selection pressure, the emergence of levofloxacin resistance was delayed in a strain with acrAB deleted compared to the isogenic parent. The role of efflux pumps in bacterial resistance development may have been underappreciated. Our data revealed the interplay between two mechanisms of quinolone resistance and provided a new mechanistic framework in the development of high-level resistance. Early low-level levofloxacin resistance conferred by acrAB overexpression preceded and facilitated high-level resistance development mediated by target site mutation(s). If this interpretation is correct, then these findings represent a paradigm shift in the way quinolone resistance is thought to develop. PMID:22232279

  8. High prevalence of antibiotic resistance in commensal Escherichia coli among children in rural Vietnam

    Directory of Open Access Journals (Sweden)

    Dyar Oliver

    2012-04-01

    Full Text Available Abstract Background Commensal bacteria represent an important reservoir of antibiotic resistance genes. Few community-based studies of antibiotic resistance in commensal bacteria have been conducted in Southeast Asia. We investigated the prevalence of resistance in commensal Escherichia coli in preschool children in rural Vietnam, and factors associated with carriage of resistant bacteria. Methods We tested isolates of E. coli from faecal samples of 818 children aged 6-60 months living in FilaBavi, a demographic surveillance site near Hanoi. Daily antibiotic use data was collected for participating children for three weeks prior to sampling and analysed with socioeconomic and demographic characteristics extracted from FilaBavi's re-census survey 2007. Descriptive statistics were generated, and a logistic regression model was used to identify contributions of the examined factors. Results High prevalences of resistance were found to tetracycline (74%, co-trimoxazole (68%, ampicillin (65%, chloramphenicol (40%, and nalidixic acid (27%. Two isolates were resistant to ciprofloxacin. Sixty percent of isolates were resistant to three or more antibiotics. Recent sulphonamide use was associated with co-trimoxazole resistance [OR 3.2, 95% CI 1.8-5.7], and beta-lactam use with ampicillin resistance [OR 1.8, 95% CI 1.3-2.4]. Isolates from children aged 6-23 months were more likely to be resistant to ampicillin [OR 1.8, 95% CI 1.3-2.4] and co-trimoxazole [OR 1.5, 95% CI 1.1-2.0]. Associations were identified between geographical areas and tetracycline and ampicillin resistance. Conclusions We present high prevalence of carriage of commensal E. coli resistant to commonly used antibiotics. The identified associations with recent antibiotic use, age, and geographical location might contribute to our understanding of carriage of antibiotic resistant commensal bacteria.

  9. Antibiotic Resistance Pattern Of Bacterial Pathogens Isolated From Poultry Manure Used To Fertilize Fish Ponds In New Bussa, Nigeria

    Directory of Open Access Journals (Sweden)

    Funso Omojowo

    2013-02-01

    Full Text Available This study was carried out to isolate and identify antibiotic resistant bacteria from poultry manure usually used for pond fertilization. Poultry manure from 120 Chickens in National Institute for Freshwater Fisheries Research (NIFFR integrated fish farms, New-Bussa, Nigeria was collected. Five bacterial pathogens; Salmonella typhi, Escherichia coli, Shigella dysenteriae, Staphylococcus aureus and Aeromonas hydrophila were isolated. Antibiotic susceptibility testing carried out using the disk diffusion technique. Antibiotics used were; ofloxacin, amoxicillin, tetracycline, ampicillin, erythromycin, gentamicin, nalidixic acid and chloramphenicol. All the isolated organisms were 100% sensitive to ofloxacin. The multiple resistance pattern revealed that 100% were resistant to tetracycline, 84.34% resistant to ampicillin, 76.68% resistant to amoxicillin, 66% resistant to chloramphenicol, 66% resistant to gentamicin, 29% resistant to erythromycin, 28.34% resistant to nalidixic acid. The risk posed by untreated poultry manure used in fish pond fertilization and the public health implications of these results were discussed.

  10. Resistance in Escherichia coli: variable contribution of efflux pumps with respect to different fluoroquinolones.

    Science.gov (United States)

    Huguet, A; Pensec, J; Soumet, C

    2013-05-01

    Resistance to fluoroquinolones is partially the result of a decrease in drug accumulation in Escherichia coli through different mechanisms. However, the variable contribution of these mechanisms with respect to different fluoroquinolones is poorly investigated. Therefore, the current study aimed to compare the contribution of resistance attributed to efflux-mediated mechanisms for different fluoroquinolones. Susceptibility of enrofloxacin, marbofloxacin and ciprofloxacin were compared after treatment with an efflux pump inhibitor in 17 ciprofloxacin-resistant E. coli isolates, and also the expression profile of the genes encoding the porins and efflux pumps involved in this resistance was evaluated. After treatment with the efflux pump inhibitor Phe-Arg-β-naphthylamide (PAβN), susceptibilities differed significantly between antimicrobial agents, the decrease for MIC being higher for enrofloxacin than for marbofloxacin or ciprofloxacin. AcrB expression level increased significantly (+26%) in ciprofloxacin-resistant E. coli isolates compared with ciprofloxacin-susceptible isolates, whereas the expression level decreased for ompF (-50%) and ompC (-30%). There was a higher contribution of resistance nodulation division (RND) efflux pumps to resistance to hydrophobic fluoroquinolones. Comparison between expression profile of efflux pumps and hydrophobicity of the antimicrobial agents could result in variable resistance for different fluoroquinolones. © 2013 The Society for Applied Microbiology.

  11. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China.

    Science.gov (United States)

    Yassin, Afrah Kamal; Gong, Jiansen; Kelly, Patrick; Lu, Guangwu; Guardabassi, Luca; Wei, Lanjing; Han, Xiangan; Qiu, Haixiang; Price, Stuart; Cheng, Darong; Wang, Chengming

    2017-01-01

    Poultry and livestock are the most important reservoirs for pathogenic Escherichia coli and use of antimicrobials in animal farming is considered the most important factor promoting the emergence, selection and dissemination of antimicrobial-resistant microorganisms. The aim of our study was to investigate antimicrobial resistance in E. coli isolated from food animals in Jiangsu, China. The disc diffusion method was used to determine susceptibility to 18 antimicrobial agents in 862 clinical isolates collected from chickens, ducks, pigs, and cows between 2004 and 2012. Overall, 94% of the isolates showed resistance to at least one drug with 83% being resistance to at least three different classes of antimicrobials. The isolates from the different species were most commonly resistant to tetracycline, nalidixic acid, sulfamethoxazole, trimethoprim/sulfamethoxazole and ampicillin, and showed increasing resistance to amikacin, aztreonam, ceftazidime, cefotaxime, chloramphenicol, ciprofloxacin. They were least resistant to amoxicillin/clavulanic acid (3.4%) and ertapenem (0.2%). MDR was most common in isolates from ducks (44/44, 100%), followed by chickens (568/644, 88.2%), pigs (93/113, 82.3%) and cows (13/61, 21.3%). Our finding that clinical E. coli isolates from poultry and livestock are commonly resistant to multiple antibiotics should alert public health and veterinary authorities to limit and rationalize antimicrobial use in China.

  12. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose

    Directory of Open Access Journals (Sweden)

    Andre-i Sarabia-Sainz

    2015-09-01

    Full Text Available The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88 was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1 galactose was used as the microsphere matrix (MS-Lac and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3 were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections.

  13. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose

    Science.gov (United States)

    Sarabia-Sainz, Andre-i; Sarabia-Sainz, Hector Manuel; Ramos-Clamont Montfort, Gabriela; Mata-Haro, Veronica; Guzman-Partida, Ana María; Guzman, Roberto; Garcia-Soto, Mariano; Vazquez-Moreno, Luz

    2015-01-01

    The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections. PMID:26389896

  14. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  15. Prevalence and characteristics of quinolone resistance in Escherichia coli in veal calves.

    Science.gov (United States)

    Hordijk, Joost; Veldman, Kees; Dierikx, Cindy; van Essen-Zandbergen, Alieda; Wagenaar, Jaap A; Mevius, Dik

    2012-04-23

    Quinolone resistance is studied and reported increasingly in isolates from humans, food-producing animals and companion animals. Resistance can be caused by chromosomal mutations in topoisomerase genes, plasmid-mediated resistance genes, and active transport through efflux pumps. Cross sectional data on quinolone resistance mechanisms in non-pathogenic bacteria from healthy veal calves is limited. The purpose of this study was to determine the prevalence and characteristics of quinolone resistance mechanisms in Escherichia coli isolates from veal calves, after more than 20 years of quinolone usage in veal calves. MIC values were determined for all isolates collected as part of a national surveillance program on antimicrobial resistance in commensal bacteria in food-producing animals in The Netherlands. From the strains collected from veal calves in 2007 (n=175) all isolates with ciprofloxacin MIC ≥ 0.125 mg/L (n=25) were selected for this study, and screened for the presence of known quinolone resistance determinants. In this selection only chromosomal mutations in the topoisomerase type II and IV genes were detected. The number of mutations found per isolate correlated with an increasing ciprofloxacin MIC. No plasmid-mediated quinolone resistance genes were found. The contribution of efflux pumps varied from no contribution to a 16-fold increase in susceptibility. No correlation was found with the presence of resistance genes of other antimicrobial classes, even though all quinolone non-wild type isolates were resistant to 3 or more classes of antibiotics other than quinolones. Over twenty years of quinolone usage in veal calves in The Netherlands did not result in a widespread occurrence of plasmid-mediated quinolone resistance, limiting the transmission of quinolone resistance to clonal distribution.

  16. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    Science.gov (United States)

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.

  17. Prevalence of aac(3-IIa gene among clinical isolates of uropathogenic Escherichia coli in Delfan, Lorestan

    Directory of Open Access Journals (Sweden)

    Somayeh Momeni Mofrad

    2013-09-01

    Full Text Available Backgrounds: Uropathogenic Escherichia coli strains are the predominant causative organisms of urinary tract infections (UTIs. Aminoglycosides are clinically useful antibiotics with bactericidal activity against this bacterium. The most common mechanism for resistance to these antibiotics are mediated through production of aminoglycoside modifying enzymes (AMEs. The most common of these enzymes are Aminoglycoside Acetyltransferases (AACs. The epidemiology of the dominant type of these enzymes, AAC(3-II, varies from region to region. The aim of this study was to determine the antimicrobial susceptibility pattern with a focus on aminoglycosides and the prevalence of aac(3-IIa gene among clinical isolates of uropathogenic Escherichia coli obtained from Delfan, Lorestan, Iran. Materials and Methods: In this descriptive study, a total of 100 uropathogenic Escherichia coli isolates were collected from BoAli hospital in Delfan city, Lorestan, from July to November 2010. Antibiotic susceptibility patterns of the isolates were determined using disk diffusion method according to Clinical and Laboratory Standards Institute CLSI guidelines. Prevalence of aac(3-IIa gene was determined by PCR and the relationship between resistance phenotypes to aminoglycosides and presence of aac(3-IIa gene was evaluated. Results: Among the 100 tested isolates, maximal resistance was seen to ampicillin (85%; whereas, no resistance to imipenem was found. Sixty percent of the isolates demonstrated resistance to at least one of the tested aminoglycosides. Resistance rate towards these agents were as followed: gentamicin 39%, kanamycin 26%, neomycin 31% and amikacin 1%. Forty–four isolates (44% harbored the aac(3-IIa gene. The maximal rate of gene presence (36 isolates, 92.3% was detected in strains with gentamicin resistant phenotype (39 isolates, 39%. Conclusion: On the basis of our findings, use of antibiotics such as nitrofurantoin, amikacin or imipenem are recommended for

  18. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh.

    Science.gov (United States)

    Rahman, Shahedur; Parvez, Anowar Khasru; Islam, Rezuanul; Khan, Mahboob Hossain

    2011-03-15

    Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia) were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm). Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.

  19. Distribution of phylogroups and co-resistance to antimicrobial agents in ampicillin resistant Escherichia coli isolated from healthy humans and from patients with bacteraemia

    DEFF Research Database (Denmark)

    Haugaard, A.; Hammerum, A. M.; Porsbo, Lone Jannok;

    In 2002-03, 31 ampicillin resistant faecal isolates were collected from healthy humans. Moreover, 31 ampicillin resistant blood isolates from patients with bacte-raemia were collected in 2000-02. All isolates were tested positive for the pres-ence of blaTEM. Isolates were characterized by minimum...... inhibitory concentration to antimicrobial agents and examined by PCR to determine their phylogroups. The phylotyping grouped the faecal samples into A (13%), B1 (10%), B2 (42%), D (19%), NT (16%) while the blood isolates grouped into A (16%), B1 (0%), B2 (48%), D (32%) and NT (3%). The frequency...... of resistance in faecal and blood isolates (F/B) was: tetracycline (48%/48%), gentamicin (0%/10%), ciprofloxacin (3%,13%), sulfonamide (68%/77%) and trimethoprim (39%/39%). Conclusion: B2 was the most prevalent phylogroup found both in faecal isolates collected from healthy humans and in blood isolates from...

  20. Characterization of multidrug-resistant Escherichia coli by antimicrobial resistance profiles, plasmid replicon typing, and pulsed-field gel electrophoresis.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Thitaram, Sutawee N; Meinersmann, Richard J; Fedorka-Cray, Paula J; Englen, Mark D

    2011-06-01

    The objective of this study was to examine the distribution of multidrug resistance in Escherichia coli in relation to plasmid replicon types, animal sources, and genotypes. E. coli isolates (n = 35) from seven different animal sources were selected and tested for susceptibility to 15 antimicrobials; pulsed-field gel electrophoresis was used to determine genetic relationships among the E. coli isolates. Plasmid types based on their incompatibility (Inc) replicon types were determined, and linkage disequilibrium analysis was performed for antimicrobial resistance profiles, replicon types, and animal source. A high degree of genotypic diversity was observed: 34 different pulsed-field gel electrophoresis types among the 35 isolates examined. Twelve different plasmid Inc types were detected, and all isolates carried at least one replicon type. IncF (n = 25; 71.4%) and IncFIB (n = 19; 54.3%) were the most common replicon types identified. Chloramphenicol resistance was significantly linked with four Inc types (A/C, FIIA, F, and Y), and amoxicillin/clavulanic acid was linked with three Inc types (B/O, P and Y). Resistance to any other antimicrobial was linked to two or fewer replicon types. The isolate source was linked with resistance to seven antimicrobials and IncI1. We conclude that commensal E. coli from animal sources are highly variable genotypically and are reservoirs of a diverse array of plasmids carrying antimicrobial resistance.

  1. Compound list: gentamicin [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available gentamicin GMC 00147 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/gentamic...in.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/gentamic...at/in_vivo/Liver/Repeat/gentamicin.Rat.in_vivo.Liver.Repeat.zip ftp://ftp.bioscie...ncedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/gentamicin.Rat.in_vivo.Kidney.Single.zip ftp...://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/gentamicin.Rat.in_vivo.Kidney.Repeat.zip ...

  2. Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands.

    Science.gov (United States)

    Andrade, Vanessa da Costa; Zampieri, Bruna Del Busso; Ballesteros, Eliete Rodrigues; Pinto, Aline Bartelochi; de Oliveira, Ana Julia Fernandes Cardoso

    2015-06-01

    Bacterial resistance is a rising problem all over the world. Many studies have showed that beach sands can contain higher concentration of microorganisms and represent a risk to public health. This paper aims to evaluate the densities and resistance to antimicrobials of Escherichia coli strains, isolated from seawater and samples. The hypothesis is that microorganisms show higher densities in contaminated beach sands and more antimicrobial resistance than the water column. Density, distribution, and antimicrobial resistance of bacteria E. coli were evaluate in seawater and sands from two recreational beaches with different levels of pollution. At the beach with higher degree of pollution (Gonzaguinha), water samples presented the highest densities of E. coli; however, higher frequency of resistant strains was observe in wet sand (71.9 %). Resistance to a larger number of antimicrobial groups was observe in water (betalactamics, aminoglycosides, macrolides, rifampicins, and tetracyclines) and sand (betagalactamics and aminoglycosids). In water samples, highest frequencies of resistance were obtain against ampicilin (22.5 %), streptomycin (15.0 %), and rifampicin (15.0 %), while in sand, the highest frequencies were observe in relation to ampicilin (36.25 %) and streptomycin (23.52 %). At the less polluted beach, Ilha Porchat, highest densities of E. coli and higher frequency of resistance were obtain in wet and dry sand (53.7 and 53.8 %, respectively) compared to water (50 %). Antimicrobial resistance in strains isolated from water and sand only occurred against betalactamics (ampicilin and amoxicilin plus clavulanic acid). The frequency and variability of bacterial resistance to antimicrobials in marine recreational waters and sands were related to the degree of fecal contamination in this environment. These results show that water and sands from beaches with a high index of fecal contamination of human origin may be potential sources of contamination by pathogens

  3. Prevalence and Fluoroquinolone Resistance Pattern in Escherichia coli Isolates of Urinary Tract Infection (UTI Patients

    Directory of Open Access Journals (Sweden)

    Tippireddypalli Gururaju,

    2015-04-01

    Full Text Available Background: Urinary tract infections (UTIs are among the most common infectious diseases all over the world. Recent studies reported an increased antibiotic resistance in Escherichia coli, primary causative agent of UTI. The resistance has emerged even to more potent antimicrobial agents like fluoroquinolones. Objectives: The present study was undertaken to evaluate the prevalence and resistance pattern of E.coli causing UTIs in patients admitted to a tertiary care hospital in South India, with reference to fluoroquinolones. Material and Methods: A total of 278 selected urine samples of urinary tract infections were processed for E.coli culture using standard methods. For these urinary E. coli isolates, susceptibility to various antibiotics including fluoroquinolones was checked by Kirby Bauer disk diffusion method according CLSI criteria. Final resistance to fluoroquinolones isolates was analyzed. Results: Out of the 278 selected UTI clinical isolates 148 (54% showed ciprofloxacin sensitive and 130 (46% clinical isolates are ciprofloxacin resistant. Of the 130 ciprofloxacin resistant urinary isolates of E. coli subjected to susceptibility test for increased generation of fluoroquinolone drugs, the pattern of resistance noticed as levofloxacin (2nd generation 79%, gatifloxacin (3rd generation 77% and moxifloxacin (4th generation 75%, respectively. The fluoroquinolone resistance in UTI clinical isolates was decreasing with increasing generations of fluoroquinolone. Quinolone drug resistance in clinical isolates was increasing with age and hospitalized patients. Conclusion: Study showed an increased fluoroquinolone resistance among uropathogenic E. coli isolates of UTI. These increased antibiotic resistance trends in UTI patients indicated that it is imperative to rationalize the use of antimicrobials and to use them conservatively.

  4. Clonal spread of antimicrobial-resistant Escherichia coli isolates among pups in two kennels

    Directory of Open Access Journals (Sweden)

    Takahashi Toshio

    2011-02-01

    Full Text Available Abstract Although the dog breeding industry is common in many countries, the presence of antimicrobial resistant bacteria among pups in kennels has been infrequently investigated. This study was conducted to better understand the epidemiology of antimicrobial-resistant Escherichia coli isolates from kennel pups not treated with antimicrobials. We investigated susceptibilities to 11 antimicrobials, and prevalence of extended-spectrum β-lactamase (ESBL in 86 faecal E. coli isolates from 43 pups in two kennels. Genetic relatedness among all isolates was assessed using pulsed-field gel electrophoresis (PFGE. Susceptibility tests revealed that 76% of the isolates were resistant to one or more of tested antimicrobials, with resistance to dihydrostreptomycin most frequently encountered (66.3% followed by ampicillin (60.5%, trimethoprim-sulfamethoxazole (41.9%, oxytetracycline (26.7%, and chloramphenicol (26.7%. Multidrug resistance, defined as resistance against two or more classes of antimicrobials, was observed in 52 (60.5% isolates. Three pups in one kennel harboured SHV-12 ESBL-producing isolates. A comparison between the two kennels showed that frequencies of resistance against seven antimicrobials and the variation in resistant phenotypes differed significantly. Analysis by PFGE revealed that clone sharing rates among pups of the same litters were not significantly different in both kennels (64.0% vs. 88.9%, whereas the rates among pups from different litters were significantly different between the two kennels (72.0% vs. 33.3%, P E. coli clones, including multidrug-resistant and ESBL-producing clones. It is likely that resistant and susceptible bacteria can clonally spread among the same and/or different litters thus affecting the resistance prevalence.

  5. Multiple antibiotic resistant Escherichia coli from a tropical rain forest stream

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, C.E.; Alvarez, H.J.; Ortiz, N.; Bisbal, M.; Arias, W.; Baerga, C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico). Dept. of Biology; Hazen, T.C. [E.I. DuPont de Nemours and Co., Aiken, SC (United States). Savannah River Lab.

    1988-12-31

    High densities of fecal coliforms were obtained from a pristine site and sewage contaminated site in a tropical rain forest watershed in Puerto Rico. Confirmation of fecal coliform isolates as Escherichia coli was significantly lower than for temperate waters. Antibiotic resistance and multiple antibiotic resistance were common for isolates at both sites; however, the site receiving sewage effluent had a greater proportion of multiple antibiotic resistant isolates. R. plasmids were recovered from 4 MAR isolates, 2 from each site. All recovered plasmids were approximately 1 kilobase. The recovered plasmid were also capable of transforming E. coli HB101 in vitro. The high concentrations of enterobacteriaceae, small R-plasmid size, R-plasmid transformability, and long term survival of fecal origin bacteria in tropical freshwater environments give increasing importance to adequate sewage treatment, and better indicator monitoring methods for tropical areas.

  6. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  7. Evaluation of Eight Different Cephalosporins for Detection of Cephalosporin Resistance in Salmonella enterica and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Veldman, K

    2010-01-01

    This study evaluates the efficacy of eight different cephalosporins for detection of cephalosporin resistance mediated by extended spectrum beta-lactamases (ESBL) and plasmidic AmpC beta-lactamases in Salmonella and Escherichia coli. A total of 138 E. coli and 86 Salmonella isolates with known beta......-resistant but cephalosporin-susceptible, 56 ESBL isolates and 19 isolates with plasmidic AmpC, as well as 10 ampC hyper-producing E. coli. The minimum inhibitory concentration distributions and zone inhibitions varied with the tested compound. Ampicillin-resistant isolates showed reduced susceptibility to the cephalosporins...... compared to ampicillin-susceptible isolates. Cefoperazone, cefquinome, and cefuroxime were not useful in detecting isolates with ESBL or plasmidic AmpC. The best substances for detection were cefotaxime, cefpodoxime, and ceftriaxone, whereas ceftazidime and ceftiofur were not as efficient. Ceftriaxone may...

  8. Investigation into the resistance of lactoperoxidase tolerant Escherichia coli mutants to different forms of oxidative stress.

    Science.gov (United States)

    De Spiegeleer, Philipp; Vanoirbeek, Kristof; Lietaert, Annelies; Sermon, Jan; Aertsen, Abram; Michiels, Chris W

    2005-11-15

    Six lactoperoxidase tolerant Escherichia coli transposon mutants isolated and characterized in an earlier study, and some newly constructed double mutants, were subjected to peroxide, superoxide and hypochlorite stress, and their inactivation was compared to that of the wild type strain MG1655. Knock out mutants of waaQ and waaO, which owed their lactoperoxidase tolerance to an impaired outer membrane permeability due to a reduced porin content, also exhibited higher resistance to hypochlorite, as did a knock-out strain of lrp, encoding a regulatory protein affecting a wide range of cellular functions. Unlike the outer membrane mutants however, the lrp strain was also more resistant to t-butyl hydroperoxide, but more susceptible to the superoxide generating compound plumbagin. Finally, a lactoperoxidase tolerant knock-out strain of ulaA, involved in ascorbic acid uptake, did not show resistance to any of the other oxidants. The possible modes of action of these different oxidants are discussed.

  9. Antibiotic resistance patterns of Salmonella and Escherichia coli in the groundwater of Cyprus.

    Science.gov (United States)

    Economides, Constantinos; Liapi, Maria; Makris, Konstantinos C

    2012-08-01

    In addition to diet-based vectors of disease, the contribution of water-borne zoonotic agents to gastrointestinal illnesses may be significant, but this has yet to be investigated for Cyprus. Our main objective was to evaluate antibiotic resistance patterns of Salmonella and Escherichia coli in groundwater samples collected at confined animal feeding operations. This is the first report on the occurrence of antibiotic-resistant Salmonella and E. coli strains in the groundwater of Cyprus. Most of Salmonella isolates belonged to the subgroup enterica, whereas none of the E. coli isolates expressed the verotoxin-encoding gene. Out of 27 isolated Salmonella strains, nearly half of them were resistant to at least one or more antibiotic, whereas the highest resistance was exhibited by sulphamethoxazole (85%), followed by streptomycin (39%), and tetracycline (31%). For the E. coli isolates, nearly a third of them showed resistance to at least one antibiotic, whereas the selection of antibiotic resistance was equal among sulphamethoxazole, tetracycline and streptomycin (20%). This study demonstrated that Salmonella and E. coli in groundwater could pose a public health risk via oral ingestion of contaminated water. Best management practices are needed for overexploited groundwater supplies of rural areas, minimizing human exposure to antibiotic-resistant pathogens.

  10. Effect of preweaned dairy calf housing system on antimicrobial resistance in commensal Escherichia coli.

    Science.gov (United States)

    Pereira, R V; Siler, J D; Ng, J C; Davis, M A; Warnick, L D

    2014-12-01

    Group housing of preweaned dairy calves is a growing practice in the United States. The objective of this practice is to increase the average daily gain of calves in a healthy and humane environment while reducing labor requirements. However, feeding protocols, commingling of calves, and occurrence of disease in different calf-housing systems may affect the prevalence of antimicrobial drug-resistant bacteria. This study evaluated the effect of a group pen-housing system and individual pen-housing system on antimicrobial resistance trends in fecal Escherichia coli of preweaned dairy calves and on the prevalence of environmental Salmonella. Twelve farms from central New York participated in the study: 6 farms using an individual pen-housing system (IP), and 6 farms using a group pen-housing system (GP). A maximum of 3 fecal E. coli isolates per calf was tested for susceptibility to 12 antimicrobial drugs using a Kirby-Bauer disk diffusion assay. Calves in GP had a significantly higher proportion of E. coli resistant to ciprofloxacin and nalidixic acid, whereas calves in IP had a significantly higher proportion of E. coli resistant to ampicillin, ceftiofur, gentamycin, streptomycin, and tetracycline. Calf-housing system had an effect on resistance to individual antimicrobial drugs in E. coli, but no clear-cut advantage to either system was noted with regard to overall resistance frequency. No outstanding difference in the richness and diversity of resistant phenotypes was observed between the 2 calf-housing systems.

  11. Genotypic characterization of quinolone resistant-Escherichia coli isolates from retail food in Morocco.

    Science.gov (United States)

    Nayme, Kaotar; Barguigua, Abouddihaj; Bouchrif, Brahim; Karraouan, Bouchra; El Otmani, Fatima; Elmdaghri, Naima; Zerouali, Khalid; Timinouni, Mohammed

    2017-02-01

    This study was conducted to assess the retail food as a possible vehicle for antimicrobial resistant, particularly quinolones resistant and pathogenic Escherichia coli. We determined the prevalence and characteristics of nalidixic acid (Nal) resistant E. coli isolates from diverse retail food samples. In all, 70 (28%) of 250 E. coli isolates studied were Nal-resistant E. coli and 91% of these were multi-drug resistant. Plasmid mediated quinolone resistance genes were identified in 32 isolates, including aac(6')-Ib-cr (n = 16), qnrS1 (n = 11) and qnrB19 (n = 7). Mutations in gyr A and par C genes were detected among 80% of the isolates, and the isolates showed substitution Ser83-Leu and Asp87-Asn in gyrA and Ser80-Ile in parC. In addition, three different gene cassettes were identified (aadA1, aadA7, aac(3)-Id) in 18%. Virulence-associated genes stx1, eae, sfa, hlyA and stx2 were found in six (8%), three (4%), two (3%), three (4%) and three (4%) isolates, respectively. E. coli isolates of phylogenetic group A were dominant (64%, 45/70). Pulsed field gel electrophoresis revealed none epidemiological relationship between these isolates. The results of this work report the higher frequency of Nal-resistant E. coli isolates from Moroccan retail food samples including MDR and pathogenic isolates.

  12. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    Directory of Open Access Journals (Sweden)

    Nuno Mendonça

    2016-01-01

    Full Text Available The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70% and ampicillin (63%. Extended-spectrum beta-lactamase (ESBL phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A (72%, blaTEM (68%, and sul1 (47%, while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9. Of these, 96% carried the increased serum survival (iss virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN, 70% the temperature-sensitive hemagglutinin (tsh, and 68% the long polar fimbriae (lpfA virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection.

  13. Complete genome sequences of Escherichia coli O157:H7 strains SRCC 1675 and 28RC that vary in acid resistance

    Science.gov (United States)

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented....

  14. Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa.

    Science.gov (United States)

    Jerzsele, Ákos; Pásztiné-Gere, Erzsébet

    2015-03-01

    The aim of this study was to determine antimicrobial susceptibility of Pseudomonas aeruginosa strains to marbofloxacin and gentamicin, and investigate the possible synergistic, additive, indifferent or antagonistic effects between the two agents. P. aeruginosa strains can develop resistance quickly against certain antibiotics if used alone, thus the need emerges to find synergistic combinations. A total of 68 P. aeruginosa strains isolated from dogs were examined. In order to describe interactions between marbofloxacin and gentamicin the checkerboard microdilution method was utilized. The MICs (minimum inhibitory concentrations) for marbofloxacin and gentamicin were in the range 0.25-64 mg/L and 0.25-32 mg/L, respectively. The combination of marbofloxacin and gentamicin was more effective with a MIC range of 0.031-8 mg/L and a MIC90 of 1 mg/L, compared to 16 mg/L for marbofloxacin alone and 8 mg/L for gentamicin alone. The FIC (fractional inhibitory concentration) indices ranged from 0.0945 (pronounced synergy) to 1.0625 (indifference). Synergy between marbofloxacin and gentamicin was found in 33 isolates. The mean FIC index is 0.546, which represents a partial synergistic/additive effect close to the full synergy threshold. In vitro results indicate that marbofloxacin and gentamicin as partially synergistic agents may prove clinically useful in combination therapy against P. aeruginosa infections. Although marbofloxacin is not used in the human practice, the interactions between fluoroquinolones and aminoglycosides may have importance outside the veterinary field.

  15. Gentamicin removal in submerged fermentation using the novel fungal strain Aspergillus terreus FZC3

    Science.gov (United States)

    Liu, Yuanwang; Chang, Huiqing; Li, Zhaojun; Zhang, Cheng; Feng, Yao; Cheng, Dengmiao

    2016-10-01

    Social concern and awareness of the potential risk posed by environmental residues of antibiotics such as gentamicin in the development of antibiotic resistance genes have increased. The present study used laboratory-scale experiments to develop methods for gentamicin removal from the environment. A fungus, strain FZC3, which could remove gentamicin in submerged fermentation, was isolated from solid waste and sewage water from a gentamicin production factory. The fungus was identified as Aspergillus terreus by sequencing the PCR-amplified ITS fragments of its rRNA-coding genes and by its morphology. The gentamicin removal efficiency exceeded 95% by day 7 under optimized culture conditions. The results showed that both biosorption and biodegradation were involved. We speculated that Aspergillus terreus FZC3 absorbed gentamicin and subsequently degraded it. We also found that Aspergillus terreus FZC3 survived and maintained a high bioremediation efficiency over a wide pH range, indicating its potential for future use in the large-scale bioremediation of gentamicin.

  16. Induction of Antimicrobial Resistance in Escherichia coli and Non-Typhoidal Salmonella Strains after Adaptation to Disinfectant Commonly Used on Farms in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen T. Nhung

    2015-10-01

    Full Text Available In Vietnam, commercial disinfectants containing quaternary ammonium compounds (QACs are commonly used in pig and poultry farms to maintain hygiene during production. We hypothesized that sustained exposure to sub-bactericidal concentrations of QAC-based disinfectants may result in increased levels of antimicrobial resistance (AMR among Enterobacteriacea due to the increase of efflux pump expression. To test this hypothesis we exposed six antimicrobial-susceptible Escherichia coli (E. coli and six antimicrobial-susceptible non-typhoidal Salmonella (NTS isolates to increasing concentrations of a commonly used commercial disinfectant containing a mix of benzalkonium chloride and glutaraldehyde. Over the 12-day experiment, strains exhibited a significant change in their minimum inhibitory concentration (MIC of the disinfectant product (mean increase of 31% (SD ± 40 (p = 0.02, paired Wilcoxon test. Increases in MIC for the disinfectant product were strongly correlated with increases in MIC (or decreases in inhibition zone for all antimicrobials (Pearson’s correlation coefficient 0.71–0.83, all p < 0.01. The greatest increases in MIC (or decreases in inhibition zone were observed for ampicillin, tetracycline, ciprofloxacin, and chloramphenicol, and the smallest for gentamicin, trimethoprim/sulphamethoxazole. The treatment of 155 representative E. coli isolates from farmed and wild animals in the Mekong Delta (Vietnam with phenyl-arginine beta-naphthylamide (PAβN, a generic efflux pump inhibitor, resulted in reductions in the prevalence of AMR ranging from 0.7% to 3.3% in these organisms, indicating a small contribution of efflux pumps on the observed prevalence of AMR on farms. These results suggest that the mass usage of commercial disinfectants, many of which contain QACs, is potentially a contributing factor on the generation and maintenance of AMR in animal production in Vietnam.

  17. Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark

    DEFF Research Database (Denmark)

    Olesen, Inger; Hasman, Henrik; Aarestrup, Frank Møller

    2004-01-01

    The genetic background for beta-lactamase-mediated resistance to beta-lactam antibiotics was examined by PCR and sequencing in 160 ampicillin-resistant isolates (109 Escherichia coli and 51 Salmonella) obtained from healthy and diseased food animals in Denmark. Sequencing revealed three different...... activity against extended-spectrum beta-lactams....

  18. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs

    DEFF Research Database (Denmark)

    Jurado-Rabadan, Sonia; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, Jose A.

    2014-01-01

    Background: In Escherichia coli the genes involved in the acquisition of tetracycline resistance are mainly tet(A) and tet(B). In addition, tet(M) is the most common tetracycline resistance determinant in enterococci and it is associated with conjugative transposons and plasmids. Although tet(M) ...

  19. Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli

    Science.gov (United States)

    Aperce, C. C.; Amachawadi, R.; Van Bibber-Krueger, C. L.; Nagaraja, T. G.; Scott, H. M.; Vinasco-Torre, J.; Drouillard, J. S.

    2016-01-01

    The pool of antimicrobial resistance determinants in the environment and in the gut flora of cattle is a serious public health concern. In addition to being a source of human exposure, these bacteria can transfer antibiotic resistance determinants to pathogenic bacteria and endanger the future of antimicrobial therapy. The occurrence of antimicrobial resistance genes on mobile genetic elements, such as plasmids, facilitates spread of resistance. Recent work has shown in vitro anti-plasmid activity of menthol, a plant-based compound with the potential to be used as a feed additive to beneficially alter ruminal fermentation. The present study aimed to determine if menthol supplementation in diets of feedlot cattle decreases the prevalence of multidrug-resistant bacteria in feces. Menthol was included in diets of steers at 0.3% of diet dry matter. Fecal samples were collected weekly for 4 weeks and analyzed for total coliforms counts, antimicrobial susceptibilities, and the prevalence of tet genes in E. coli isolates. Results revealed no effect of menthol supplementation on total coliforms counts or prevalence of E. coli resistant to amoxicillin, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, and sulfamethoxazole; however, 30 days of menthol addition to steer diets increased the prevalence of tetracycline-resistant E. coli (P menthol exerts its effects remains unclear, results of our study suggest that menthol may have an impact on antimicrobial resistance in gut bacteria. PMID:28030622

  20. Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal).

    Science.gov (United States)

    Pereira, Anabela; Santos, André; Tacão, Marta; Alves, Artur; Henriques, Isabel; Correia, António

    2013-09-01

    Fecal pollution of surface waters is a current world-wide public health concern and may contribute for the dissemination of antibiotic resistance. The Tagus estuary located in the south of Portugal is one of the largest wetlands in the west coast of Europe. In this study, water samples were collected from seven stations with different anthropic pressures along the estuary and evaluated for water quality indicator bacteria. Escherichia coli isolates (n=350) were typed by REP-PCR. Representatives of each REP profile (n=220) were evaluated phenotypically for resistance to 17 antibiotics and characterized in terms of phylogenetic group. Resistant isolates were screened for the presence of antibiotic resistance genes (tet(A), tet(B), sul1, sul2, qnrA, qnrB, qnrS, aacA4-cr, bla(TEM), bla(SHV), bla(CTX-M), bla(CMY-like), bla(IMP), bla(VIM)) and integrase genes (intI1 and intI2). The highest antibiotic resistance prevalence was observed for streptomycin and tetracycline followed by β-lactams and sulphonamides. Among E. coli isolates, 65.16% were resistant to at least one of the 17 antibiotics tested and approximately 19% were multiresistant. In our E. coli population phylo-groups A and D were predominant and characterized by higher prevalence of the antibiotic resistance. intI1 and intI2 genes were found in 12% of the isolates with prevalence of class 1 integrons. A strong correlation between the prevalence of integrons and multiresistance was observed. Differences in terms of antibiotic resistance between phylogenetic groups and between sampling sites were statistically significant. The results demonstrate a high prevalence of antibiotic resistance among E. coli circulating in the Tagus estuary with emphasis on the occurrence of resistance to last-resort antibiotics and on the high incidence of multiresistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Efficient recovery of fluoroquinolone-susceptible and fluoroquinolone-resistant Escherichia coli strains from frozen samples.

    Science.gov (United States)

    Lautenbach, Ebbing; Santana, Evelyn; Lee, Abby; Tolomeo, Pam; Black, Nicole; Babson, Andrew; Perencevich, Eli N; Harris, Anthony D; Smith, Catherine A; Maslow, Joel

    2008-04-01

    We assessed the rate of recovery of fluoroquinolone-resistant and fluoroquinolone-susceptible Escherichia coli isolates from culture of frozen perirectal swab samples compared with the results for culture of the same specimen before freezing. Recovery rates for these 2 classes of E. coli were 91% and 83%, respectively. The majority of distinct strains recovered from the initial sample were also recovered from the frozen sample. The strains that were not recovered were typically present only in low numbers in the initial sample. These findings emphasize the utility of frozen surveillance samples.

  2. Genetic Features of MCR-1-Producing Colistin-Resistant Escherichia coli Isolates in South Africa.

    Science.gov (United States)

    Poirel, Laurent; Kieffer, Nicolas; Brink, Adrian; Coetze, Jennifer; Jayol, Aurélie; Nordmann, Patrice

    2016-07-01

    A series of colistin-resistant Escherichia coli clinical isolates was recovered from hospitalized and community patients in South Africa. Seven clonally unrelated isolates harbored the mcr-1 gene located on different plasmid backbones. Two distinct plasmids were fully sequenced, and identical 2,600-bp-long DNA sequences defining a mcr-1 cassette were identified. Promoter sequences responsible for the expression of mcr-1, deduced from the precise identification of the +1 transcription start site for mcr-1, were characterized. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Chloramphenicol- and tetracycline-resistant uropathogenic Escherichia coli (UPEC) exhibit reduced virulence potential.

    Science.gov (United States)

    Starcic Erjavec, Marjanca; Rijavec, Matija; Krizan-Hergouth, Veronika; Fruth, Angelika; Zgur-Bertok, Darja

    2007-11-01

    It is well documented that uropathogenic Escherichia coli (UPEC) isolates resistant to nalidixic acid have reduced virulence potential. Our goal was to assess whether UPEC isolates resistant to chloramphenicol, tetracycline and streptomycin also exhibit reduced virulence potential. Among 110 human UPEC isolates, the prevalences of the virulence factors fimH, papC, papGII, papGIII, sfa/focDE, afa, hlyA, cnf1, usp, ibeA, fyuA, iroN, iucD, ireA, and K1 and K5 capsules as well as of pathotypes, phylogenetic groups, O antigens and a pathogenicity island (PAI) marker were compared between chloramphenicol-, tetracycline-, streptomycin- and, as a control, nalidixic acid-resistant and -susceptible strains. Our findings show that among human UPEC isolates, not only nalidixic acid-resistant but also chloramphenicol- and tetracycline-resistant isolates have reduced virulence potential compared with susceptible strains. To our knowledge, this is the first report of a statistically significant reduction in virulence traits among chloramphenicol- and tetracycline-resistant isolates.

  4. In vitro selection of resistance in Escherichia coli and Klebsiella spp. at in vivo fluoroquinolone concentrations

    Science.gov (United States)

    2010-01-01

    Background Fluoroquinolones are potent antimicrobial agents used for the treatment of a wide variety of community- and nosocomial- infections. However, resistance to fluoroquinolones in Enterobacteriaceae is increasingly reported. Studies assessing the ability of fluoroquinolones to select for resistance have often used antimicrobial concentrations quite different from those actually acquired at the site of infection. The present study compared the ability to select for resistance of levofloxacin, ciprofloxacin and prulifloxacin at concentrations observed in vivo in twenty strains of Escherichia coli and Klebsiella spp. isolated from patients with respiratory and urinary infections. The frequencies of spontaneous single-step mutations at plasma peak and trough antibiotic concentrations were calculated. Multi-step selection of resistance was evaluated by performing 10 serial cultures on agar plates containing a linear gradient from trough to peak antimicrobial concentrations, followed by 10 subcultures on antibiotic-free agar. E. coli resistant strains selected after multi-step selection were characterized for DNA mutations by sequencing gyrA, gyrB, parC and parE genes. Results Frequencies of mutations for levofloxacin and ciprofloxacin were less than 10-11 at peak concentration, while for prulifloxacin they ranged from fluoroquinolones, levofloxacin was the most capable of limiting the occurrence of resistance. PMID:20409341

  5. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC).

    Science.gov (United States)

    Colello, Rocío; Etcheverría, Analía I; Di Conza, Jose A; Gutkind, Gabriel O; Padola, Nora L

    2015-03-01

    Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria.

  6. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC

    Directory of Open Access Journals (Sweden)

    Rocío Colello

    2015-03-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC cause hemorrhagic colitis (HC and hemolytic-uremic syndrome in humans (HUS. Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2. Strains carrying intl1 belonged to isolates from environment (n = 1, chicken hamburger (n = 2, dairy calves (n = 4 and pigs (n = 8. Two strains isolated from pigs harbored intl2 and only one intl1/intl2, highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria.

  7. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC)

    Science.gov (United States)

    Colello, Rocío; Etcheverría, Analía I.; Conza, Jose A. Di; Gutkind, Gabriel O.; Padola, Nora L.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria. PMID:26221083

  8. Conditional probability analysis of multidrug resistance in Gram-negative bacilli isolated from tertiary medical institutions in South Korea during 1999-2009.

    Science.gov (United States)

    Kim, Yong-Hak

    2016-01-01

    Multidrug resistance of Gram-negative bacilli is a major problem globally. However, little is known about the combined probability of resistance to various antibiotics. In this study, minimum inhibitory concentrations of widely used antibiotics were determined using clinical isolates of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, randomly chosen from strain collections created during 1999-2009 in tertiary medical institutions in Seoul, South Korea. To analyze combined efficacy of antibiotics against a subgroup of isolates, conditional probabilities were determined based on arbitrary, non-independent patterns of antimicrobial susceptibility and resistance. Multidrug resistance, defined as resistance to three or more classes of antibiotics, was observed in the following order: A. baumannii (96%), P. aeruginosa (65%), E. coli (52%), and K. pneumoniae (7%). A. baumannii strains resistant to gentamicin were found to be resistant to a number of antibiotics, except for colistin and polymyxin B. Resistance to gentamicin following exposure to this antibiotic was highly likely to lead to multidrug resistance in all four microbes. This study shows a causal relationship between gentamicin resistance and the prevalence of multidrug resistance in clinical isolates of Gramnegative bacilli in South Korea during 1999-2009 and suggests the importance of prudent use of gentamicin in hospitals.

  9. Dynamics of quinolone resistance in fecal Escherichia coli of finishing pigs after ciprofloxacin administration.

    Science.gov (United States)

    Huang, Kang; Xu, Chang-Wen; Zeng, Bo; Xia, Qing-Qing; Zhang, An-Yun; Lei, Chang-Wei; Guan, Zhong-Bin; Cheng, Han; Wang, Hong-Ning

    2014-09-01

    Escherichia coli resistance to quinolones has now become a serious issue in large-scale pig farms of China. It is necessary to study the dynamics of quinolone resistance in fecal Escherichia coli of pigs after antimicrobial administration. Here, we present the hypothesis that the emergence of resistance in pigs requires drug accumulation for 7 days or more. To test this hypothesis, 26 pigs (90 days old, about 30 kg) not fed any antimicrobial after weaning were selected and divided into 2 equal groups: the experimental (EP) group and control (CP) group. Pigs in the EP group were orally treated daily with 5 mg ciprofloxacin/kg of body weight for 30 days, and pigs in the CP group were fed a normal diet. Fresh feces were collected at 16 time points from day 0 to day 61. At each time point, ten E. coli clones were tested for susceptibility to quinolones and mutations of gyrA and parC. The results showed that the minimal inhibitory concentration (MIC) for ciprofloxacin increased 16-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin administration for 3 days and decreased 256-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin withdrawal for 26 days. GyrA (S83L, D87N/ D87Y) and parC (S80I) substitutions were observed in all quinolone-resistant E. coli (QREC) clones with an MIC ≥8 µg/ml. This study provides scientific theoretical guidance for the rational use of antimicrobials and the control of bacterial resistance.

  10. Is Penicillin plus Gentamicin Synergistic against Clinical Group B Streptococcus isolates?: A in-vitro Study.

    Directory of Open Access Journals (Sweden)

    Corinne Ruppen

    2016-10-01

    Full Text Available Group B Streptococcus (GBS is increasingly causing invasive infections in nonpregnant adults. Elderly patients and those with comorbidities are at increased risk. On the basis of previous studies focusing on neonatal infections, penicillin plus gentamicin is recommended for infective endocarditis (IE and periprosthetic joint infections (PJI in adults. The purpose of this study was to investigate whether a synergism with penicillin and gentamicin is present in GBS isolates that caused IE and PJI. We used 5 GBS isolates, two clinical strains and three control strains, including one displaying high-level gentamicin resistance (HLGR. The results from the checkerboard and time-kill assays (TKAs were compared. For TKAs, antibiotic concentrations for penicillin were 0.048 and 0.2 mg/L, and for gentamicin 4 mg/L or 12.5 mg/L. In the checkerboard assay, the median fractional inhibitory concentration indices (FICIs of all isolates indicated indifference. TKAs for all isolates failed to demonstrate synergism with penicillin 0.048 or 0.2 mg/L, irrespective of gentamicin concentrations used. Rapid killing was seen with penicillin 0.048 mg/L plus either 4 mg/L or 12.5 mg/L gentamicin, from 2 h up to 8 h hours after antibiotic exposure. TKAs with penicillin 0.2 mg/L decreased the starting inoculum below the limit of quantification within 4 h to 6 h, irrespective of the addition of gentamicin. Fast killing was seen with penicillin 0.2 mg/L plus 12.5 mg/L gentamicin within the first 2 h. Our in vitro results indicate that the addition of gentamicin to penicillin contributes to faster killing at low penicillin concentrations, but only within the first few hours. Twenty-four hours after antibiotic exposure, PEN alone was bactericidal and synergism was not seen.

  11. Is Penicillin Plus Gentamicin Synergistic against Clinical Group B Streptococcus isolates?: An In vitro Study.

    Science.gov (United States)

    Ruppen, Corinne; Lupo, Agnese; Decosterd, Laurent; Sendi, Parham

    2016-01-01

    Group B Streptococcus (GBS) is increasingly causing invasive infections in non-pregnant adults. Elderly patients and those with comorbidities are at increased risk. On the basis of previous studies focusing on neonatal infections, penicillin plus gentamicin is recommended for infective endocarditis (IE) and periprosthetic joint infections (PJI) in adults. The purpose of this study was to investigate whether a synergism with penicillin and gentamicin is present in GBS isolates that caused IE and PJI. We used 5 GBS isolates, two clinical strains and three control strains, including one displaying high-level gentamicin resistance (HLGR). The results from the checkerboard and time-kill assays (TKAs) were compared. For TKAs, antibiotic concentrations for penicillin were 0.048 and 0.2 mg/L, and for gentamicin 4 mg/L or 12.5 mg/L. In the checkerboard assay, the median fractional inhibitory concentration indices (FICIs) of all isolates indicated indifference. TKAs for all isolates failed to demonstrate synergism with penicillin 0.048 or 0.2 mg/L, irrespective of gentamicin concentrations used. Rapid killing was seen with penicillin 0.048 mg/L plus either 4 mg/L or 12.5 mg/L gentamicin, from 2 h up to 8 h hours after antibiotic exposure. TKAs with penicillin 0.2 mg/L decreased the starting inoculum below the limit of quantification within 4-6 h, irrespective of the addition of gentamicin. Fast killing was seen with penicillin 0.2 mg/L plus 12.5 mg/L gentamicin within the first 2 h. Our in vitro results indicate that the addition of gentamicin to penicillin contributes to faster killing at low penicillin concentrations, but only within the first few hours. Twenty-four hours after antibiotic exposure, PEN alone was bactericidal and synergism was not seen.

  12. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Obasola E. Fagade; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  13. Surveillance and Detection of Inhibitor-Resistant Beta-Lactamases in Clinical Isolates of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Carl Urban

    2007-06-01

    Full Text Available In recent years, resistance to beta-lactam antibiotics, such as the widely-used cephalosporins and penicillins, has become a major challenge for disease therapy, particularly in common hospital-acquired infections. In the search for the mechanisms behind this increasingly prevalent form of resistance, microbiologists have identified a new type of beta-lactamase enzyme, called inhibitor-resistant TEMs (IRTs, which can withstand the effects of beta-lactamase inhibitor compounds, further reducing the arsenal of drugs available to physicians facing resistant bacteria. In this study, we examined the enzymatic and genetic basis of Escherichia coli isolates demonstrating such resistance to beta-lactam/beta-lactamase inhibitor combinations. Susceptibility trials played a major role in composing the experimental cohort for this project (n=50; each isolate was thoroughly tested to ensure that it was resistant to ampicillin-sulbactam, an inhibitor combination, but susceptible to the third-generation cephalosporin ceftazidime. Subsequently, a number of samples were subjected to assay by pulsed-field gel electrophoresis (n=18 and polymerase chain reaction (n=3 so that their genetic composition and relatedness might be known. In particular, the presence of genes coding for TEM-type beta-lactamases was investigated for each of the 3 isolates sequenced. Even though it was anticipated that the isolates would possess resistance to inhibitor combinations due to an IRT gene, this was not found to be the case. Instead, the mechanism of resistance turned out to be over-expression of a gene coding for a normal TEM enzyme. The results of these experiments have implications for ensuring successful therapy of bacterial infections and for preventing the spread of antimicrobial resistance.

  14. Prevalence and risk factor analysis of resistant Escherichia coli urinary tract infections in the emergency department.

    Directory of Open Access Journals (Sweden)

    Bailey AM

    2013-06-01

    Full Text Available Background: Escherichia coli (E. coli is a frequent uropathogen in urinary tract infections (UTI. Widespread resistance to sulfamethoxazole-trimethoprim (SMX-TMP and increasing resistance to fluoroquinolones amongst these isolates has been recognized. There are limited data demonstrating risk factors for resistance to both SMX-TMP and fluoroquinolones.Objectives: This study was conducted to assess for the prevalence of community resistance amongst E. coli isolates to SMX-TMP and levofloxacin in ambulatory patients discharged from the emergency department (ED.Methods: Adults presenting for evaluation and discharged from the ED with a diagnosis of an E. coli UTI were retrospectively reviewed. Utilizing demographic and clinical data the prevalence of E. coli resistance and risk factors associated with SMX-TMP- and fluoroquinolone-resistant infection were determined. Results: Among the 222 patients, the mean rates of E. coli susceptibility to levofloxacin and SMX-TMP were 82.4% and 72.5%, respectively. Significant risk factors for resistance to SMX-TMP included prior antibiotic use (p=0.04 and prior diagnosis of UTI (p= 0.01. Significant risk factors for resistance to levofloxacin included: male gender, age, presence of hypertension, diabetes, chronic respiratory disease, nursing home resident, previous antibiotic use, previous diagnosis of UTI, existence of renal or genitourinary abnormalities, and prior surgical procedures (p <0.05 for all comparisons. The number of hospital days prior to initial ED evaluation (p<0.001 was determined to be a predictive factor in hospital and ED readmission. Conclusions: These results suggest that conventional approaches to monitoring for patterns of susceptibility may be inadequate. It is imperative that practitioners develop novel approaches to identifying patients with risk factors for resistance. Identification of risk factors from this evaluation should prompt providers to scrutinize the use of these agents in

  15. Plasmid-Mediated OqxAB Is an Important Mechanism for Nitrofurantoin Resistance in Escherichia coli.

    Science.gov (United States)

    Ho, Pak-Leung; Ng, Ka-Ying; Lo, Wai-U; Law, Pierra Y; Lai, Eileen Ling-Yi; Wang, Ya; Chow, Kin-Hung

    2015-11-09

    Increasing consumption of nitrofurantoin (NIT) for treatment of acute uncomplicated urinary tract infections (UTI) highlights the need to monitor emerging NIT resistance mechanisms. This study investigated the molecular epidemiology of the multidrug-resistant efflux gene oqxAB and its contribution to nitrofurantoin resistance by using Escherichia coli isolates originating from patients with UTI (n = 205; collected in 2004 to 2013) and food-producing animals (n = 136; collected in 2012 to 2013) in Hong Kong. The oqxAB gene was highly prevalent among NIT-intermediate (11.5% to 45.5%) and -resistant (39.2% to 65.5%) isolates but rare (0% to 1.7%) among NIT-susceptible (NIT-S) isolates. In our isolates, the oqxAB gene was associated with IS26 and was carried by plasmids of diverse replicon types. Multilocus sequence typing revealed that the clones of oqxAB-positive E. coli were diverse. The combination of oqxAB and nfsA mutations was found to be sufficient for high-level NIT resistance. Curing of oqxAB-carrying plasmids from 20 NIT-intermediate/resistant UTI isolates markedly reduced the geometric mean MIC of NIT from 168.9 μg/ml to 34.3 μg/ml. In the plasmid-cured variants, 20% (1/5) of isolates with nfsA mutations were NIT-S, while 80% (12/15) of isolates without nfsA mutations were NIT-S (P = 0.015). The presence of plasmid-based oqxAB increased the mutation prevention concentration of NIT from 128 μg/ml to 256 μg/ml and facilitated the development of clinically important levels of nitrofurantoin resistance. In conclusion, plasmid-mediated oqxAB is an important nitrofurantoin resistance mechanism. There is a great need to monitor the dissemination of this transferable multidrug-resistant efflux pump.

  16. Relationships among Ciprofloxacin, Gatifloxacin, Levofloxacin, and Norfloxacin MICs for Fluoroquinolone-Resistant Escherichia coli Clinical Isolates▿

    Science.gov (United States)

    Becnel Boyd, Lauren; Maynard, Merry J.; Morgan-Linnell, Sonia K.; Horton, Lori Banks; Sucgang, Richard; Hamill, Richard J.; Jimenez, Javier Rojo; Versalovic, James; Steffen, David; Zechiedrich, Lynn

    2009-01-01

    Fluoroquinolones are some of the most prescribed antibiotics in the United States. Previously, we and others showed that the fluoroquinolones exhibit a class effect with regard to the CLSI-established breakpoints for resistance, such that decreased susceptibility (i.e., an increased MIC) to one fluoroquinolone means a simultaneously decreased susceptibility to all. For defined strains, however, clear differences exist in the pharmacodynamic properties of each fluoroquinolone and the extent to which resistance-associated genotypes affect the MICs of each fluoroquinolone. In a pilot study of 920 clinical Escherichia coli isolates, we uncovered tremendous variation in norfloxacin MICs. The MICs for all of the fluoroquinolone-resistant isolates exceeded the resistance breakpoint, reaching 1,000 μg/ml. Approximately 25% of the isolates (n = 214), representing the full range of resistant norfloxacin MICs, were selected for the simultaneous determinations of ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs. We found that (i) great MIC variation existed for all four fluoroquinolones, (ii) the ciprofloxacin and levofloxacin MICs of >90% of the fluoroquinolone-resistant isolates were higher than the resistance breakpoints, (iii) ciprofloxacin and levofloxacin MICs were distributed into two distinct groups, (iv) the MICs of two drug pairs (ciprofloxacin and norfloxacin by Kendall's Tau-b test and gatifloxacin and levofloxacin by paired t test) were similar with statistical significance but were different from each other, and (v) ∼2% of isolates had unprecedented fluoroquinolone MIC relationships. Thus, although the fluoroquinolones can be considered equivalent with regard to clinical susceptibility or resistance, fluoroquinolone MICs differ dramatically for fluoroquinolone-resistant clinical isolates, likely because of differences in drug structure. PMID:18838594

  17. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC) Strains Isolated in Bangladesh.

    Science.gov (United States)

    Begum, Yasmin A; Talukder, K A; Azmi, Ishrat J; Shahnaij, Mohammad; Sheikh, A; Sharmin, Salma; Svennerholm, A-M; Qadri, Firdausi

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh. A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA) was used for detection of Heat labile (LT) and Heat stable (ST) toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC) of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR) and ciprofloxacin susceptible (CipS) strains were determined by Pulsed-field gel electrophoresis (PFGE). Among 1067 (12%) ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523) of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs) as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and ciprofloxacin of representative Cip

  18. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC Strains Isolated in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Yasmin A Begum

    Full Text Available Enterotoxigenic Escherichia coli (ETEC is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh.A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA was used for detection of Heat labile (LT and Heat stable (ST toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR and ciprofloxacin susceptible (CipS strains were determined by Pulsed-field gel electrophoresis (PFGE.Among 1067 (12% ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523 of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and ciprofloxacin of representative

  19. Correlation between biofilm forming ability and antimicrobial resistance of uropathogenic Escherichia coli%尿路致病性大肠埃希菌生物膜形成与耐药性的关系

    Institute of Scientific and Technical Information of China (English)

    吴玉秀; 葛新; 靳颖; 董小青

    2011-01-01

    Objective To study the biofilm forming ability and effect on antimicrobial resistance of 50 uropatho-genic Escherichia coli (UPEC) strains isolated from clinic. Methods Screening of biofilm formation was performed by crystal violet staining, the susceptibility of 50 UPEC isolates to 8 kinds of antimicrobial agents was determined by Kirby-Bauer method , the correlation between antimicrobial resistance and biofilm formation was analyzed statistically. Results Among 50 UPEC isolates, 34(68. 00%) were biofilm-positive strains. All UPEC strains showed different resistance to 8 kinds of antimicrobial agents; the resistant rates of biofilm-positive strains to ampicillin (76.47%) and gentamicin (55.88%) were significantly higher than those of biofilm-negative strains (43.75%, 18.75% respectively) (P<0. 05). Conclusion The formation of biofilm in UPEC is common, the formation of biofilm correlats with its resistance to ampicillin and gentamicin.%目的 研究50株临床分离的尿路致病性大肠埃希菌(UPEC)形成生物膜情况及其对抗菌药物敏感性的影响.方法 采用结晶紫染色法检测生物膜阳性菌株,K-B纸片扩散法分析UPEC对8种抗菌药物的敏感性,再通过统计学方法分析细菌耐药性与生物膜形成之间的关系.结果 50株UPEC中,生物膜阳性34株,占68.00%.UPEC对8种抗菌药物均有不同程度耐药性;经统计学分析,生物膜阳性菌株对氨苄西林和庆大霉素耐药率(76.47%和55.88%)明显高于生物膜阴性菌株(43.75%和18.75%),差异有统计学意义(P<0.05).结论 UPEC产生物膜现象较普遍,生物膜形成与其对氨苄西林和庆大霉素的耐药性具有相关性.

  20. Gentamicin concentrations in human subcutaneous tissue

    DEFF Research Database (Denmark)

    Lorentzen, Hanne; Kallehave, Finn Lasse; Kolmos, Hans Jørn Jepsen

    1996-01-01

    in human subcutaneous adipose tissue by a microdialysis technique. Seven healthy young volunteers each had four microdialysis probes placed in the fat (subcutaneous) layer of the abdominal skin. After the administration of a 240-mg gentamicin intravenous bolus, consecutive measurements of the drug...... of the gentamicin concentration in human subcutaneous tissue. In this adipose tissue, the peak concentrations of gentamicin were approximately seven times the MIC for Pseudomonas aeruginosa and 33 times the MIC for Staphylococcus aureus after the administration of an intravenous bolus of 240 mg, indicating......Wound infections frequently originate from the subcutaneous tissue. The effect of gentamicin in subcutaneous tissue has, however, normally been evaluated from concentrations in blood or wound fluid. The aim of the present study was to investigate the pharmacokinetic properties of gentamicin...

  1. Temporal Changes in Resistance Mechanisms in Colonizing Escherichia coli Isolates with Reduced Susceptibility to Fluoroquinolones

    Science.gov (United States)

    Han, Jennifer H.; Nachamkin, Irving; Tolomeo, Pam; Mao, Xiangqun; Bilker, Warren B.; Lautenbach, Ebbing

    2013-01-01

    The objective of this study was to characterize the temporal variability of fluoroquinolone resistance mechanisms among Escherichia coli colonizing the gastrointestinal tract of hospitalized patients. Patients with new fluoroquinolone-resistant E. coli (FQREC) colonization were followed with serial fecal sampling until discharge or death. Genetic mechanism(s) of resistance for all FQREC isolates were characterized, including mutations in gyrA and parC and efflux pump overexpression. Of 451 subjects, 73 (16.2%) became newly colonized with FQREC. There was significant variability in regard to temporal changes in resistance mechanisms and levofloxacin MICs among isolates from individual patients. Compared to patients with transient colonization, patients with persistent colonization were more likely to have a urinary catheter (P=0.04), diarrhea (P=0.04), and a longer duration of hospitalization (22 and 9.0 mean days, respectively; P=0.01) prior to sampling. Our data demonstrate the significant variability of resistance mechanisms in colonizing E. coli isolates among hospitalized patients. PMID:23719087

  2. Plasmid-mediated colistin resistance in Escherichia coli from the Arabian Peninsula.

    Science.gov (United States)

    Sonnevend, Ágnes; Ghazawi, Akela; Alqahtani, Manaf; Shibl, Atef; Jamal, Wafa; Hashmey, Rayhan; Pal, Tibor

    2016-09-01

    Searching for the presence of the mcr-1 gene in colistin resistant Enterobacteriaceae in countries of the Arabian Peninsula. Seventy-five independent, colistin resistant Enterobacteriaceae strains isolated from clinical cases in Bahrain, Kuwait, Oman, Saudi Arabia and the United Arab Emirates were tested by PCR for the mcr-1 gene. mcr-1 positive strains were genotyped, and their antibiotic susceptibility was established. The mcr-1 containing plasmids were mobilized into Escherichia coli K-12 and their sequence was determined. Four E. coli isolates (two from Bahrain, one from Saudi Arabia and one from the United Arab Emirates) were identified carrying the mcr-1 gene on conjugative plasmids. They belonged to global multidrug resistant E. coli clones, i.e. ST648, ST224, ST68 and ST131, respectively. One strain carried the blaNDM-1 carbapenemase gene. Three strains carried mcr-1 on IncI2 type plasmids, one of them also harboring a blaCTX-M-64 gene. In the fourth strain mcr-1 was located on a 240kb IncHI2 plasmid co-harboring 13 other resistance genes. This is the first report on the presence of the plasmid-coded mcr-1 gene in a variety of multi-resistant clinical isolates from the Arabian Peninsula indicating that several commonly used antibiotics can potentially facilitate the spread of mcr-1 carrying strains, or directly, mcr-1 containing plasmids. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Heat resistance of viable but non-culturable Escherichia coli cells determined by differential scanning calorimetry.

    Science.gov (United States)

    Castro-Rosas, Javier; Gómez-Aldapa, Carlos Alberto; Villagómez Ibarra, José Roberto; Santos-López, Eva María; Rangel-Vargas, Esmeralda

    2017-10-16

    Several reports have suggested that the viable but non-culturable (VBNC) state is a resistant form of bacterial cells that allows them to remain in a dormant form in the environment. Nevertheless, studies on the resistance of VBNC bacterial cells to ecological factors are limited, mainly because techniques that allow this type of evaluation are lacking. Differential scanning calorimetry (DSC) has been used to study the thermal resistance of culturable bacteria but has never been used to study VBNC cells. In this work, the heat resistance of Escherichia coli cells in the VBNC state was studied using the DSC technique. The VBNC state was induced in E. coli ATCC 25922 by suspending bacterial cells in artificial sea water, followed by storage at 3 ± 2°C for 110 days. Periodically, the behaviour of E. coli cells was monitored by plate counts, direct viable counts and DSC. The entire bacterial population entered the VBNC state after 110 days of storage. The results obtained with DSC suggest that the VBNC state does not confer thermal resistance to E. coli cells in the temperature range analysed here. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli.

    Science.gov (United States)

    Ruiz, Cristian; Levy, Stuart B

    2010-05-01

    Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.

  5. Multidrug resistant Escherichia coli strains isolated from urine sample, University of Gondar Hospital, Northwest Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Setegn Eshetie; Fentahun Tarekegn; Gemechu Kumera; Feleke Mekonnen

    2016-01-01

    Objective: To assess multidrug resistant (MDR) Escherichia coli (E. coli) isolates from patients with urinary tract infection. Methods: From February to June 2014, a cross sectional study was conducted among urinary tract infection patients at the University of Gondar Hospital. Culture and disk diffusion method were used for E. coli isolation and to determine the antibiotic susceptibility patterns. Data were entered and analyzed using SPSS version 20. P Results: A total of 112 E. coli isolates were identified and the rate of isolation was higher among female participants (28.7%; P = 0.03). Of the isolates, 104 (92.9%) were MDR E. coli; and the isolates showed high resistance rates towards ampicillin (99%), cotrimoxazole (69%), chloramphenicol (58.7%), gentamycin (56.7%) and ceftazidime (55.8%). However, comparative isolates showed low resistance rates to ciprofloxacin (1%), cefepime (8.7%), and ceftriaxone (11.5%). Moreover, resistance rates of MDR E. coli isolates were significantly higher than non-MDR strains for ceftazidime (55.8% versus 12.5%; P = 0.015), and ampicillin (99% versus 87.5%; P = 0.018). Conclusions: High prevalence of MDR E. coli isolates was observed in this study. Regular monitoring of antibiotic resistance rates is necessarily required to improve and revise empirical antibiotic therapy protocols.

  6. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    Science.gov (United States)

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (Pacid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  7. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus).

    Science.gov (United States)

    Gonçalves, Alexandre; Igrejas, Gilberto; Radhouani, Hajer; Santos, Tiago; Monteiro, Ricardo; Pacheco, Rui; Alcaide, Eva; Zorrilla, Irene; Serra, Rodrigo; Torres, Carmen; Poeta, Patrícia

    2013-07-01

    Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes.

  8. Some like it hot: heat resistance of Escherichia coli in food

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-11-01

    Full Text Available Heat treatment and cooking are common interventions for reducing the numbers of vegetative cells and eliminating pathogenic microorganisms in food. Current cooking method requires the internal temperature of beef patties to reach 71 °C. However, some pathogenic Escherichia coli such as the beef isolate E. coli AW 1.7 are extremely heat resistant, questioning its inactivation by current heat interventions in beef processing. To optimize the conditions of heat treatment for effective decontaminations of pathogenic E. coli strains, sufficient estimations and explanations are necessary on mechanisms of heat resistance of target strains. The heat resistance of E. coli depends on the variability of strains and properties of food formulations including salt and water activity. Heat induces alterations of E. coli cells including membrane, cytoplasm, ribosome and DNA, particularly on proteins including protein misfolding and aggregations. Resistant systems of E. coli act against these alterations, mainly through gene regulations of heat response including EvgA, heat shock proteins, σE and σS, to re-fold of misfolded proteins, and achieve antagonism to heat stress. Heat resistance can also be increased by expression of key proteins of membrane and stabilization of membrane fluidity. In addition to the contributions of the outer membrane porin NmpC and overcome of osmotic stress from compatible solutes, the new identified genomic island locus of heat resistant performs a critical role to these highly heat resistant strains. This review aims to provide an overview of current knowledge on heat resistance of E. coli, to better understand its related mechanisms and explore more effective applications of heat interventions in food industry.

  9. Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    María B Sánchez

    Full Text Available Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation. The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance.

  10. High-level Multi-Resistant and Virulent Escherichia coli in Abeokuta, Nigeria.

    Science.gov (United States)

    Akinduti, Paul Akinniyi; Aboderin, Bukola W; Oloyede, Rasaq; Ogiogwa, Joseph I; Motayo, Babatunde O; Ejilude, Oluwaseun

    2016-01-01

    Multi-resistant Escherichia coli (E. coli) strains co-harboring virulence genes is a cause of high morbidity in Abeokuta, Nigeria. This study was designed to determine some virulent factors among enteropathogenic E. coli in Abeokuta, Nigeria. Approximately non-repetitive 102 isolates of E. coli were recovered from clinical samples from two health facilities in Abeokuta. Biotyping using API and antibiotic susceptibility was determined, and eae and flic genes were assayed by PCR. Antibiotic resistance relatedness was performed by DendroUPGMA. Results showed that 48.0% and 52.0 % were intestinal and extra-intestinal E. coli, ampicillin recorded 100% resistance, amoxycilli/clavulanic acid 64.7%, cotrimoxazole 57.8% and 56.8% resistance against cefotaxime, at MIC >16 ug/mL, 100%, 57.8%, and 50% have MIC50 to ampicillin, tetracycline, and ceftazidime, while 74.5% and 48.0% have MIC90 to ampicillin and ceftazidime. Significant rates of 4.9%, 7.8%, and 9.8% flic, eae, and flic/eae genes were found in intestinal isolates, while 2.9%, 2.0%, and 3.9% were found in extra-intestinal (P < 0.05). Two major clades of the resistant isolates reveal significant antibiotic relatedness among intestinal and extra-intestinal isolates, at 54% resistance similarities with very high multi-antibiotic resistance index of 1.0 (MARI). A high rate of undetected virulent E. coli pathotypes with high resistance could trigger unprecedented morbidity and mortality, mostly among children and the elderly.

  11. SCREENING THE ANTIMICROBIAL ACTIVITY OF SOME MEDICINAL PLANTS AGAINST MULTIDRUG RESISTANCE ESCHERICHIA COLI TYPE (1

    Directory of Open Access Journals (Sweden)

    SHAZA ANWAR AL LAHAM, FRDOOS MOHAMMAD

    2014-05-01

    Full Text Available The increasing number of Escherichia coli causing mastitis and of bacteria resistant to conventional antibiotics has become aserious problem in recent years. So the search for new antibiotics and alternative products to solve this problem is the question ofthe age. This research aims to investigate the effectiveness of the extracts prepared from different parts of the following plants:Olea europea Linn (Oleaceae ، Myrtus communis Linn (Liliaceae، Majorana syriacus Linn (Laminaceae، Zingiber officinaleLinn (Zingiberaceae، Achillea falcata Linn (Asteraceae against resistant Escherichia coli Type (1. Investigation began forE.coli bacteria in 667 milk samples. The bacteria were identified culturally, morphologically and biochemically. Antibioticsusceptibility testing against E.coli by Kirby-Bauer disk diffusion method were conducted. Then using the blood agar,MacConkey agar, salmonella - shigella agar, and biochemical testing method [API 20 E testing Enterobacteriaceae] were made totype E.coli. Plants were extracted with water, absolute alcohol, then ether using a soxhlet apparatus and rotary vacuumevaporator. Then extracts susceptibility testing against antibiotic resistant E.coli Type (1 were studied. E. coli was defined asoxidase negative, indole positive, catalase positive. The studied antibiotics did not show any antibacterial effect against E.coli .By the results of the biochemical analysis (API20e on resistant E.coli , E.coli type (1 was 33.35% of the total number ofsamples. The anti-bacterial effectiveness against E.coli type (1 of ethanol extracts prepared from different parts of the studiedplants were variant, whereas the Myrtus communis extract effectively has the most powerful antibacterial effect for these bacteria,while the Zingiber officinale extract has the lowest influence.

  12. CORRELATION BETWEEN BIOFILM FORMATION OF UROPATHOGE NIC ESCHERICHIA COLI AND ITS ANTIBIOTIC RESISTANCE PATT ERN

    Directory of Open Access Journals (Sweden)

    SarojGolia

    2012-09-01

    Full Text Available ABSTRACT BACKGROUND: Microorganisms growing in multilayered cell cluste rs embedded in a matrix of extracellular polysaccharide (slime which facilitat es the adherence of these microorganisms to biomedical surfaces and protect them from host immun e system and antimicrobial therapy. There are various methods to detect biofilm producti on like Tissue Culture Plate (TCP ,Tube method (TM ,Modified Congo Red Agar Method (MCRA, bio luminescent assay ,piezoelectric sensors and fluorescent microscopic examination. OBJECTIVES : This study was conducted to compare three methods f or the detection of biofilms and compare with antibiotic sensitivity pat tern, in uropathogenic Escherichia coli. METHOD: This study was carried out at the Department of Microbiology Dr. B. R. Ambedkar Medical College from Dec 2011 to June 2012. Total n umber of 107 clinical Escherichia coli isolates were randomly selected from all age groups were subjected to biofilm detection methods and their antibiotic resistance pattern w as compared. Isolates were identified by standard phenotypic methods. Biofilm detection was te sted by TCP, TM and MCRA methods . Antibiotic susceptibility test of uropathogenic E co li was performed using Kirby –Bauer disc diffusion method according to CLSI guidelines. RESULTS: From the total of 107 clinical isolate 74 (69.1 % isolates showed biofilm formation by all the TCP, TM, CRP methods. Biofilm forming i solates from catheter associated UTI showed drug resistance to more than 6 drugs. Only 2(13.3% isolates from Asymptomatic UTI showed biofilm by TM & MCRA methods & were sensitive all d rugs. Biofilm forming isolates from symptomatic UTI showed mixed drug resistance pattern. CONCLUSION: We conclude from our study that biofilm formation is more common in catheterized patients. TCP method is more quantitati ve and reliable method for the detection of biofilm forming micro-organisms as compared to TM a nd MCRA methods. So TCP method can be recommended

  13. Emergence of plasmid-mediated colistin resistance and New Delhi metallo-β-lactamase genes in extensively drug-resistant Escherichia coli isolated from a patient in Thailand.

    Science.gov (United States)

    Paveenkittiporn, Wantana; Kerdsin, Anusak; Chokngam, Sukanya; Bunthi, Charatdao; Sangkitporn, Somchai; Gregory, Christopher J

    2017-02-01

    We reported a case of Escherichia coli with colistin resistance and an extensively drug-resistant phenotype. Molecular analysis revealed that the isolate carried mcr-1 and multiple β-lactamase genes includingblaNDM1, blaCTX-M-15, blaTEM1, and blaCMY-2. This is the first report of a clinical mcr-1 isolate in Thailand highlighting the urgent need for a comprehensive antimicrobial resistance containment strategy to prevent further spread.

  14. The Antibiotic Resistance of Food-borne Escherichia coli%食源性大肠杆菌耐药性检测

    Institute of Scientific and Technical Information of China (English)

    只帅; 席美丽; 申进玲; 杨保伟; 孟江洪

    2009-01-01

    采用美国临床实验室标准化委员会(National Committee of Clinical Laboratory Standard 简称NCCLS)推荐的琼脂稀释法,以大肠埃希氏菌ATCC25922、粪肠球菌ATCC29212和金黄色葡萄球菌ATCC29213为质控菌株,对411株分离自鸡肉和凉拌菜的大肠杆菌进行了6大类共12种抗生素的药敏性检测.结果表明受试菌株对四环素的耐药率(98.3%)最高,其次是链霉素(71.3%)、奈定酮酸(68.4%)、阿莫西林(67.6%)、氨苄青霉素(61.8%)、环丙沙星(50.6%)、氯霉素(48.4%)、卡那霉素(40.6%)、庆大霉素(36.7%),所有受试菌株对阿米卡星的敏感性最强,仅有11.9%(49)的耐药率,其次是头孢西丁(14.1%)和头孢哌酮(29.9%).247(60.1%)株分离菌表现5重以上耐药性,其中鸡肉分离株占236株.%411 Escherichia. coli (E. coli) isolates recovered from retail meats and Chinese salads that collected in supermarkets and free markets in Xi'an and Yangling areas of Shaanxi Province were studied to determine antibiotic susceptibility. Antimicrobial susceptibility to 12 antibiotics of 411 E. coli i-solates were determined by using agar dilution method, which was recommended by National Committee of Clinical Laboratory Standard (NCCLS), and E. coli ATCC25922, E. faecalis ATCC29212 and S. aureus ATCC29213 as standard control strains. Results showed that 98. 3% of the E. coli isolates were resistant to tetracycline, followed by resistance to Streptomycin (71. 3%), Nalidixic acid (68. 4%),Amoxicillin(67. 6%), Ampicillin(61. 8%) , Ciprofloxacin(50. 6%), chloramphenicol (48. 4% ) , Kanamycin (40. 6%) ,gentamicin(36. 7%). The most sensitive antibiotical is Amikacin(88. 1%),followed by Cefoxitin(85. 9%) and Cefoperazone(70. 1%)respectively. 247 isolates (60. 1%) were mul-tidrug resistant (MDR) strains(more than 5), 236 isolated from chicken.

  15. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    Science.gov (United States)

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations.

  16. Sequential Acquisition of Virulence and Fluoroquinolone Resistance Has Shaped the Evolution of Escherichia coli ST131.

    Science.gov (United States)

    Ben Zakour, Nouri L; Alsheikh-Hussain, Areej S; Ashcroft, Melinda M; Khanh Nhu, Nguyen Thi; Roberts, Leah W; Stanton-Cook, Mitchell; Schembri, Mark A; Beatson, Scott A

    2016-04-26

    Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-M-15 extended-spectrum β-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographical and temporal origin of the ST131 ancestor. Here, we developed a framework for the reanalysis of publically available genomes from different countries and used this data set to reconstruct the evolutionary steps that led to the emergence of FQR ST131. Using Bayesian estimation, we show that point mutations in chromosomal genes that confer FQR coincide with the first clinical use of fluoroquinolone in 1986 and illustrate the impact of this pivotal event on the rapid population expansion of ST131 worldwide from an apparent origin in North America. Furthermore, we identify virulence factor acquisition events that predate the development of FQR, suggesting that the gain of virulence-associated genes followed by the tandem development of antibiotic resistance primed the successful global dissemination of ST131. Escherichia coli sequence type 131 (ST131) is a recently emerged and globally disseminated multidrug-resistant clone frequently associated with human urinary tract and bloodstream infections. In this study, we have used two large publically available genomic data sets to define a number of critical steps in the evolution of this important pathogen. We show that resistance to fluoroquinolones, a class of broad-spectrum antibiotic used extensively in human medicine and veterinary practice, developed in ST131 soon after the introduction of these antibiotics in the United States, most likely in North America. We also mapped the acquisition of several fitness and virulence determinants by ST131 and demonstrate these events occurred prior to the development of fluoroquinolone resistance. Thus, ST131 has

  17. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    Directory of Open Access Journals (Sweden)

    Minh-Duy Phan

    Full Text Available Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73% of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82% of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and

  18. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.

    Science.gov (United States)

    Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Lía Padola, Nora; Vignoli, Rafael; Zunino, Pablo

    2017-09-12

    Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and blaCTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.

  19. Escherichia coli Population Structure and Antibiotic Resistance at a Buffalo/Cattle Interface in Southern Africa.

    Science.gov (United States)

    Mercat, Mathilde; Clermont, Olivier; Massot, Méril; Ruppe, Etienne; de Garine-Wichatitsky, Michel; Miguel, Eve; Valls Fox, Hugo; Cornelis, Daniel; Andremont, Antoine; Denamur, Erick; Caron, Alexandre

    2015-12-28

    At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems.

  20. "Population structure of drug-susceptible, -resistant and ESBL-producing Escherichia coli from community-acquired urinary tract infections"

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius; Nielsen, Jesper Boye; Schønning, Kristian

    2016-01-01

    BACKGROUND: Escherichia coli is the most common cause of urinary tract infection (UTI). The pathogenic isolates are becoming increasingly resistant to antibiotics; with a worldwide dissemination of resistant sequence types (ST). We characterized three different uropathogenic E. coli populations, ...

  1. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli?

    Science.gov (United States)

    Radhouani, Hajer; Pinto, Luís; Poeta, Patrícia; Igrejas, Gilberto

    2012-06-01

    Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.

  2. Characterization of Multidrug Resistant ESBL-Producing Escherichia coli Isolates from Hospitals in Malaysia

    Directory of Open Access Journals (Sweden)

    King-Ting Lim

    2009-01-01

    Full Text Available The emergence of Escherichia coli that produce extended spectrum β-lactamases (ESBLs and are multidrug resistant (MDR poses antibiotic management problems. Forty-seven E. coli isolates from various public hospitals in Malaysia were studied. All isolates were sensitive to imipenem whereas 36 were MDR (resistant to 2 or more classes of antibiotics. PCR detection using gene-specific primers showed that 87.5% of the ESBL-producing E. coli harbored the blaTEM gene. Other ESBL-encoding genes detected were blaOXA, blaSHV, and blaCTX-M. Integron-encoded integrases were detected in 55.3% of isolates, with class 1 integron-encoded intI1 integrase being the majority. Amplification and sequence analysis of the 5′CS region of the integrons showed known antibiotic resistance-encoding gene cassettes of various sizes that were inserted within the respective integrons. Conjugation and transformation experiments indicated that some of the antibiotic resistance genes were likely plasmid-encoded and transmissible. All 47 isolates were subtyped by PFGE and PCR-based fingerprinting using random amplified polymorphic DNA (RAPD, repetitive extragenic palindromes (REPs, and enterobacterial repetitive intergenic consensus (ERIC. These isolates were very diverse and heterogeneous. PFGE, ERIC, and REP-PCR methods were more discriminative than RAPD in subtyping the E. coli isolates.

  3. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jin Ye

    2009-04-01

    Full Text Available Abstract Background The low pH environment of the human stomach is lethal for most microorganisms; but not Escherichia coli, which can tolerate extreme acid stress. Acid resistance in E. coli is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA. Results In this study, we individually deleted seventy-nine sncRNA genes from the E. coli K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in E. coli. We demonstrate that GcvB enhances the ability of E. coli to survive low pH by upregulating the levels of the alternate sigma factor RpoS. Conclusion GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in E. coli.

  4. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli.

    Science.gov (United States)

    Paltansing, Sunita; Tengeler, Anouk C; Kraakman, Margriet E M; Claas, Eric C J; Bernards, Alexandra T

    2013-12-01

    Resistance to ciprofloxacin in Escherichia coli is increasing parallel to increased use of fluoroquinolones both in The Netherlands and in other European countries. The objective was to investigate the contribution of active efflux and expression of outer membrane proteins (OMPs) in a collection of clinical E. coli isolates collected at a clinical microbiology department in a Dutch hospital. Forty-seven E. coli isolates a wide range of ciprofloxacin minimum inhibitory concentrations and known mutations in the quinolone resistance determining region were included. A fluorometric determination of bisbenzimide efflux was used two different efflux pump inhibitors and compared to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for the expression levels of acrA, acrB, tolC, yhiV, and mdfA efflux pump genes and the OMPs ompF and ompX. Six isolates (12.7%) showed increased efflux. Although in 35 isolates (76%), overexpression of ≥1 efflux pump genes using qRT-PCR was present. Only the combined overexpression of acrAB-TolC and mdfA correlated with the phenotypic efflux assay using glucose/carbonyl cyanide m-chlorophenylhydrazone with glucose. Thus, efflux was involved in ciprofloxacin resistance in a limited number of E. coli isolates collected at a clinical microbiology department in a Dutch hospital complementing other resistance mechanisms.

  5. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia

    Institute of Scientific and Technical Information of China (English)

    Peilong Lu; Dan Ma; Yuling Chen; Yingying Guo; Guo-Qiang Chen; Haiteng Deng; Yigong Shi

    2013-01-01

    Bacteria,exemplified by enteropathogenic Escherichia coli (E.coli),,rely on elaborate acid resistance systems to survive acidic environment (such as the stomach).Comprehensive understanding of bacterial acid resistance is important for prevention and clinical treatment.In this study,we report a previously uncharacterized type of acid resistance system in E.coli that relies on L-glutamine (Gln),one of the most abundant food-borne free amino acids.Upon uptake into E.coli,Gln is converted to L-glutamate (Glu) by the acid-activated glutaminase YbaS,with concomitant release of gaseous ammonia.The free ammonia neutralizes proton,resulting in elevated intracellular pH under acidic environment.We show that YbaS and the amino acid antiporter GadC,which exchanges extracellular Gln with intracellular Glu,together constitute an acid resistance system that is sufficient for E.coli survival under extremely acidic environment.

  6. ANTIBIOTIC RESISTANCE OF ESCHERICHIA COLI ISOLATED FROM UKRAINIAN BETULA VERRUCOSA EHRH. POLLEN AFTER MICROBIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tetiana Shevtsova

    2013-08-01

    Full Text Available Seven samples of silver birch pollen from different habitat of Ukraine were investigated in order to estimate their contamination with the Enterobacteriaceae family, anaerobic bacteria and fungi. Also resistance of 108 strains of Escherichia coli isolated from seven samples of Ukrainian Betula verrucosa Ehrh. pollen against 5 antibiotics: ampicillin, chloramphenicol, meropenem, ceftriaxone and ofloxacin were determined. Disc diffusion method was used for antibiotic suceptibility testing according to EUCAST 2012. It is established the concentrations of enterobacteria ranged from 0.00 to 4.16 log cfu/g, of anaerobic bacteria – 2.48 to 4.90 log cfu/g and concentration of fungi ranged from 2.48 to 4.14 log cfu/g. Degree of pollen contamination is different depending on the habitats. The resistance of E. coli isolates was determined against ampicillin, chloramphenicol, meropenem and ofloxacin. But intermediate resistance in the 33.3% of E. coli isolates and susceptibility in the 8.3% to ceftriaxone was found out. Antibiotic resistance was evaluated for all samples of pollen in whole.

  7. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    Science.gov (United States)

    Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F.

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. PMID:26887238

  8. Investigation of Escherichia coli Harboring the mcr-1 Resistance Gene - Connecticut, 2016.

    Science.gov (United States)

    Vasquez, Amber M; Montero, Noelisa; Laughlin, Mark; Dancy, Ehren; Melmed, Russell; Sosa, Lynn; Watkins, Louise Francois; Folster, Jason P; Strockbine, Nancy; Moulton-Meissner, Heather; Ansari, Uzma; Cartter, Matthew L; Walters, Maroya Spalding

    2016-09-16

    The mcr-1 gene confers resistance to the polymyxins, including the antibiotic colistin, a medication of last resort for multidrug-resistant infections. The mcr-1 gene was first reported in 2015 in food, animal, and patient isolates from China (1) and is notable for being the first plasmid-mediated colistin resistance mechanism to be identified. Plasmids can be transferred between bacteria, potentially spreading the resistance gene to other bacterial species. Since its discovery, the mcr-1 gene has been reported from Africa, Asia, Europe, South America, and North America (2,3), including the United States, where it has been identified in Escherichia coli isolated from three patients and from two intestinal samples from pigs (2,4-6). In July 2016, the Pathogen Detection System at the National Center for Biotechnology Information (Bethesda, Maryland) identified mcr-1 in the whole genome sequence of an E. coli isolate from a Connecticut patient (7); this is the fourth isolate from a U.S. patient to contain the mcr-1 gene.

  9. Myo-inositol improves the host's ability to eliminate balofloxacin-resistant Escherichia coli.

    Science.gov (United States)

    Chen, Xin-Hai; Zhang, Bing-Wen; Li, Hui; Peng, Xuan-Xian

    2015-06-01

    Antibiotic-resistant mechanisms are associated with fitness costs. However, why antibiotic-resistant bacteria usually show increasing adaptation to hosts is largely unknown, especially from the host's perspective. The present study reveals the host's varied response to balofloxacin-resistant Escherichia coli (BLFX-R) using an integrated proteome and metabolome approach and identifies myo-inositol and phagocytosis-related proteins as crucial biomarkers. Originally, macrophages have an optimal attractive preference to BLFX-S due to more polarization of BLFX-S than BLFX-R, which renders faster elimination to BLFX-S than BLFX-R. The slower elimination to BLFX-R may be reversed by exogenous myo-inositol. Primarily, myo-inositol depolarizes macrophages, elevating adherence to both BLFX-S and BLFX-R. Since the altered adherence is equal to both strains, the myo-inositol-treated macrophages are free of the barrier to BLFX-R and thereby promote phagocytosis of BLFX-R. This work provides a novel strategy based on metabolic modulation for eliminating antibiotic-resistant bacteria with a high degree of host adaptation.

  10. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources.

    Science.gov (United States)

    Ibekwe, A Mark; Murinda, Shelton E; Graves, Alexandria K

    2011-01-01

    Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.

  11. Enterobacterial detection and Escherichia coli antimicrobial resistance in parrots seized from the illegal wildlife trade.

    Science.gov (United States)

    Hidasi, Hilari Wanderley; Hidasi Neto, José; Moraes, Dunya Mara Cardoso; Linhares, Guido Fontgallad Coelho; Jayme, Valéria de Sá; Andrade, Maria Auxiliadora

    2013-03-01

    Enteric bacteria are considered important potential pathogens in avian clinical medicine, causing either primary or opportunistic infections. The aim of this study was to evaluate the frequency of enterobacteria in the intestinal microbiota of psittacine birds and to determine the antimicrobial susceptibility of the Escherichia coli isolates cultured. Fecal samples were collected from 300 parrots captured from the illegal wildlife trade in Goiás, Brazil and were processed using conventional bacteriological procedures. A total of 508 isolates were obtained from 300 fecal samples: 172 E. coli (33.9% of isolates; 57.3% of individuals); 153 Enterobacter spp. (30.1% of isolates; 51.0% of individuals); 89 Klebsiella spp. (17.7% of isolates; 29.7% of individuals); 59 Citrobacter spp. (11.6% of isolates; 19.7% of individuals), 21 Proteus vulgaris (4.2% of isolates; 7.0% of individuals), 5 Providencia alcalifaciens (0.98% of isolates; 1.67% of individuals), 5 Serratia sp. (0.98% of isolates; 1.67% of individuals), 3 Hafnia aivei (0.59% of isolates; 1.00% of individuals), and 1 Salmonella sp. (0.20% of isolates; 0.33% of individuals). Escherichia coli isolates were subsequently tested for susceptibility to the following antibiotics: amoxicillin (70.93% of the isolates were resistant), ampicillin (75.58%), ciprofloxacin (23.25%), chloramphenicol (33.14%), doxycycline (64.53%), enrofloxacin (41.28%), tetracycline (69.19%), and sulfonamide (71.51%). Multi-resistance to three and four groups of antibiotics occurred in 40 samples (23.25%) and 4 samples (2.32%), respectively. These results demonstrate that illegally traded birds are carriers of potentially pathogenic bacteria, including E. coli strains with antimicrobial resistance.

  12. [Antibioresistance of Escherichia coli strains isolated from raw chicken meat in Senegal].

    Science.gov (United States)

    Fofana, A; Bada Alambedji, R; Seydi, M; Akakpo, A J

    2006-01-01

    Antimicrobial-resistant Escherichia coli and others pathogens bacteria can be transferred from animals to humans through consumption of contaminated food and foods products and thus present a public health risk. The increase in E. coli resistance to commonly used antimicrobials both in the public health and veterinary sectors is one of the major threats of health care worldwide. The present study was undertaken to estimate the antimicrobial resistance of E. coli isolates from raw chicken meat in Dakar. Levying of skin and muscle have been carried out on 120 chicken carcasses bought from 13 sale points and 23 flocks beetween November 2003 and April 2004. 102 Escherichia coli strains have been isolated, among which, 90 were tested for their susceptibilities to 16 selected antibiotics by agar diffusion method. All Escherichia coli strains (100%), were resistant to one or more antibiotic; 60 strains (66.66%) being resistant to more than five antibiotics. Those frequently encountererd are: ampicillin, trimethoprim, trimethoprim-sulfametoxazole, tetracycline, sulfonamides, streptomycin, nalidixic acid. Multiple resistances to 12 antibiotics were also observed. The lowest resistances were noted with gentamicin (3.33%) and neomycin (5.56%). This study showed the significance of chicken meat as source of Escherichia coli strains with a simple or multiple resistance to various antibiotics tested. Further studies are necessary in order to determine bacterium mechanisms of resistance.

  13. Oral Gentamicin Gut Decontamination for Prevention of KPC-Producing Klebsiella pneumoniae Infections: Relevance of Concomitant Systemic Antibiotic Therapy

    Science.gov (United States)

    Tascini, Carlo; Sbrana, Francesco; Flammini, Sarah; Tagliaferri, Enrico; Arena, Fabio; Leonildi, Alessandro; Ciullo, Ilaria; Amadori, Francesco; Di Paolo, Antonello; Ripoli, Andrea; Lewis, Russell; Rossolini, Gian Maria

    2014-01-01

    Gut colonization represents the main source for KPC-producing Klebsiella pneumoniae (KPC-Kp) epidemic dissemination. Oral gentamicin, 80 mg four times daily, was administered to 50 consecutive patients with gut colonization by gentamicin-susceptible KPC-Kp in cases of planned surgery, major medical intervention, or need for patient transfer. The overall decontamination rate was 68% (34/50). The median duration of gentamicin treatment was 9 days (interquartile range, 7 to 15 days) in decontaminated patients compared to 24 days (interquartile range, 20 to 30 days) in those with persistent colonization (P < 0.001). In the six-month period of follow-up, KPC-Kp infections were documented in 5/34 (15%) successfully decontaminated patients compared to 12/16 (73%) persistent carriers (P < 0.001). The decontamination rate was 96% (22/23) in patients receiving oral gentamicin only, compared to 44% (12/27) of those treated with oral gentamicin and concomitant systemic antibiotic therapy (CSAT) (P < 0.001). The multivariate analysis confirmed CSAT and KPC-Kp infection as the variables associated with gut decontamination. In the follow-up period, KPC-Kp infections were documented in 2/23 (9%) of patients treated with oral gentamicin only and in 15/27 (56%) of those also receiving CSAT (P = 0.003). No difference in overall death rate between different groups was documented. Gentamicin-resistant KPC-Kp strains were isolated from stools of 4/16 persistent carriers. Peak gentamicin blood levels were below 1 mg/liter in 12/14 tested patients. Oral gentamicin was shown to be potentially useful for gut decontamination and prevention of infection due to KPC-Kp, especially in patients not receiving CSAT. The risk of emergence of gentamicin-resistant KPC-Kp should be considered. PMID:24419337

  14. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark

    DEFF Research Database (Denmark)

    Cavaco, Lina; Frimodt-Møller, Niels; Hasman, Henrik;

    2008-01-01

    Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations (MICs) of nalidixic acid (NAL) and ciprofloxacin (CIP) were investigated in 124 Escherichia coli isolated from humans (n = 85) and swine (n = 39) in Denmark. The collection included 59 high-level CIP......-resistant isolates (MIC >= 4) from human (n = 51) and pig origin (n = 8) and 65 low-level CIP-resistant isolates (MIC >= 0.125) from human (n = 34) and pig origin (n = 31). Resistance by target modification was screened by PCR amplification and sequencing, of the quinolone resistance determining regions (QRDRs......A and qnrS genes conferring quinolone resistance by target protection were detected in two human low-level CIP-resistant isolates that did not display NAL resistance. As expected, target mutation in QRDRs was the most prevalent mechanism of quinolone resistance. This mechanism was complemented by efflux...

  15. ANTIMICROBIAL DRUG RESISTANCE IN STRAINS OF Escherichia coli ISOLATED FROM FOOD SOURCES

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin Rasheed

    2014-07-01

    Full Text Available A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3% followed by vegetable salad (20%, raw meat (13.3%, raw egg-surface (10% and unpasteurized milk (6.7%. The overall incidence of drug resistant E. coli was 14.7%. A total of six (4% Extended Spectrum β-Lactamase (ESBL producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.

  16. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    Science.gov (United States)

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  17. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wenjuan Yin

    2017-06-01

    Full Text Available The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3. The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia coli. mcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3.

  18. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Ishii, Eiji; Hata, Kensuke; Utsumi, Ryutaro

    2011-03-01

    Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.

  19. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh

    Directory of Open Access Journals (Sweden)

    Islam Rezuanul

    2011-03-01

    Full Text Available Abstract Background Spices traditionally have been used as coloring agents, flavoring agents, preservatives, food additives and medicine in Bangladesh. The present work aimed to find out the antimicrobial activity of natural spices on multi-drug resistant Escherichia coli isolates. Methods Anti-bacterial potentials of six crude plant extracts (Allium sativum, Zingiber officinale, Allium cepa, Coriandrum sativum, Piper nigrum and Citrus aurantifolia were tested against five Escherichia coli isolated from potable water sources at kushtia, Bangladesh. Results All the bacterial isolates were susceptible to undiluted lime-juice. None of them were found to be susceptible against the aqueous extracts of garlic, onion, coriander, pepper and ginger alone. However, all the isolates were susceptible when subjected to 1:1:1 aqueous extract of lime, garlic and ginger. The highest inhibition zone was observed with lime (11 mm. Conclusion Natural spices might have anti-bacterial activity against enteric pathogens and could be used for prevention of diarrheal diseases. Further evaluation is necessary.

  20. Risk factors and molecular epidemiology of community-onset, multidrug resistance extended-spectrum β-lactamase-producing Escherichia coli infections.

    Science.gov (United States)

    Park, So Yeon; Kang, Cheol-In; Wi, Yu Mi; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam-Yong; Song, Jae-Hoon

    2017-01-01

    Although multidrug resistance (MDR) among extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) poses significant therapeutic challenges, little is known regarding the risk factors and epidemiology of community-onset MDR-ESBL-EC infections. We performed this study to investigate risk factors and the molecular epidemiology of community-onset MDR-ESBL-EC infections. We conducted a case-control-control study of community-onset infections. MDR-ESBL-EC was defined as ESBL-EC that demonstrated in vitro resistance to trimethoprim-sulfamethoxazole, fluoroquinolones (FQs), and gentamicin. Patients with MDR-ESBL-EC infections were designated as case patients. A control group I (CG I) patient was defined as a person whose clinical sample yielded ESBL-EC that did not meet the criteria for MDR. A control group II (CG II) patient was defined as a patient with a non-ESBL-EC infection. Of 108 patients with ESBL-EC infections, 30 cases (27.8%) were due to MDR-ESBL-EC. Compared with CG I, prior use of FQs (odds ratio [OR], 3.16; 95% confidence interval [CI], 1.11 to 8.98) and immunosuppressant use (OR, 10.47; 95% CI, 1.07 to 102.57) were significantly associated with MDR-ESBL-EC. Compared with CG II, prior use of FQs (OR, 15.53; 95% CI, 2.86 to 84.27) and healthcare-associated infection (OR, 5.98; 95% CI, 2.26 to 15.86) were significantly associated with MDR-ESBL-EC. CTX-M-15 was the most common in MDR-ESBL-EC infections (59.1% [13/22]), while CTX-M-14 was the most common in non-MDR-ESBL-EC infections (41.6% [32/77]). CTX-M-15 was significantly associated with MDR-ESBL-EC (59.1% vs. 32.5%, p = 0.028). Pulsed-field gel electrophoresis showed clonal diversity of MDR-ESBL-EC isolates. The emergence of strains of MDR-ESBL-EC in the community poses an important new public health threat. More information on the emergence and transmission of these strains will be necessary in order to prevent their spread.

  1. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    Science.gov (United States)

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  2. Whole-Genome Analysis of Antimicrobial-Resistant and Extraintestinal Pathogenic Escherichia coli in River Water.

    Science.gov (United States)

    Gomi, Ryota; Matsuda, Tomonari; Matsumura, Yasufumi; Yamamoto, Masaki; Tanaka, Michio; Ichiyama, Satoshi; Yoneda, Minoru

    2017-03-01

    Contamination of surface waters by antimicrobial-resistant bacteria and pathogenic bacteria is a great concern. In this study, 531 Escherichia coli isolates obtained from the Yamato River in Japan were evaluated phenotypically for resistance to 25 antimicrobials. Seventy-six isolates (14.3%) were multidrug resistant (MDR), 66 (12.4%) were nonsusceptible to one or two classes of agents, and 389 (73.3%) were susceptible. We performed whole-genome sequencing of selected strains by using Illumina technology. In total, the genome sequences of 155 strains were analyzed for antibiotic resistance determinants and phylogenetic characteristics. More than 50 different resistance determinants, including acquired resistance genes and chromosomal resistance mutations, were detected. Among the sequenced MDR strains (n = 66), sequence type 155 (ST155) complex (n = 9), ST10 complex (n = 9), and ST69 complex (n = 7) were prevalent. Among extraintestinal pathogenic E. coli (ExPEC) strains (n = 58), clinically important clonal groups, namely, ST95 complex (n = 18), ST127 complex (n = 8), ST12 complex (n = 6), ST14 complex (n = 6), and ST131 complex (n = 6), were prevalent, demonstrating the clonal distribution of environmental ExPEC strains. Typing of the fimH (type 1 fimbrial adhesin) gene revealed that ST131 complex strains carried fimH22 or fimH41, and no strains belonging to the fimH30 subgroup were detected. Fine-scale phylogenetic analysis and virulence gene content analysis of strains belonging to the ST95 complex (one of the major clonal ExPEC groups causing community-onset infections) revealed no significant differences between environmental and clinical strains. The results indicate contamination of surface waters by E. coli strains belonging to clinically important clonal groups.IMPORTANCE The prevalence of antimicrobial-resistant and pathogenic E. coli strains in surface waters is a concern because surface waters are used as sources for drinking water, irrigation, and

  3. Intramammary treatment with gentamicin in lactating cows with clinical and subclinical mastitis

    Directory of Open Access Journals (Sweden)

    Thamires Martins

    2016-04-01

    Full Text Available Abstract The study evaluated the microbiological profile of milk samples collected before and after mastitis treatment with gentamicin and investigated biofilms production and antimicrobial susceptibility of Staphylococcus spp. isolated. The presence of gentamicin residues in milk after the recommended withdrawal period was also evaluated. Antimicrobial residues were analyzed by Delvotest® SP NT over a period of 12 days beginning after 24 hours the last gentamicin application. Some of Staphylococcus spp. isolates were biofilm producers (19.05%. Staphylococcus spp. showed high levels of resistance to neomycin (16.95%, penicillin G (10.17%, and ampicillin (10.17%. Multidrug resistance to all antibiotics tested was observed in 1.69% of the Staphylococcus spp. isolates. Among 1440 mammary quarter milk samples 24.95% presented gentamicin residues after the withdrawal period. Gentamicin residues were also detected in 3.8% of samples from calibrated glass recorder jar (n=383 4.1 days after treatment. The indiscriminate use of antibiotics may lead to the emergence of multidrug-resistant strains as well as increasing the risk of presence of residues of these drugs in milk. These problems affect the milk quality and may become a public health problem.

  4. ESBL Genotypes in Fluoroquinolone-Resistant and Fluoroquinolone-Susceptible ESBL-Producing Escherichia coli Urinary Isolates in Manitoba

    Directory of Open Access Journals (Sweden)

    Philippe RS Lagacé-Wiens

    2007-01-01

    Full Text Available OBJECTIVE: Extended-spectrum beta-lactamase (ESBL-producing Escherichia coli are increasingly common in nosocomial and community settings. Furthermore, fluoroquinolone (FQ and even multidrug resistance (MDR appear to be associated with certain ESBL genotypes. The purpose of the present study was to determine which ESBL genotypes are associated with FQ and MDR in E coli urinary isolates in Manitoba.

  5. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    NARCIS (Netherlands)

    de Been, Mark; Lanza, Val F.; de Toro, María; Scharringa, Jelle; Dohmen, Wietske|info:eu-repo/dai/nl/333690451; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J J|info:eu-repo/dai/nl/072910542; Fluit, Ad C.; Bonten, Marc J M; Willems, Rob J L; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is inc

  6. The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli

    NARCIS (Netherlands)

    Zoetendal, E.G.; Smith, A.H.; Sundset, M.A.; Mackie, R.I.

    2008-01-01

    The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the

  7. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    NARCIS (Netherlands)

    de Been, Mark; Lanza, Val F.; de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J J; Fluit, Ad C.; Bonten, Marc J M; Willems, Rob J L; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is inc

  8. The widespread presence of a multidrug- resistant Escherichia coli ST131 clade among community-associated and hospitalized patients

    NARCIS (Netherlands)

    P.M. Den Reijer (P. Martijn); S. Van Burgh (Sebastian); A. Burggraaf (Arjan); J.M. Ossewaarde (Jacobus); A. van der Zee (Anneke)

    2016-01-01

    textabstractBackground & Aims The extent of entry of multidrug-resistant Escherichia coli from the community into the hospital and subsequent clonal spread amongst patients is unclear. To investigate the extent and direction of clonal spread of these bacteria within a large teaching hospital, we pro

  9. Quinolone resistance and ESBL/AmpC’s in commensal Escherichia coli in veal calves : prevalence and molecular characterization

    NARCIS (Netherlands)

    Hordijk, J.

    2013-01-01

    In this thesis the prevalence and molecular characteristics of resistance to (fluoro)quinolones and Extended Spectrum Cephalosporins (ESC) in veal calves were described using Escherichia coli as an indicator organism. Ciprofloxacin and nalidixic acid were used as indicator antimicrobials for quinolo

  10. Quinolone resistance and ESBL/AmpC’s in commensal Escherichia coli in veal calves : prevalence and molecular characterization

    NARCIS (Netherlands)

    Hordijk, J.

    2013-01-01

    In this thesis the prevalence and molecular characteristics of resistance to (fluoro)quinolones and Extended Spectrum Cephalosporins (ESC) in veal calves were described using Escherichia coli as an indicator organism. Ciprofloxacin and nalidixic acid were used as indicator antimicrobials for quinolo

  11. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    NARCIS (Netherlands)

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A; Schets, Franciska M; de Roda Husman, Ana Maria|info:eu-repo/dai/nl/139498281

    2015-01-01

    OBJECTIVE: The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. METHODS: The prevalence of AMR E. coli was determined in

  12. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    NARCIS (Netherlands)

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A; Schets, Franciska M; de Roda Husman, Ana Maria

    2015-01-01

    OBJECTIVE: The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. METHODS: The prevalence of AMR E. coli was determined in 11

  13. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli

    DEFF Research Database (Denmark)

    Møller, Thea S. B.; Overgaard, Martin; Nielsen, Søren S.;

    2016-01-01

    RNA varied depending on growth phase, resulting in a gradual decrease of the tetA/tetR ratio from approximately 4 in the lag phase to approximately 2 in the stationary phase. Conclusion: This study shows that the expression of tetR and tetA is tetracycline concentration- and growth phase......Background: Tetracyclines are among the most used antibiotics in livestock worldwide. Resistance is widely disseminated in Escherichia coli, where it is generally mediated by tetracycline efflux pumps, such as TetA. Expression of tetracycline efflux pumps is tightly controlled by the repressor Tet......R, which has been shown to be tetracycline-responsive at sub-MIC tetracycline concentrations. The objective of this study was to investigate the effects of increasing tetracycline concentrations on the growth of TetA-producing E. coli, and to determine how expression of tetA and tetR related to each other...

  14. Colistin Resistance Gene mcr-1 and Its Variant in Escherichia coli Isolates from Chickens in China.

    Science.gov (United States)

    Yang, Yong-Qiang; Li, Yun-Xia; Song, Tao; Yang, Yan-Xian; Jiang, Wei; Zhang, An-Yun; Guo, Xin-Yi; Liu, Bi-Hui; Wang, Yong-Xiang; Lei, Chang-Wei; Xiang, Rong; Wang, Hong-Ning

    2017-05-01

    The mcr-1 gene was detected in 5.11% (58/1136) of Escherichia coli isolates of chicken origin from 13 provinces in China. A novel mcr-1 variant, named mcr-1.3, encoding an Ile-to-Val functional variant of MCR-1 was identified in a sequence type 155 (ST155) strain. An mcr-1.3-containing IncI2 plasmid, pHeN867 (60,757 bp), was identified. The transfer of pHeN867 led to a 32-fold increase in the MIC of colistin in the recipient, exhibiting an effect on colistin resistance that was similar to that of mcr-1. Copyright © 2017 American Society for Microbiology.

  15. Development and validation of a resistance and virulence gene microarray targeting Escherichia coli and Salmonella enterica

    Science.gov (United States)

    Davis, Margaret A.; Lim, Ji Youn; Soyer, Yesim; Harbottle, Heather; Chang, Yung-Fu; New, Daniel; Orfe, Lisa H.; Besser, Thomas E.; Call, Douglas R.

    2010-01-01

    A microarray was developed to simultaneously screen Escherichia coli and Salmonella enterica for multiple genetic traits. The final array included 203 60-mer oligonucleotide probes, including 117 for resistance genes, 16 for virulence genes, 25 for replicon markers, and 45 other markers. Validity of the array was tested by assessing interlaboratory agreement among four collaborating groups using a blinded study design. Internal validation indicated that the assay was reliable (area under the receiver-operator characteristic curve=0.97). Inter-laboratory agreement, however, was poor when estimated using the intraclass correlation coefficient, which ranged from 0.27 (95% confidence interval 0.24, 0.29) to 0.29 (0.23, 0.34). These findings suggest that extensive testing and procedure standardization will be needed before bacterial genotyping arrays can be readily shared between laboratories. PMID:20362014

  16. Lysogenic Conversion and Phage Resistance Development in Phage Exposed Escherichia coli Biofilms

    Directory of Open Access Journals (Sweden)

    Abram Aertsen

    2013-01-01

    Full Text Available In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B or an obligatory lytic phage (T7, after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations.

  17. MOLECULAR-PHYLOGENETIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE OF Escherichia coli ISOLATED FROM GOATS WITH DIARRHEA

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida Guimarães

    2015-10-01

    Full Text Available Neonatal diarrhea determines significant changes in feed conversion, causing productivity loss in caprine herds. The antimicrobial resistance in bacteria is characterized as an important public health issue; therefore, Escherichia coli may be characterized as an important pathogen due to expressing virulence mechanisms responsible for significant clinical conditions in humans and animals. The present study evaluated the presence of E. coli among 117 caprine fecal samples and analyzed the isolates for antimicrobial resistance. Suggestive colonies were submitted to biochemical screening followed by genotypic group determination and phylogenetic analysis; further, the samples were submitted to antimicrobials susceptibility test. E. coli, Salmonella spp, Shigella sonnei and Enterobacter aerogenes were identified. E. coli isolates were phylogenetically classified as B2 (9/39, D (19/39, B1 (7/39 e A (4/29 groups. The analysis of the isolates also revealed the presence of K99 (04/39 and Stx (02/39 virulence factors. Antimicrobial susceptibility test revealed sensitive isolates to Chloramphenicol, Streptomycin, Amoxicillin and Ciprofloxacin, being all resistant to Lincomycin, Vancomycin and Penicillin. The results support the need of establishing restricted protocols for antimicrobial use, a fundamental procedure for health improvement in Brazilian caprine herds.

  18. Multidrug-resistant and epidemic clones of Escherichia coli from natural beds of Venus clam.

    Science.gov (United States)

    Vignaroli, C; Di Sante, L; Leoni, F; Chierichetti, S; Ottaviani, D; Citterio, B; Biavasco, F

    2016-10-01

    Epidemic Escherichia coli clones have been recovered in marine sediment along the coast of Marche, an Adriatic region in central Italy. In the present study, E. coli strains from the clam Chamelea gallina, sampled from seven natural beds in the same area, were detected. Selected E. coli isolates from all sampling sites were screened for antimicrobial susceptibility, genetic diversity and correlation. The majority (60%) belonged to phylogroups A or B1, 31% to the other groups (B2, C, D, E, F), 8% to cryptic clades, and 1% were untypable. Moreover, 33.3% of isolates were resistant to at least one drug and 11% were multidrug resistant (MDR). The most common resistance was to tetracycline, ampicillin, and streptomycin. No clonality was detected, but the strains' high genetic heterogeneity pointed at multiple sources of microbiological contamination. MLST analysis found potentially pathogenic and even epidemic MDR strains in clams collected in class A (ST746 and ST46) and class B (ST393, ST58 and ST131) areas, indicating that strains of clinical origin are detectable in clams. These data highlight that eating raw or lightly cooked clams may pose a health risk if purification is not performed or is ineffective.

  19. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    Science.gov (United States)

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a 0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli.

  20. Characterization of multi-antibiotic-resistant Escherichia coli Isolated from beef cattle in Japan.

    Science.gov (United States)

    Yamamoto, Shiori; Nakano, Motoki; Kitagawa, Wataru; Tanaka, Michiko; Sone, Teruo; Hirai, Katsuya; Asano, Kozo

    2014-01-01

    The emergence of multiple-antibiotic-resistance bacteria is increasing, which is a particular concern on livestock farms. We previously isolated 1,347 antimicrobial-resistant (AMR) Escherichia coli strains from the feces of beef cattle on 14 Japanese farms. In the present study, the genetic backgrounds and phylogenetic relationships of 45 AMR isolates were characterized by the chromosome phylotype, AMR phenotype, AMR genotype, and plasmid type. These isolates were classified into five chromosome phylotypes, which were closely linked to the farms from which they were isolated, suggesting that each farm had its own E. coli phylotype. AMR phenotype and plasmid type analyses yielded 8 and 14 types, all of which were associated with the chromosomal phylotype and, thus, to the original farms. AMR genotype analysis revealed more variety, with 16 types, indicating both inter- and intra-farm diversity. Different phylotype isolates from the same farm shared highly similar plasmid types, which indicated that plasmids with AMR genes could be transferred between phylotypes, thereby generating multi-antibiotic-resistant microorganisms. This ecological study demonstrated that the chromosome phylotype was strongly correlated with the farm from which they were isolated, while the AMR phenotype, genotype, and plasmid type were generally correlated with the chromosome phylotype and farm source.

  1. Multi-drug-resistant enterotoxigenic and enterohemorrhagic Escherichia coli isolated from children with diarrhea.

    Science.gov (United States)

    Zeighami, Habib; Haghi, Fakhri; Hajiahmadi, Fahimeh; Kashefiyeh, Mehdi; Memariani, Mojtaba

    2015-06-01

    Multi-drug-resistant (MDR) diarrheagenic Escherichia coli (DEC) has rapidly spread worldwide and represents the most serious threat to the management of diarrhea in developing countries. During the period from March 2011 to January 2012, a total of 450 stool samples of diarrheal children aged 0-60 months were studied. In order to detect enterotoxigenic E. coli (ETEC) and enterohemorrhagic E. coli (EHEC) simultaneously, a mixture of four primer pairs specific for eltB, estA, vt1, and vt2 genes was used in a multiplex PCR. Antimicrobial susceptibility testing was performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. A total of 140 (31·1%) DEC were isolated from 450 stool samples. Diarrheagenic E. coli exhibited high-level resistance to aztreonam (80·7%), amoxicillin (74·4%), and tetracycline (69·3%). Also, 86·4% of E. coli isolates were resistant to at least three different classes of antimicrobial agents and considered as MDR. The frequency of ETEC and EHEC pathotypes was 46·4 and 12·1%, respectively and all of these isolates were MDR. In conclusion, MDR ETEC continues to be an important agent associated with diarrhea in children from Tabriz, Iran.

  2. Cefotaxime-resistant Escherichia coli in broiler farms-A cross-sectional investigation in Germany.

    Science.gov (United States)

    Hering, Johanna; Frömke, Cornelia; von Münchhausen, Christiane; Hartmann, Maria; Schneider, Bettina; Friese, Anika; Rösler, Uwe; Kreienbrock, Lothar; Hille, Katja

    2016-03-01

    In this investigation the farm prevalence of cefotaxime-resistant Escherichia coli (CREC) in German broiler farms was evaluated. In total, 59 flocks on 34 broiler farms were sampled in four agricultural regions of Germany. Per broiler flock, three faecal samples, a pair of boot swabs and one dust sample were taken and examined for the presence of CREC. After pre-enrichment of sample material in Luria-Bertani-broth, the broth was streaked onto MacConkey agar containing 1mg/l cefotaxime (CTX). CREC isolates were detected in at least one sample from each flock resulting in a farm prevalence of 100%. The proportion of positive samples was high in all three sample types. Of 177 collective faecal samples 81.9% were positive, of 59 boot swabs and 59 dust samples 79.7% and 62.7% were positive. In conclusion, the prevalence of broiler farms with cefotaxime-resistant E. coli in Germany is very high. We suggest that the analysis of collective faecal samples is sufficient to determine the CREC farm status. In addition to other studies our study supports the finding that cefotaxime resistance is a good proxy for the presence of ESBL- or plasmidic AmpC-beta-lactamases.

  3. Antibiotic Resistance of Escherichia Coli Isolated From Poultry and Poultry Environment of Bangladesh

    OpenAIRE

    Muhammad A. Akond; S. M.R. Hassan; Saidul Alam; Momena Shirin

    2009-01-01

    Problem statement: Increased emergence in microbial resistance to antibiotics is a growing problem in Bangladesh, a tropical country with a large agrarian population having limited medical facilities. Wide spread use of antimicrobials in poultry farming here is a concern of multi-drug microbial resistance development that can potentially be transmitted to human pathogens even from non-pathogenic carrier strains. Attempt was made to assess drug susceptibility in Escherichia coli from poultry s...

  4. Detection of the mcr-1 Gene in a Multidrug-Resistant Escherichia coli Isolate from an Austrian Patient.

    Science.gov (United States)

    Hartl, Rainer; Kerschner, Heidrun; Lepuschitz, Sarah; Ruppitsch, Werner; Allerberger, Franz; Apfalter, Petra

    2017-04-01

    Since colistin resistance based on the plasmid-encoded mcr-1 gene was first described, this resistance gene in Enterobacteriaceae has been found worldwide. These organisms are typically of heterogeneous genetic background and show exceptional clonal diversity. We describe the first confirmation of mcr-1 in a human Escherichia coli strain cultured from a surveillance stool sample of an Austrian oncology patient. Copyright © 2017 American Society for Microbiology.

  5. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli

    OpenAIRE

    2010-01-01

    Abstract Background Escherichia coli occurs naturally in the human gut; however, certain strains that can cause infections, are becoming resistant to antibiotics. Multidrug-resistant E. coli that produce extended-spectrum β lactamases (ESBLs), such as the CTX-M enzymes, have emerged within the community setting as an important cause of urinary tract infections (UTIs) and bloodstream infections may be associated with these community-onsets. This is the first report testing the antibiotic resis...

  6. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective.

    Science.gov (United States)

    Alonso, C A; Zarazaga, M; Ben Sallem, R; Jouini, A; Ben Slama, K; Torres, C

    2017-05-01

    In the last few years, different surveillances have been published in Africa, especially in northern countries, regarding antimicrobial resistance among husbandry animals. Information is still scarce, but the available data show a worrying picture. Although the highest resistance rates have been described against tetracycline, penicillins and sulphonamides, prevalence of plasmid-mediated quinolone resistance genes and extended spectrum β-lactamase (ESBL) are being increasingly reported. Among ESBLs, the CTX-M-1 group was dominant in most African surveys. Within this group, CTX-M-15 was the main variant both in animals and humans, except in Tunisia where CTX-M-1 was more frequently detected among Escherichia coli from poultry. Certain blaCTX-M-15 -harbouring clones (ST131/B2 or ST405/D) are mainly identified in humans, but they have also been reported in livestock species from Tanzania, Nigeria or Tunisia. Moreover, several reports suggest an inter-host circulation of specific plasmids (e.g. blaCTX-M-1 -carrying IncI1/ST3 in Tunisia, IncY- and Inc-untypeable replicons co-harbouring qnrS1 and blaCTX-M-15 in Tanzania and the worldwide distributed blaCTX-M-15 -carrying IncF-type plasmids). International trade of poultry meat seems to have contributed to the spread of other ESBL variants, such as CTX-M-14, and clones. Furthermore, first descriptions of OXA-48- and OXA-181-producing E. coli have been recently documented in cattle from Egypt, and the emergent plasmid-mediated colistin resistance mcr-1 gene has been also identified in chickens from Algeria, Tunisia and South Africa. These data reflect the urgent need of a larger regulation in the use of veterinary drugs and the implementation of surveillance programmes in order to decelerate the advance of antimicrobial resistance in this continent. © 2017 The Society for Applied Microbiology.

  7. ANTIBACTERIAL ACTIVITY OF SOME WILD MEDICAL PLANTS EXTRACT TO ANTIBIOTIC RESISTANT ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2013-02-01

    Full Text Available Antibiotics are probably the most successful family of drugs so far developed for improving human health. Because of increasing resistance to antibiotics of many bacteria, plant extracts and plant compounds are of new interest as antiseptics and antimicrobial agents in medicine. In this study, we researched antimicrobial effects of extracts of some medical plants (Tussilagofarfara, Equisetum arvense, Sambucusnigra, Aesculushippocastanumand Taraxacumofficinale from Slovakia to antibiotic resistant and antibiotic sensitive bacteria isolated from milk of cows and mare, which were breeded in different conditions. Microorganisms which were used in this experiment we isolated from milk from conventional breeding of cows (tenE. coli strains and from ecological breeding of Lipicanmare (tenE. coli strains by sterile cotton swabs. For antibiotic susceptibility testing was used disc diffusion method according by EUCAST. After dried at room temperature we weighed 50 g of crushed medical plants (parts and it were to extract in 400 ml methanol for two weeks at room temperature. For antimicrobial susceptibility testing of medical plants extract blank discs with 6 mm diameter disc diffusion method was used. We determined that all Escherichia coli strains isolated from milk of conventional breeding of cows were resistant to ampicillin and chloramphenicol. We determined that all tested ampicillin and chloramphenicol resistant E. coli strains isolated from conventional breeding of cow showed susceptibility to all used medical plants extracts. In difference, we determined that antibiotic susceptible E. coli strains isolated from ecological breeding of Lipicanmare were susceptible to Tussilagofarfara extract only. From these results we could be conclude some observations, which could be important step in treatment of bacterial infections caused by antibiotic resistant bacteria and it could be important knowledge for treatment of livestock in conventional breeding

  8. Escherichia coli Overexpressing a Baeyer-Villiger Monooxygenase from Acinetobacter radioresistens Becomes Resistant to Imipenem.

    Science.gov (United States)

    Minerdi, Daniela; Zgrablic, Ivan; Castrignanò, Silvia; Catucci, Gianluca; Medana, Claudio; Terlizzi, Maria Elena; Gribaudo, Giorgio; Gilardi, Gianfranco; Sadeghi, Sheila J

    2015-10-12

    Antimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics; Acinetobacter spp. are a good example of this. We report here that Acinetobacter radioresistens has a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR) Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitive Escherichia coli BL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance.

  9. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends

    Science.gov (United States)

    2013-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health. PMID:23962019

  10. Characteristics of cefotaxime-resistant Escherichia coli from wild birds in the Netherlands.

    Science.gov (United States)

    Veldman, Kees; van Tulden, Peter; Kant, Arie; Testerink, Joop; Mevius, Dik

    2013-12-01

    Cloacal swabs from carcasses of Dutch wild birds obtained in 2010 and 2011 were selectively cultured on media with cefotaxime to screen for the presence of extended-spectrum β-lactamase (ESBL)/AmpC-producing Escherichia coli. Subsequently, all cefotaxime-resistant E. coli isolates were tested by broth microdilution and microarray. The presence of ESBL/AmpC and coexisting plasmid-mediated quinolone resistance (PMQR) genes was confirmed by PCR and sequencing. To determine the size of plasmids and the location of ESBL and PMQR genes, S1 pulsed-field gel electrophoresis (PFGE) was performed on transformants, followed by Southern blot hybridization. The study included 414 cloacal swabs originating from 55 different bird species. Cefotaxime-resistant E. coli isolates were identified in 65 birds (15.7%) from 21 different species. In all, 65 cefotaxime-resistant E. coli ESBL/AmpC genes were detected, mainly comprising variants of blaCTX-M and blaCMY-2. Furthermore, PMQR genes [aac(6')-lb-cr, qnrB1, and qnrS1] coincided in seven cefotaxime-resistant E. coli isolates. Overall, replicon typing of the ESBL/AmpC-carrying plasmids demonstrated the predominant presence of IncI1 (n = 31) and variants of IncF (n = 18). Our results indicate a wide dissemination of ESBL and AmpC genes in wild birds from The Netherlands, especially among aquatic-associated species (waterfowl, gulls, and waders). The identified genes and plasmids reflect the genes found predominantly in livestock animals as well as in humans.

  11. Accumulation of ciprofloxacin and lomefloxacinin fluoroquinolone-resistant strains of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    夏培元; 冯萍; 钟利; 吕晓菊; 雷秉钧

    2002-01-01

    Objective To evaluate the role of outer membrane protein (Omp) F-deficiency and active efflux in the accumulation of hydrophilic fluoroquinolones ciprofloxacin (CPLX) and lomefloxacin (LMLX) in resistant E. coli strains. Methods Fluoroquinolone accumulation in bacteria and the effect of active efflux were measured by a fluorescence method. The outer membrane proteins of the bacteria were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). E. coli strains in this study included control strains JF701 and JF703 that are OmpC- or OmpF-deficient mutants of E. coli K-12, respectively, and the fluoroquinolone susceptible strain the fluoroquinolone susceptible strain of Escherichia coli (Ecs) and its in vitroselected resistant strains R2 and R256, and the clinical resistant isolates R5 and R6. Results The steady-state accumulation concentration of each drug in Ecs appeared to be the same as in JF701, while in the OmpF- deficient strain JF703, it was 1/5 CPLX or 1/2 LMLX lower than that in JF701, but JF703 was still susceptible to fluoroquinolones. On the other hand, compared with susceptible strains, a 2- to 10-fold decrease in the accumulation of each drug was found in the resistant strains except R2, in which the accumulation was slightly higher than in JF703. After the addition of 2,4-dinitrophenol (DNP), accumulation of each drug increased, especially in resistant strains, indicating that the function of the active efflux (pump) system in these bacteria had been enhanced dramatically. Furthermore, both OmpF and OmpC in Ecs, OmpF-deficiency in R2 and R256 and OmpC-deficiency in R5 and R6 were observed.Conclusion The decreased accumulation of hydrophilic fluoroquinolones in E. coli involved OmpF-deficiency and active efflux (pump), and the latter may be an important factor.

  12. Efficacy of fosfomycin on Escherichia coli isolated from bitches with pyometra.

    Science.gov (United States)

    Inoue, Ikuo; Shibata, Sanae; Fukata, Tsuneo

    2013-01-01

    The aim of this study was to determine the antimicrobial resistance of Escherichia coli isolated from the uteri of bitches with pyometra, and 38 E. coli isolates were used. The antimicrobials used were ampicillin (ABPC), amoxicillin/clavulanic acid, gentamicin, minocycline, cefazolin, levofloxacin (LVFX), trimethoprim-sulfamethoxazole (ST) and fosfomycin (FOM). Resistance to ABPC occurred most frequently, followed by LVFX and ST. Multi-drug resistance, defined as resistance against 3 or more classes of antimicrobials, was found in 23.7% of all isolates. Nine out of 13 resistant strains were multi-drug resistant, but no strain was found to be resistant to FOM. This suggests that FOM should be administered for E. coli from pyometra.

  13. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaCMY-2 resistance plasmids

    DEFF Research Database (Denmark)

    Berg, E. S.; Wester, A. L.; Ahrenfeldt, Johanne

    2017-01-01

    In 2012 and 2014 the Norwegian monitoring programme for antimicrobial resistance in the veterinary and food production sectors (NORM-VET) showed that 124 of a total of 406 samples (31%) of Norwegian retail chicken meat was contaminated with extended-spectrum cephalosporin-resistant Escherichia co...... of cephalosporin-resistant E. coli from chicken meat to humans may occur, and may cause difficult to treat infections. Furthermore, these E. coli can be a source of AmpC resistance plasmids for opportunistic pathogens in the human microbiota....

  14. Shiga Toxin-Producing Escherichia coli Isolated from Bovine Mastitic Milk: Serogroups, Virulence Factors, and Antibiotic Resistance Properties

    Science.gov (United States)

    Momtaz, Hassan; Safarpoor Dehkordi, Farhad; Taktaz, Taghi; Rezvani, Amir; Yarali, Sajad

    2012-01-01

    The aim of this study was to detect the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli, by using 268 bovine mastitic milk samples which were diagnosed using California Mastitis Test. After E. coli identification, PCR assays were developed for detection of different virulence genes, serogroups, and antibiotic resistance genes of Escherichia coli. The antibiotic resistance pattern was studied using disk diffusion method. Out of 268 samples, 73 (27.23%) were positive for Escherichia coli, and, out of 73 positive samples, 15 (20.54%) were O26 and 11 (15.06%) were O157 so they were the highest while O111 was not detected in any sample so it was the lowest serogroup. Out of 73 STEC strains, 11 (15.06%) and 36 (49.31%) were EHEC and AEEC, respectively. All of the EHEC strains had stx1, eaeA, and ehly, virulence genes, while in AEEC strains stx1 had the highest prevalence (77.77%), followed by eaeA (55.55%). Totally, aadA1 (65.95%) had the highest while blaSHV (6.38%) had the lowest prevalence of antibiotic resistance genes. The disk diffusion method showed that the STEC strains had the highest resistance to penicillin (100%), followed by tetracycline (57.44%), while resistance to cephalothin (6.38%) was the lowest. PMID:23213293

  15. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal

    Directory of Open Access Journals (Sweden)

    Narayan Prasad Parajuli

    2017-01-01

    Full Text Available Abstract Background Emergence of Extended-spectrum beta-lactamase producing Escherichia coli causing urinary tract infections (UTI among pediatric patients is an increasing problem worldwide. However, very little is known about pediatric urinary tract infections and antimicrobial resistance trend from Nepal. This study was conducted to assess the current antibiotic resistance rate and ESBL production among uropathogenic Escherichia coli in pediatric patients of a tertiary care teaching hospital of Nepal. Methods A total of 5,484 urinary tract specimens from children suspected with UTI attending a teaching hospital of Nepal over a period of one year were processed for the isolation of bacterial pathogens and their antimicrobial susceptibility testing. Escherichia coli (n = 739, the predominant isolate in pediatric UTI, was further selected for the detection of ESBL-production by phenotypic combination disk diffusion test. Results Incidence of urinary tract infection among pediatric patients was found to be 19.68% and E coli (68.4% was leading pathogen involved. Out of 739 E coli isolates, 64.9% were multidrug resistant (MDR and 5% were extensively drug resistant (XDR. Extended spectrum beta lactamase (ESBL was detected in 288 (38.9% of the E coli isolates. Conclusion Alarming rate of drug resistance among pediatric uropathogens and high rate of ESBL-producing E. coli was observed. It is extremely necessary to routinely investigate the drug resistance among all isolates and formulate strict antibiotics prescription policy in our country.

  16. Burden of antimicrobial resistance in European hospitals : excess mortality and length of hospital stay associated with bloodstream infections due to Escherichia coli resistant to third-generation cephalosporins

    NARCIS (Netherlands)

    de Kraker, M. E. A.; Wolkewitz, M.; Davey, P. G.; Koller, W.; Berger, J.; Nagler, J.; Icket, C.; Kalenic, S.; Horvatic, J.; Seifert, H.; Kaasch, A.; Paniara, O.; Argyropoulou, A.; Bompola, M.; Smyth, E.; Skally, M.; Raglio, A.; Dumpis, U.; Kelmere, A. Melbarde; Borg, M.; Xuereb, D.; Ghita, M. C.; Noble, M.; Kolman, J.; Grabljevec, S.; Turner, D.; Lansbury, L.; Grundmann, H.

    2011-01-01

    This study determined excess mortality and length of hospital stay (LOS) attributable to bloodstream infection (BSI) caused by third-generation-cephalosporin-resistant Escherichia coli in Europe. A prospective parallel matched cohort design was used. Cohort I consisted of patients with third-generat

  17. Antimicrobial-Resistant Escherichia coli Survived in Dust Samples for More than 20 Years.

    Science.gov (United States)

    Schulz, Jochen; Ruddat, Inga; Hartung, Jörg; Hamscher, Gerd; Kemper, Nicole; Ewers, Christa

    2016-01-01

    In a retrospective study, 119 sedimentation dust samples stored between five and 35 years from various barns of intensive livestock farming were evaluated for the occurrence of cultivatable Escherichia coli. Growth of E. coli occurred in 54 samples. Successful cultivation was achieved in samples from as early as 1994. The frequency of detection increased from earlier to later time periods, but the concentrations, which ranged between 3.4 × 10(2) and 1.1 × 10(5) colony-forming units per gram, did not correlate with sample age (Spearman rank correlation; p > 0.05). We hypothesize that E. coli cells survived in dust samples without cell division because of the storage conditions. Dry material (dust) with low water activities (arithmetic mean media and 31 from supplemented media), we determined the E. coli phylotype and antimicrobial resistance. Six phylogenetic groups were identified. Phylogroups A and B1 predominated. Compared to group A, phylogroup B1 was significantly associated with growth on ciprofloxacin-supplemented media (chi-square test, p = 0.003). Furthermore, the antibiotic resistance profiles determined by a microdilution method revealed that isolates were phenotypically resistant to at least one antimicrobial substance and that more than 50% were resistant to a minimum of five out of 10 antibiotics tested. A linear mixed model was used to identify factors associated with the number of phenotypic resistances of individual isolates. Younger isolates and isolates from fattening poultry barns tended to be resistant to significantly more antibiotics than older isolates and those from laying-hen houses (p = 0.01 and p = 0.02, respectively). Sample origin and storage conditions may have influenced the number of antimicrobial resistances. Overall, we found that under particular conditions, dust from farm animal houses can be reservoirs for antimicrobial-resistant E. coli for at least 20 years. The survival strategies that allow E. coli to survive such long

  18. A prospective study of gentamicin ototoxicity

    DEFF Research Database (Denmark)

    Winkel, O; Hansen, M M; Kaaber-Bühler, Søren

    2010-01-01

    Twenty patients were included in a prospective otoneurological study performed to assess the ototoxicity in gentamicin therapy. Gentamicin was administered intravenously, and the serum level was currently determined. Audiographic and electronystagmographic studies were carried out at the institut......Twenty patients were included in a prospective otoneurological study performed to assess the ototoxicity in gentamicin therapy. Gentamicin was administered intravenously, and the serum level was currently determined. Audiographic and electronystagmographic studies were carried out...... at the institution and discontinuation of the treatment and again a few weeks later. Ten patients exhibited ototoxic actions, predominantly cochlear, 4 of the cases being fully reversible. Two patients developed severe hearing loss, associated in one with bilateral extinction of vestibular function. Low serum levels...... of gentamicin did not rule out the possiblity of ototoxicity. These results urge the continuing of prospective studies and indicate that gentamicin should be used only as a link in the primary treatment of severe infection or in cases in which other, less toxic agents have failed....

  19. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells.

    Science.gov (United States)

    Grande Burgos, María José; Fernández Márquez, Maria Luisa; Pérez Pulido, Rubén; Gálvez, Antonio; Lucas López, Rosario

    2016-12-05

    Eggs may contain extraintestinal pathogenic (ExPEC) and diarrheogenic (DEC) Escherichia coli which in addition may carry antibiotic resistance. The wide use of biocides and disinfectants in the food industry may induce biocide tolerance in bacteria. The aim of the present study was to evaluate biocide tolerance and antibiotic resistance in E. coli from hen egg shells. A total of 27 isolates obtained from a screening of 180 eggs were studied. Seven isolates carried both eae and bfpA genes of typical enteropathogenic E. coli (EPEC) strains, while 14 isolates only carried eae associated with atypical EPEC strains. Shiga toxin genes stx and stx2 were detected in four isolates. Heat-stable and heat-labile enterotoxin genes as well as aggR were also detected. Several isolates had minimum inhibitory concentrations (MICs) that were higher than the wild-type for the biocide hexadecylpyridinium chloride (HDP, 18.52%) or the commercial disinfectant P3 oxonia (OX, 14.81%). Antibiotic resistance was detected for ampicillin (37.03%), streptomycin (37.03%), tetracycline (37.03%), chloramphenicol (11.11%), nalidixic acid (18.51%) and trimethoprim-sulfamethoxazole (14.81%). Eight isolates (29.63%) were biocide tolerant and antibiotic resistant. Efflux pump genes detected included acrB (96.29%), mdfA (85.18%) and oxqA (37.03%), in addition to quaternary ammonium compound (QAC) resistance genes qacA/B (11.11%) and qacE (7.40%). Antibiotic resistance genes detected included blaCTX-M-2 (22.22%), blaTEM (3.70%), blaPSE (3.70%), tet(A) (29.63%), tet(B) (29.63%), tet(C) (7.40%), tet(E) (11.11%), aac(6')-Ib (3.70%), sul1 (14.81%), dfrA12 (3.70%) and dfrA15 (3.70%). Most isolates (96.30%) carried more than one genetic determinant of resistance. The most frequent combinations were efflux pump components acrB and mdfA with tetracycline resistance genes (33.33% of isolates). Isolates carrying QAC resistance genes also carried between 4 and 8 of the additional antimicrobial resistance genes

  20. Prevalence and Antimicrobial Resistance of Salmonella and Escherichia coli from Australian Cattle Populations at Slaughter.

    Science.gov (United States)

    Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E

    2015-05-01

    Antimicrobial agents are used in cattle production systems for the prevention and control of bacteria associated with diseases. Australia is the world's third largest exporter of beef; however, this country does not have an ongoing surveillance system for antimicrobial resistance (AMR) in cattle or in foods derived from these animals. In this study, 910 beef cattle, 290 dairy cattle, and 300 veal calf fecal samples collected at slaughter were examined for the presence of Escherichia coli and Salmonella, and the phenotypic AMR of 800 E. coli and 217 Salmonella isolates was determined. E. coli was readily isolated from all types of samples (92.3% of total samples), whereas Salmonella was recovered from only 14.4% of samples and was more likely to be isolated from dairy cattle samples than from beef cattle or veal calf samples. The results of AMR testing corroborate previous Australian animal and retail food surveys, which have indicated a low level of AMR. Multidrug resistance in Salmonella isolates from beef cattle was detected infrequently; however, the resistance was to antimicrobials of low importance in human medicine. Although some differences in AMR between isolates from the different types of animals were observed, there is minimal evidence that specific production practices are responsible for disproportionate contributions to AMR development. In general, resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of AMR in bacteria from Australian cattle is likely a result of strict regulation of antimicrobials in food animals in Australia and animal management systems that do not favor bacterial disease.

  1. Urine from treated cattle drives selection for cephalosporin resistant Escherichia coli in soil.

    Science.gov (United States)

    Subbiah, Murugan; Shah, Devendra H; Besser, Thomas E; Ullman, Jeffrey L; Call, Douglas R

    2012-01-01

    The U.S. Food and Drug Administration recently issued new rules for using ceftiofur in food animals in part because of an increasing prevalence of enteric bacteria that are resistant to 3(rd)-generation cephalosporins. Parenteral ceftiofur treatment, however, has limited effects on enteric bacteria so we tested the hypothesis that excreted ceftiofur metabolites exert significant selection pressure for ceftiofur-resistant Escherichia coli in soil. Test matrices were prepared by mixing soil with bovine feces and adding urine containing ceftiofur metabolites (CFM) (0 ppm, ∼50 ppm and ∼100 ppm). Matrices were incubated at 23°C or 4°C for variable periods of time after which residual CFM was quantified using a bioassay. Bla(CMY-2) plasmid-bearing ceftiofur resistant (cef(R)) E. coli and one-month old calves were used to study the selection effects of CFM and transmission of cef(R) bacteria from the environment back to animals. Our studies showed that urinary CFM (∼13 ppm final concentration) is biologically degraded in soil within 2.7 days at 23°C, but persists up to 23.3 days at 4°C. Even short-term persistence in soil provides a >1 log(10) advantage to resistant E. coli populations, resulting in significantly prolonged persistence of these bacteria in the soil (∼two months). We further show that resistant strains readily colonize calves by contact with contaminated bedding and without antibiotic selection pressure. Ceftiofur metabolites in urine amplify resistant E. coli populations and, if applicable to field conditions, this effect is far more compelling than reported selection in vivo after parenteral administration of ceftiofur. Because ceftiofur degradation is temperature dependent, these compounds may accumulate during colder months and this could further enhance selection as seasonal temperatures increase. If cost-effective engineered solutions can be developed to limit ex vivo selection, this may limit proliferation for ceftiofur resistant enteric

  2. Study of Sensibility and Antimicrobial Resistance in Escherichia coli Isolated from Urinary Tract Infection in Tabriz City

    Directory of Open Access Journals (Sweden)

    Hamed Molaabaszadeh

    2013-09-01

    Full Text Available  Background & Objective: Urinary infection is one of the most prevalent infectious diseases, and Escherichia coli is the most important cause of urinary infections. This study was done with the aim of surveying the amount of susceptibility and resistance among the strains of Escherichia coli isolated from those who referred to the private laboratories in the Iranian city of Tabriz.   Materials & Methods: This survey was done periodically during the first 6 months of the year 2010. Samples were obtained in a sterile manner and were subjected to all necessary pathological tests. Evaluation of antibiotic susceptibility was conducted with disk diffusion standard method, and the results were analyzed.   Results: Totally, 5701 Escherichia coli strains were identified. The highest sensitivity to Imipenem was 90.95%, Nitrofurantoin 85.97%, and Cefotaxime 71.02% and the highest resistance to Ampicillin was 83.95%, Tetracycline 80.97%, and Co-trimoxazole 63.92%.   Conclusion: Our results suggest that the cause of the high resistance of Escherichia coli strains to Ampicillin and Tetracycline could be the consumption of these antibiotics. Therefore, abstaining from overuse of unnecessary antibiotics and production of new-generation and cost-effective antibiotics are recommend. 

  3. Chitosan improves anti-biofilm efficacy of gentamicin through facilitating antibiotic penetration.

    Science.gov (United States)

    Mu, Haibo; Guo, Fan; Niu, Hong; Liu, Qianjin; Wang, Shunchun; Duan, Jinyou

    2014-12-03

    Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant "super bugs" that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended.

  4. Chitosan Improves Anti-Biofilm Efficacy of Gentamicin through Facilitating Antibiotic Penetration

    Directory of Open Access Journals (Sweden)

    Haibo Mu

    2014-12-01

    Full Text Available Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant “super bugs” that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa and high N-deacetylation degree (~88% DD elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended.

  5. 陕西部分地区不同食源性大肠杆菌耐药性检测%Drug Resistance Detection of Escherichia Coli from Different Food Origins in Some Districts of Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    只帅; 席美丽; 刘攻关; 吴淑鹏; 殷童; 姚远; 杨保伟; 孟江洪

    2011-01-01

    Antibiotic resistance and prevalence of Shiga Toxin-producing Escherichia coli were determined among Escherichia coli isolates collected from retail meats and ready-to-eat food in supermarkets and open markets in Xi'an and Yangling areas of Shaanxi Province. Antimicrobial Susceptibility to 15 antibiotics of 748 Escherichia coli isolates were determined by using agar dilution methods, which was recommended by National Committee of Clinical Laboratory Standard(NCCLS), and using E.coli. ATCC25922, E. faecalis ATCC29212, Staphylococcus Aureus ATCC25923 as quality control strains. The results indicated that the isolates were most resistant to streptomycin at 88.2%, followed by resistance to tetracycline (84.4%),trimethoprim-suffamethoxazole (64.4%), nalidixic acid (62.6%), ampicillin (56.0%),ciprofloxacin (39.2%), chloramphenicol (37.6%), kanamycin (34.9%), gentamicin (34.2% ), amoxicillin-clavulanic acid (28.9%),gatifloxacin(26.9%). The isolates displayed lower resistance to amikacin (8.3%), cefoxitin (11.5%), ceftriaxone(13.8%),cefoperazone (19.5%). 73.9% of the isolates were multidrug-resistant. Two Shiga Toxin-producing Escherichia coli isolates were isolated from pork and mutton samples. Escherichia coli isolates recovered from retail meats and ready-to-eat food in Xi'an district were seriously resistant to common antibiotics.%对陕西西安市和杨凌示范区超级市场及农贸市场零售内及凉拌菜中的大肠杆菌耐药性及肠产志贺样毒素大肠杆菌进行检测.采用美国临床实验室标准化委员会(National Committee of Clinical Laboratory Standard,NCCLS)推荐的琼脂稀释法,以大肠埃希氏菌ATCC25922、金黄色葡萄球菌ATCC25923及粪肠球菌ATCC29212为质控菌株,对来源于不同食品的748株大肠杆菌进行15种抗生素药敏性检测.发现大肠杆菌分离株对链霉素的抗性最高(88.2%),其次为四环素(84.4%)、甲氧苄啶-新诺明(644%)、萘啶酮酸(62.6%)

  6. IbeR facilitates stress-resistance, invasion and pathogenicity of avian pathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    Full Text Available Systemic infections by avian pathogenic Escherichia coli (APEC are economically devastating to poultry industries worldwide. IbeR, located on genomic island GimA, was shown to serve as an RpoS-like regulator in rpoS gene mutation neonatal meningitis E. coli (NMEC RS218. However, the role of IbeR in pathogenicity of APEC carrying active RpoS has not yet been investigated. We showed that the APEC IbeR could elicit antibodies in infected ducks, suggesting that IbeR might be involved in APEC pathogenicity. To investigate the function of IbeR in APEC pathogenesis, mutant and complementation strains were constructed and characterized. Inactivation of ibeR led to attenuated virulence and reduced invasion capacity towards DF-1 cells, brains and cerebrospinal fluid (CSF in vitro and in vivo. Bactericidal assays demonstrated that the mutant strain had impaired resistance to environmental stress and specific pathogen-free (SPF chicken serum. These virulence-related phenotypes were restored by genetic complementation. Quantitative real-time reverse transcription PCR revealed that IbeR controlled expression of stress-resistance genes and virulence genes, which might led to the associated virulence phenotype.

  7. Screening of Chinese Herbal Medicines Resistant to Chicken Escherichia coli and Infectious Laryngotracheitis Virus

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] This study aimed to screen Chinese herbal medicines resistant to Chicken Escherichia coli and infectious laryngotracheitis virus. [Methed] Conven- tional punch method, test tube method and plate dilution method were adopted for in vitro susceptibility test of chicken E, coil strains O5 and O8 using 13 kinds of Chi- nese herbal medicines including Sanguisorba officinalis, Coptis chinensis, Anemar- rhena asphodeloides, Strobilanthes cusia, Agastache rugosa, etc.; chicken embryo inoculation experiment was adopted to screen Chinese herbal medicines resistant to chicken infectious laryngotracheitis virus. [Result] Sanguisorba officinalis, Fructus mume, Rheum officinale, Coptis chinensis, Herba Taraxaci, Anemarrhena asphode- Ioides, Scutellaria baicalensis and Rhizoma Fagopyri Cymosi had ideal antibacterial effect against chicken E. coil strain O5; Sanguisorba officinalis, Fructus mume, Rheum officinale, Coptis chinensis, Herba taraxaci and Rhizoma Fagopyri Cymosi had ideal antibacterial effect against chicken E. coil strain 08; other Chinese herbal medicines showed relatively poor or no antibacterial effect. Results of chicken embryo inoculation experiment showed that nine kinds of Chinese herbal medicines showed relatively strong anti-lLTV effect, including Forsythia suspensa, Radix Isatidis, Fofium isatidis, Flos Ionicerae, Radix codonopsis, Radix astragali, Atractylodes, Radix gly- cyrrhizae, and Pericarpium granati. [Conclusion] The study laid the foundation for fur- ther development of Chinese herbal compound preparations to treat chicken cofibacil- Iosis, infectious laryngotracheitis and other bacterial, viral diseases.

  8. Cellular Response to Ciprofloxacin in Low-Level Quinolone-Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jesús Machuca

    2017-07-01

    Full Text Available Bactericidal activity of quinolones has been related to a combination of DNA fragmentation, reactive oxygen species (ROS production and programmed cell death (PCD systems. The underlying molecular systems responsible for reducing bactericidal effect during antimicrobial therapy in low-level quinolone resistance (LLQR phenotypes need to be clarified. To do this and also define possible new antimicrobial targets, the transcriptome profile of isogenic Escherichia coli harboring quinolone resistance mechanisms in the presence of a clinical relevant concentration of ciprofloxacin was evaluated. A marked differential response to ciprofloxacin of either up- or downregulation was observed in LLQR strains. Multiple genes implicated in ROS modulation (related to the TCA cycle, aerobic respiration and detoxification systems were upregulated (sdhC up to 63.5-fold in mutants with LLQR. SOS system components were downregulated (recA up to 30.7-fold. yihE, a protective kinase coding for PCD, was also upregulated (up to 5.2-fold. SdhC inhibition sensitized LLQR phenotypes (up to ΔLog = 2.3 after 24 h. At clinically relevant concentrations of ciprofloxacin, gene expression patterns in critical systems to bacterial survival and mutant development were significantly modified in LLQR phenotypes. Chemical inhibition of SdhC (succinate dehydrogenase validated modulation of ROS as an interesting target for bacterial sensitization.

  9. Crystal Structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for Colistin Resistance.

    Science.gov (United States)

    Hu, Menglong; Guo, Jiubiao; Cheng, Qipeng; Yang, Zhiqiang; Chan, Edward Wai Chi; Chen, Sheng; Hao, Quan

    2016-12-13

    MCR-1 is a phosphoethanolamine (pEtN) transferase that modifies the pEtN moiety of lipid A, conferring resistance to colistin, which is an antibiotic belonging to the class of polypeptide antibiotics known as polymyxins and is the last-line antibiotic used to treat multidrug resistant bacterial infections. Here we determined the crystal structure of the catalytic domain of MCR-1 (MCR-1-ED), which is originated in Escherichia coli (E. coli). MCR-1-ED was found to comprise several classical β-α-β-α motifs that constitute a "sandwich" conformation. Two interlaced molecules with different phosphorylation status of the residue T285 could give rise to two functional statuses of MCR-1 depending on the physiological conditions. MCR-1, like other known pEtN transferases, possesses an enzymatic site equipped with zinc binding residues. Interestingly, two zinc ions were found to mediate intermolecular interactions between MCR-1-ED molecules in one asymmetric unit and hence concatenation of MCR-1, allowing the protein to be oligomer. Findings of this work shall provide important insight into development of effective and clinically useful inhibitors of MCR-1 or structurally similar enzymes.

  10. Role of uropathogenic Escherichia coli OmpT in the resistance against human cathelicidin LL-37.

    Science.gov (United States)

    Brannon, John R; Thomassin, Jenny-Lee; Desloges, Isabelle; Gruenheid, Samantha; Le Moual, Hervé

    2013-08-01

    Uropathogenic Escherichia coli (UPEC) strains are among the most prevalent causative agents of urinary tract infections. To establish infection, UPEC must overcome the bactericidal action of host antimicrobial peptides. Previously, the enterohaemorrhagic E. coli outer membrane protease, OmpT, was shown to degrade and inactivate the human antimicrobial peptide LL-37. This study aims to investigate the involvement of UPEC OmpT in LL-37 degradation. An ompT deletion mutant was generated in the prototypical UPEC strain CFT073. Western blot analysis showed that the OmpT protein level is moderate in CFT073. In agreement, OmpT was shown to partially cleave LL-37. However, no difference in the minimum inhibitory concentration of LL-37 was observed between CFT073 and the ompT mutant. Plasmid complementation of ompT, which led to increased OmpT levels, resulted in complete cleavage of LL-37 and a fourfold increase in the minimum inhibitory concentration. The analysis of other UPEC isolates showed similar OmpT activity levels as CFT073. Although UPEC OmpT can cleave LL-37, we conclude that the low level of OmpT limits its contribution to LL-37 resistance. Collectively, these data suggest that UPEC OmpT is likely accompanied by other LL-37 resistance mechanisms.

  11. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    Science.gov (United States)

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  12. Depression of vitamin B6 levels due to gentamicin.

    Science.gov (United States)

    Weir, M R; Keniston, R C; Enriquez, J I; McNamee, G A

    1990-06-01

    The renal toxicity of gentamicin is altered by dietary protein modifications, bicarbonate and acetazolamide administration, magnesium supplementation, polyaspartic acid, piperacillin, hypercalcemia and calcium channel blockers. Renal tissue gentamicin levels have an undetermined role. Reduction of renal pyridoxal 5'-phosphate (PLP- by gentamicin has been shown, as has protection from nephrotoxicity by administration of vitamin B6. To explore an interaction between gentamicin and vitamin B6, gentamicin (5 mg/kg) was given to rabbits by ip injection, with either pyridoxine (10 mg) or isovolemic saline for 3 weeks. There was not a difference between gentamicin levels for animals given gentamicin and pyridoxine versus those given gentamicin and saline. Gentamicin administration led to a 47% fall (p = .0001) in plasma PLP levels. Three days after the last gentamicin administration, the animals maintained a 32% decrease from the pre-gentamicin baseline values (p = 0.02). When pyridoxine was administered concurrently with gentamicin, the PLP rise of 49% was significant (p = 0.001). The mean level after the study (6%) was not significantly lower than baseline (p = .6). We believe that gentamicin interfers with vitamin B6 metabolism, but that vitamin B6 status does not affect levels of gentamicin. A number of drugs affect B6 levels, creating the potential for hypovitaminosis B6 to be an important mechanism of drug-drug interaction in seriously ill patients, particularly in sick newborns or the elderly with lower average PLP levels.

  13. Antimicrobial resistance and virulence factors in Escherichia coli from swedish dairy calves

    Directory of Open Access Journals (Sweden)

    de Verdier Kerstin

    2012-01-01

    Full Text Available Abstract Background In Sweden, knowledge about the role of enteropathogenic Escherichia coli in neonatal calf diarrhea and the occurrence of antimicrobial resistance in E. coli from young calves is largely unknown. This has therapeutic concern and such knowledge is also required for prudent use of antimicrobials. Methods In a case control study Esherichia coli isolated from faecal samples from dairy calves were phenotyped by biochemical fingerprinting and analyzed for virulence genes by PCR. Antimicrobial susceptibility was tested by determination of minimum inhibitory concentration (MIC. Farm management data were collected and Fisher's exact test and univariable and multivariable logistic regression analysis were performed. Results Of 95 E. coli tested for antimicrobial susceptibility 61% were resistant to one or more substances and 28% were multi-resistant. The virulence gene F5 (K99 was not found in any isolate. In total, 21 out of 40 of the investigated virulence genes were not detected or rarely detected. The virulence genes espP, irp, and fyuA were more common in resistant E. coli than in fully susceptible isolates (P terZ was associated with calf diarrhea (P ≤ 0.01. The participating 85 herds had a median herd size of 80 lactating cows. Herds with calf diarrhea problems were larger (> 55 cows; P P There was no association between calf diarrhea and diversity of enteric E. coli. Conclusions Antimicrobial resistance was common in E. coli from pre-weaned dairy calves, occurring particularly in calves from herds experiencing calf diarrhea problems. The results indicate that more factors than use of antimicrobials influence the epidemiology of resistant E. coli. Enteropathogenic E. coli seems to be an uncommon cause of neonatal calf diarrhea in Swedish dairy herds. In practice, calf diarrhea should be regarded holistically in a context of infectious agents, calf immunity, management practices etc. We therefore advice against routine

  14. Presence and Antimicrobial Resistance of Escherichia coli in Ready-to-Eat Foods in Shaanxi, China.

    Science.gov (United States)

    Baloch, Allah Bux; Yang, Hua; Feng, Yuqing; Xi, Meili; Wu, Qian; Yang, Qinhao; Tang, Jingsi; He, Xiangxiang; Xiao, Yingping; Xia, Xiaodong

    2017-03-01

    The aim of this study was to determine the presence and characteristics of Escherichia coli in ready-to-eat (RTE) foods. A total of 300 RTE foods samples were collected in Shaanxi Province, People's Republic of China: 50 samples of cooked meat, 165 samples of vegetable salad, 50 samples of cold noodles, and 35 samples of salted boiled peanuts. All samples were collected during summer (in July to October) 2011 and 2012 and surveyed for the presence of E. coli . E. coli isolates recovered were classified by phylogenetic typing using a PCR assay. The presence of Shiga toxin genes 1 (stx1) and 2 (stx2) was determined for these E. coli isolates by PCR, and all isolates were analyzed for antimicrobial susceptibility and the presence of class 1 integrons. Overall, 267 (89.0%) RTE food samples were positive for E. coli : 49 cold noodle, 46 cooked meat, 150 salad vegetable, and 22 salted boiled peanut samples. Of the 267 E. coli isolates, 73.0% belong to phylogenetic group A, 12.4% to group B1, 6.4% to group B2, and 8.2% to group D. All isolates were negative for both Shiga toxin genes. Among the isolates, 74.2% were resistant to at least one antimicrobial agent, and 17.6% were resistant to three or more antimicrobial agents. Resistance to ampicillin (75.6% of isolates) and tetracycline (73.1% of isolates) was most frequently detected; 26.2% of E. coli isolates and 68.8% of multidrug-resistant E. coli isolates were positive for class 1 integrons. All isolates were sensitive to amikacin. Our findings indicate that RTE foods in Shaanxi were commonly contaminated with antibiotic-resistant E. coli , which may pose a risk for consumer health and for transmission of antibiotic resistance. Future research is warranted to track the contamination sources and develop appropriate steps that should be taken by government, industry, and retailers to reduce microbial contamination in RTE foods.

  15. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources.

    Science.gov (United States)

    Galvin, Sandra; Boyle, Fiona; Hickey, Paul; Vellinga, Akke; Morris, Dearbháile; Cormican, Martin

    2010-07-01

    We describe a modification of the most probable number (MPN) method for rapid enumeration of antimicrobial-resistant Escherichia coli bacteria in aqueous environmental samples. E. coli (total and antimicrobial-resistant) bacteria were enumerated in effluent samples from a hospital (n = 17) and municipal sewers upstream (n = 5) and downstream (n = 5) from the hospital, effluent samples from throughout the treatment process (n = 4), and treated effluent samples (n = 13). Effluent downstream from the hospital contained a higher proportion of antimicrobial-resistant E. coli than that upstream from the hospital. Wastewater treatment reduced the numbers of E. coli bacteria (total and antimicrobial resistant); however, antimicrobial-resistant E. coli was not eliminated, and E. coli resistant to cefotaxime (including extended-spectrum beta-lactamase [ESBL] producers), ciprofloxacin, and cefoxitin was present in treated effluent samples.

  16. 尿道感染大肠埃希菌对喹诺酮耐药性及相关因素分析%Drug Resistance and Risk Factors Analysis of Escherichia Coli Isolated from Urinary Tract Infection to Quinolone

    Institute of Scientific and Technical Information of China (English)

    张昭勇; 张吉才; 杜毅

    2013-01-01

    Objective To investigate the drug resistance and risk factors of Escherichia coli isolated from urinary tract infection (UTI) to quinolone. Methods Drug resistance of 705 strains of Escherichia coli isolated from 749 urine specimens of UTI from 2010 to 2011 in our hospital were detected and divided into the resistance group and the sensitive group according to sensitiveness to quinolone, and the risk factors of the quinolone resistance strains were analyzed. Results In 705 strains isolates E. coli, there were 474 strains (67. 2% ) of quinolone resistance in the resistance group, 231 strains (32. 8% ) of quinolone sensitiveness in the sensitive group and there was no carbapenem resistant strain. The differences in resistance rates of amoxicillin/clavulanic acid, cefotaxime, ceftazidime, aztreonam, piperacillin, amikacin, bactrim, gentamicin and cefepime of the two groups were statistically significant (P<0. 05) . Logistic regression analysis showed that the proportion of female patients, drug use of tert-cephalosporins and quinolones, urinary drainage and bacterium producing extended spectrum β lactamases (ESBLS) were independent risk factors of quinolone resistance E. coli. The differences in hospital stay and cost of the two groups were statistically significant (P<0. 05). Conclusion The detection rate of quinolone resistance escherichia coli isolated from UIT is high. The emergence of resistant strains is related to antibiotic application, invasive handling and bacterial variation. To strengthen the independent risk factors regulation can effectively prevent and control spread of infection.%目的 探讨尿道感染(urinary tract infection,UIT)大肠埃希菌对喹诺酮耐药性及其相关因素.方法 对我院2010-2011年749例UIT尿液标本中分离的705株大肠埃希菌的耐药性进行检测,以对喹诺酮敏感与否分为耐药株组和敏感株组,分析耐药株感染的相关因素.结果 705株大肠埃希菌中对喹诺酮耐药474株(67.2

  17. Antimicrobial resistance in Escherichia coli isolates from raccoons (Procyon lotor) in Southern Ontario, Canada.

    Science.gov (United States)

    Jardine, Claire M; Janecko, Nicol; Allan, Mike; Boerlin, Patrick; Chalmers, Gabhan; Kozak, Gosia; McEwen, Scott A; Reid-Smith, Richard J

    2012-06-01

    We conducted a cross-sectional study to determine the prevalence of antimicrobial resistance (AMR) in fecal Escherichia coli isolates from raccoons (Procyon lotor) living in Ontario, Canada. From June to October 2007, we trapped raccoons in three areas: one primarily urban site around Niagara, one primarily rural site north of Guelph, and one at the Toronto Zoo. In addition, we conducted a longitudinal study at the Toronto Zoo site to investigate the temporal dynamics of fecal E. coli and AMR in raccoons. Reduced susceptibility to ≥1 antimicrobial agent was detected in E. coli isolates from 19% of 16 raccoons at the urban site, 17% of 29 raccoons from the rural site, and 42% of 130 samples collected from 59 raccoons at the zoo site. Raccoons from the zoo site were significantly more likely to shed E. coli with reduced susceptibility to ≥1 antimicrobial agent than animals from the rural site (odds ratio [OR], 3.41; 95% confidence interval [CI], 1.17 to 12.09; P = 0.02). Resistance to expanded-spectrum cephalosporins (and the associated bla(CMY-2) gene) was detected in two animals from the zoo site and one animal from the rural site. Serotyping and pulsed-field gel electrophoresis analysis show that raccoons on the zoo grounds harbor a diverse assemblage of E. coli, with rapid bacterial turnover within individuals over time. Our study indicates that raccoons may shed resistant bacteria of public health significance and that raccoons have the potential to disseminate these bacteria throughout their environment.

  18. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals.

    Science.gov (United States)

    So, Jeong Hwa; Kim, Juwon; Bae, Il Kwon; Jeong, Seok Hoon; Kim, So Hyun; Lim, Suk-kyung; Park, Yong Ho; Lee, Kyungwon

    2012-06-01

    This study was performed to investigate the prevalence of rectal colonization with multidrug-resistant Escherichia coli in dogs hospitalized at veterinary hospitals in Korea and to assess the molecular epidemiologic traits of this organism. A total of 63 unique E. coli isolates obtained from the rectal swabs of hospitalized dogs were analyzed. Genes encoding CTX-M extended-spectrum β-lactamases (ESBLs) and AmpC enzymes were detected in 21 (33.3%) and 15 (23.8%) canine E. coli isolates, respectively. Twelve canine E. coli isolates harbored both the genes encoding the CTX-M and AmpC enzymes. Six ESBL-producing E. coli isolates also carried the rmtB gene. All 24 E. coli isolates producing CTX-M ESBL and/or CMY-2 were resistant to ciprofloxacin. Furthermore, mutations were found in the gyrA and the parC genes. In most cases, the bla genes of the CTX-M ESBL and AmpC enzymes and the rmtB gene were localized to incompatibility group F (IncF) plasmids. Possible small clonal outbreaks are suggested because some E. coli isolates recovered in the same veterinary hospital were identified as identical sequence types and showed identical banding patterns in repetitive sequence-based polymerase chain reaction. The horizontal transfer of IncF plasmids and the clonal transfer of E. coli strains are suggested to play a role in the dissemination of antimicrobial resistance genes, and this transfer may occur across host species (i.e., between humans and dogs).

  19. Breaking the resistance of Escherichia coli: Antimicrobial activity of Berberis lycium Royle.

    Science.gov (United States)

    Malik, Tauseef Ahmad; Kamili, Azra N; Chishti, M Z; Ahad, Shazia; Tantry, Mudasir A; Hussain, P R; Johri, R K

    2017-01-01

    The antimicrobial activity of root bark of Berberis lycium and its principal component berberine was tested against a panel of microbial strains using agar well diffusion test and further analyzed using micro-broth dilution method. Preliminary analysis, on the basis of zone of Inhibition (ZOI) showed that the methanolic extract of B. lycium was highly effective against Escherichia coli (ZOI 41 ± 1 mm). Among the bacterial strains E. coli was found to be most susceptible and among fungi Candida albicans was the most susceptible for berberine as well as the crude methanolic extract of the plant. Methanolic extract of the plant was more effective for E. coli (MIC 1.7 ± 1.18; MBC 2.4 ± 1.18) than berberine (MIC 3.5 ± 0.57) (p resistant colonies after 72 h when tested with berberine but the development of such colonies was not observed with the methanolic extract of the plant. This could be due to the presence of resistance breaking molecules in the crude methanolic extract of B. lycium. Also the MIC index of crude methanolic extract was 1.39 for E. coli, which showed the mode of action to be bactericidal. HPLC analysis revealed the presence of berberine at highest concentration in methanolic extract of the plant, followed by aqueous extract. Potentiation of this berberine by resistance breaking molecules in the crude extract could be a possible explanation for its strong effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Amoxicillin and clavulanic acid versus amoxicillin plus gentamicin in the empirical initial treatment of urinary tract infections in hospitalized patients].

    Science.gov (United States)

    Verzasconi, R; Rodoni, P; Monotti, R; Marone, C; Mombelli, G

    1995-08-19

    We compared the fixed combination amoxicillin plus clavulanic acid with that of amoxicillin plus gentamicin in the empirical initial treatment of severe urinary tract infections. The study included 87 hospitalized patients (51 women and 36 men, mean age 58 +/- 22 years) with acute uncomplicated pyelonephritis (n = 48) or with complicated urinary tract infections (n = 39). 80 patients (92%) had fever and 31 patients (36%) positive blood cultures. 45 patients were randomly assigned to amoxicillin plus clavulanic acid and 42 to amoxicillin plus gentamicin. Overall, 18 patients (21%) were infected with organisms resistant in vitro to amoxicillin plus clavulanic acid, whereas no pathogen was isolated with resistance to amoxicillin plus gentamicin (p amoxicillin plus gentamicin (p amoxicillin plus gentamicin group. Although the in-vitro resistance did not result in a lower clinical efficacy of amoxicillin plus clavulanic acid compared to amoxicillin plus gentamicin in our relatively small sample of patients, the data indicate that the antimicrobial activity of amoxicillin plus clavulanic acid is inadequate to cover the spectrum of causative agents in hospitalized patients with pyelonephritis or complicated urinary tract infections. Amoxicillin plus clavulanic acid should therefore not be used in the initial empirical treatment of these infections.

  1. [Clinical features and antibiotic resistance of Escherichia coli bloodstream infections in children].

    Science.gov (United States)

    Li, Shaoying; Guo, Lingyun; Liu, Linlin; Dong, Fang; Liu, Gang

    2016-02-01

    To analyze risk factors, clinical features, outcomes and antibiotic resistance of Escherichia coli(E.coli) causing bloodstream infections in children. All inpatients with E. coli positive blood culture in Beijing Children's Hospital from January 2012 to May 2014 were enrolled; 112 cases were included, 66 cases (58.9%) were male, and 46 cases(41.1%) were female. Age range was 2 days to 16 years. Among them, 43 cases (38.4%) were neonates, 19 cases (17.0%) aged from 1 month to 1 year, 14 cases (12.5%) were 1-3 years old, and 36 cases (32.1%) were over three years old. We analyzed the divisions to which the patients were admitted, source of infection, underlying diseases, clinical characteristics, antibiotic resistance, and treatment outcomes, etc. Forty-six cases (41.1%) were treated in division of hematology, 42 (37.5%) in neonatology, 9 (8.0%) in internal medicine, 8 (7.1%) in surgery, and 7 (6.3%) in pediatric intensive care unit. Sixty-five cases(58.0%) had underlying diseases. Fever was the most frequently presented symptom, as it was seen in 91 cases (81.3%); 52 cases(46.4%) had respiratory symptoms. Among these, 43 cases had pneumonia, 3 cases had respiratory failure, 3 cases were diagnosed as upper respiratory tract infection, 2 had pulmonary hemorrhage and 1 case had bronchitis. Twenty-six cases (23.2%)were diagnosed as severe sepsis and purulent meningitis separately, 14 cases(12.5%) had urinary tract infection. There were 73 (65.2%) strains inducing extended spectrum β-lactamases (ESBLs), of which 6 (8.2%) and 10 (13.7%) strains were resistant to amikacin and carbapenems respectively. Resistance rate against other antimicrobial agents varied from 64.6% to 100%. 92 (82.1%) cases were cured or had improvement while 20 patients (17.9%) died or could not be cured at the end of treatment. Positive ESBLs (χ(2) = 6.609, P = 0.010), being complicated with severe sepsis (χ(2) = 40.253, P = 0.000) and requiring mechanical ventilation (χ(2) = 34.441, P = 0

  2. Virulence and antimicrobial resistance of Escherichia coli isolated from Tigris River and children diarrhea

    Directory of Open Access Journals (Sweden)

    Ibrahim IA

    2014-11-01

    Full Text Available Israa AJ Ibrahim, Rana M Al-Shwaikh, Mahmoud I IsmaeilDepartment of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, IraqObjective: To investigate the virulence factors including hemolysin production, β-lactamase production, and biofilm formation. Antimicrobial resistance and plasmid content of 20 Escherichia coli isolates obtained from feces and Tigris water were screened.Methods: Ten clinical and ten environmental E. coli isolates were collected from children diarrhea and swim areas on Tigris River in Baghdad city, Iraq, respectively. The bacterial isolates were identified by cultural characteristics, Gram stain, biochemical tests, and screened for the presence of E. coli O157:H7 serotype. Bacterial E. coli isolates were investigated for hemolysin production, biofilm formation, and β-lactamase production. Antibiotics susceptibility and plasmid content were determined.Results: A total of ten clinical and ten water E. coli isolates were studied. Results showed that all E. coli isolates give negative results for latex O157:H7. Virulence factors analysis showed that 6/10 water isolates and 2/10 clinical isolates were hemolytic, 5/10 water isolates and 3/10 clinical isolates were biofilm formation, and 7/10 water isolates and 4/10 clinical isolates were β-lactamase producer. Antibiotics profile showed that all bacterial isolates were multidrug resistant. All E. coli isolates (100% were resistant to carbenicillin, cefodizime, imipenem, and piperacillin. The plasmid DNA analysis showed that all E. coli isolates contained plasmid with molecular weight range between 4.507 kbp and 5.07 kbp, but clinical isolates contained multiple small and mega plasmids.Conclusion: Our study revealed that E. coli isolates from river water exhibit a higher level of hemolysin production, β-lactamase production, and biofilm formation than feces isolates may be due to long adaptation. On the other hand, clinical E. coli

  3. Accumulation of antibiotics and heavy metals in meat duck deep litter and their role in persistence of antibiotic-resistant Escherichia coli in different flocks on one duck farm.

    Science.gov (United States)

    Lin, Y; Zhao, W; Shi, Z D; Gu, H R; Zhang, X T; Ji, X; Zou, X T; Gong, J S; Yao, W

    2016-10-14

    Meat duck deep litter is considered to be an ideal environment for the evolution of bacterial antibiotic resistance if it is under poor management. The aim of this study was to characterize the accumulation of antibiotics and heavy metals in the deep litter and their role in the persistence of antibiotic resistance of Escherichia coli, and evaluate the service life of the deep litter. Samples were collected from initial, middle, and final stages of deep litter within 3 barns (zero, 4, and 8 rounds of meat duck fattening, d 34) and 9 flocks, with known consumption of antibiotics in the controlled trail. The feed and litter levels of consumed antibiotics and heavy metals were measured. E. coli (n = 147) was isolated and typed by Eric-PCR and the phylogenetic grouping technique, while minimal inhibitory concentrations of antibiotics and heavy metals were measured. This study confirmed the continuous accumulation of doxycycline and many heavy metals in the deep litter. The population of resistant certain bacteria to doxycycline (16 mg/L, 100 mg/L) or ofloxacin (8 g/mL, 50 g/mL) increased in the used deep litter (rounds 4 and 8). E. coli isolated from the 3 stages of sampling were highly resistant to ampicillin, tetracycline, florfenicol, and doxycycline. Increased resistance to ceftiofur, enrofloxacin, ofloxacin, and gentamicin were seen in the isolates from the final stage of deep litter. In addition, the percentage of isolates tolerant to zinc, copper, and cadmium and the numbers of Group-B2 isolates all increased in the used deep litter, and the isolates of each stage belonged predominantly to commensal groups. The antibiotic resistance of isolates with identical Eric-PCR patterns had improved from round 4 to 8, and differences still existed in the resistance profiles of isolates with identical Eric-PCR patterns from different barns of the same round. This study concluded that deep litter could be suitable for the evolution of bacterial antibiotic-resistance

  4. Complete genome sequences of multidrug-resistant Campylobacter jejuni 14980A (turkey feces) and Campylobacter coli 14983A (housefly from turkey farm), harboring a novel gentamicin resistance mobile element.

    Science.gov (United States)

    Multidrug resistance (MDR) in foodborne pathogens is a major food safety and public health issue. Here we describe whole-genome sequences of two MDR strains of Campylobacter jejuni and Campylobacter coli from turkey feces and a housefly in a turkey farm. Both strains harbor a novel chromosomal genta...

  5. Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm.

    Science.gov (United States)

    Ibrahim, Delveen R; Dodd, Christine E R; Stekel, Dov J; Ramsden, Stephen J; Hobman, Jon L

    2016-04-01

    Escherichia coli strains were isolated from a single dairy farm as a sentinel organism for the persistence of antibiotic resistance genes in the farm environment. Selective microbiological media were used to obtain 126 E. coli isolates from slurry and faeces samples from different farm areas. Antibiotic resistance profiling for 17 antibiotics (seven antibiotic classes) showed 57.9% of the isolates were resistant to between 3 and 15 antibiotics. The highest frequency of resistance was to ampicillin (56.3%), and the lowest to imipenem (1.6%), which appeared to be an unstable phenotype and was subsequently lost. Extended spectrum β-lactamase (ESBL) resistance was detected in 53 isolates and blaCTX-M, blaTEM and blaOXA genes were detected by PCR in 12, 4 and 2 strains, respectively. Phenotypically most isolates showing resistance to cephalosporins were AmpC rather than ESBL, a number of isolates having both activities. Phenotypic resistance patterns suggested co-acquisition of some resistance genes within subsets of the isolates. Genotyping using ERIC-PCR demonstrated these were not clonal, and therefore co-resistance may be associated with mobile genetic elements. These data show a snapshot of diverse resistance genes present in the E. coli population reservoir, including resistance to historically used antibiotics as well as cephalosporins in contemporary use.

  6. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    DEFF Research Database (Denmark)

    Shuyu, Wu; Dalsgaard, A.; Hammerum, A. M.

    2010-01-01

    Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids...... involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli...... isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids...

  7. In vivo sequential selection of Escherichia coli with topoisomerase- and efflux-mediated misleading quinolone resistance phenotypes.

    Science.gov (United States)

    Smati, Mounira; Emond, Jean-Philippe; Arlet, Guillaume; Tankovic, Jacques

    2012-02-01

    Two mutants of Escherichia coli (V1 and V2) with acquired mechanisms of resistance to fluoroquinolones were isolated sequentially from blood cultures of a patient with cholangiocarcinoma treated repeatedly with ofloxacin; a third mutant (V3) was isolated under ciprofloxacin therapy. All mutants were related clonally. V1 was susceptible to quinolones but with diminished susceptibility to ofloxacin. V2 was hypersusceptible to nalidixic acid but had high-level resistance to ofloxacin. V3 was resistant to all quinolones. Ofloxacin selected for original gyrA and parC mutations, leading to the unusual and misleading resistance phenotypes of V1 and V2, whereas efflux played a major role in the increased resistance of V3.

  8. Occurrence of quinolone- and beta-lactam-resistant Escherichia coli in danish broiler flocks

    DEFF Research Database (Denmark)

    Bortolaia, Valeria; Guardabassi, Luca; Bisgaard, Magne

    An increased concern for the possible transfer of resistant bacteria or mobile resistance elements from food animals to humans has resulted in rigorous legislation preventing i.e. practical use of fluoroquinolones in the Danish broiler industry (Olesen et al., 2004; Petersen et al., 2006). In Den......An increased concern for the possible transfer of resistant bacteria or mobile resistance elements from food animals to humans has resulted in rigorous legislation preventing i.e. practical use of fluoroquinolones in the Danish broiler industry (Olesen et al., 2004; Petersen et al., 2006......, and F. M. Aarestrup. 2004. Prevalence of ß-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Micr. Drug Res. 10:334-340. Petersen, A., J. P. Christensen, P. Kuhnert, M. Bisgaard, J. E. Olsen. 2006. Vertical transmission of a fluoroquinolone...

  9. Mecanismos moleculares de resistencia antibiótica en Escherichia coli asociadas a diarrea Molecular mechanisms of antibiotic resistance in Escherichia coli- associated diarrhea

    Directory of Open Access Journals (Sweden)

    Susan Mosquito

    2011-12-01

    Full Text Available La resistencia antibiótica es un problema emergente a nivel mundial presente en diversas bacterias, en especial en la Escherichia coli, que tiene altos porcentajes de resistencia hacia ampicilina, trimetoprim-sulfametoxazol, tetraciclina, cloramfenicol y ácido nalidíxico, lo que supone grandes complicaciones en el tratamiento antibiótico cuando este es requerido. Este aumento de resistencia antibiótica se debe a la adquisición de diferentes mecanismos moleculares de resistencia mediante mutaciones puntuales a nivel cromosómico o transferencia horizontal de material genético entre especies relacionadas o diferentes, facilitada por algunos elementos genéticos tales como los integrones. Esta revisión discute los efectos de los mecanismos moleculares de resistencia más comunes en E.coli: inactivación enzimática, alteraciones en el sitio blanco y alteraciones de la permeabilidad. El conocer los mecanismos de resistencia implicados, como lo recomienda la Organización Mundial de la Salud, permitirá optimizar la vigilancia de resistencia y las políticas de control y uso de antibióticos a nivel nacional.Antibiotic resistance is an emerging problem worldwide present in many bacteria, specially in Escherichia coli, which has high percentages of resistance to ampicilline, thrimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and nalidixic acid, which implies important complications in antibiotic treatment when required. The increasing antibiotic resistance is due to the acquisition of different molecular mechanisms of resistance through point chromosomal mutations and /or horizontal transfer of genetic material between related or different species facilitated by some genetic elements such as integrons. This review discusses the effects of the most common molecular mechanisms of antibiotic resistance in E. coli: enzymatic inactivation, changes in the target site and permeability disturbances. Getting to know the mechanisms of

  10. Characterization of sulphonamide-resistant Escherichia coli using comparison of sul2 gene sequences and multilocus sequence typing

    DEFF Research Database (Denmark)

    Trobos, Margarita; Christensen, Henrik; Sunde, Marianne

    2009-01-01

    The sul2 gene encodes sulphonamide resistance (Sul(R)) and is commonly found in Escherichia coli from different hosts. We typed E coli isolates by multilocus sequence typing (MLST) and compared the results to sequence variation of sul2, in order to investigate the relation to host origin of patho......The sul2 gene encodes sulphonamide resistance (Sul(R)) and is commonly found in Escherichia coli from different hosts. We typed E coli isolates by multilocus sequence typing (MLST) and compared the results to sequence variation of sul2, in order to investigate the relation to host origin...... of pathogenic and commensal E coli strains and to investigate whether transfer of sul2 into different genomic lineages has happened multiple times. Sixty-eight E coli isolated in Denmark and Norway from different hosts and years were MLST typed and sul2 PCR products were sequenced and compared. PFGE...

  11. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Ciprofloxacin-Nonsusceptible Escherichia coli and Klebsiella pneumoniae Isolated from Blood Cultures in Korea

    Directory of Open Access Journals (Sweden)

    Hee Young Yang

    2014-01-01

    Full Text Available OBJECTIVES:To analyze the prevalence of plasmid-mediated quinolone resistance (PMQR determinants in ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from patients at a tertiary care hospital in Korea.

  12. Detection of mcr-1 colistin resistance gene in polyclonal Escherichia coli isolates in Barcelona, Spain, 2012 to 2015.

    Science.gov (United States)

    Prim, Núria; Rivera, Alba; Rodríguez-Navarro, Judith; Español, Montserrat; Turbau, Miquel; Coll, Pere; Mirelis, Beatriz

    2016-01-01

    Colistin resistance was detected in 53 of 10,011 Escherichia coli (0.5%) by prospective phenotypic testing of consecutive clinical isolates in a single hospital in Barcelona, Spain (2012-15). The mcr-1 gene was retrospectively identified by PCR and sequencing in 15 of 50 available isolates. Each isolate had a unique PFGE pattern except for two. This clonal diversity supports the hypothesis of horizontal dissemination of the mcr-1 gene in the local study population.

  13. Complete Genome Sequence of a Colistin Resistance Gene (mcr-1)-Bearing Isolate of Escherichia coli from the United States.

    Science.gov (United States)

    Meinersmann, Richard J; Ladely, Scott R; Bono, James L; Plumblee, Jodie R; Hall, M Carolina; Genzlinger, Linda L; Cook, Kimberly L

    2016-11-10

    Transmissible colistin resistance conferred by the mcr-1 gene-bearing IncI2 plasmid has been recently reported in Escherichia coli in the United States. We report here the completed genome sequence of a second E. coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid. Copyright © 2016 Meinersmann et al.

  14. Induction of YdeO, a regulator for acid resistance genes, by ultraviolet irradiation in Escherichia coli.

    Science.gov (United States)

    Yamanaka, Yuki; Ishihama, Akira; Yamamoto, Kaneyoshi

    2012-01-01

    YdeO, an AraC-type transcription factor, is an important regulator in the induction of acid-resistance genes in Escherichia coli. In this study, we found that ydeO expression was induced 20 min after exposure to UV irradiation. This required the evgA and gadE genes in vivo. YdeO, induced by UV, controls the expression of a total of 21 genes. This accompanies SOS response in E. coli.

  15. Investigation of carbon storage regulation network (csr genes) and phenotypic differences between acid sensitive and resistant Escherichia coli O157:H7 strains

    Science.gov (United States)

    Background: Escherichia coli O157:H7 and related serotype strains have previously been shown to vary in acid resistance, however, little is known about strain specific mechanisms of acid resistance. We examined sensitive and resistant E. coli strains to determine the effects of growth in minimal and...

  16. Antimicrobial Resistance in Indicator Escherichia coli Isolates from Free-Ranging Livestock and Sympatric Wild Ungulates in a Natural Environment (Northeastern Spain)

    OpenAIRE

    Navarro-Gonzalez, N.; Porrero, M.C.; Mentaberre, G.; Serrano, E.; Mateos, A; Domínguez, L.; Lavín, S

    2013-01-01

    Antimicrobial resistance was assessed in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild boar (Sus scrofa) and Iberian ibex (Capra pyrenaica) in a National Game Reserve in northeastern Spain. The frequency of antimicrobial resistance was low (0% to 7.9%). However, resistance to an extended-spectrum cephalosporin and fluoroquinolones was detected.

  17. Antimicrobial resistance in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild ungulates in a natural environment (Northeastern Spain).

    Science.gov (United States)

    Navarro-Gonzalez, N; Porrero, M C; Mentaberre, G; Serrano, E; Mateos, A; Domínguez, L; Lavín, S

    2013-10-01

    Antimicrobial resistance was assessed in indicator Escherichia coli isolates from free-ranging livestock and sympatric wild boar (Sus scrofa) and Iberian ibex (Capra pyrenaica) in a National Game Reserve in northeastern Spain. The frequency of antimicrobial resistance was low (0% to 7.9%). However, resistance to an extended-spectrum cephalosporin and fluoroquinolones was detected.

  18. Antibacterial Derivatives of Ciprofloxacin to Inhibit Growth of Necrotizing Fasciitis Associated Penicillin Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ronald Bartzatt

    2013-01-01

    Full Text Available Escherichia coli (E. coli is associated with necrotizing fasciitis (type I and can induce enough damage to tissue causing hypoxia. Three ester derivatives of the broad-spectrum antibiotic ciprofloxacin were placed into bacteria culture simultaneously with the parent ciprofloxacin (drug 1 to ascertain the level of antibacterial activity. The n-propyl (drug 2, n-pentyl (drug 3, and n-octyl (drug 4 esters of ciprofloxacin were synthesized under mixed phase conditions and by microwave excitation. The formation of ester derivatives of ciprofloxacin modified important molecular properties such as Log P and polar surface area which improves tissue penetration, yet preserved strong antibacterial activity. The Log P values for drugs 1, 2, 3, and 4 became −0.701, 0.437, 1.50, and 3.02, respectively. The polar surface areas for drugs 1, 2, 3, and 4 were determined to be 74.6 Angstroms2, 63.6 Angstroms2, 63.6 Angstroms2, and 63.6 Angstroms2, respectively. These values of Log P and polar surface area improved tissue penetration, as indicated by the determination of dermal permeability coefficient (Kp and subsequently into the superficial fascial layer. All drugs induced greater than 60% bacterial cell death at concentrations less than 1.0 micrograms/milliliter. The ester derivatives of ciprofloxacin showed strong antibacterial activity toward penicillin resistant E. coli.

  19. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli.

    Science.gov (United States)

    Téllez, Germán Alberto; Castaño-Osorio, Jhon Carlos

    2014-08-01

    Lucilin is a 36 residue cecropin antimicrobial peptide identified as a partial genetic sequence in Lucilia sericata maggots. The antimicrobial spectrum and toxicity profile of Lucilin is unknown. We first report the expression of Lucilin as an active recombinant fusion protein with a cysteine protease domain (CPD) tag. The fusion protein, GWLK-Lucilin-CPD-His8, showed maximum overexpression in Escherichia coli BL21 cells after 12h induction with 0.5mM IPTG (isopropyl beta-d-thiogalactoside) and growth conditions were 37 °C and 150 rpm shaking. The fusion protein was expressed as a soluble form and was purified by Ni-IMAC. The purified protein was active against E. coli ATCC 35218 with a MIC of 0.68 μM, and a clinical isolate of E. coli with extended spectrum beta-lactamase (ESBL) with a MIC of 0.8 μM. The recombinant GWLK-Lucilin-CPD-His8 was not toxic against human erythrocytes or Vero cells with a therapeutic index >63. The results suggest that GWLK-Lucilin-CPD-His8 represents a potential candidate for therapy against multidrug resistant Gram-negative bacteria.

  20. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children.

    Science.gov (United States)

    Ferjani, Sana; Saidani, Mabrouka; Hamzaoui, Zeineb; Alonso, Carla Andrea; Torres, Carmen; Maamar, Elaa; Slim, Amine Faouzi; Boutiba, Ben Boubaker Ilhem

    2017-02-01

    The spread of extended spectrum β-lactamases (ESBL) and plasmid mediated AmpC β-lactamases (pAmpC) was evaluated in Escherichia coli strains collected from the intestinal microbiota of healthy children in Tunisia. The carriage rate of CTX(R)E. coli was 6.6% (7 of 105 samples) and one strain/sample was further characterized (7 isolates). These isolates harbored blaCTX-M-1 (n = 4), blaCTX-M-15 (n = 2), and blaCMY-2 gene (n = 1), which were usually located on FIB replicon type and carried class 1 integrons. The acc(6')-Ib-cr variant was identified in one isolate that harbored blaCTX-M-15. CTX(R)E. coli isolates were genetically unrelated and belonged to B1 (n = 3/ST155/ST398/ST58), D (n = 2/ST117/ST493), B2 (n = 1/ST127), and A (n = 1/ST746) phylogroups. Strain virulence scores varied from 3 to 12, and frequently harbored the pathogenicity island PAI IV536. The intestinal tract of healthy children constitute an important reservoir of ESBL producing E. coli. Thus, improvement of hygiene measures mainly in the school environment and rational use of antibiotics would be of great help in preventing selection and diffusion of resistant strains from intestinal microbiota.

  1. Environmental fluctuations do not select for increased variation or population-based resistance in Escherichia coli

    Indian Academy of Sciences (India)

    Shraddha Madhav Karve; Kanishka Tiwary; S Selveshwari; Sutirth Dey

    2016-03-01

    Little is known about the mechanisms that enable organisms to cope with unpredictable environments. To address this issue, we used replicate populations of Escherichia coli selected under complex, randomly changing environments. Under four novel stresses that had no known correlation with the selection environments, individual cells of the selected populations had significantly lower lag and greater yield compared to the controls. More importantly, there were no outliers in terms of growth, thus ruling out the evolution of population-based resistance. We also assayed the standing phenotypic variation of the selected populations, in terms of their growth on 94 different substrates. Contrary to expectations, there was no increase in the standing variation of the selected populations, nor was there any significant divergence from the ancestors. This suggested that the greater fitness in novel environments is brought about by selection at the level of the individuals, which restricts the suite of traits that can potentially evolve through this mechanism. Given that day-to-day climatic variability of the world is rising, these results have potential public health implications. Our results also underline the need for a very different kind of theoretical approach to study the effects of fluctuating environments.

  2. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing

    Science.gov (United States)

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-01-01

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors. PMID:25331151

  3. Escherichia coli ST131: a multidrug-resistant clone primed for global domination

    Science.gov (United States)

    Pitout, Johann D.D.; DeVinney, Rebekah

    2017-01-01

    A single extra-intestinal pathogenic Escherichia coli (ExPEC) clone, named sequence type (ST) 131, is responsible for millions of global antimicrobial-resistant (AMR) infections annually. Population genetics indicate that ST131 consists of different clades (i.e. A, B, and C); however, clade C is the most dominant globally. A ST131 subclade, named C1-M27, is emerging in Japan and has been responsible for the recent increase in AMR ExPEC in that country. The sequential acquisition of several virulence and AMR genes associated with mobile genetic elements during the 1960s to 1980s primed clade C (and its subclades C1 and C2) for success in the 1990s to 2000s. IncF plasmids with F1:A2:B20 and F2:A1:B replicons have shaped the evolution of the C1 and C2 subclades. It is possible that ST131 is a host generalist with different accessory gene profiles. Compensatory mutations within the core genome of this clone have counterbalanced the fitness cost associated with IncF plasmids. ST131 clade C had dramatically changed the population structure of ExPEC, but it still remains unclear which features of this clade resulted in one of the most unprecedented AMR successes of the 2000s.

  4. Multidrug-resistant Escherichia coli soft tissue infection investigated with bacterial whole genome sequencing.

    Science.gov (United States)

    Buchanan, Ruaridh; Stoesser, Nicole; Crook, Derrick; Bowler, Ian C J W

    2014-10-19

    A 45-year-old man with dilated cardiomyopathy presented with acute leg pain and erythema suggestive of necrotising fasciitis. Initial surgical exploration revealed no necrosis and treatment for a soft tissue infection was started. Blood and tissue cultures unexpectedly grew a Gram-negative bacillus, subsequently identified by an automated broth microdilution phenotyping system as an extended-spectrum β-lactamase producing Escherichia coli. The patient was treated with a 3-week course of antibiotics (ertapenem followed by ciprofloxacin) and debridement for small areas of necrosis, followed by skin grafting. The presence of E. coli triggered investigation of both host and pathogen. The patient was found to have previously undiagnosed liver disease, a risk factor for E. coli soft tissue infection. Whole genome sequencing of isolates from all specimens confirmed they were clonal, of sequence type ST131 and associated with a likely plasmid-associated AmpC (CMY-2), several other resistance genes and a number of virulence factors. 2014 BMJ Publishing Group Ltd.

  5. Antimicrobial Susceptibility and Molecular Mechanisms of Fosfomycin Resistance in Clinical Escherichia coli Isolates in Mainland China.

    Directory of Open Access Journals (Sweden)

    Ya Li

    Full Text Available Escherichia coli is one of the most common pathogens in nosocomial and community-acquired infections in humans. Fosfomycin is a broad-spectrum antibiotic which inhibits peptidoglycan synthesis responsible for bacterial cell wall formation. Although low, the exact E. coli susceptibility to fosfomycin as well as the mechanisms of resistance in the population from Mainland China are mostly unknown. 1109 non-duplicate clinical E. coli strains isolated from urine, sputum, blood and pus samples in 20 widely dispersed tertiary hospitals from Mainland China were collected from July 2009 to June 2010, followed by determination of minimum inhibitory concentrations of fosfomycin. Detection of the murA, glpT, uhpT, fosA, fosA3 and fosC genes was performed in fosfomycin non-susceptible E. coli strains and conjugation experiments were employed to determine the mobility of fosA3 gene. In this study, 7.8% (86/1109 E. coli strains were fosfomycin non-susceptible. Amino acid substitutions in GlpT and MurA were found in six and four E.coli strains, respectively, while the uhpT gene was absent in eighteen E.coli strains. Twenty-nine isolates carried the transferable plasmid with the fosA3 gene at high frequencies of around 10(-6 to 10(-7 per donor cell in broth mating. The majority of isolates were susceptible to fosfomycin, showing that the drug is still viable in clinical applications. Also, the main mechanism of E. coli resistance in Mainland China was found to be due to the presence of the fosA3 gene.

  6. Serotypes, genotypes and antimicrobial resistance patterns of human diarrhoeagenic Escherichia coli isolates circulating in southeastern China.

    Science.gov (United States)

    Chen, Y; Chen, X; Zheng, S; Yu, F; Kong, H; Yang, Q; Cui, D; Chen, N; Lou, B; Li, X; Tian, L; Yang, X; Xie, G; Dong, Y; Qin, Z; Han, D; Wang, Y; Zhang, W; Tang, Y-W; Li, L

    2014-01-01

    Diarrhoeagenic Escherichia coli (DEC) infection is a major health problem in developing countries. The prevalence and characteristics of DEC have not been thoroughly investigated in China. Consecutive faecal specimens from outpatients with acute diarrhoea in nine sentinel hospitals in southeastern China were collected from July 2009 to June 2011. Bacterial and viral pathogens were detected by culture and RT-PCR, respectively. DEC isolates were further classified into five pathotypes using multiplex PCR. The O/H serotypes, sequence types (STs) and antimicrobial susceptibility profiles of the DEC isolates were determined. A total of 2466 faecal specimens were collected, from which 347 (14.1%) DEC isolates were isolated. DEC was the dominant bacterial pathogen detected. The DEC isolates included 217 EAEC, 62 ETEC, 52 EPEC, 14 STEC, one EIEC and one EAEC/ETEC. O45 (6.6%) was the predominant serotype. Genotypic analysis revealed that the major genotype was ST complex 10 (87, 25.6%). Isolates belonging to the serogroups or genotypes of O6, O25, O159, ST48, ST218, ST94 and ST1491 were highly susceptible to the majority of antimicrobials. In contrast, isolates belonging to O45, O15, O1, O169, ST38, ST226, ST69, ST31, ST93, ST394 and ST648 were highly resistant to the majority of antimicrobials. DEC accounted for the majority of bacterial pathogens causing acute diarrhoea in southeastern China, and it is therefore necessary to test for all DEC, not only the EHEC O157:H7. Some serogroups or genotypes of DEC were highly resistant to the majority of antimicrobials. DEC surveillance should be emphasized.

  7. Emergence of NDM-1-positive capsulated Escherichia coli with high resistance to serum killing in Japan.

    Science.gov (United States)

    Yamamoto, Tatsuo; Takano, Tomomi; Iwao, Yasuhisa; Hishinuma, Akira

    2011-06-01

    The New Delhi metallo-β-lactamase-1 (NDM-1) gene, bla (NDM-1), is an emerging plasmid-borne drug resistance gene, which encodes for exceptionally broad-spectrum β-lactamase, being able to hydrolyze a wide variety of β-lactams, including carbapenems, and was first reported in Klebsiella pneumoniae from a Swedish patient of Indian origin in 2009. It is widely distributed among Enterobacteriacae and has geographically exhibited extremely rapid and global spread. In this study, we characterized the bla (NDM-1)-positive ST38 Escherichia coli strain NDM-1 Dok01 (which was isolated from the blood of a 54-year-old Japanese inpatient, who had previously visited India), focusing on bacterial surface structures related to virulence. The E. coli culture contained colony variants, which developed a transparent smooth colony and a rough colony on blood agar plates. The smooth colony-forming cells (substrain M1) possessed a surface capsule and were resistant to serum killing, whereas rough colony-forming mutants (substrain B2) lacked a capsule (and a 5.3-kb plasmid) and were highly susceptible to serum killing. Reflecting the surface structural difference, substrain M1 was more flagellated and motile, whereas substrain B2 was less flagellated and apparently possessed straight pili 5 nm wide, which played a role in adherence to human intestinal cells and bacterial autoaggregation. Data suggest that the bla (NDM-1)-positive ST38 E. coli has emerged in Japan and that it is a capsulated bacterial pathogen with virulence potential in the blood stream.

  8. Occurrence of Extended-Spectrum β-Lactamases, Plasmid-Mediated Quinolone Resistance, and Disinfectant Resistance Genes in Escherichia coli Isolated from Ready-To-Eat Meat Products

    DEFF Research Database (Denmark)

    Li, Lili; Ye, Lei; Kromann, Sofie

    2017-01-01

    There are growing concerns about the coselection of resistance against antibiotics and disinfectants in bacterial pathogens. The aim of this study was to characterize the antimicrobial susceptibility profiles, the prevalence of extended-spectrum β-lactamases (ESBLs), plasmid-mediated quinolone...... resistance genes (PMQRs), and quaternary ammonium compound resistance genes (QACs) in Escherichia coli isolated from ready-to-eat (RTE) meat products obtained in Guangzhou, China, and to determine whether these genes were colocalized in the isolates. A total of 64 E. coli isolates were obtained from 720 RTE...... meat samples. Multidrug resistance was observed in 70.3% of the isolates. A 100% of the isolates were resistant to benzalkonium chloride. Four types of β-lactamase genes were identified in the 16 ESBL-producing E. coli isolates: blaSHV (9.4%), blaTEM (7.8%), blaCTX-M-15 (1.6%), and blaCTX-M-9 (1...

  9. Rapid emergence of high-level tigecycline resistance in Escherichia coli strains harbouring blaNDM-5 in vivo.

    Science.gov (United States)

    Li, Xi; Mu, Xinli; Yang, Yunxing; Hua, Xiaoting; Yang, Qing; Wang, Nanfei; Du, Xiaoxing; Ruan, Zhi; Shen, Xiaoqiang; Yu, Yunsong

    2016-04-01

    Tigecycline (TIG) resistance is a growing concern because this antibiotic is regarded as one of the last resorts to treat infections caused by multidrug-resistant and extensively drug-resistant (XDR) bacteria. Information regarding TIG-resistant Escherichia coli isolates is scarce. In this study, we report the emergence of high-level TIG resistance in a longitudinal series of XDR E. coli isolates collected during TIG treatment. Whole-genome sequencing was performed for six E. coli strains harbouring bla(NDM-5) and genomic comparison revealed two amino acid substitutions. Mutation in rpsJ could be a significant factor conferring TIG resistance in these isolates. The fitness cost of TIG resistance in resistant strains was evaluated by determining the relative growth rate, indicating that TIG resistance reduced fitness by ca. 7%. This study is the first report to demonstrate high-level TIG resistance in E. coli in vivo. In addition, we report the first treatment-emergent minimum inhibitory concentration (MIC) development of TIG from 1mg/L to 64 mg/L in E. coli. Clinicians should be aware of the risk of an increase in the MIC of TIG under therapy.

  10. Antimicrobial resistance trends among Escherichia coli isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    Science.gov (United States)

    Cummings, Kevin J; Aprea, Victor A; Altier, Craig

    2014-01-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform risk analyses and guide public policy regarding antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Escherichia coli isolates from dairy cattle in the northeastern United States and to identify trends in resistance to selected antimicrobial agents over time. We collected data retrospectively for all bovine E. coli isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. We investigated temporal trends in the prevalence of resistant E. coli for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 3373 bovine E. coli isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 2.7% (enrofloxacin) to 91.3% (oxytetracycline). There was evidence of a significantly decreasing trend in prevalence of resistance to several agents: chlortetracycline, florfenicol, neomycin, oxytetracycline, spectinomycin, and trimethoprim/sulfamethoxazole. However, a significantly increasing trend in prevalence of resistance to enrofloxacin was also evident. These results do not support the idea that current antimicrobial use practices on dairy operations are driving a general increase in the emergence and dissemination of drug-resistant E. coli in the region served by the laboratory. However, resistance to some drugs remained consistently high during the study period, and increasing resistance to enrofloxacin is a key area of concern.

  11. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts.

    Science.gov (United States)

    Lv, Lu; Yu, Xin; Xu, Qian; Ye, Chengsong

    2015-10-01

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water.

  12. Multidrug resistance and high virulence genotype in uropathogenic Escherichia coli due to diffusion of ST131 clonal group producing CTX-M-15: an emerging problem in a Tunisian hospital.

    Science.gov (United States)

    Ferjani, Sana; Saidani, Mabrouka; Ennigrou, Samir; Hsairi, Mohamed; Slim, Amine Faouzi; Ben Boubaker, Ilhem Boutiba

    2014-05-01

    A collection of 201 Escherichia coli strains isolated from urine of patients in a Tunisian hospital between January 2006 and July 2008 was studied. Microbial identification was done by conventional methods, and antibiotic susceptibility with disk diffusion method was performed according to the Clinical Laboratory and Standards Institute guidelines. Detection of extended-spectrum beta-lactamase (ESBL) was performed by double-disk synergy test (DDST) and identification was done by PCR and sequencing. ESBL-producing isolates were subjected to molecular typing by random amplified polymorphic DNA (RAPD) and ST131 detection by PCR. Four phylogenetic groups (A, B1, B2 and D), 18 virulence genes and CTX-M group were individualized using PCR. Statistical analysis was done by Pearson χ2 test and Mann-Whitney U test. The strains were recovered primarily from urology (28%), maternity (19%) and medicine (16%) wards. Antibiotic resistance rates were ampicilin (72.1%), nalidixic acid (41.8%), ciprofloxacin (38.8%), gentamicin (23.9%) and cefotaxime (17.4%). Thirty-one of cefotaxime-resistant isolates (n = 35) had a positive DDST and harboured bla CTX-M-15 gene. Twenty of them (64.5%) belonged to the ST131 clone and showed the same RAPD DNA profile. Ciprofloxacin- and cotrimoxazole-susceptible isolates were significantly associated with phylogenetic group B2, whereas isolates that were resistant to these molecules were associated with B1 and D phylogenetic groups, respectively. Virulence genes were significantly more frequent among ciprofloxacin- and cotrimoxazole-susceptible strains than those resistant to these antibiotics. However, CXT-M-15-producing isolates were associated with many virulence genes. Isolates concomitantly susceptible to the three antimicrobials agents (ciprofloxacin, cefotaxime and cotrimoxazole) were significantly associated with group B2 and high virulence score, whereas isolates with resistance patterns especially those including resistance to

  13. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland.

    Science.gov (United States)

    Thorsteinsdottir, T R; Haraldsson, G; Fridriksdottir, V; Kristinsson, K G; Gunnarsson, E

    2010-05-01

    The prevalence of resistant bacteria in food products in Iceland is unknown, and little is known of the prevalence in production animals. The aim of this study was to investigate the prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli from healthy pigs and broiler chicken, pork, broiler meat, slaughterhouse personnel and outpatients in Iceland. A total of 419 E. coli isolates were tested for antimicrobial susceptibility using a microbroth dilution method (VetMIC), and resistant strains were compared using pulsed-field gel electrophoresis (PFGE). All samples were screened for enrofloxacin-resistant strains with selective agar plates. The resistance rates among E. coli isolates were moderate to high from caecal and meat samples of pigs (54.1% and 28%), broilers (33.6% and 52%) and slaughterhouse personnel (39.1%), whereas isolates from outpatients showed moderate resistance rates (23.1%). Of notice was resistance to quinolones (minimum inhibitory concentrations: nalidixic acid > or = 32, ciprofloxacin > or = 0.12 and enrofloxacin > or = 0.5), particularly among broiler and broiler meat isolates (18.2% and 36%), as there is no known antimicrobial selection pressure in the broiler production in Iceland. The majority (78.6%) of the resistant E. coli isolates was genotypically different, based on PFGE fingerprint analyses and clustering was limited. However, the same resistance pattern and pulsotype were found among isolates from broiler meat and a slaughterhouse worker, indicating spread of antimicrobial-resistant E. coli from animals to humans. Diverse resistance patterns and pulsotypes suggest the presence of a large population of resistant E. coli in production animals in Iceland. This study gives baseline information on the prevalence of antimicrobial-resistant E. coli from production animals, and their food products in Iceland and the moderate to high resistance rates emphasize the need for continuing surveillance. Further studies on the

  14. Apramycin treatment affects selection and spread of a multidrug-resistant Escherichia coli strain able to colonize the human gut in the intestinal microbiota of pigs

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Zachariasen, Camilla; Hansen, Monica Hegstad

    2016-01-01

    . E. coli 912 was shown to spread to non-inoculated pigs in both groups. The selective effect did not persist beyond 3 days post-treatment, and the strain was not detected from this time point in pen 2. We demonstrated that E. coli 912 was able to spread between pigs in the same pen irrespective...... of treatment, and apramycin treatment resulted in significantly higher counts compared to the non-treated group. This represents the first demonstration of how antimicrobial treatment affects spread of resistant bacteria in pig production. The use of apramycin may lead to enhanced spread of gentamicin...

  15. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia coli Strains Carrying mcr-1 Genes in South America.

    Science.gov (United States)

    Monte, Daniel Farias; Mem, Andressa; Fernandes, Miriam R; Cerdeira, Louise; Esposito, Fernanda; Galvão, Julia A; Franco, Bernadette D G M; Lincopan, Nilton; Landgraf, Mariza

    2017-05-01

    The detection and rapid spread of colistin-resistant Enterobacteriaceae carrying the mcr-1 gene has created an urgent need to strengthen surveillance. In this study, eight clonally unrelated colistin-resistant Escherichia coli isolates carrying mcr-1 and blaCTX-M or blaCMY-2 genes were isolated from commercial chicken meat in Brazil. Most E. coli strains carried IncX4 plasmids, previously identified in human and animal isolates. These results highlight a new reservoir of mcr-1-harboring E. coli strains in South America. Copyright © 2017 American Society for Microbiology.

  16. Three cases of mcr-1-positive colistin-resistant Escherichia coli bloodstream infections in Italy, August 2016 to January 2017.

    Science.gov (United States)

    Corbella, Marta; Mariani, Bianca; Ferrari, Carolina; Comandatore, Francesco; Scaltriti, Erika; Marone, Piero; Cambieri, Patrizia

    2017-04-20

    We describe three cases of bloodstream infection caused by colistin-resistant Escherichia coli in patients in a tertiary hospital in Italy, between August 2016 and January 2017. Whole genome sequencing detected the mcr-1 gene in three isolated strains belonging to different sequence types (STs). This occurrence of three cases with mcr-1-positive E. coli belonging to different STs in six months suggests a widespread problem in settings where high multidrug resistance is endemic such as in Italy. This article is copyright of The Authors, 2017.

  17. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark

    DEFF Research Database (Denmark)

    Roer, Louise; Hansen, Frank; Thomsen, Martin Christen Frølund

    2017-01-01

    To evaluate a genome-based surveillance of all Danish third-generation cephalosporin-resistant Escherichia coli (3GC-R Ec ) from bloodstream infections between 2014 and 2015, focusing on horizontally transferable resistance mechanisms. A collection of 552 3GC-R Ec isolates were whole....... The majority of the 552 isolates were ESBL producers (89%), with bla CTX-M-15 being the most prevalent (50%) gene, followed by bla CTX-M-14 (14%), bla CTX-M-27 (11%) and bla CTX-M-101 (5%). ST131 was detected in 50% of the E. coli isolates, with the remaining isolates belonging to 73 other STs, including...

  18. Investigation of integrons/cassettes in antimicrobial-resistant Escherichia coli isolated from food animals in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study,326 Escherichia coli isolates from food animals collected during the last four decades in China were characterized using antimicrobial susceptibility testing and screening for integrons/cassettes.Minimum inhibitory concentration(MIC) testing indicated that the antimicrobial resistance of E.coli has increased since the 1970s.The findings of this study present a warning to veterinary practitioners about the excessive use of antimicrobials,and suggest the necessity for surveillance and control of antimicrobial resistance in veterinary clinical medicine in China.

  19. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    Science.gov (United States)

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  20. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study.

    Science.gov (United States)

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Smith, Woutrina; Call, Douglas R

    2016-11-03

    Antimicrobial resistance (AMR) is a growing and significant threat to public health on a global scale. Escherichia coli comprises Gram-negative, fecal-borne pathogenic and commensal bacteria that are frequently associated with antibiotic resistance. AMR E. coli can be ingested via food, water and direct contact with fecal contamination. We estimated the prevalence of AMR Escherichia coli from select drinking water sources in northern Tanzania. Water samples (n = 155) were collected and plated onto Hi-Crome E. coli and MacConkey agar. Presumptive E. coli were confirmed by using a uidA PCR assay. Antibiotic susceptibility breakpoint assays were used to determine the resistance patterns of each isolate for 10 antibiotics. Isolates were also characterized by select PCR genotyping and macro-restriction digest assays. E. coli was isolated from 71 % of the water samples, and of the 1819 E. coli tested, 46.9 % were resistant to one or more antibiotics. Resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline, and trimethoprim was significantly higher (15-30 %) compared to other tested antibiotics (0-6 %; P water sources were genetically diverse with few matching macro-restriction digest patterns. Water supplies in northern Tanzania may be a source of AMR E. coli for people and animals. Further studies are needed to identify the source of these contaminants and devise effective intervention strategies.

  1. Resistance of Escherichia coli to nourseothricin (streptothricin): sensitization of resistant strains by abolition of its outer membrane resistance.

    Science.gov (United States)

    Seltmann, G

    1992-01-01

    The polycationic antibiotic, nourseothricin, represents a mixture of several streptothricins, mainly D and F. The molecular weight of the latter compound amounts to 486. Obviously, although very slowly, it can pass the outer membrane via the porin pores. It has been shown earlier that nourseothricin is able to generate some kind of channels into the outer membrane through which it can pass the cell wall. On the other hand, there were indications that resistant strains containing a streptothricin-inactivating acetyl transferase possess an additional protecting system, namely a reduced penetrability of the outer membrane. In this study, it could be shown that such strains indeed could be rendered sensitive by damaging the barrier function of the outer membrane.

  2. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015.

    Science.gov (United States)

    Hernández, Marta; Iglesias, M Rocío; Rodríguez-Lázaro, David; Gallardo, Alejandro; Quijada, Narciso; Miguela-Villoldo, Pedro; Campos, Maria Jorge; Píriz, Segundo; López-Orozco, Gema; de Frutos, Cristina; Sáez, José Luis; Ugarte-Ruiz, María; Domínguez, Lucas; Quesada, Alberto

    2017-08-03

    Colistin resistance genes mcr-3 and mcr-1 have been detected in an Escherichia coli isolate from cattle faeces in a Spanish slaughterhouse in 2015. The sequences of both genes hybridised to same plasmid band of ca 250 kb, although colistin resistance was non-mobilisable. The isolate was producing extended-spectrum beta-lactamases and belonged to serotype O9:H10 and sequence type ST533. Here we report an mcr-3 gene detected in Europe following earlier reports from Asia and the United States. This article is copyright of The Authors, 2017.

  3. Fluoroquinolone-resistance mechanisms and phylogenetic background of clinical Escherichia coli strains isolated in south-east Poland.

    Science.gov (United States)

    Korona-Glowniak, Izabela; Skrzypek, Kinga; Siwiec, Radosław; Wrobel, Andrzej; Malm, Anna

    2016-07-01

    Fluorochinolones are a class of broad-spectrum antimicrobials in the treatment of several infections, including those caused by Escherichia coli. Due to the increasing resistance of bacteria to antimicrobials, an understanding of fluoroquinolone resistance is important for infection control. The aim of this study was to determine susceptibility of clinical E. coli strains to fluoroquinolones and characterize their mechanisms of quinolone resistance. Totally, 79 non-duplicate clinical E. coli isolates included in this study were mainly from skin lesion -36 (45.6%) isolates; 54 (68.4%) isolates were assigned to phylogenetic B2 group. Resistance to ciprofloxacin was found in 20 isolates. In the quinolone resistance-determining region (QRDR) region of gyrA and parC, 4 types of point mutations were detected. Mutations in parC gene were found in all strains with gyrA mutations. Predominance of double mutation in codon 83 and 87 of gyrA (90%) and in codon 80 of parC (90%) was found. Moreover, plasmid-mediated quinolone resistance (PMRQ) determinants (qnrA or qnrB and/or aac(6')-Ib-cr) were present in 5 (25%) out of 20 fluoroquinolone-resistant isolates. Resistance to fluoroquinolones in all of the tested clinical E. coli isolates correlated with point mutations in both gyrA and parC. The majority of fluoroquinolone-resistant strains belonged to D and B2 phylogenetic groups.

  4. Molecular characterization of quinolone resistance mechanisms and extended-spectrum β-lactamase production in Escherichia coli isolated from dogs.

    Science.gov (United States)

    Meireles, D; Leite-Martins, L; Bessa, L J; Cunha, S; Fernandes, R; de Matos, A; Manaia, C M; Martins da Costa, P

    2015-08-01

    The increasing prevalence of antimicrobial resistances is now a worldwide problem. Investigating the mechanisms by which pets harboring resistant strains may receive and/or transfer resistance determinants is essential to better understanding how owners and pets can interact safely. Here, we characterized the genetic determinants conferring resistance to β-lactams and quinolones in 38 multidrug-resistant Escherichia coli isolated from fecal samples of dogs, through PCR and sequencing. The most frequent genotype included the β-lactamase groups TEM (n=5), and both TEM+CTX-M-1 (n=5). Within the CTX-M group, we identified the genes CTX-M-32, CTX-M-1, CTX-M-15, CTX-M-55/79, CTX-M-14 and CTX-M-2/44. Thirty isolates resistant to ciprofloxacin presented two mutations in the gyrA gene and one or two mutations in the parC gene. A mutation in gyrA (reported here for the first time), due to a transversion and transition (TCG→GTG) originating a substitution of a serine by a valine in position 83 was also detected. The plasmid-encoded quinolone resistance gene, qnrs1, was detected in three isolates. Dogs can be a reservoir of genetic determinants conferring antimicrobial resistance and thus may play an important role in the spread of antimicrobial resistance to humans and other co-habitant animals.

  5. Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water.

    Science.gov (United States)

    Canal, Natália; Meneghetti, Karine Lena; de Almeida, Clara Ponzi; da Rosa Bastos, Marina; Otton, Letícia Muner; Corção, Gertrudes

    2016-01-01

    Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.

  6. Generation of Newly Discovered Resistance Gene mcr-1 Knockout in Escherichia coli Using the CRISPR/Cas9 System.

    Science.gov (United States)

    Sun, Lichang; He, Tao; Zhang, Lili; Pang, Maoda; Zhang, Qiaoyan; Zhou, Yan; Bao, Hongduo; Wang, Ran

    2017-07-28

    The mcr-1 gene is a new "superbug" gene discoverd in China in 2016 that makes bacteria highly resistant to the last-resort class of antibiotics. The mcr-1 gene raised serious concern about its possible global dissemination and spread. Here, we report a potential anti-resistant strategy using the CRISPR/Cas9-mediated approach that can efficiently induce mcr-1 gene knockout in Escherichia coli. Our findings suggested that using the CRISPR/Cas9 system to knock out the resistance gene mcr-1 might be a potential anti-resistant strategy. Bovine myeloid antimicrobial peptide-27 could help deliver plasmid pCas::mcr targeting specific DNA sequences of the mcr-1 gene into microbial populations.

  7. First environmental sample containing plasmid-mediated colistin-resistant ESBL-producing Escherichia coli detected in Norway.

    Science.gov (United States)

    Jørgensen, Silje Bakken; Søraas, Arne; Arnesen, Lotte Stenfors; Leegaard, Truls; Sundsfjord, Arnfinn; Jenum, Pål A

    2017-09-01

    We hereby report the detection of the plasmid borne mcr-1 gene conferring colistin resistance in an extended-spectrum β-lactamase (ESBL) producing Escherichia coli ST10 strain retrieved from seawater at a public beach in Norway. The sample was collected in September 2010 and was investigated by whole-genome sequencing in 2016. This report illustrates that E. coli strains carrying plasmid-mediated colistin resistance genes have also reached areas where this drug is hardly used at all. Surveillance of colistin resistance in environmental, veterinary, and human strains is warranted also in countries where colistin resistance is rare in clinical settings. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Coulter, Lindsey B; McLean, Robert J C; Rohde, Rodney E; Aron, Gary M

    2014-10-03

    Bacteriophage infection and antibiotics used individually to reduce biofilm mass often result in the emergence of significant levels of phage and antibiotic resistant cells. In contrast, combination therapy in Escherichia coli biofilms employing T4 phage and tobramycin resulted in greater than 99% and 39% reduction in antibiotic and phage resistant cells, respectively. In P. aeruginosa biofilms, combination therapy resulted in a 60% and 99% reduction in antibiotic and PB-1 phage resistant cells, respectively. Although the combined treatment resulted in greater reduction of E. coli CFUs compared to the use of antibiotic alone, infection of P. aeruginosa biofilms with PB-1 in the presence of tobramycin was only as effective in the reduction of CFUs as the use of antibiotic alone. The study demonstrated phage infection in combination with tobramycin can significantly reduce the emergence of antibiotic and phage resistant cells in both E. coli and P. aeruginosa biofilms, however, a reduction in biomass was dependent on the phage-host system.

  9. Persistence of Escherichia coli clones and phenotypic and genotypic antibiotic resistance in recurrent urinary tract infections in childhood

    DEFF Research Database (Denmark)

    Kõljalg, Siiri; Truusalu, Kai; Vainumäe, Inga

    2009-01-01

    We assessed the clonality of consecutive Escherichia coli isolates during the course of recurrent urinary tract infections (RUTI) in childhood in order to compare clonality with phenotypic antibiotic resistance patterns, the presence of integrons, and the presence of the sul1, sul2, and sul3 genes...... and the presence or absence of the intI gene for class 1 integrons and the sulfamethoxazole resistance-encoding genes sul1, sul2, and sul3 were determined. All E. coli strains were genotyped by pulsed-field gel electrophoresis. There were no significant differences in the prevalences of resistance to beta......% of the patients, the recurrence of unique clonal E. coli strains alone or combined with individual strains was detected. Phenotypic resistance and the occurrence of sul genes were more stable in clonal strains than in individual strains (odds ratios, 8.7 [95% confidence interval {95% CI}, 1.8 to 40.8] and 4.4 [95...

  10. 大肠埃希菌的耐药性变迁%Changes of drug resistance of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    朱国艳; 王一凡

    2014-01-01

    Obejcitve To investigate drug-resistance status and changing tendency of Escherichia coli in my hospital to provide the evidence for reasonable use of antibiotics.Me thods Pathogenic bacteria were isolated and identified according to the national clinical laboratory operation rules .Resu lt The resistance to commonly used antibiotics in Escherichia coli was on the rise the resistance rate to ampicillin was great .Conclusion We must investigate drug-resistance status and changing tendency of Escherichia coli.We should strengthen the management of antibiotil use and control the spread and prevalence of the drug -resistant bacteria.%目的:通过对我院1264株大肠埃希菌的耐药性监测,了解大肠埃希菌药敏现状。为临床医师合理用药提供实验数据。提高临床医师对合理使用抗菌药物的重要性的认识。方法病原菌的分离鉴定药敏按《全国临床检验操作规程》进行。结果大肠埃希菌对多种抗菌药物的耐药率呈上升趋势,以氨苄西林耐药率最高。产超光谱B-內酰胺酶大肠埃希菌的检出率也呈上升趋势。结论临床对病原菌应及时监测,合理使用抗菌药物,减少耐药菌的产生,防止发生院内感染。

  11. 21 CFR 522.1044 - Gentamicin.

    Science.gov (United States)

    2010-04-01

    ... treatment of infections of urinary tract (cystitis, nephritis), respiratory tract (tonsillitis, pneumonia... treatment of infections of urinary tract (cystitis, nephritis), respiratory tract (pneumonitis, pneumonia... food for at least 9 weeks after treatment. (3) Chickens—(i) Amount. 0.2 milligram of gentamicin per 0.2...

  12. A trend analysis of antimicrobial resistance in commensal Escherichia coli from several livestock species in Belgium (2011-2014).

    Science.gov (United States)

    Hanon, Jean-Baptiste; Jaspers, Stijn; Butaye, Patrick; Wattiau, Pierre; Méroc, Estelle; Aerts, Marc; Imberechts, Hein; Vermeersch, Katie; Van der Stede, Yves

    2015-12-01

    A temporal trend analysis was performed on antimicrobial resistance data collected over 4 consecutive years (2011-2014) in the official Belgian antimicrobial resistance monitoring programme. Commensal Escherichia coli strains were isolated from faecal samples of four livestock categories (veal calves, young beef cattle, broiler chickens and slaughter pigs) and the trends of resistance profiles were analysed. The resistance prevalence remained high (>50%) during the study period for ampicillin in veal calves and chickens, for ciprofloxacin and nalidixic acid in chickens, for sulfamethoxazole in veal calves, chickens and pigs and for tetracycline in veal calves. Using logistic regression and Generalized Estimating Equation and after p value adjustment for multiple testing (Linear step-up method), statistically significant decreasing temporal trends were observed for several of the 11 tested antimicrobials in several livestock categories: in veal calves (10/11), in chickens (6/11) and in pigs (5/11). A significant increasing trend was observed for the prevalence of resistance to ciprofloxacin in chickens. Multi-resistance, considered as the resistance to at least three antimicrobials of different antibiotic classes, was observed in the four livestock categories but was significantly decreasing in veal calves, chickens and pigs. Overall, the prevalence of resistance and of multi-resistance was lowest in the beef cattle livestock category and highest in broiler chickens. These decreasing temporal trends of antimicrobial resistance might be due to a decrease of the total antimicrobial consumption for veterinary use in Belgium which was reported for the period between 2010 and 2013. The methodology and statistical tools developed in this study provide outputs which can detect shifts in resistance levels or resistance trends associated with particular antimicrobial classes and livestock categories. Such outputs can be used as objective evidence to evaluate the possible

  13. PERFIL DE SENSIBILIDADE MICROBIANA IN VITRO DE LINHAGENS PATOGÊNICAS DE Escherichia coli ISOLADAS DE CARNE BOVINA

    Directory of Open Access Journals (Sweden)

    Samira Pirola Santos Mantilla

    2012-06-01

    Full Text Available This study aimed to analyze the antimicrobial resistance of Escherichia coli strains (EPEC A, EPEC B, EPEC C, EIEC A e EIEC B isolated from bovine meat. The antimicrobial susceptibility test was evaluated using the technique described by the National Committee for Clinical Laboratory Standards. The strains were resistant to most antibiotics tested, and gentamicin showed the best efficiency, with 84.9% of the strains showing sensitivity. In addition, cefoxitin was the least effective antimicrobial agent, have a higher percentage of resistant strains. The multidrug resistance to antimicrobials is a finding of great importance to public health, as resistant pathogens may be conveyed to consumers by the ingestion of animal products, making difficult the treatment of bacterial infections and increasing the occurrence of bacteria resistant to antibiotics.

  14. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kumar, Manesh; Dhaka, Pankaj; Vijay, Deepthi; Vergis, Jess; Mohan, Vysakh; Kumar, Ashok; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Malik, S V S; Rawool, Deepak B

    2016-09-01

    The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals.

  15. Exposure to co-amoxiclav as a risk factor for co-amoxiclav-resistant Escherichia coli urinary tract infection.

    Science.gov (United States)

    Leflon-Guibout, Véronique; Ternat, Géraldine; Heym, Beate; Nicolas-Chanoine, Marie-Hélène

    2002-02-01

    The objective of the study was to define whether individual exposure to co-amoxiclav is a risk factor for selecting co-amoxiclav-resistant Escherichia coli in vivo. One hundred and eight patients were included in our study as soon as they were found to have a urinary tract infection (UTI) due to E. coli. Stool probes were also undertaken for some of these patients. Co-amoxiclav administration in the month before diagnosing the UTI, and any treatment to cure the current UTI were recorded for all patients. When co-amoxiclav-resistant E. coli was detected in the stools after diagnosis of E. coli UTI, isolates were compared with urinary E. coli isolates in terms of clonal relatedness, beta-lactam susceptibility and mechanisms of beta-lactam resistance. The patients who had taken co-amoxiclav in the month before the reported E. coli UTI had a significantly higher risk of being infected with co-amoxiclav-resistant E. coli. Those patients treated with amoxicillin for a current infection were at greater risk of intestinal carriage of co-amoxiclav-resistant E. coli; those treated with co-amoxiclav had a greater risk of intestinal carriage of co-amoxiclav-resistant Gram-negative bacilli than patients treated with third-generation cephalosporins or fluoroquinolones. Hence, individual exposure to co-amoxiclav is a risk factor for UTIs caused by co-amoxiclav-resistant E. coli or for carrying co-amoxiclav-resistant Gram-negative bacilli in the digestive tract.

  16. Comparative Analysis of Quinolone Resistance in Clinical Isolates of Klebsiella pneumoniae and Escherichia coli from Chinese Children and Adults

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2015-01-01

    Full Text Available The objective of this study was to compare quinolone resistance and gyrA mutations in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Chinese adults who used quinolone in the preceding month and children without any known history of quinolone administration. The antimicrobial susceptibilities of 61 isolates from children and 79 isolates from adults were determined. The mutations in the quinolone resistance-determining regions in gyrA gene were detected by PCR and DNA sequencing. Fluoroquinolone resistance and types of gyrA mutations in isolates from children and adults were compared and statistically analyzed. No significant differences were detected in the resistance rates of ciprofloxacin and levofloxacin between children and adults among isolates of the two species (all P>0.05. The double mutation Ser83→Leu + Asp87→Asn in the ciprofloxacin-resistant isolates occurred in 73.7% isolates from the children and 67.9% from the adults, respectively (P=0.5444. Children with no known history of quinolone administration were found to carry fluoroquinolone-resistant Enterobacteriaceae isolates. The occurrence of ciprofloxacin resistance and the major types of gyrA mutations in the isolates from the children were similar to those from adults. The results indicate that precautions should be taken on environmental issues resulting from widespread transmission of quinolone resistance.

  17. CHARACTERIZATION OF VIRULENCE GENES AND ANTIMICROBIAL RESISTANCE OF LUNG PATHOGENIC ESCHERICHIA COLI ISOLATES IN FOREST MUSK DEER (MOSCHUS BEREZOVSKII).

    Science.gov (United States)

    Luo, Xi; Wang, Peng; Cheng, Jian-guo; Luo, Yan; Dai, Lei; Zhou, Xin; Zou, Li-kou; Li, Bei; Xiao, Jiu-Jin

    2016-06-01

    This study investigated genotypic diversity, 26 virulence genes, and antimicrobial susceptibility of lung pathogenic Escherichia coli (LPEC) isolated from forest musk deer. Associations between virulence factors (VFs) and phylogenetic group, between antimicrobial resistance (AMR) and phylogenetic group, and between AMR and VFs were subsequently assessed. The results showed 30 LPEC isolated were grouped into seven different clusters (A, B, C, D, E, F, and G). The detection rates of crl (90%), kpsMT II (76.67%), mat (76.67%), and ompA (80%) were over 75%. The most frequent types of resistance were to amoxicillin (100%), sulfafurazole (100%), ampicillin (96.67%), and tetracycline (96.67%), with 93.33% (n = 28) of isolates resistant to more than eight types of drugs. There were significant relationships between resistance to cefalotin and the presence of iucD(a) (P < 0.001), papC (P = 0.032), and kpsMT II (P = 0.028); between resistance to chloromycetin and the presence of irp2 (P = 0.004) and vat (P = 0.047); between resistance to nalidixic acid and the presence of crl (P = 0.002) and iucD(a) (P = 0.004); and between resistance to ampicillin/sulbactam and the presence of vat (P = 0.013). These results indicated there could be some association between resistance and VFs, and there is a great need for the prudent use of antimicrobial agents in LPEC.

  18. Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal.

    Science.gov (United States)

    Dias, Diana; Torres, Rita T; Kronvall, Göran; Fonseca, Carlos; Mendo, Sónia; Caetano, Tânia

    2015-09-01

    Antibiotic resistance is an emerging global problem. Wild animals are rarely exposed to antibiotics and therefore low levels of antibiotic resistance are expected. However, the growing interactions of these animals with humans and livestock may have a huge impact on their bacterial flora. This study aimed to assess the levels of antibiotic resistance in Escherichia coli isolated from widespread wild ungulates in Portugal. The interpretation of inhibition zone diameters was performed according to clinical breakpoints and epidemiological cut-offs, determined with the normalized resistance interpretation (NRI) method. For clinical breakpoints, 16% of the isolates were resistant to at least one antibiotic, including ampicillin (10%), tetracycline (9%), streptomycin (5%) co-trimoxazole (4%), amoxicillin/clavulanic acid (1%) and cefoxitin (1%). The levels of resistance detected in E. coli strains isolated from wild boar were statistically different for ampicillin and co-trimoxasol. According to NRI cut-offs, 10% of the population showed a non-wild-type phenotype against at least one antibiotic, also including tetracycline (9%), co-trimoxazole (6%), streptomycin (4%), ampicillin (2%) and amoxicillin/clavulanic acid (1%). Considering this parameter of comparison, no statistically different levels of resistance were identified between E. coli recovered from the three wild ungulates. Screening of Salmonella spp., which can be potentially pathogenic, was also performed, revealing that its prevalence was very low (1.5%). The study demonstrated that wild ungulates from Portugal are also reservoirs of antibiotic-resistant bacteria.

  19. Comparative analysis of quinolone resistance in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Chinese children and adults.

    Science.gov (United States)

    Huang, Ying; Ogutu, James O; Gu, Jiarui; Ding, Fengshu; You, Yuhong; Huo, Yan; Zhao, Hong; Li, Wenjing; Zhang, Zhiwei; Zhang, Wenli; Chen, Xiaobei; Fu, Yingmei; Zhang, Fengmin

    2015-01-01

    The objective of this study was to compare quinolone resistance and gyrA mutations in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Chinese adults who used quinolone in the preceding month and children without any known history of quinolone administration. The antimicrobial susceptibilities of 61 isolates from children and 79 isolates from adults were determined. The mutations in the quinolone resistance-determining regions in gyrA gene were detected by PCR and DNA sequencing. Fluoroquinolone resistance and types of gyrA mutations in isolates from children and adults were compared and statistically analyzed. No significant differences were detected in the resistance rates of ciprofloxacin and levofloxacin between children and adults among isolates of the two species (all P > 0.05). The double mutation Ser83→Leu + Asp87→Asn in the ciprofloxacin-resistant isolates occurred in 73.7% isolates from the children and 67.9% from the adults, respectively (P = 0.5444). Children with no known history of quinolone administration were found to carry fluoroquinolone-resistant Enterobacteriaceae isolates. The occurrence of ciprofloxacin resistance and the major types of gyrA mutations in the isolates from the children were similar to those from adults. The results indicate that precautions should be taken on environmental issues resulting from widespread transmission of quinolone resistance.

  20. Multi-drug resistance among Shiga toxin producing Escherichia coli isolated from bovines and their handlers in Jammu region, India

    Directory of Open Access Journals (Sweden)

    Majueeb U Rehman

    2013-07-01

    Full Text Available Aim: The objective of this study was to determine the antibiotic resistance pattern of Shiga toxin-producing Escherichia coli STEC in bovines and their handlers.Materials and Methods: Of the total of 126 E. coliisolates screened by multiplex PCR for the presence of Shiga-toxin genes, 15 STEC isolates were obtained comprising of 9 isolates from cattle, 3 from buffaloes, and 3 from bovine handlers, which were tested for their antibiotic sensitivity/ resistance pattern to various antibiotics.Results: Twelve of the 15 STEC isolates (80% showed resistance to three or more antibiotics. Chloramphenicol was the most effective with 86.6% sensitivity, followed by Norfloxacin (80%, Ciprofloxacin (73.3%, and Co-trimoxazole (73.3%. Whereas 66.6% of the STEC isolates were resistant to Amikacin and Ampicillin, the other 60% were resistant to Amoxycillin, Cefixime, and Kanamycin. Conclusion: Multiple drug resistance patterns among the STEC in the present study, especially high resistance to the frequently used antibiotics in both bovines and their handlers, implies that antibiotic resistance is often acquired due to their indiscriminate use; thereby, creating a need for rational and judicious use of antibiotics in the field.

  1. Correlation between levofloxacin consumption and the incidence of nosocomial infections due to fluoroquinolone-resistant Escherichia coli.

    Science.gov (United States)

    Wu, Hui-Hsiu; Liu, Hsin-Yi; Lin, Yi-Chun; Hsueh, Po-Ren; Lee, Yuarn-Jang

    2016-06-01

    The relationship between fluoroquinolone resistance in Escherichia coli isolates causing nosocomial infection and hospital antibiotic consumption were investigated. Restriction of levofloxacin use was implemented to control the incidence of fluoroquinolone-resistant E coli in the hospital. The study was conducted from January 2004 to December 2010. Antimicrobial agent consumption was obtained from the pharmacy computer system and presented as the defined daily doses per 1000 patient-days every 6 months. The incidence of fluoroquinolone-resistant E coli isolates causing nosocomial infections was obtained from the Department of Infection Control every 6 months. An antimicrobial stewardship program, restricting levofloxacain use, was implemented in July 2007. The incidence of fluoroquinolone-resistant E coli causing nosocomial infections was significantly correlated with fluoroquinolone usage (p = 0.005), but not with the use of third- or fourth-generation cephalosporins, piperacillin-tazobactam, or carbapenems. Parenteral (p = 0.002), oral (p = 0.018), and total levofloxacin (p = 0.001) use were significantly correlated with the extent of fluoroquinolone resistance. With a reduction of levofloxacin use, a decrease of the incidence of fluoroquinolone resistance in E coli isolates was observed. There is a significant correlation between levofloxacin use and the incidence of nosocomial fluoroquinolone-resistant E coli isolates. The incidence of fluoroquinolone-resistant E coli could be reduced by limiting levofloxacin consumption. Copyright © 2011. Published by Elsevier B.V.

  2. Impacts of urbanization on the prevalence of antibiotic-resistant Escherichia coli in the Chaophraya River and its tributaries.

    Science.gov (United States)

    Honda, Ryo; Watanabe, Toru; Sawaittayotin, Variga; Masago, Yoshifumi; Chulasak, Rungnapa; Tanong, Kulchaya; Chaminda, G Tushara; Wongsila, Krison; Sienglum, Chawala; Sunthonwatthanaphong, Varisara; Poonnotok, Anupong; Chiemchaisri, Wilai; Chiemchaisri, Chart; Furumai, Hiroaki; Yamamoto, Kazuo

    2016-01-01

    River water samples were taken from 32 locations around the basin of Chaophraya River and its four major tributaries in Thailand to investigate resistance ratios of Escherichia coli isolates to eight antibiotic agents of amoxicillin, sulfamethoxazole/trimethoprim, tetracycline, doxytetracycline, ciprofloxacin, levofloxacin, norfloxacin and ofloxacin. Principal component analysis was performed to characterize resistance patterns of the samples. Relevancy of the obtained principal components with urban land use and fecal contamination of the river were examined. The ratio of antibiotic-resistant bacteria is likely to increase when urban land use near the sampling site exceeds a certain ratio. The resistance ratio to fluoroquinolones tends to be high in a highly populated area. Meanwhile, no significant contribution of fecal contamination was found to increase the resistance ratio. These results suggest that an antibiotic-resistance ratio is dependent on conditions of local urbanization rather than the upstream conditions, and that the major sources of antibiotic-resistant bacteria in the Chaophraya River basin are possibly point sources located in the urban area which contains a high ratio of resistant bacteria.

  3. [Preliminary results of antibiotic resistance monitoring in the Netherlands].

    Science.gov (United States)

    Mevius, D J; Veldman, K T; van der Giessen, A; van Leeuwen, W J

    2000-03-01

    Qualitative tests are used to monitor antimicrobial resistance in bacteria of animal origin in the Netherlands. Quantitative information on trends in resistance is thus not obtained. Moreover, in general a limited panel of antibiotics is tested. The present study describes resistance in zoonotic food-borne pathogens Salmonella, Campylobacter, and Escherichia coli O157 isolated from human clinical cases and from faeces of healthy food animals in 1998 and 1999, as determined with quantitative susceptibility tests. The resistance of the indicator organisms E. coli and Enterococcus faecium isolated from faecal samples of broilers and pigs randomly sampled at slaughterhouses was also determined. For this end, faecal samples from veal calves were sampled in 1996 and 1997 at the three main Dutch veal calf slaughterhouses. In 1998 only a limited number of faecal samples of veal calves were taken at farms. For E. coli and Salmonella the following antibiotics were tested: amoxicillin, amoxicillin-clavulanic acid, piperacillin, cefotaxime, ceftazidime, imipenem, gentamicin, doxycycline, trimethoprim, trimethoprim/sulphamethoxazole, ciprofloxacin, chloramphenicol, florfenicol, carbadox, and flumequine. For E. faecium the following antibiotics were tested: amoxicillin, amoxicillin-clavulanic acid, chloramphenicol, doxycycline, erythromycin, vancomycin, teicoplanin, streptomycin ('high level' > 2000 mg/ml), gentamicin ('high level' > 500 mg/ml), ciprofloxacin, bacitracin, flavofosfolipol, salinomycin, quinupristin-dalfopristin, virginiamycin, tilmicosin, avilamycin, and everninomycin. For Campylobacter the following antibiotics were tested: erythromycin, doxycycline, gentamicin, carbadox, flavofosfolipol, ciprofloxacin, trimethoprim/sulphamethoxazole, amoxicillin, and metronidazole.

  4. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark.

    Science.gov (United States)

    Cavaco, Lina Maria; Frimodt-Møller, Niels; Hasman, Henrik; Guardabassi, Luca; Nielsen, Lene; Aarestrup, Frank Møller

    2008-06-01

    Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations (MICs) of nalidixic acid (NAL) and ciprofloxacin (CIP) were investigated in 124 Escherichia coli isolated from humans (n=85) and swine (n=39) in Denmark. The collection included 59 high-level CIP-resistant isolates (MIC >or= 4) from human (n=51) and pig origin (n=8) and 65 low-level CIP-resistant isolates (MIC >or= 0.125) from human (n=34) and pig origin (n=31). Resistance by target modification was screened by PCR amplification and sequencing of the quinolone resistance determining regions (QRDRs) of gyrA, gyrB, parC, and parE. QRDR mutations occurred in all except two isolates (98%). All high-level CIP-resistant E. coli had one or two mutations in gyrA in combination with mutations in parC or parE. Mutations in parC and parE were only found in combination with gyrA mutations, and no mutations were observed in gyrB. Efflux pump mechanisms were detected in 10 human (11.8%) and 29 porcine (74.4%) isolates by an efflux pump inhibitor (EPI) agar dilution assay. The aac(6')-Ib-cr gene mediating resistance by enzymatic modification was found in 12 high-level CIP-resistant human isolates. The qnrA and qnrS genes conferring quinolone resistance by target protection were detected in two human low-level CIP-resistant isolates that did not display NAL resistance. As expected, target mutation in QRDRs was the most prevalent mechanism of quinolone resistance. This mechanism was complemented by efflux mechanisms in most porcine isolates. Transferable resistance by target protection or enzymatic modification was less common (10%) and restricted to human isolates.

  5. [Sensitivity assessment of thyme and lavender essential oils against clinical strains of Escherichia coli for their resistance].

    Science.gov (United States)

    Sienkiewicz, Monika; Kalemba, Danuta; Wasiela, Małgorzata

    2011-01-01

    Strong antiseptic activity of plant essential oils and extracts has been known for a long time. The antibacterial activity of thyme and lavender essential oils were tested against 30 clinical bacterial strains of Escherichia coli from patients with different clinical conditions. The agar diffusion method was used for microbial growth inhibition at various concentrations of the oils from Thymus vulgaris and Lavandula angustifolia. Susceptibility testing to antibiotics and chemotherapeutics was carried out using disc-diffusion method. The results of experiments showed that the both oils, from T. vulgaris and L. angustifolia were active against all of the clinical strains, but thyme oil demonstrated the highest activity. Thyme and lavender essential oils were active against multi drug resistant clinical strains of Escherichia coli genera. The results of experiments justify a study related to activity other essential oils against different genus of bacteria.

  6. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    Science.gov (United States)

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy.

  7. Patterns of antimicrobial resistance in pathogenic Escherichia coli isolates from cases of calf enteritis during the spring-calving season.

    Science.gov (United States)

    Gibbons, James F; Boland, Fiona; Buckley, James F; Butler, Francis; Egan, John; Fanning, Séamus; Markey, Bryan K; Leonard, Finola C

    2014-05-14

    Neonatal enteritis is a common condition of young calves and can be caused by pathogenic strains of Escherichia coli. We hypothesised that on-farm antimicrobial use would result in an increased frequency of resistance in these strains during the calving season. We also sought to determine if the frequency of resistance reflected on-farm antimicrobial use. Faecal samples were collected from cases of calf enteritis on 14 spring-calving dairy farms during two 3 week periods: Period 1 - February 11th through March 2nd 2008 and Period 2 - April 14th through May 5th 2008. E. coli were cultured from these samples, pathogenic strains were identified and antimicrobial susceptibility testing was carried out on these pathogenic isolates. Antimicrobial prescribing data were collected from each farm for the previous 12 months as an indicator of antimicrobial use. The correlation between antimicrobial use and resistance was assessed using Spearman's correlation coefficient. Logistic regression analysis was used to investigate the relationship between resistance, sampling period and pathotype. Penicillins and aminopenicillins, streptomycin, and tetracyclines were the most frequently prescribed antimicrobials and the greatest frequencies of resistance were detected to these 3 antimicrobial classes. A strong correlation (ρ=0.879) was observed between overall antimicrobial use and frequencies of antimicrobial resistance on farms. Sampling period was significant in the regression model for ampicillin resistance while pathotype was significant in the models for streptomycin, tetracycline and trimethoprim/sulphamethoxazole resistance. The frequencies of resistance observed have implications for veterinary therapeutics and prudent antimicrobial use. Resistance did not increase during the calving season and factors other than antimicrobial use, such as calf age and bacterial pathotype, may influence the occurrence of resistance in pathogenic E. coli.

  8. Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children

    Science.gov (United States)

    Seidman, Jessica C.; Johnson, Lashaunda B.; Levens, Joshua; Mkocha, Harran; Muñoz, Beatriz; Silbergeld, Ellen K.; West, Sheila K.; Coles, Christian L.

    2016-01-01

    Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance. PMID

  9. Genomic Analysis of Factors Associated with Low Prevalence of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Sequence Type 95 Strains

    Science.gov (United States)

    Adams-Sapper, Sheila; Sekhon, Manraj; Johnson, James R.; Riley, Lee W.

    2017-01-01

    ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) strains belonging to multilocus sequence type 95 (ST95) are globally distributed and a common cause of infections in humans and domestic fowl. ST95 isolates generally show a lower prevalence of acquired antimicrobial resistance than other pandemic ExPEC lineages. We took a genomic approach to identify factors that may underlie reduced resistance. We fully assembled genomes for four ST95 isolates representing the four major fimH-based lineages within ST95 and also analyzed draft-level genomes from another 82 ST95 isolates, largely from the western United States. The fully assembled genomes of antibiotic-resistant isolates carried resistance genes exclusively on large (>90-kb) IncFIB/IncFII plasmids. These replicons were common in the draft genomes as well, particularly in antibiotic-resistant isolates, but we also observed multiple instances of a smaller (8.3-kb) ampicillin resistance plasmid that had been previously identified in Salmonella enterica. Among ST95 isolates, pansusceptibility to antibiotics was significantly associated with the fimH6 lineage and the presence of homologs of the previously identified 114-kb IncFIB/IncFII plasmid pUTI89, both of which were also associated with reduced carriage of other plasmids. Potential mechanistic explanations for lineage- and plasmid-specific effects on the prevalence of antibiotic resistance within the ST95 group are discussed. IMPORTANCE Antibiotic resistance in bacterial pathogens is a major public health concern. This work was motivated by the observation that only a small proportion of ST95 isolates, a major pandemic lineage of extraintestinal pathogenic E. coli, have acquired antibiotic resistance, in contrast to many other pandemic lineages. Understanding bacterial genetic factors that may prevent acquisition of resistance could contribute to the development of new biological, medical, or public health strategies to reduce antibiotic-resistant

  10. Toxin production and antibiotic resistances in Escherichia coli isolated from bathing areas along the coastline of the Oslo fjord.

    Science.gov (United States)

    Charnock, Colin; Nordlie, Anne-Lise; Hjeltnes, Bjarne

    2014-09-01

    The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.

  11. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria.

    Science.gov (United States)

    Laarem, Meradi; Barguigua, Abouddihaj; Nayme, Kaotar; Akila, Abdi; Zerouali, Khalid; El Mdaghri, Naima; Timinouni, Mohammed

    2017-02-28

    The emergence and spread of quinolone-resistant Escherichia coli in poultry products puts consumers at risk of exposure to the strains of E. coli that resist antibiotic treatment. The objective of this study was to define the prevalence and virulence potential of poultry-associated nalidixic acid (NAL)-resistant E. coli in the Annaba city, Algeria. In total, 33 samples of retail chicken meat were purchased from various butcher shops and examined for bacterial contamination with NAL-resistant E. coli. These isolates were subjected to antimicrobial susceptibility testing and were also investigated for the presence of plasmid-mediated quinolone resistance (PMQR) genes and virulence genes using conventional polymerase chain reaction (PCR) and DNA sequencing. Phylogenetic grouping of the NAL-resistant E. coli isolates was determined by the conventional multiplex PCR method. Twenty-nine (87.8%) products yielded NAL-resistant E. coli. Antibiograms revealed that 96.55% of NAL-resistant E. coli isolates were multidrug resistant (MDR). Resistance was most frequently observed against sulfamethoxazole-trimethoprim (96.6%), tetracycline (96.6%), ciprofloxacin (72%), and amoxicillin (65.5%). Group A was the most prevalent phylogenetic group, followed by groups D, B1, and B2. The PMQR determinants were detected in three isolates with qnrB72 and qnrS1 type identified. Four (13.8%) isolates carried one of the Shiga toxin E. coli-associated genes stx1, stx2, and ehxA alleles. The high prevalence of NAL-resistant E. coli isolated from retail chicken meat with detection of MDR E. coli harboring Shiga toxin genes in this study gives a warning signal for possible occurrence of foodborne infections with failure in antibiotic treatment.

  12. Antimicrobial drug resistance of Escherichia coli isolated from poultry abattoir workers at risk and broilers on antimicrobials

    Directory of Open Access Journals (Sweden)

    J.W. Oguttu

    2008-05-01

    Full Text Available Antimicrobial usage in food animals increases the prevalence of antimicrobial drug resistance among their enteric bacteria. It has been suggested that this resistance can in turn be transferred to people working with such animals, e.g. abattoir workers. Antimicrobial drug resistance was investigated for Escherichia coli from broilers raised on feed supplemented with antimicrobials, and the people who carry out evisceration, washing and packing of intestines in a high-throughput poultry abattoir in Gauteng, South Africa. Broiler carcasses were sampled from 6 farms, on each of which broilers are produced in a separate 'grow-out cycle'. Per farm, 100 caeca were randomly collected 5 minutes after slaughter and the contents of each were selectively cultured for E. coli. The minimum inhibitory concentration (MIC of each isolate was determined for the following antimicrobials : doxycycline, trimethoprim, sulphamethoxazole, ampicillin, enrofloxacin, fosfomycin, ceftriaxone and nalidixic acid. The same was determined for the faeces of 29 abattoir workers and 28 persons used as controls. The majority of isolates from broilers were resistant, especially to antimicrobials that were used on the farms in the study. Overall median MICs and the number of resistant isolates from abattoir workers (packers plus eviscerators tended to be higher than for the control group. However, no statistically significant differences were observed when the median MICs of antimicrobials used regularly in poultry and percentage resistance were compared, nor could an association between resistance among the enteric E. coli from packers and those from broilers be demonstrated.

  13. Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area

    Directory of Open Access Journals (Sweden)

    Roger Neto Schneider

    2009-09-01

    Full Text Available The use of antibiotics, so excessive and indiscriminate in intensive animal production, has triggered an increase in the number of resistant microorganisms which can be transported to aquatic environments. The aim of this study was to determine the profile of the antimicrobial resistance of samples of Escherichia coli isolated from groundwater and surface water in a region of pig breeding. Through the test of antimicrobial susceptibility, we analyzed 205 strains of E. coli. A high rate of resistance to cefaclor was observed, both in surface water (51.9% and groundwater (62.9%, while all samples were sensitive to amikacin. The percentages of multi-resistant samples were 25.96% and 26.73% in surface water and groundwater, respectively, while 19.23% and 13.86% were sensitive to all antibiotics tested. It was determined that the rate of multiple antibiotic resistance (MAR was 0.164 for surface water and 0.184 for groundwater. No significant differences were found in the profile of the antimicrobial resistance in strains of E. coli isolated in surface water and groundwater, but the index MAR calculated in certain points of groundwater may offer a potential risk of transmission of resistant genes.

  14. Occurrence of the Plasmid-Mediated Fluoroquinolone Resistance qepA1 Gene in Two Clonal Clinical Isolates of CTX-M-15-Producing Escherichia coli from Algeria.

    Science.gov (United States)

    Yanat, Betitera; Dali Yahia, Radia; Yazi, Leila; Machuca, Jesús; Díaz-De-Alba, Paula; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2016-10-13

    QepA is a plasmid-mediated quinolone resistance determinant of low prevalence described worldwide, mainly in Enterobacteriaceae. This study describes, for the first time in Algeria, two clonally related, QepA-producing Escherichia coli clinical isolates positive for CTX-M-15. The clonal spread of these multidrug-resistant isolates is a major public health concern.

  15. High-Quality Genome Sequence of an Escherichia coli O157 Strain Carrying an mcr-1 Resistance Gene Isolated from a Patient in the United States.

    Science.gov (United States)

    Lindsey, Rebecca L; Batra, Dhwani; Rowe, Lori; Loparev, Vladimir N; Stripling, Devon; Garcia-Toledo, Lisley; Knipe, Kristen; Juieng, Phalasy; Sheth, Mili; Martin, Haley; Laufer Halpin, Alison

    2017-03-16

    Enterobacteriaceae carrying plasmid-mediated colistin resistance have been found around the world. We report here the high-quality whole-genome sequence of an Escherichia coli O157:H48 isolate (2016C-3936C1) from Connecticut that carried the mcr-1 resistance gene on an IncX4-type plasmid. Copyright © 2017 Lindsey et al.

  16. The changing pattern of antimicrobial resistance within 42,033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.

    LENUS (Irish Health Repository)

    Cullen, Ivor M

    2012-04-01

    To investigate the changing pattern of antimicrobial resistance in Escherichia coli urinary tract infection over an eleven year period, and to determine whether E. coli antibiotic resistance rates vary depending on whether the UTI represents a nosocomial, community acquired or urology patient specific infection.

  17. Antimicrobial resistance in Escherichia coli O157 and non-O157 recovered from feces of domestic farm animals in Northwestern Mexico

    Science.gov (United States)

    Antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) O157 and non-O157 is a matter of increasing concern. Inappropriate antimicrobial use in human and animal therapy has been associated with an acquired resistance in enteric microorganisms. The aim of the present study was to de...

  18. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Godfrey, Henry P; Cabello, Felipe C

    2017-06-23

    Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.

  19. An Antioxidant Screen Identifies Candidates for Protection of Cochlear Hair Cells from Gentamicin Toxicity

    Directory of Open Access Journals (Sweden)

    Volker Noack

    2017-08-01

    Full Text Available Reactive oxygen species are important elements in ototoxic damage to hair cells (HCs, appearing early in the damage process. Higher levels of natural antioxidants are positively correlated with resistance to ototoxins and many studies have shown that exogenous antioxidants can protect HCs from damage. While a very wide variety of antioxidants with different characteristics and intracellular targets exist, most ototoxicity studies have focused upon one or a few well-characterized compounds. Relatively little research has attempted to determine the comparative efficacy of large variety of different antioxidants. This has been in part due to the lack of translation between cell culture and in vivo measures of efficacy. To circumvent this limitation, we used an in vitro assay based on micro-explants from the basal and middle turns of the neonatal mouse organ of Corti to screen a commercial redox library of diverse antioxidant compounds for their ability to protect mammalian HCs from a high dose of the ototoxic antibiotic gentamicin. The library included several antioxidants that have previously been studied as potential treatments for HC damage, as well as many antioxidants that have never been applied to ototoxicity. The micro-explants were treated with 200 μM gentamicin alone, gentamicin plus one of three dosages of a redox compound, the highest dosage of compound alone, or were untreated. HC counts were determined before the gentamicin insult and at 1, 2, and 3 days afterward to evaluate the HC survival. From a total of 81 antioxidant compounds, 13 exhibited significant protection of HCs. These included members of a variety of antioxidant classes with several novel antioxidants, not previously tested on HCs, appearing to alleviate the damaging gentamicin effect. Some compounds previously shown to be protective of HCs were correspondingly protective in this in vitro screen, while others were not. Finally, one of the three pro-oxidant compounds

  20. Zoonotic potential of multidrug-resistant extraintestinal pathogenic Escherichia coli obtained from healthy poultry carcasses in Salvador, Brazil

    Directory of Open Access Journals (Sweden)

    José Vitor Lima-Filho

    2013-02-01

    Full Text Available The zoonotic potential to cause human and/or animal infections among multidrug-resistant extraintestinal pathogenic Escherichia coli from avian origin was investigated. Twenty-seven extraintestinal pathogenic E. coli isolates containing the increased survival gene (iss were obtained from the livers of healthy and diseased poultry carcasses at two slaughterhouses in Salvador, northeastern Brazil. The antimicrobial resistance-susceptibility profiles were conducted with antibiotics of avian and/or human use by the standardized disc-diffusion method. Antimicrobial resistance was higher for levofloxacin (51.8%, amoxicillin/clavulanic acid (70.4%, ampicillin (81.5%, cefalotin (88.8%, tetracycline (100% and streptomycin (100%. The minimum inhibitory concentrations above the resistance breakpoints of doxycycline, neomycin, oxytetracycline and enrofloxacin reached, respectively, 88.0%, 100%, 75% and 91.7% of the isolates. Strains with high and low antimicrobial resistance were i.p. administered to Swiss mice, and histopathological examination was carried out seven days after infection. Resistance to goat and human serum complement was also evaluated. The results show that Swiss mice challenged with strain 2B (resistant to 11 antimicrobials provoked a severe degeneration of hepatocytes besides lymphocytic infiltration in the liver, whereas the spleen showed areas of degeneration of the white and red pulp. Conversely, the spleen and liver of mice challenged with strain 4A (resistant to two antimicrobials were morphologically preserved. In addition, complement resistance to goat and human serum was high for strain 2B and low for strain 4A. Our data show that multidrug resistance and pathogenesis can be correlated in extraintestinal pathogenic E. coli strains obtained from apparently healthy poultry carcasses, increasing the risk for human public healthy.

  1. Antimalarial therapy selection for quinolone resistance among Escherichia coli in the absence of quinolone exposure, in tropical South America.

    Directory of Open Access Journals (Sweden)

    Ross J Davidson

    Full Text Available BACKGROUND: Bacterial resistance to antibiotics is thought to develop only in the presence of antibiotic pressure. Here we show evidence to suggest that fluoroquinolone resistance in Escherichia coli has developed in the absence of fluoroquinolone use. METHODS: Over 4 years, outreach clinic attendees in one moderately remote and five very remote villages in rural Guyana were surveyed for the presence of rectal carriage of ciprofloxacin-resistant gram-negative bacilli (GNB. Drinking water was tested for the presence of resistant GNB by culture, and the presence of antibacterial agents and chloroquine by HPLC. The development of ciprofloxacin resistance in E. coli was examined after serial exposure to chloroquine. Patient and laboratory isolates of E. coli resistant to ciprofloxacin were assessed by PCR-sequencing for quinolone-resistance-determining-region (QRDR mutations. RESULTS: In the very remote villages, 4.8% of patients carried ciprofloxacin-resistant E. coli with QRDR mutations despite no local availability of quinolones. However, there had been extensive local use of chloroquine, with higher prevalence of resistance seen in the villages shortly after a Plasmodium vivax epidemic (p<0.01. Antibacterial agents were not found in the drinking water, but chloroquine was demonstrated to be present. Chloroquine was found to inhibit the growth of E. coli in vitro. Replica plating demonstrated that 2-step QRDR mutations could be induced in E. coli in response to chloroquine. CONCLUSIONS: In these remote communities, the heavy use of chloroquine to treat malaria likely selected for ciprofloxacin resistance in E. coli. This may be an important public health problem in malarious areas.

  2. Zoonotic potential of multidrug-resistant extraintestinal pathogenic Escherichia coli obtained from healthy poultry carcasses in Salvador, Brazil

    Directory of Open Access Journals (Sweden)

    José Vitor Lima-Filho

    Full Text Available The zoonotic potential to cause human and/or animal infections among multidrug-resistant extraintestinal pathogenic Escherichia coli from avian origin was investigated. Twenty-seven extraintestinal pathogenic E. coli isolates containing the increased survival gene (iss were obtained from the livers of healthy and diseased poultry carcasses at two slaughterhouses in Salvador, northeastern Brazil. The antimicrobial resistance-susceptibility profiles were conducted with antibiotics of avian and/or human use by the standardized disc-diffusion method. Antimicrobial resistance was higher for levofloxacin (51.8%, amoxicillin/clavulanic acid (70.4%, ampicillin (81.5%, cefalotin (88.8%, tetracycline (100% and streptomycin (100%. The minimum inhibitory concentrations above the resistance breakpoints of doxycycline, neomycin, oxytetracycline and enrofloxacin reached, respectively, 88.0%, 100%, 75% and 91.7% of the isolates. Strains with high and low antimicrobial resistance were i.p. administered to Swiss mice, and histopathological examination was carried out seven days after infection. Resistance to goat and human serum complement was also evaluated. The results show that Swiss mice challenged with strain 2B (resistant to 11 antimicrobials provoked a severe degeneration of hepatocytes besides lymphocytic infiltration in the liver, whereas the spleen showed areas of degeneration of the white and red pulp. Conversely, the spleen and liver of mice challenged with strain 4A (resistant to two antimicrobials were morphologically preserved. In addition, complement resistance to goat and human serum was high for strain 2B and low for strain 4A. Our data show that multidrug resistance and pathogenesis can be correlated in extraintestinal pathogenic E. coli strains obtained from apparently healthy poultry carcasses, increasing the risk for human public healthy.

  3. Zoonotic potential of multidrug-resistant extraintestinal pathogenic Escherichia coli obtained from healthy poultry carcasses in Salvador, Brazil.

    Science.gov (United States)

    Lima-Filho, José Vitor; Martins, Liliane Vilela; Nascimento, Danielle Cristina de Oliveira; Ventura, Roberta Ferreira; Batista, Jacqueline Ellen Camelo; Silva, Ayrles Fernanda Brandão; Ralph, Maria Taciana; Vaz, Renata Valença; Rabello, Carlos Boa-Viagem; Silva, Isabella de Matos Mendes da; Evêncio-Neto, Joaquim

    2013-01-01

    The zoonotic potential to cause human and/or animal infections among multidrug-resistant extraintestinal pathogenic Escherichia coli from avian origin was investigated. Twenty-seven extraintestinal pathogenic E. coli isolates containing the increased survival gene (iss) were obtained from the livers of healthy and diseased poultry carcasses at two slaughterhouses in Salvador, northeastern Brazil. The antimicrobial resistance-susceptibility profiles were conducted with antibiotics of avian and/or human use by the standardized disc-diffusion method. Antimicrobial resistance was higher for levofloxacin (51.8%), amoxicillin/clavulanic acid (70.4%), ampicillin (81.5%), cefalotin (88.8%), tetracycline (100%) and streptomycin (100%). The minimum inhibitory concentrations above the resistance breakpoints of doxycycline, neomycin, oxytetracycline and enrofloxacin reached, respectively, 88.0%, 100%, 75% and 91.7% of the isolates. Strains with high and low antimicrobial resistance were i.p. administered to Swiss mice, and histopathological examination was carried out seven days after infection. Resistance to goat and human serum complement was also evaluated. The results show that Swiss mice challenged with strain 2B (resistant to 11 antimicrobials) provoked a severe degeneration of hepatocytes besides lymphocytic infiltration in the liver, whereas the spleen showed areas of degeneration of the white and red pulp. Conversely, the spleen and liver of mice challenged with strain 4A (resistant to two antimicrobials) were morphologically preserved. In addition, complement resistance to goat and human serum was high for strain 2B and low for strain 4A. Our data show that multidrug resistance and pathogenesis can be correlated in extraintestinal pathogenic E. coli strains obtained from apparently healthy poultry carcasses, increasing the risk for human public healthy. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  4. Clinical impact of fluoroquinolone-resistant Escherichia coli in the fecal flora of hematological patients with neutropenia and levofloxacin prophylaxis.

    Directory of Open Access Journals (Sweden)

    Yong Chong

    Full Text Available BACKGROUND: Fluoroquinolone prophylaxis in patients with neutropenia and hematological malignancies is said to be effective on febrile netropenia (FN-related infection and mortality; however, the emergence of antibiotic resistance has become a concern. Ciprofloxacin and levofloxacin prophylaxis are most commonly recommended. A significant increase in the rate of quinolone-resistant Escherichia coli in fecal flora has been reported following ciprofloxacin prophylaxis. The acquisition of quinolone-resistant E. coli after levofloxacin use has not been evaluated. METHODS: We prospectively examined the incidence of quinolone-resistant E. coli isolates recovered from stool cultures before and after levofloxacin prophylaxis in patients with neutropenia from August 2011 to May 2013. Some patients received chemotherapy multiple times. RESULTS: In this trial, 68 patients were registered. Levofloxacin-resistant E. coli isolates were detected from 11 and 13 of all patients before and after the prophylaxis, respectively. However, this was not statistically significant (P = 0.65. Multiple prophylaxis for sequential chemotherapy did not induce additional quinolone resistance among E. coli isolates. Interestingly, quinolone-resistant E. coli, most of which were extended-spectrum β-lactamase (ESBL producers, were already detected in approximately 20% of all patients before the initiation of prophylaxis. FN-related bacteremia developed in 2 patients, accompanied by a good prognosis. CONCLUSIONS: Levofloxacin prophylaxis for neutropenia did not result in a significant acquisition of quinolone-resistant E. coli. However, we detected previous colonization of quinolone-resistant E. coli before prophylaxis, which possibly reflects the spread of ESBL. The epidemic spread of resistant E. coli as a local factor may influence strategies toward the use of quinolone prophylaxis.

  5. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  6. Colistin-Resistant mcr-1-Positive Escherichia coli on Public Beaches, an Infectious Threat Emerging in Recreational Waters.

    Science.gov (United States)

    Fernandes, Miriam R; Sellera, Fábio P; Esposito, Fernanda; Sabino, Caetano P; Cerdeira, Louise; Lincopan, Nilton

    2017-07-01

    The emergence and rapid spread of colistin-resistant Escherichia coli carrying the mcr-1 gene have generated an urgent need to strengthen surveillance. We performed a meticulous investigation of strains of this sort, which resulted in the identification of international clones of E. coli carrying IncX4-plasmid-mediated mcr-1 and blaCTX-M genes in recreational waters of public urban beaches in cities with high tourist turnover, highlighting a new environmental reservoir. Copyright © 2017 American Society for Microbiology.

  7. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.

    OpenAIRE

    1988-01-01

    Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting relate...

  8. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs.

    Science.gov (United States)

    Hansen, Lars Hestbjerg; Sørensen, Søren J; Jørgensen, Helle S; Jensen, Lars B

    2005-01-01

    The quinoxaline olaquindox has been used extensively as a growth promoter for pigs. Recently, we isolated a plasmid (pOLA52) conferring resistance to olaquindox from swine manure. On this plasmid, the oqxA and oqxB genes encode an RND-family multidrug efflux pump, OqxAB. It facilitates resistance to olaquindox as well as resistance to other antimicrobials like chloramphenicol. In this study, 10 of the 556 (1.8%) previously isolated Escherichia coli strains were shown to have an MIC >or= 64 microg/ml olaquindox. In nine of the ten strains, the oqxA gene was detected. Sequencing of an internal fragment of oqxA from the oqxA-positive strains showed no variation, indicating highly conserved oqxA genes. All of the oqxA-positive strains contain plasmids with replicons similar to that of pOLA52. It was verified by Southern hybridization that the oqxAB operon was situated on plasmids in most, if not all, resistant strains. Furthermore, horizontal transfer of olaquindox resistance from three olaquindox-resistant isolates was achieved using an olaquindox-sensitive E. coli as recipient.

  9. Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania.

    Science.gov (United States)

    Rugumisa, Bernadether T; Call, Douglas R; Mwanyika, Gaspary O; Mrutu, Rehema I; Luanda, Catherine M; Lyimo, Beatus M; Subbiah, Murugan; Buza, Joram J

    2016-08-01

    We compared the prevalence of antibiotic-resistant Escherichia coli isolates from household-level producers of broiler (commercial source breeds) and local chickens in the Arusha District of Tanzania. Households were composed of a single dwelling or residence with independent, penned broiler flocks. Free-range, scavenging chickens were mixed breed and loosely associated with individual households. A total of 1,800 E. coli isolates (1,200 from broiler and 600 from scavenging local chickens) from 75 chickens were tested for their susceptibility against 11 antibiotics by using breakpoint assays. Isolates from broiler chickens harbored a higher prevalence of antibiotic-resistant E. coli relative to scavenging local chickens, including sulfamethoxazole (80.3 versus 34%), followed by trimethoprim (69.3 versus 27.7%), tetracycline (56.8 versus 20%), streptomycin (52.7 versus 24.7%), amoxicillin (49.6 versus 17%), ampicillin (49.1 versus 16.8%), ciprofloxacin (21.9 versus 1.7%), and chloramphenicol (1.5 versus 1.2%). Except for resistance to chloramphenicol, scavenging local chickens harbored fewer resistant E. coli isolates (P < 0.05). Broiler chickens harbored more isolates that were resistant to ≥7 antibiotics (P < 0.05). The higher prevalence of antibiotic-resistant E. coli from broiler chickens correlated with the reported therapeutic and prophylactic use of antibiotics in this poultry population. We suggest that improved biosecurity measures and increased vaccination efforts would reduce reliance on antibiotics by these households.

  10. Detection of Ampicillin Resistance Genes (bla in Clinical Isolates of Escherichia coli with Polymerase Chain Reaction Method

    Directory of Open Access Journals (Sweden)

    Tiana Milanda

    2014-09-01

    Full Text Available Escherichia coli is a rod negative Gram which could be pathogenic, if its value increases or located in outer gastrointestinal tract. Pathogenic E. coli will produce enterotoxin which will cause diarrhoea or infection in urine tract. Ampicilin was one of particular antibiotics to overcome infection. Ampicilin nowadays is no longer used as primary medicine, because of its resistance case. The aim of this research is to detect the presence of gene which is responsible to ampicilin resistant E. coli. We used isolated midstream urine from cystitis object in Hasan Sadikin Hospital (RSHS as samples. Polymerase Chain Reaction (PCR method (colony-PCR and DNA-PCR were done to invenstigate the antibiotic resistency. Based on the result of antibiotic susceptibility testing to ampicillin, E. coli samples were resistant to ampicilin. Elektroforegram products of colony-PCR and DNA-PCR showed that the resistance case of ampicilin caused by bla gene (199 bp. Selective and rational antibiotic treatment is required to prevent ampicillin resistance in patients with symptoms

  11. Estimation of transmission parameters of a fluoroquinolone-resistant Escherichia coli strain between pigs in experimental conditions

    Directory of Open Access Journals (Sweden)

    Andraud Mathieu

    2011-03-01

    Full Text Available Abstract Antimicrobial resistance is of primary importance regarding public and animal health issues. Persistence and spread of resistant strains within a population contribute to the maintenance of a reservoir and lead to treatment failure. An experimental trial was carried out to study the horizontal transmission of a fluoroquinolone-resistant Escherichia coli strain from inoculated to naïve pigs. All naïve contact pigs had positive counts of fluoroquinolone-resistant E. coli after only two days of contact. Moreover, re-infections of inoculated pigs caused by newly contaminated animals were suspected. A maximum likelihood method, based on a susceptible-infectious-susceptible (SIS model, was used to determine the transmission parameters. Two transmission levels were identified depending on the quantity of bacteria shed by infected individuals: (i low-shedders with bacterial counts of resistant E. coli in the faeces between 5*103 and 106 CFU/g (βL = 0.41 [0.27; 0.62], (ii high shedders with bacterial counts above 106 CFU/g (βH = 0.98 [0.59; 1.62]. Hence, transmission between animals could be pivotal in explaining the persistence of resistant bacteria within pig herds.

  12. Detection of tetracycline resistance determinant tetA gene and antimicrobial resistance pattern in Escherichia coli isolates recovered from healthy layer chickens

    Directory of Open Access Journals (Sweden)

    A. Balasubramaniam

    2014-09-01

    Full Text Available Aim: The aim was to study the occurrence of tetracycline resistance determinant tetA gene, and antibacterial resistance pattern in commensal Escherichia coli recovered from healthy non-clinical layer chickens. Materials and Methods: Twenty-four cloacal swabs were obtained from 15 flocks in five different layer farms located at around Namakkal, which is a place of high-intensity layer chicken rearing in south India. Identification of E. coli was carried out by performing cultural and biochemical tests. Antimicrobial resistance test was carried out using disc diffusion method. The polymerase chain reaction employing tetAC forward and tetAC reverse primers were carried out to detect tetA gene conferring resistance to tetracycline. Result: All the collected cloacal swabs yielded E. coli. Twenty-one isolates (88% were resistant to tetracycline antibiotic in disc diffusion method. All the isolates showed resistance to more than six antibiotics, which implied existence of multidrug resistant microbiota in intestine of poultry. Only seven (29% isolates showed the presence of tetA gene indicating the involvement of either other one or more efflux gene(s, namely tetB, tetC and tetD or ribosomal protection encoded by tetM, tetO, tetQ and tetS genes than tetA gene. Conclusion: Based on the presence of tetA gene among tetracycline-resistant bacteria in healthy non-clinical food-producing animals such as layer chickens, it can be significant in human medicine as tetA gene could easily be spread to other bacteria. This kind of phenomenon can be extrapolated in transfer of resistance for other antibacterial essential for treating bacterial infections in human. We conclude that preventing the spread of antimicrobial resistance through direct or indirect contact, consumed food/feed and through the environment is empirical in reduction of failures while treating bacterial infections.

  13. [A clinical study on gentamicin in the field of surgery].

    Science.gov (United States)

    Fujimoto, M; Ueda, T; Hirao, S; Sakai, K

    1976-03-01

    Gentamicin (GM), one of the amino-glucosides, was administered intramuscularly to 27 patients with Pseudomonas and/or other antibiotics resistant infections. The clinical evaluation of the results obtained was classified excellent in 1 case good 6, fair 8, none 11 and indeterminate 1, the effectiveness accounting for 57.7 percent. Satisfactory results were noted in wound infections, peritonitis and urinary tract infections. Among untoward side effects, an elevation in GOT and GPT values was observed in 6 cases, an elevation of BUN value in 1, proteinuria in 1 and hematuria in 1. However, it is difficult to conclude that those side effects were attributable to GM itself because blood transfusion or combined therapy with anti-cancer agents was conducted in these cases during the GM therapy.

  14. Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli.

    Science.gov (United States)

    Händel, Nadine; Hoeksema, Marloes; Freijo Mata, Marina; Brul, Stanley; ter Kuile, Benno H

    2015-12-14

    Strategies to prevent the development of antibiotic resistance in bacteria are needed to reduce the threat of infectious diseases to human health. The de novo acquisition of resistance due to mutations and/or phenotypic adaptation occurs rapidly as a result of interactions of gene expression and mutations (N. Handel, J. M. Schuurmans, Y. Feng, S. Brul, and B. H. Ter Kuile, Antimicrob Agents Chemother 58:4371-4379, 2014, http://dx.doi.org/10.1128/AAC.02892-14). In this study, the contribution of several individual genes to the de novo acquisition of antibiotic resistance in Escherichia coli was investigated using mutants with deletions of genes known to be involved in antibiotic resistance. The results indicate that recA, vital for the SOS response, plays a crucial role in the development of antibiotic resistance. Likewise, deletion of global transcriptional regulators, such as gadE or soxS, involved in pH homeostasis and superoxide removal, respectively, can slow the acquisition of resistance to a degree depending on the antibiotic. Deletion of the transcriptional regulator soxS, involved in superoxide removal, slowed the acquisition of resistance to enrofloxacin. Acquisition of resistance occurred at a lower rate in the presence of a second stress factor, such as a lowered pH or increased salt concentration, than in the presence of optimal growth conditions. The overall outcome suggests that a central cellular mechanism is crucial for the development of resistance and that genes involved in the regulation of transcription play an essential role. The actual cellular response, however, depends on the class of antibiotic in combination with environmental conditions.

  15. Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water

    Directory of Open Access Journals (Sweden)

    Natália Canal

    2016-06-01

    Full Text Available Abstract Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacE Δ1 gene at the 3′ conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.

  16. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use

    National Research Council Canada - National Science Library

    Lamikanra, Adebayo; Crowe, Jennifer L; Lijek, Rebeccah S; Odetoyin, Babatunde W; Wain, John; Aboderin, A Oladipo; Okeke, Iruka N

    2011-01-01

    Antibiotic resistance has necessitated fluoroquinolone use but little is known about the selective forces and resistance trajectory in malaria-endemic settings, where selection from the antimalarial...

  17. Characterization of resistance patterns and detection of apramycin resistance genes in Escherichia coli isolated from swine exposed to various environmental conditions.

    Science.gov (United States)

    Mathew, Alan G; Arnett, Debbie B; Cullen, Patricia; Ebner, Paul D

    2003-12-15

    Weaned pigs were separated into eight treatments including a control without exposure to apramycin; a control with exposure to apramycin; and apramycin plus either cold stress, heat stress, overcrowding, intermingling, poor sanitation, or intervention with oxytetracycline, to determine the effects of management and environmental conditions on antibiotic resistance among indigenous Escherichia coli. Pigs exposed to apramycin sulfate received that antibiotic in the feed at a concentration of 150 g/ton for 14 days. Environmental treatments were applied 5 days following initial antibiotic administration and maintained throughout the study. Fecal samples were obtained on day 0 (prior to antibiotic treatment) and on days 2, 7, 14, 28, 64, 148, and 149. E. coli were isolated and tested for resistance to apramycin using a minimum inhibitory concentration (MIC) broth microdilution method. Macrorestriction profiling, arbitrarily primed PCR, PCR targeting a gene coding for apramycin resistance, and DNA hybridization were used to characterize genetic elements of resistance. Increased (PMICs of isolates from control pigs receiving apramycin returned to pretreatment levels following removal of the antibiotic, whereas isolates from cold stress, overcrowding, and oxytetracycline groups expressed greater (PMICs through day 64, before returning to pretreatment levels. Genetic analysis indicated that all resistant isolates carried the aac(3)IV gene sequence and this sequence was found in a variety of E. coli isotypes. Our data indicate that E. coli resistance to apramycin is increased upon exposure to various stressors.

  18. Gentamicin Nephrotoxicity in Subclinical Renal Disease.

    Science.gov (United States)

    Frazier, Donita L.

    The purpose of the present study was to examine the pharmacokinetic disposition of gentamicin and to define the mechanisms which predispose to nephrotoxicity in subclinical renal disease. Subtotally nephrectomized beagle dogs were used as a model for human beings with compromised renal function secondary to a reduced number of functional nephrons. Using ultrastructural morphometry, light microscopy and clinical chemistry data, the model was defined and the nephrotoxic responses of intact dogs administered recommended doses of drug were compared to the response of subtotally nephrectomized dogs administered reduced doses based on each animal's clearance of drug. Lysosomal and mitochondrial morphometric changes suggested mechanisms for increased sensitivity. To determine if increased sensitivity in this model was dependent on altered serum concentrations, variable rate infusions based on individual pharmacokinetic disposition of drug were administered using computer-driven infusion pumps. Identical serum concentration-time profiles were achieved in normal dogs and subtotally nephrectomized dogs, however, toxicity was significantly greater in nephrectomized dogs. The difference in the nephrotoxic response was characterized by administering supratherapeutic doses of drug to dogs. Nephrectomized dogs given a recommended dose of gentamicin became oliguric during the second week of treatment and increasingly uremic after withdrawal of drug. In contrast, intact dogs administered 2 times the recommended dose of gentamicin become only slightly polyuric during week 4 of treatment. The need to individualize dosage regimens based on drug clearance and not serum creatinine nor creatinine clearance alone was substantiated by describing the pharmacokinetic disposition of gentamicin in spontaneously occurring disease states. Four individualized dosage regimens with differing predicted efficacy were then administered to nephrectomized dogs to determine their relative nephrotoxic

  19. Spherical gold nanoparticles and gold nanorods for the determination of gentamicin

    Science.gov (United States)

    Miranda-Andrades, Jarol R.; Pérez-Gramatges, Aurora; Pandoli, Omar; Romani, Eric C.; Aucélio, Ricardo Q.; da Silva, Andrea R.

    2017-02-01

    Gentamicin is an antibiotic indicated to treat mastitis in dairy cattle and for the treatment of bacterial resistance in the context of hospital infections. The effect caused by gentamicin on the optical properties of gold nanoparticles aqueous dispersions were used to develop quantitative methods to determine this antibiotic. Two different aqueous dispersions, one containing spherical Au nanoparticles (AuNPs) and the other containing Au nanorods (AuNRs), had their conditions adjusted to enable a stable and sensitive response towards gentamicin. The use of AuNPs, with measurement at 681 nm of the rising coupling plasmon band, enabled a limit of detection (LOD) of 0.4 ng mL- 1 (0.02 ng absolute LOD), ten times lower than the one achieved by measuring the decreasing of the longitudinal surface plasmon resonance band (at 662 nm). The linear analytical response of AuNPs measured at 681 nm did not require rationing of signal values to correct for linearity. Stability of the analytical response resulted in intermediary precision below 2%. No significant interference was imposed by excipients traditionally present in injectable solutions for veterinary use. Percent recoveries obtained in such formulations were between 94.5 and 98.2% regardless the existence of any difference in the proportion of the compounds known as gentamicin (C1, C1a and C2) in standard and in the samples. The method requires no derivatization with toxic reagents as usually is required in other spectroscopic approaches.

  20. No decrease in susceptibility to NVC-422 in multiple-passage studies with methicillin-resistant Staphylococcus aureus, S. aureus, Pseudomonas aeruginosa, and Escherichia coli.

    Science.gov (United States)

    D'Lima, Louisa; Friedman, Lisa; Wang, Lu; Xu, Ping; Anderson, Mark; Debabov, Dmitri

    2012-05-01

    Twenty-five serial passages of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and 50 passages of methicillin-resistant Staphylococcus aureus resulted in no significant increase in NVC-422 MICs, while ciprofloxacin MICs increased 256-fold for E. coli and 32-fold for P. aeruginosa and S. aureus. Mupirocin, fusidic acid, and retapamulin MICs for MRSA increased 64-, 256-, and 16-fold, respectively. No cross-resistance to NVC-422 was observed with mupirocin-, fusidic acid-, and retapamulin-resistant strains.

  1. The Magnitude of the Association between Fluoroquinolone Use and Quinolone-Resistant Escherichia coli and Klebsiella pneumoniae May Be Lower than Previously Reported

    OpenAIRE

    Bolon, Maureen K.; Wright, Sharon B.; Gold, Howard S.; Carmeli, Yehuda

    2004-01-01

    Case-control analyses of resistant versus susceptible isolates have implicated fluoroquinolone exposure as a strong risk factor for fluoroquinolone-resistant isolates of Enterobacteriaceae. We suspect that such methodology may overestimate this association. A total of 84 cases with fluoroquinolone-resistant isolates and 578 cases with fluoroquinolone-susceptible isolates of Escherichia coli or Klebsiella pneumoniae were compared with 608 hospitalized controls in parallel multivariable analyse...

  2. Resistência a antimicrobianos dependente do sistema de efluxo multidrogas em Escherichia coli isoladas de leite mastítico Antimicrobial resistance dependent on multidrugs efflux in Escherichia coli isolated from the mastitic milk

    Directory of Open Access Journals (Sweden)

    M.A.S. Moreira

    2008-12-01

    Full Text Available Identificaram-se e caracterizaram-se a resistência e a multirresistência aos principais antimicrobianos usados no tratamento de mastite bovina causada por Escherichia coli. A concentração inibitória mínima (MIC e o sistema de efluxo foram detectados pelas curvas de crescimento, com base na densidade óptica, em diferentes concentrações da droga e na presença e na ausência do desacoplador da força próton-motora (PMF. E. coli 1 foi resistente à neomicina e à gentamicina; E. coli 3 e 4, à tetraciclina e à estreptomicina; e E. coli 2 e 6 à gentamicina. E. coli 5 apresentou modelo de sensibilidade. Observou-se que MICs de todos os antimicrobianos dos multirresistentes (E. coli 1, 3 e 4 diminuíram na presença do desacoplador, o que sugere sistema de efluxo multidrogas. Após cura, apenas E. coli 1 apresentou modelo de sensibilidade, porém não houve alterações das MICs, antes e após adição do desacoplador. Os resultados indicam possível presença de mecanismo de resistência dependente da PMF codificado, ou parte dele, em plasmídeo.Resistance and multiresistance to main antimicrobials used for treating bovine mastitis caused by Escherichia coli were identified and characterized. The minimal inhibitory concentration (MIC and efflux systems were detected by the use of growth curves based on optical density at different drug concentrations and both presence and absence of uncoupler of the proton-motive force (PMF. E. coli 1 was resistant to neomycin and gentamycin, E. coli 3 and 4 were resistant to tetracycline and streptomycin, whereas E. coli 2 and 6 were resistant to gentamycin. E. coli 5 showed sensibility model. MICs of all antimicrobials of the multiresistant samples (E. coli 1, 3, and 4 were decreased in presence of the uncoupler, therefore suggesting the presence of the multidrug efflux system. After healing, only E. coli 1 showed sensibility model, however no alteration occurred in MIC(s before and after adding the

  3. Determinants of carriage of resistant