WorldWideScience

Sample records for genomics awaiting next-next

  1. Genomics in a changing arctic: critical questions await the molecular ecologist.

    Science.gov (United States)

    Wullschleger, Stan D; Breen, Amy L; Iversen, Colleen M; Olson, Matthew S; Näsholm, Torgny; Ganeteg, Ulrika; Wallenstein, Matthew D; Weston, David J

    2015-05-01

    Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate. © 2015 John Wiley & Sons Ltd.

  2. Credential Application Awaiting Information

    Data.gov (United States)

    Department of Homeland Security — When a Credential application or required documentation is incomplete, an Awaiting Information letter is issued. The application process cannot continue until all...

  3. IDPs from Kosovo still awaiting durable solutions

    Directory of Open Access Journals (Sweden)

    Anika Krstic

    2007-01-01

    Full Text Available As the Balkans anxiously await delayed UN recommendations on the final status of the Serbian province of Kosovo, displaced persons from Kosovo remain torn between uncertain return prospects and denial of local integration.

  4. NExt(S4)中 Bull 逻辑再探%Bull’s Logics in NExt(S4) Revisited*

    Institute of Scientific and Technical Information of China (English)

    马明辉

    2013-01-01

      本文重新考察 Bull 在1964给出的一个结论:以纯句法方式定义的一些扩张S4的正规模态逻辑具有有穷模型性质。本文修订 Bull 的代数证明。对于新定义的 S4的 Bull 公式,证明通过它们在 S4基础上生成的正规模态逻辑都具有有穷模型性质。这是关于模态逻辑的有穷模型性质的句法结论。本文还证明,相对于所有克里普克框架类而言,并非所有 S4的 Bull 公式都具有一阶对应句子。%We revisit a result given by Robert Bull in [5] that certain logics in NExt(S4) de-fined by a pure syntax have finite model property and fix Bull’s algebraic proof. We show that every logic in NExt(S4) generated by our new Bull formulas for S4 have finite model property. This is a syntactical result about finite model property of modal logics. We also show that not all Bull formulas for S4 have first-order correspondent with respect the class of all Kripke frames.

  5. Eysenck's theory of criminality applied to women awaiting trial.

    Science.gov (United States)

    Barack, L I; Widom, C S

    1978-11-01

    American women awaiting trial were administered the Eysenck Personality Questionnaire. Compared to a heterogeneous control group, these women scored significantly higher on the neuroticism and psychoticism scales and on Burgess's 'hedonism' variable, though they did not differ with respect to extraversion or lie scale scores. Women awaiting trial were more likely to fall in the neurotic-extravert quadrant (a trend more marked for non-white women). In general, the results support Eysenck's theory of criminality and the usefulness of Burgess's 'hedonism' variable.

  6. Colleges Await High-Stakes Court Verdict in Patent Case

    Science.gov (United States)

    Mangan, Katherine

    2008-01-01

    The long-awaited showdown between Blackboard Inc. and Desire2Learn Inc. began this month in a federal courtroom here as lawyers described the humble beginnings of two of the fiercest competitors in the classroom-software industry. The presidents of both companies, flanked by teams of lawyers, listened intently as their lawyers described how young…

  7. Preoperative Strength Training for Elderly Patients Awaiting Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    D. M. van Leeuwen

    2014-01-01

    Full Text Available Objective. To investigate the feasibility and effects of additional preoperative high intensity strength training for patients awaiting total knee arthroplasty (TKA. Design. Clinical controlled trial. Patients. Twenty-two patients awaiting TKA. Methods. Patients were allocated to a standard training group or a group receiving standard training with additional progressive strength training for 6 weeks. Isometric knee extensor strength, voluntary activation, chair stand, 6-minute walk test (6MWT, and stair climbing were assessed before and after 6 weeks of training and 6 and 12 weeks after TKA. Results. For 3 of the 11 patients in the intensive strength group, training load had to be adjusted because of pain. For both groups combined, improvements in chair stand and 6MWT were observed before surgery, but intensive strength training was not more effective than standard training. Voluntary activation did not change before and after surgery, and postoperative recovery was not different between groups (P>0.05. Knee extensor strength of the affected leg before surgery was significantly associated with 6-minute walk (r=0.50 and the stair climb (r−=0.58, P<0.05. Conclusion. Intensive strength training was feasible for the majority of patients, but there were no indications that it is more effective than standard training to increase preoperative physical performance. This trial was registered with NTR2278.

  8. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  9. Cinacalcet to prevent parathyrotoxic crises in hypercalcaemic patients awaiting parathyroidectomy

    Science.gov (United States)

    Rostoker, Guy; Bellamy, Jean; Janklewicz, Philippe

    2011-01-01

    Primary hyperparathyroidism is the third most common endocrine disorder. Hypercalcaemia exceeding 3 mmol/l is a major risk factor for parathyrotoxic crises, and management of patients at risk remains a medical challenge. The authors recently managed three such patients referred for severe nephrolithiasis. All had severe hypercalcaemia (at least 3 mmol/l). Instead of the usual management, which involves hospitalisation in an intensive care environment (for about 5–7 days) for rehydration and infusion of intravenous bisphosphonates, followed by emergency parathyroidectomy, the three patients received ambulatory cinacalcet (not an approved indication), 30 mg twice a day. The serum calcium normalised in two cases and declined to a safe level in the third case, allowing minimally invasive parathyroidectomy to be performed at a date chosen according to the patients’ and surgeon’s respective schedules. The authors consider that cinacalcet may benefit severely hypercalcaemic patients awaiting surgery for primary hyperparathyroidism. PMID:22696718

  10. Serum ferritin concentration predicts mortality in patients awaiting liver transplantation.

    Science.gov (United States)

    Walker, Nicole M; Stuart, Katherine A; Ryan, Rebecca J; Desai, Shireena; Saab, Sammy; Nicol, Jennifer A; Fletcher, Linda M; Crawford, Darrell H G

    2010-05-01

    Additional markers are required to identify patients on the orthotopic liver transplant (OLT) waiting list at increased risk of death and adverse clinical events. Serum ferritin concentration is a marker of varied pathophysiological events and is elevated with increased liver iron concentration, hepatic necroinflammation, and systemic illness, all of which may cause a deterioration in liver function and clinical status. The aim of this study was to determine whether serum ferritin concentration is an independent prognostic factor in subjects awaiting OLT. This is a dual-center retrospective study. The study cohort consisted of 191 consecutive adults with cirrhosis accepted by the Queensland (Australia) Liver Transplant Service between January 2000 and June 2006 and a validation cohort of 131 patients from University of California Los Angeles (UCLA) Transplant Center. In the study cohort, baseline serum ferritin greater than 200 microg/L was an independent factor predicting increased 180-day and 1-year waiting list mortality. This effect was independent of model for end-stage liver disease (MELD), hepatocellular carcinoma, age, and sex. Subjects with higher serum ferritin had increased frequency of liver-related clinical events. The relationship between serum ferritin and waiting list mortality was confirmed in the UCLA cohort; all deceased patients had serum ferritin greater than 400 microg/L. Serum ferritin greater than 500 microg/L and MELD were independent risk factors for death. Serum ferritin concentration is an independent predictor of mortality-related and liver-related clinical events. Baseline serum ferritin identifies a group of "higher-risk" patients awaiting OLT and should be investigated as an adjunct to MELD in organ allocation.

  11. Regge-like initial input and evolution of non-singlet structure functions from DGLAP equation up to next-next-to-leading order at low and low 2

    Indian Academy of Sciences (India)

    Nayan Mani Nath; Mrinal Kumar Das; Jayanta Kumar Sarma

    2015-10-01

    This is an attempt to study how the features of Regge theory, along with QCD predictions, lead towards the understanding of unpolarized non-singlet structure functions $F_{2}^{\\text{NS}}$ (, 2) and 3 (, 2) at low and low 2 . Combining the features of perturbative quantum chromodynamics (pQCD) and Regge theory, an ansatz for $F_{2}^{\\text{NS}}$ (, 2) and 3 (, 2) structure functions at small was obtained, which when used as the initial input to Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation, gives the 2 evolution of the non-singlet structure functions. The non-singlet structure functions, evolved in accordance with DGLAP evolution equations up to next-next-to-leading order are studied phenomenologically in comparison with the available experimental and parametrization results taken from NMC, CCFR, NuTeV, CORUS, CDHSW, NNPDF and MSTW Collaborations and a very good agreement is observed in this regard.

  12. Cause of death in patients awaiting bariatric surgery.

    Science.gov (United States)

    Lakoff, Joshua M; Ellsmere, James; Ransom, Tom

    2015-02-01

    Obesity is associated with increased mortality. Bariatric surgery is becoming an important treatment modality for obesity, with an associated reduction in mortality. There are few data available on the incidence and cause of death in referred patients while they are waiting for bariatric surgery. We retrospectively examined all cases of death in patients who were referred for bariatric surgery assessment but who had not yet undergone bariatric surgery at a tertiary care centre in Halifax, Nova Scotia. The wait list comprised patients referred for surgery between March 2008 and May 2013. All cases of death were reviewed to determine age, sex, time of referral, time spent on the wait list, cause of death, comorbidities and body mass index (BMI). Of the 1399 patients referred, 22 (1.57%) died before receiving surgery. The mean age of these patients was 62.7 (range of 32-70) years. The average time from referral to death was 21.6 months, and the average BMI was 51.5. The most frequent cause of death was cancer, followed by cardiac and infectious causes. This study provides useful information about mortality and causes of death among patients awaiting bariatric surgery at our centre. Our results will help guide the development of a judicious system for triage in light of long wait times.

  13. Is Waiting the Hardest Part? Comparing the Emotional Experiences of Awaiting and Receiving Bad News.

    Science.gov (United States)

    Sweeny, Kate; Falkenstein, Angelica

    2015-11-01

    Awaiting uncertain news is stressful, but is it more stressful than receiving bad news? We compared these emotional experiences in two studies. Participants in Study 1 reflected on a personal experience awaiting news that ultimately turned out badly, and participants in Study 2 were law graduates awaiting their results on the bar exam who ultimately failed the exam. In Study 1, participants were ambivalent as to whether awaiting or receiving bad news was more difficult, and emotion ratings in both studies confirmed this ambivalence. Anxiety was higher in anticipation of bad news (at least at the moment of truth) than in the face of it, whereas other negative emotions were more intense following the news than during the waiting period. Thus, whether waiting is "the hardest part" depends on whether one prefers to be racked with anxiety or afflicted with other negative emotions such as anger, disappointment, depression, and regret.

  14. Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation

    NARCIS (Netherlands)

    M. Loeve (Martine); W.C.J. Hop (Wim); M. de Bruijne (Marleen); P.Th.W. van Hal (Peter); P. Robinson; A. Aitken; J.D. Dodd (Jonathan); H.A.W.M. Tiddens (Harm)

    2012-01-01

    textabstractRationale: Up to one-third of patients with cystic fibrosis (CF) awaiting lung transplantation (LTX) die while waiting. Inclusion of computed tomography (CT) scores may improve survival prediction models such as the lung allocation score (LAS). Objectives: This study investigated the

  15. President Nixon on deck of U.S.S. Hornet awaiting Apollo 11 crew arrival

    Science.gov (United States)

    1969-01-01

    President Richard M. Nixon photographed on the deck of the U.S.S. Hornet, prime recovery ship for the Apollo 11 lunar landing mission, awaiting the Apollo 11 crew arrival. swimmer. All four men are wearing biological isolation garments. Apollo 11 splashed down at 11:40 a.m., July 24, 1969, about 812 nautical miles southwest of Hawaii.

  16. Breast Cancer Worry among Women Awaiting Mammography: Is It Unfounded? Does Prior Counseling Help?

    OpenAIRE

    Steinemann, Susan K; Chun, Maria BJ; Huynh, Dustin H; Loui, Katherine

    2011-01-01

    The purpose of this study was to explore the prevalence of breast cancer anxiety and risk counseling in women undergoing mammography, and the association with known risk factors for cancer. Women awaiting mammography were surveyed regarding anxiety, prior breast cancer risk counseling, demographic and risk factors. Anxiety was assessed via 7-point Likert-type scale (LS). Risk was defined by Gail model or prior breast cancer. Data were analyzed by nonparametric methods; significance determined...

  17. Risk factors for death while awaiting lung transplantation in Israeli patients: 1997-2006.

    Science.gov (United States)

    Shitrit, David; Gershman, Yvgeni; Peled, Nir; Medalion, Benjamin; Saute, Milton; Amital, Anat; Kramer, Mordechai R

    2008-08-01

    Patients with end-stage lung disease very frequently die while awaiting lung transplantation. The aim of this study was to identify factors associated with mortality in patients referred for lung transplant assessment. The files of all consecutive patients listed for lung transplantation in Israel between 1997 and 2006 were reviewed and the data were compared statistically between those who survived to transplantation. A total of 229 patients were listed for lung transplantation, of whom 42 (18.3%) died while awaiting transplantation. Comparison of the patients who survived to transplantation with those who did not using univariate analysis revealed that the died-waiting group was significantly older, used steroids to a greater extent, had more IPF patients and less emphysematous, and lower mean oxygen saturation at rest (p=0.005). There were no between-group differences in comorbid diseases or pulmonary function measurements. The 6 min walk distance was strongly and inversely correlated with risk of death before transplantation (p=0.005). On multivariate analysis, only oxygen saturation at rest was a significant independent risk factor for death while awaiting transplantation (OR 0.886; C.I. 0.805-0.974). There are several risk factors for death in the Israeli population listed for LTX, including age, steroid use, emphysematous patients and lower saturation at rest.

  18. Effects of an educational intervention on the anxiety of women awaiting mastectomies.

    Science.gov (United States)

    Belleau, F P; Hagan, L; Mâsse, B

    2001-01-01

    The purpose of this experimental study was to assess the effects of an individualized psychocognitive educational intervention on preoperative anxiety in women awaiting mastectomies. A total of 60 women aged between 27 and 65 years were randomly distributed to two groups of 30 participants. Using the Situational Anxiety Inventory (IAS) along with repeated-measures variance analysis, it was noted that, immediately following the educational interventions (both experimental and control) there was a significant reduction (p Lazarus and Folkman's stress, appraisal and coping theory which states that direct action on cognitive perception can influence a feeling of threat as assessed through the level of anxiety.

  19. Percutaneous laser ablation of hepatocellular carcinoma in patients with liver cirrhosis awaiting liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Pompili, Maurizio, E-mail: mpompili@rm.unicatt.i [Department of Internal Medicine, Universita Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Roma (Italy); Pacella, Claudio Maurizio, E-mail: claudiomauriziopacella@gmail.co [Department of Diagnostic Imaging and Interventional Radiology, Ospedale Regina Apostolorum, Via S. Francesco D' Assisi, 50, 00041 Albano Laziale (RM) (Italy); Francica, Giampiero, E-mail: giampierofrancica@tin.i [Department of Interventional Ultrasound, Presidio Ospedaliero Camilliani, S. Maria della Pieta, Via S. Rocco, 9, 80026 Casoria (Namibia) (Italy); Angelico, Mario, E-mail: angelico@med.uniroma2.i [Hepatology Unit, Universita di Tor Vergata, Viale Oxford, 81, 00133 Rome (Italy); Tisone, Giuseppe, E-mail: tisone@med.uniroma2.i [Transplant and General Surgery Unit, Universita di Tor Vergata, Ospedale S. Eugenio, Piazzale dell' Umanesimo 10-00144 Rome (Italy); Craboledda, Paolo, E-mail: paolo.craboledda@virgilio.i [Department of Pathology, Ospedale S. Eugenio, Piazzale dell' Umanesimo, 10-00144 Rome (Italy); Nicolardi, Erica; Rapaccini, Gian Ludovico; Gasbarrini, Giovanni [Department of Internal Medicine, Universita Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Roma (Italy)

    2010-06-15

    Objective: The aim of this study was to determine the effectiveness and safety of percutaneous laser ablation for the treatment of cirrhotic patients with hepatocellular carcinoma awaiting liver transplantation. Materials and methods: The data of 9 male cirrhotic patients (mean age 50 years, range 45-60 years) with 12 biopsy proven nodules of hepatocellular carcinoma (mean diameter 2.0 cm, range 1.0-3.0 cm) treated by laser ablation before liver transplantation between June 2000 and January 2006 were retrospectively reviewed. Laser ablation was carried out by inserting 300 nm optical fibers through 21-Gauge needles (from two to four) positioned under ultrasound guidance into the target lesions. A continuous wave Neodymium:Yttrium Aluminium Garnet laser was used. Transarterial chemoembolization prior to liver transplantation was performed in two incompletely ablated tumors. Results: No procedure-related major complications were recorded. During the waiting time to liver transplantation local tumor progression after ablation occurred in 3 nodules (25%). At histological examination of the explanted livers complete necrosis was found in 8 nodules (66.7%, all treated exclusively with laser ablation), partial necrosis >50% in 3 nodules (25%), and partial necrosis <50% in 1 nodule. Conclusion: In patients with cirrhotic livers awaiting liver transplantation, percutaneous laser ablation is safe and effective for the management of small hepatocellular carcinoma.

  20. Alternative Awaiting and Broadcast for Two-Way Relay Fading Channels

    CERN Document Server

    Liu, Jianquan; Tao, Meixia

    2011-01-01

    We investigate a two-way relay (TWR) fading channel based on store-and-forward (SF), where two source nodes wish to exchange information with the help of a relay node. A new upper bound on the ergodic sum-capacity for the TWR fading system is derived when delay tends to infinity.We further propose two alternative awaiting and broadcast (AAB) schemes: pure partial decoding (PPD) with SF-I and combinatorial decoding (CBD) with SF-II, which approach the new upper bound at high SNR with unbounded and bounded delay respectively. Numerical results show that the proposed AAB schemes significantly outperform the traditional physical layer network coding (PLNC) methods without delay. Compared to the traditional TWR schemes without delay, the proposed CBD with SF-II method significantly improves the maximum sum-rate with an average delay of only some dozen seconds in the relay buffer.

  1. Pharmaceutical costs of desensitization therapy in patients awaiting lung transplantation in France.

    Science.gov (United States)

    Liu, Annaë; Bernard, Mélisande

    2014-02-01

    Based on solid experience in renal transplant, new treatments aiming to decrease anti-human leukocyte antigen (HLA) antibodies in patients awaiting lung transplant have recently been developed. The off-label use of high-dose intravenous polyvalent immunoglobulins (IVIg) and/or plasmapheresis changes the economical weight of pharmaceutical cost before lung transplantation. Our objective was to assess the budgetary impact of pharmaceutical costs of desensitization therapy. Two observational studies were conducted in 2009 and 2010 at the Bichat Claude Bernard (BCB) hospital in France. The first assessed the real pharmaceutical costs, and identified cost drivers, of desensitized (D+) patients awaiting lung transplantation. The second compared pharmaceutical and clinical data between D+ and non-treated (D-) patients. The major cost drivers were IVIg, representing 89.7 % of pharmaceutical costs. The real cost of drugs was €4,392 ± 647 per hospitalization. Mean hospitalization and annual pharmaceutical costs per patient were significantly higher for D+ than for D- patients (€6,972 vs. 2,925 and €13,074 vs. 399). D+ patients had a significantly higher average number of annual hospitalizations than did D- patients. Total IVIg costs represented 98 % of the pharmaceutical costs for desensitization stays. Pharmaceutical costs represented 40 % of total hospitalization costs for D+ versus only 7 % for D-. New desensitization protocols can help to manage the immunological hurdle of anti-donor antibodies in lung transplantation. They are expensive and not yet correctly covered by national health insurance, as they are supported by hospital budgets. A medico-economical evaluation of IVIg use in this indication seems necessary.

  2. Association between preoperative magnetic resonance imaging, pain intensity and quantitative sensory testing in patients awaiting lumbar diskectomy.

    LENUS (Irish Health Repository)

    Hegarty, Dominic

    2011-02-01

    Magnetic resonance imaging (MRI) offers important information regarding the morphology, location and size of a herniated disc, which influences the decision to offer lumbar diskectomy (LD). This study aims to examine the association between clinical neurophysiologic indices including pain intensity and quantitative sensory testing (QST), and the degree of lumbar nerve root compromise depicted on magnetic resonance (MR) in patients awaiting LD.

  3. Risk Factors for Portal Vein Thrombosis in Patients With Cirrhosis Awaiting Liver Transplantation in Shiraz, Iran

    Directory of Open Access Journals (Sweden)

    Bagheri Lankarani

    2015-12-01

    Full Text Available Background Portal vein thrombosis is a fairly common and potentially life-threatening complication in patients with liver cirrhosis. The risk factors for portal vein thrombosis in these patients are still not fully understood. Objectives This study aimed to investigate the associations between various risk factors in cirrhotic patients and the development of portal vein thrombosis. Patients and Methods In this case-control study performed at the Shiraz organ transplantation center, Iran, we studied 219 patients (> 18 years old with liver cirrhosis, who were awaiting liver transplants in our unit, from November 2010 to May 2011. The patients were evaluated by history, physical examination, and laboratory tests, including factor V Leiden, prothrombin gene mutation, Janus Kinase 2 (JAK2 mutation, and serum levels of protein C, protein S, antithrombin III, homocysteine, factor VIII, and anticardiolipin antibodies. Results There was no statistically significant difference in the assessed hypercoagulable states between patients with or without portal vein thrombosis. A history of previous variceal bleeding with subsequent endoscopic treatment in patients with portal vein thrombosis was significantly higher than in those without it (P = 0.013, OR: 2.526, 95% CI: 1.200 - 5.317. Conclusions In our population of cirrhotic patients, treatment of variceal bleeding predisposed the patients to portal vein thrombosis, but hypercoagulable disorders by themselves were not associated with portal vein thrombosis.

  4. Loco-regional therapies for patients with hepatocellular carcinoma awaiting liver transplantation: Selecting an optimal therapy.

    Science.gov (United States)

    Byrne, Thomas J; Rakela, Jorge

    2016-06-24

    Hepatocellular carcinoma (HCC) is a common, increasingly prevalent malignancy. For all but the smallest lesions, surgical removal of cancer via resection or liver transplantation (LT) is considered the most feasible pathway to cure. Resection - even with favorable survival - is associated with a fairly high rate of recurrence, perhaps since most HCCs occur in the setting of cirrhosis. LT offers the advantage of removing not only the cancer but the diseased liver from which the cancer has arisen, and LT outperforms resection for survival with selected patients. Since time waiting for LT is time during which HCC can progress, loco-regional therapy (LRT) is widely employed by transplant centers. The purpose of LRT is either to bridge patients to LT by preventing progression and waitlist dropout, or to downstage patients who slightly exceed standard eligibility criteria initially but can fall within it after treatment. Transarterial chemoembolization and radiofrequency ablation have been the most widely utilized LRTs to date, with favorable efficacy and safety as a bridge to LT (and for the former, as a downstaging modality). The list of potentially effective LRTs has expanded in recent years, and includes transarterial chemoembolization with drug-eluting beads, radioembolization and novel forms of extracorporal therapy. Herein we appraise the various LRT modalities for HCC, and their potential roles in specific clinical scenarios in patients awaiting LT.

  5. [Cytotoxicity of natural anti-HLA antibodies in Moroccan patients awaiting for kidney transplantation].

    Science.gov (United States)

    Benseffaj, Nadia; Ouadghiri, Sanae; Bourhanbour, Asmaa Drissi; Zerrouki, Asmae Noor; Essakalli, Malika

    2017-02-01

    The presence of anti-HLA antibodies in the serum of a patient result from an immune response produced during an immunizing event as transfusion, pregnancy or graft. These antibodies can be cytotoxic by activating the complement pathway via C1q and may cause organ rejection during the transplant. Some male patients awaiting kidney transplantation are seropositive for anti-HLA antibodies when they have no immunizing antecedent event. These antibodies are qualified as natural antibodies. Our work is to assess the cytotoxicity of natural anti-HLA antibodies in patients followed at the immunology laboratory of the blood transfusion service and hemovigilance (STSH) as part of the kidney transplant. We evaluated the cytotoxicity of HLA antibodies detected in male Moroccan patients without immunization history using C1qScreen One Lambda reagent for Luminex™. Non-immunized men were positive for HLA antibodies screening in 25.4%. These antibodies are not cytotoxic. Our study showed a positivity rate of natural HLA antibody low than the literature (25.4% against 63%). It appears that these natural antibodies are not cytotoxic and their involvement in renal transplant remains to be determined. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  6. Unity with PMA-2 attached awaits further processing in the SSPF

    Science.gov (United States)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  7. Unity with PMA-2 attached awaits further processing in the SSPF

    Science.gov (United States)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  8. Genomic understanding of dinoflagellates.

    Science.gov (United States)

    Lin, Senjie

    2011-01-01

    The phylum of dinoflagellates is characterized by many unusual and interesting genomic and physiological features, the imprint of which, in its immense genome, remains elusive. Much novel understanding has been achieved in the last decade on various aspects of dinoflagellate biology, but most remarkably about the structure, expression pattern and epigenetic modification of protein-coding genes in the nuclear and organellar genomes. Major findings include: 1) the great diversity of dinoflagellates, especially at the base of the dinoflagellate tree of life; 2) mini-circularization of the genomes of typical dinoflagellate plastids (with three membranes, chlorophylls a, c1 and c2, and carotenoid peridinin), the scrambled mitochondrial genome and the extensive mRNA editing occurring in both systems; 3) ubiquitous spliced leader trans-splicing of nuclear-encoded mRNA and demonstrated potential as a novel tool for studying dinoflagellate transcriptomes in mixed cultures and natural assemblages; 4) existence and expression of histones and other nucleosomal proteins; 5) a ribosomal protein set expected of typical eukaryotes; 6) genetic potential of non-photosynthetic solar energy utilization via proton-pump rhodopsin; 7) gene candidates in the toxin synthesis pathways; and 8) evidence of a highly redundant, high gene number and highly recombined genome. Despite this progress, much more work awaits genome-wide transcriptome and whole genome sequencing in order to unfold the molecular mechanisms underlying the numerous mysterious attributes of dinoflagellates.

  9. Human leucocyte antigens: their association with end-stage renal disease in Saudi patients awaiting transplantation.

    Science.gov (United States)

    Almogren, A; Shakoor, Z; Hamam, K D

    2012-01-01

    Most patients with chronic renal failure develop end-stage renal disease (ESRD) that requires renal transplantation. This study investigates the possible associations between human leucocyte antigen (HLA) Class I and Class II molecules with ESRD. Genotyping data (HLA) obtained between 2005 and 2009 on 235 unrelated Saudi patients (147 males, 88 females; mean age: 58 +/- 7 years) with ESRD awaiting renal transplantation were assessed retrospectively at the King Khalid University Hospital. Data were compared with the results on 60 normal, healthy, unrelated Saudi individuals (37 males and 23 females; mean age: 51 +/- 5 years). HLA Class I and Class II antigens were detected by lymphocytotoxicity and a polymerase chain reaction (PCR) method using DNA sequence-specific primers. Although present in small numbers, HLA Cw2 was found in significantly fewer patients (n = 11; 4.68%) compared to normal subjects (n = 9; 15%) and was found to confer protection against ESRD (P = 0.005; relative risk [RR]: 3.594, 95% confidence interval [CI]: 1.415-9.126). Among the HLA Class II antigens, HLA DQB1*03(8) was detected more frequently in the patient group (n = 65; 27.6%) than in the normal controls (n = 9; 15%) and was positively associated with risk of ESRD (P = 0.04; RR: 0.462, 95% CI: 0.215-0.991). No significant differences were observed between the two groups in respect of HLA-A2, HLA-B50(21), HLA-B51(5) and HLA-Cw7 (HLA Class I), and HLA-DRB1*04, HLA-DRB1*07 and HLA-DQB1*02 (HLA Class II). Occurrence of the most frequent HLA alleles was no different between the ESRD group and the controls. The protective role of HLA-Cw2 and the marginal susceptibility associated with HLA-DQBI*03(8) for ESRD requires further investigation.

  10. Red blood cell and leukocyte alloimmunization in patients awaiting kidney transplantation

    Science.gov (United States)

    da Silva, Silvia Fernandes Ribeiro; Ferreira, Gláucia Maria; da Silva, Sonia Leite; Alves, Tânia Maria de Oliveira; Ribeiro, Ilana Farias; Ribeiro, Thyciana Rodrigues; Cavalcante, Maria do Carmo Serpa

    2013-01-01

    Objective To determine the rates of red blood cell and leukocyte alloimmunization in patients with chronic kidney disease awaiting kidney transplantation. Methods In this cross-sectional and prospective study, the serum of 393 chronic kidney disease patients on a transplant waiting list in Ceará, Northeastern Brazil were tested for red cell and leukocyte antibodies. In addition, demographic, clinical and laboratory data were collected. Results The average age in the sample of 393 patients was 34.1 ± 14 years. Slightly more than half (208; 52.9%) were male. The average numbers of transfusions and gestations were 3.1 ± 3.3 and 1.6 ± 6, respectively. One third (33.6%) were alloimmunized: 78% with leukocyte antibodies, 9.1% with red cell antibodies and 12.9% with both. Red cell antibodies were detected in 29 cases (7.4%), 17 of whom were women, who had received more transfusions than the males (p-value < 0.0001). The most frequently detected red cell antibodies belonged to the Rh (24.1%) and Kell (13.8%) blood group systems. Leukocyte antibodies were detected in 30.5% of cases, 83 of whom were women, who had received more transfusions than the males (p-value < 0.0001) and were more reactive to panel reactive antibodies (p-value < 0.0001). The mean alloreactivity to panel reactive antibodies was 47.7 ± 31.2%. Conclusion Chronic kidney disease patients on the transplant waiting list in Ceará, Brazil, display high rates of red cell (7.4%) and leukocyte (30.5%) alloimmunization. In this sample, alloimmunization was significantly associated with the number of transfusions and gender. PMID:23904808

  11. Association of lung perfusion disparity and mortality in patients with cystic fibrosis awaiting lung transplantation.

    Science.gov (United States)

    Stanchina, Michael L; Tantisira, Kelan G; Aquino, Suzanne L; Wain, John C; Ginns, Leo C

    2002-02-01

    The risk of death for patients with end-stage cystic fibrosis awaiting lung transplantation remains high and most patients succumb to respiratory failure. This study was conducted to evaluate the usefulness of ventilation-perfusion scintillation scans, obtained during the pre-transplant period, to identify patterns that predict prognosis while on the waiting list. These patterns were compared with other pulmonary physiologic markers of ventilation and perfusion obtained from pulmonary function and cardiopulmonary exercise tests. From November 1990 to January 1999, 46 patients with cystic fibrosis were listed for bilateral lung transplantation. Fourteen (30.4%) died while waiting for a transplant (Group 1), whereas 32 were transplanted successfully or remain alive and waiting (Group 2). Mean arterial blood gas values, Brasfield radiograph scores, cardiopulmonary exercise data and the degree of scintillation scan abnormalities between lungs were compared for each group. Mean survival for Group 1 was 10.2 +/- 1.7 months, and for Group 2 was 23.5 +/- 3.0 months (p < 0.001). The right upper lung zone was the most severely affected segment. The Cox proportional hazards model revealed an increased perfusion disparity and resting hypercapnia as the main predictors of death while on the transplant list. The Kaplan-Meier analysis indicated greater survival for the groups with <30% disparity between lungs on the pre-transplant scintillation scans. The results suggest that severe, unilateral perfusion abnormalities seen on scintillation scans in patients with cystic fibrosis are associated with an increased risk of dying while on the lung transplant waiting list and may be helpful in identifying patients who should be considered for early or living-donor transplantation.

  12. Physical activity as viewed by adults with severe obesity, awaiting gastric bypass surgery.

    Science.gov (United States)

    Wiklund, Malin; Olsén, Monika Fagevik; Willén, Carin

    2011-09-01

    Today, it is known that adults suffering from obesity benefit from physical activity. There is however lack of research with regard to how patients with severe obesity experience physical activity. It is important to explore this topic in order to be able to improve communication with and to tailor information and exercise programmes for patients suffering with obesity. The aim of the present qualitative study was to describe how adults with severe obesity, awaiting gastric bypass surgery experience physical activity. A qualitative method inspired by a phenomenographic approach was used to analyze the data. Data collection was performed by in-depth semi-structured interviews with 18 patients. All patients were aged between 18 and 65 years, suffered from severe obesity and were scheduled for laparoscopic Roux-en Y gastric bypass surgery at Sahlgrenska University Hospital in Sweden. The analysis resulted in nine qualitatively different categories that were then divided into four aspects: 'the obese body', 'the mind', 'knowledge' and 'the environment'. Many patients experienced well-being after physical activity, but most patients were uncomfortable with appearing in public wearing exercise clothing. The excess weight itself was considered an obstacle, and weight loss was assumed to facilitate physical activity. Exercising together with someone at the same level of fitness increased motivation. A white lie about training was sometimes used to satisfy the need to be seen as capable. Physical activity is experienced positively among adults with severe obesity, but many obstacles exist that influence their capacity and their will. Support is necessary in different ways, not only to initiate physical activity, but also to maintain it. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Outcomes of Chinese Patients with End-stage Pulmonary Disease while Awaiting Lung Transplantation: A Single-center Study

    Institute of Scientific and Technical Information of China (English)

    Wen-Xin He; Yu-Ling Yang; Yan Xia; Nan Song; Ming Liu; Peng Zhang; Jiang Fan

    2016-01-01

    Background: The factors affecting the outcome of patients referred for lung transplantation (LTx) still have not been investigated extensively.The aim of this study was to characterize the patient outcomes and identify the prognostic factors for death while awaiting the LTx.Methods: From January 2003 to November 2013, the clinical data of 103 patients with end-stage lung disease that had been referred for LTx to Department of Thoracic Surgery, Shanghai Pulmonary Hospital were analyzed retrospectively.The relationship between predictors and survival was evaluated using the Kaplan-Meier method and the Cox proportional hazards model.Results: Twenty-five patients (24.3%) died while awaiting the LTx.Fifty patients (48.5%) underwent LTx, and 28 patients (27.2%) were still on the waitlist.Compared to the candidates with chronic obstructive pulmonary disease (COPD), patients with idiopathic pulmonary fibrosis (IPF) had a higher mortality while awaiting the LTx (40.0% vs.12.3%, P =0.003).Patients requiring mechanical ventilation (MV) had a higher mortality while waiting than others (50.0% vs.20.2%, P =0.038).Two variables, using MV and IPF but not COPD as primary disease, emerged as significant independent risk factors for death on the waitlist (hazard ratio [HR] =56.048, 95% confidence interval [CI]: 3.935-798.263, P =0.003 and HR =14.859, 95% CI: 2.695-81.932, P =0.002, respectively).Conclusion: The type of end-stage lung disease, pulmonary hypertension, and MV may be distinctive prognostic factors for death while awaiting the LTx.

  14. Risk of death among those awaiting treatment for HIV infection in Zimbabwe: adolescents are at particular risk

    Directory of Open Access Journals (Sweden)

    Amir Shroufi

    2015-02-01

    Full Text Available Introduction: Mortality among HIV-positive adults awaiting antiretroviral therapy (ART has previously been found to be high. Here, we compare adolescent pre-ART mortality to that of adults in a public sector HIV care programme in Bulawayo, Zimbabwe. Methods: In this retrospective cohort study, we compared adolescent pre-ART outcomes with those of adults enrolled for HIV care in the same clinic. Adolescents were defined as those aged 10–19 at the time of registration. Comparisons of means and proportions were carried out using two-tailed sample t-tests and chi-square tests respectively, for normally distributed data, and the Mann–Whitney U-tests for non-normally distributed data. Loss to follow-up (LTFU was defined as missing a scheduled appointment by three or more months. Results: Between 2004 and 2010, 1382 of 1628 adolescents and 7557 of 11,106 adults who registered for HIV care met the eligibility criteria for ART. Adolescents registered at a more advanced disease stage than did adults (83% vs. 73% WHO stage III/IV, respectively, p<0.001, and the median time to ART initiation was longer for adolescents than for adults [21 (10–55 days vs. 15 (7–42 days, p<0.001]. Among the 138 adolescents and 942 adults who never commenced ART, 39 (28% of adolescents and 135 (14% of adults died, the remainder being LTFU. Mortality among treatment-eligible adolescents awaiting ART was significantly higher than among adults (3% vs. 1.8%, respectively, p=0.004. Conclusions: Adolescents present to ART services at a later clinical stage than adults and are at an increased risk of death prior to commencing ART. Improved and innovative HIV case-finding approaches and emphasis on prompt ART initiation in adolescents are urgently needed. Following registration, defaulter tracing should be used, whether or not ART has been commenced.

  15. The evolution of genome mining in microbes – a review

    DEFF Research Database (Denmark)

    Ziemert, Nadine; Alanjary, Mohammad; Weber, Tilmann

    2016-01-01

    clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews......Covering: 2006 to 2016. The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene...

  16. Association of Fatigue with Perceived Stress in Chinese Women with Early Stage Breast Cancer Awaiting Adjuvant Radiotherapy.

    Science.gov (United States)

    Ho, Rainbow T H; Kwan, Tracy T C; Cheung, Irene K M; Chan, Caitlin K P; Lo, Phyllis H Y; Yip, Paul S F; Luk, Mai-Yee; Chan, Cecilia L W

    2015-08-01

    Cancer-related fatigue (CRF) is common in women with breast cancer, but little is known of its relationship with perceived stress. We conducted a cross-sectional study to explore the associations of CRF with perceived stress, anxiety, depression, pain and sleep quality in 133 Chinese women (aged 25-68 years) with early stage breast cancer. The majority of women had completed surgery and chemotherapy and were awaiting radiotherapy. Self-administered questionnaires consisting of the Brief Fatigue Inventory, Perceived Stress Scale-10, Hospital Anxiety and Depression Scale, Brief Pain Inventory, and Pittsburgh Sleep Quality Index were used to collect data. Forty-five per cent of the women were severely fatigued. Compared with local healthy women and US breast cancer patients, the group's mean perceived stress score was significantly higher (both p perceived stress (β = 0.18, p = 0.032), higher anxiety (β = 0.30, p perceived stress was partially mediated by anxiety, suggesting a possible pathway from cancer and cancer treatment to CRF via stress appraisals and emotional distress. The findings indicate the importance of monitoring the psychological status of patients during treatment. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Long-awaited pregnancy

    DEFF Research Database (Denmark)

    Bay, Bjørn; Mortensen, Erik Lykke; Golombok, Susan

    2016-01-01

    as unplanned (n = 1,827). Intervention(s): The children were followed up using questionnaires and information from Danish national registers. Main Outcome Measure(s): Parent reported school difficulties at ages 9–11 years, register-based school grades at ages 16, 17, and 19 years, and conscription intelligence...... age of 19 years. These children were born as a result of fertility treatment (n = 210), had subfertile parents who took more than 12 months before conceiving naturally (n = 334), had fertile parents who conceived naturally within 12 months (n = 2,661), or had parents who reported the pregnancy...... test scores at age 19 years. Result(s): We found no evidence of school difficulties in childhood, impaired school performance in adolescence, or lower intelligence in young adulthood in multivariate analyses adjusted for parental age, educational level, maternal parity, before pregnancy body mass index...

  18. Usefulness of an accelerated transoesophageal stress echocardiography in the preoperative evaluation of high risk severely obese subjects awaiting bariatric surgery

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2010-07-01

    Full Text Available Abstract Background Severe obesity is associated with an increased risk of coronary artery disease (CAD. Bariatric surgery is an effective procedure for long term weight management as well as reduction of comorbidities. Preoperative evaluation of cardiac operative risk may often be necessary but unfortunately standard imaging techniques are often suboptimal in these subjects. The purpose of this study was to demonstrate the feasibility, safety and utility of transesophageal dobutamine stress echocardiography (TE-DSE using an adapted accelerated dobutamine infusion protocol in severely obese subjects with comorbidities being evaluated for bariatric surgery for assessing the presence of myocardial ischemia. Methods Subjects with severe obesity [body mass index (BMI >40 kg/m2] with known or suspected CAD and being evaluated for bariatric surgery were recruited. Results Twenty subjects (9M/11F, aged 50 ± 8 years (mean ± SD, weighing 141 ± 21 kg and with a BMI of 50 ± 5 kg/m2 were enrolled in the study and underwent a TE-DSE. The accelerated dobutamine infusion protocol used was well tolerated. Eighteen (90% subjects reached their target heart rate with a mean intubation time of 13 ± 4 minutes. Mean dobutamine dose was 31.5 ± 9.9 ug/kg/min while mean atropine dose was 0.5 ± 0.3 mg. TE-DSE was well tolerated by all subjects without complications including no significant arrhythmia, hypotension or reduction in blood arterial saturation. Two subjects had abnormal TE-DSE suggestive of myocardial ischemia. All patients underwent bariatric surgery with no documented cardiovascular complications. Conclusions TE-DSE using an accelerated infusion protocol is a safe and well tolerated imaging technique for the evaluation of suspected myocardial ischemia and cardiac operative risk in severely obese patients awaiting bariatric surgery. Moreover, the absence of myocardial ischemia on TE-DSE correlates well with a low operative risk of cardiac event.

  19. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Patrícia Forestieri

    Full Text Available Abstract Objective: The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods: Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1 Control Group (n=11 - conventional protocol; and 2 Intervention Group (n=7 - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results: Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P =0.08 and P =0.001 for the control and intervention groups, respectively. Intergroup comparison revealed a greater increase in the intervention group compared to the control (P <0.001. Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P =0.22 and P <0.01, respectively. Intergroup comparison showed a significant increase in the intervention group compared to the control (P <0.01. Conclusion: Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support.

  20. An elevated breathing reserve index at the lactate threshold is a predictor of mortality in patients with cystic fibrosis awaiting lung transplantation.

    Science.gov (United States)

    Tantisira, Kelan G; Systrom, David M; Ginns, Leo C

    2002-06-15

    The proportion of cystic fibrosis (CF) patients dying while on the lung transplant wait list remains high; identification of such patients remains difficult. The breathing reserve index (BRI = minute ventilation/maximal voluntary ventilation) at the lactate threshold (LT) is a predictor of a pulmonary mechanical limit to incremental exercise. We hypothesized that an elevated BRI at the LT in patients with CF awaiting lung transplantation would be a predictor of wait list mortality. Forty-five consecutive patients with CF completed cardiopulmonary exercise testing as part of their pretransplant assessment. We evaluated BRI at LT, baseline demographic characteristics, pulmonary function, and other exercise parameters via Cox proportional hazards modeling. Fifteen patients died while awaiting transplant. Twenty one were transplanted, and nine still awaited transplantation. Relative risks from the multivariate model included (95% confidence interval in parentheses) BRI at LT, 17.52 (2.45-123.97); resting Pa(CO(2)), 1.29 (1.10-1.49); resting Pa(O(2)), 0.97 (0.90-1.05); and forced expiratory volume at one second as a percent of predicted, 1.19 (1.05-1.34). BRI at LT not only provided the highest point estimate of risk for wait list mortality but also identified a physiologically significant threshold value (0.70 or more) for those at risk. This measurement may allow improved timing of listing for transplantation, including consideration for living donor transplantation.

  1. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    Science.gov (United States)

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  2. Limitations of the MELD score in predicting mortality or need for removal from waiting list in patients awaiting liver transplantation

    Directory of Open Access Journals (Sweden)

    Schmidt Jan

    2009-09-01

    Full Text Available Abstract Background Decompensated cirrhosis is associated with a poor prognosis and liver transplantation provides the only curative treatment option with excellent long-term results. The relative shortage of organ donors renders the allocation algorithms of organs essential. The optimal strategy based on scoring systems and/or waiting time is still under debate. Methods Data sets of 268 consecutive patients listed for single-organ liver transplantation for nonfulminant liver disease between 2003 and 2005 were included into the study. The Model for End-Stage Liver Disease (MELD and Child-Turcotte-Pugh (CTP scores of all patients at the time of listing were used for calculation. The predictive ability not only for mortality on the waiting list but also for the need for withdrawal from the waiting list was calculated for both scores. The Mann-Whitney-U Test was used for the univariate analysis and the AUC-Model for discrimination of the scores. Results In the univariate analysis comparing patients who are still on the waiting list and patients who died or were removed from the waiting list due to poor conditions, the serum albumin, bilirubin INR, and CTP and MELD scores as well as the presence of ascites and encephalopathy were significantly different between the groups (p Comparing the predictive abilities of CTP and MELD scores, the best discrimination between patients still alive on the waiting list and patients who died on or were removed from the waiting list was achieved at a CTP score of ≥9 and a MELD score of ≥14.4. The sensitivity and specificity to identify mortality or severe deterioration for CTP was 69.0% and 70.5%, respectively; for MELD, it was 62.1% and 72.7%, respectively. This result was supported by the AUC analysis showing a strong trend for superiority of CTP over MELD scores (AUROC 0.73 and 0.68, resp.; p = 0.091. Conclusion The long term prediction of mortality or removal from waiting list in patients awaiting liver

  3. Does vitamin C or its combination with vitamin E improve radial artery endothelium-dependent vasodilatation in patients awaiting coronary artery bypass surgery?

    OpenAIRE

    Uzun, Alper; Yener, Umit; Cicek, Omer Faruk; Yalcinkaya, Adnan; Diken, Adem; Ozkan, Turgut; Ulas, Mahmut; Yener, Ozlem; Turkvatan, Aysel

    2013-01-01

    Background We evaluated the vasodilatory effects of two antioxidants, vitamins C (ascorbic acid) and E (α-tocopherol), on radial artery and endothelium-dependent responses in patients awaiting coronary artery bypass surgery. Methods The study was performed in three groups. The first group took 2 g of vitamin C orally (n = 31, vitamin C group), the second group took 2 g of vitamin C with 600 mg of vitamin E orally (n = 31, vitamins C + E group), and the third group took no medication (n = 31, ...

  4. Telaprevir-containing regimen for treatment of hepatitis C virus infection in patients with hepatocellular carcinoma awaiting liver transplantation: a case series

    Science.gov (United States)

    Torres, Harrys A; Kaseb, Ahmed; Mahale, Parag; Miller, Ethan; Frenette, Catherine

    2014-01-01

    In patients who undergo liver transplantation (LT), allograft failure secondary to hepatitis C virus (HCV) recurrence after LT accounts for two-thirds of graft failures and deaths. Achievement of sustained virologic response before LT eliminates the risk of HCV recurrence. Only a limited number of studies have evaluated the role of antiviral treatment before LT. No published data are available regarding the use of HCV protease inhibitors before LT. We report our experience using the combination of telaprevir, pegylated interferon alfa-2a (PegIFN alfa-2a), and ribavirin in three patients with HCV-associated hepatocellular carcinoma (HCC) awaiting LT. Two patients had not received, and one had had a partial response to HCV therapy (PegIFN alfa-2a plus ribavirin). All three patients had genotype 1b and were started on telaprevir and full doses of PegIFN alfa-2a and ribavirin. Treatment was planned to be continued until the day of LT or 48 weeks total, whichever came first. One patient still had detectable HCV RNA after 24 weeks of antivirals and was, therefore, excluded from further analysis. The other two patients had undetectable HCV RNA at the end of antiviral therapy. In one of these patients, HCV RNA remained undetectable after LT; the other patient experienced viral relapse. HCV therapy was tolerated by all patients; no patient required permanent discontinuation of therapy because of toxic effects. All three patients experienced hematologic toxic effects. Only one patient required treatment discontinuation, due to progression of HCC. The use of telaprevir-containing regimens appears to be safe in selected patients with HCV-associated HCC awaiting LT, but more studies are warranted to evaluate the safety and efficacy of this treatment combination to prevent post-LT viral recurrence. PMID:27508180

  5. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  6. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  7. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bazilian, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denny, E. [Ecar Limited (Ireland); Dillon, J. [Ecar Limited (Ireland); Bialek, J. [Ecar Limited (Ireland); O' Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The rapid deployment of renewable sources of electricity (RES-E) is transforming power systems globally. This trend is likely to continue with large increases in investment and deployment of RES-E capacity over the coming decades. Several countries now have penetration levels of variable RES-E generation (i.e., wind and solar) in excess of 15% of their annual electricity generation; and many jurisdictions (e.g., Spain, Portugal, Ireland, Germany, and Denmark; and, in the United States, Colorado) have experienced instantaneous penetration levels of more than 50% variable generation.1 These penetration levels of variable RES-E have prompted many jurisdictions to begin modifying practices that evolved in an era of readily dispatchable, centralised power systems. Providing insights for the transition to high levels of variable RES-E generation is the focus of this document, which is the final report of the RES-E-NEXT project commissioned by the International Energy Agency’s implementing agreement on Renewable Energy Technology Deployment (IEA-RETD). It presents a comprehensive assessment of issues that will shape power system evolution during the transition to high levels of variable RES-E generation. While policy will be a central tool to sustain the growth of RES-E capacity and to enable power system transitions, the scope of the report extends beyond policy considerations to include the related domains of regulation, power market design, and system operation protocols. This broad scope is in recognition that a changing resource mix with greater penetration levels of variable RES-E has broad implications for grid operations, wholesale and retail power markets, and infrastructure needs. The next decade will be a critical transition period for power system stakeholders, as global deployment of RES-E capacity (and especially variable RES-E capacity) continues to scale-up in many regions of the world. To address increased penetration levels of RES-E in power systems and the new challenges that could emerge, coordinated portfolios of policies, market designs, regulations, and operational protocols are essential. The goal for policymakers is to facilitate investment in RES-E technologies and to enable efficient and reliable system operation, costeffective service delivery, and continued public acceptance. Although the factors that impact the speed and scale of RES-E deployment manifest uniquely in each power system, in the transition to high shares of variable RES-E this report identifies four critical domains and the changing drivers that will shape next-generation policy for each. These domains are introduced in Table I, and comprise the major sections of this report.

  8. Expectativas e sentimentos de mulheres que esperam por tratamento de reprodução humana Expectations and feelings of women awaiting human reproduction treatment

    Directory of Open Access Journals (Sweden)

    Claudia Valença Fontenele

    2013-01-01

    Full Text Available Trata-se de pesquisa qualitativa com o objetivo de verificar as opiniões, as emoções e os sentimentos de mulheres laqueadas acerca da expectativa pelo tratamento de reprodução humana assistida num ambulatório especializado. As entrevistas foram realizadas em um hospital da rede pública de saúde, na Região Sudeste do Brasil, São Paulo, com 16 mulheres esterilizadas. Como resultados, as seguintes temáticas foram as mais frequentes: ansiedade, assombro do tempo e "des-atenção" dos profissionais de saúde, que foram vivenciados nos momentos em que os sentimentos de solidão e abandono se mostraram mais agudos sob a perspectiva das mulheres. Do estudo emerge a necessidade de se pensar estratégias de atenção e cuidado junto a essa população específica no campo da saúde, visando melhorar seu conforto emocional por meio de um diálogo franco entre mulheres e profissionais de saúde.This paper aimed to investigate the opinions, emotions and feelings of sterilized women awaiting assisted human reproduction treatment in a specialized sector of a public hospital. Sixteen sterilized women were interviewed in the health care department of a public hospital in São Paulo, southeastern Brazil, as to their experiences while they had been awaiting treatment. The feelings referred to were: anxiety, the fear of taking up the time of the health personnel, and fear of their dis-attention, experienced during the moments when the women's feelings of loneliness and abandonment became most acute. It is evident from this study that there is a need to create strategies to guarantee that this specific population in the health field receive adequate attention and care, with a view to ensuring their emotional comfort, through a straightforward dialogue among women and healthcare professionals.

  9. Telaprevir-containing regimen for treatment of hepatitis C virus infection in patients with hepatocellular carcinoma awaiting liver transplantation: a case series

    Directory of Open Access Journals (Sweden)

    Torres HA

    2014-07-01

    Full Text Available Harrys A Torres,1 Ahmed Kaseb,2 Parag Mahale,1 Ethan Miller,3 Catherine Frenette4 1Department of Infectious Diseases, Infection Control and Employee Health, 2Department of Gastrointestinal Medical Oncology, 3Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Liver Transplantation, Weill Cornell Medical College, The Methodist Hospital, Houston, TX, USA Abstract: In patients who undergo liver transplantation (LT, allograft failure secondary to hepatitis C virus (HCV recurrence after LT accounts for two-thirds of graft failures and deaths. Achievement of sustained virologic response before LT eliminates the risk of HCV recurrence. Only a limited number of studies have evaluated the role of antiviral treatment before LT. No published data are available regarding the use of HCV protease inhibitors before LT. We report our experience using the combination of telaprevir, pegylated interferon alfa-2a (PegIFN alfa-2a, and ribavirin in three patients with HCV-associated hepatocellular carcinoma (HCC awaiting LT. Two patients had not received, and one had had a partial response to HCV therapy (PegIFN alfa-2a plus ribavirin. All three patients had genotype 1b and were started on telaprevir and full doses of PegIFN alfa-2a and ribavirin. Treatment was planned to be continued until the day of LT or 48 weeks total, whichever came first. One patient still had detectable HCV RNA after 24 weeks of antivirals and was, therefore, excluded from further analysis. The other two patients had undetectable HCV RNA at the end of antiviral therapy. In one of these patients, HCV RNA remained undetectable after LT; the other patient experienced viral relapse. HCV therapy was tolerated by all patients; no patient required permanent discontinuation of therapy because of toxic effects. All three patients experienced hematologic toxic effects. Only one patient required treatment

  10. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF.

    Science.gov (United States)

    Alezi, Dalal; Spanopoulos, Ioannis; Tsangarakis, Constantinos; Shkurenko, Aleksander; Adil, Karim; Belmabkhout, Youssef; O Keeffe, Michael; Eddaoudi, Mohamed; Trikalitis, Pantelis N

    2016-10-05

    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or "cubic graphite" structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal-organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm(3) g(-1), respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g(-1) and 210.4 cm(3) (STP) cm(-3) at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm(-3) at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  11. Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF

    KAUST Repository

    Alezi, Dalal

    2016-10-05

    The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or “cubic graphite” structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal–organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm3 g–1, respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g–1 and 210.4 cm3 (STP) cm–3 at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm–3 at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.

  12. Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA

    Science.gov (United States)

    Prakash, Ashwin; Bechtel, Jason; Fedorov, Alexei

    2011-01-01

    Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition. PMID:21610667

  13. Awaiting Cyber 9/11

    Science.gov (United States)

    2013-01-01

    understanding the definition of the cyber domain. Cyberspace is a manmade domain created by information technologies. It is composed of radio waves ...in powerplants and factories around the world.23 More complex than any virus ever seen, Stuxnet was designed to attack industrial systems referred

  14. Antarctic Genomics

    Directory of Open Access Journals (Sweden)

    Alex D. Rogers

    2006-03-01

    Full Text Available With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies.

  15. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  16. Genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  17. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew D.; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...... evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics....

  18. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria......, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...... active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described...

  19. Listeria Genomics

    Science.gov (United States)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  20. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  1. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen;

    2015-01-01

    , archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when...

  2. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austri...

  3. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans...

  4. From Utopia to Science: Challenges of Personalised Genomics Information for Health Management and Health Enhancement.

    Science.gov (United States)

    Zwart, Hub

    2009-06-01

    From 1900 onwards, scientists and novelists have explored the contours of a future society based on the use of "anthropotechnologies" (techniques applicable to human beings for the purpose of performance enhancement ranging from training and education to genome-based biotechnologies). Gradually but steadily, the technologies involved migrated from (science) fiction into scholarly publications, and from "utopia" (or "dystopia") into science. Building on seminal ideas borrowed from Nietzsche, Peter Sloterdijk has outlined the challenges inherent in this development. Since time immemorial, and at least since the days of Plato's Academy, human beings have been interested in possibilities for (physical or mental) performance enhancement. We are constantly trying to improve ourselves, both collectively and individually, for better or for worse. At present, however, new genomics-based technologies are opening up new avenues for self-amelioration. Developments in research facilities using animal models may to a certain extent be seen as expeditions into our own future. Are we able to address the bioethical and biopolitical issues awaiting us? After analyzing and assessing Sloterdijk's views, attention will shift to a concrete domain of application, namely sport genomics. For various reasons, top athletes are likely to play the role of genomics pioneers by using personalized genomics information to adjust diet, life-style, training schedules and doping intake to the strengths and weaknesses of their personalized genome information. Thus, sport genomics may be regarded as a test bed where the contours of genomics-based self-management are tried out.

  5. Ancient genomics.

    Science.gov (United States)

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  6. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D.; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a My

  7. The function genomics study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Genomics is a biology term appeared ten years ago, used to describe the researches of genomic mapping, sequencing, and structure analysis, etc. Genomics, the first journal for publishing papers on genomics research was born in 1986. In the past decade, the concept of genomics has been widely accepted by scientists who are engaging in biology research. Meanwhile, the research scope of genomics has been extended continuously, from simple gene mapping and sequencing to function genomics study. To reflect the change, genomics is divided into two parts now, the structure genomics and the function genomics.

  8. Structural biology sheds light on the puzzle of genomic ORFans.

    Science.gov (United States)

    Siew, Naomi; Fischer, Daniel

    2004-09-10

    Genomic ORFans are orphan open reading frames (ORFs) with no significant sequence similarity to other ORFs. ORFans comprise 20-30% of the ORFs of most completely sequenced genomes. Because nothing can be learnt about ORFans via sequence homology, the functions and evolutionary origins of ORFans remain a mystery. Furthermore, because relatively few ORFans have been experimentally characterized, it has been suggested that most ORFans are not likely to correspond to functional, expressed proteins, but rather to spurious ORFs, pseudo-genes or to rapidly evolving proteins with non-essential roles. As a snapshot view of current ORFan structural studies, we searched for ORFans among proteins whose three-dimensional structures have been recently determined. We find that functional and structural studies of ORFans are not as underemphasized as previously suggested. These recently determined structures correspond to ORFans from all Kingdoms of life, and include proteins that have previously been functionally characterized, as well as structural genomics targets of unknown function labeled as "hypothetical proteins". This suggests that many of the ORFans in the databases are likely to correspond to expressed, functional (and even essential) proteins. Furthermore, the recently determined structures include examples of the various types of ORFans, suggesting that the functions and evolutionary origins of ORFans are diverse. Although this survey sheds some light on the ORFan mystery, further experimental studies are required to gain a better understanding of the role and origins of the tens of thousands of ORFans awaiting characterization.

  9. Genome cartography: charting the apicomplexan genome.

    Science.gov (United States)

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  11. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P. falciparu

  12. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  13. Funding Opportunity: Genomic Data Centers

    Science.gov (United States)

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  14. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  15. Ontology for Genome Comparison and Genomic Rearrangements

    Directory of Open Access Journals (Sweden)

    Anil Wipat

    2006-04-01

    Full Text Available We present an ontology for describing genomes, genome comparisons, their evolution and biological function. This ontology will support the development of novel genome comparison algorithms and aid the community in discussing genomic evolution. It provides a framework for communication about comparative genomics, and a basis upon which further automated analysis can be built. The nomenclature defined by the ontology will foster clearer communication between biologists, and also standardize terms used by data publishers in the results of analysis programs. The overriding aim of this ontology is the facilitation of consistent annotation of genomes through computational methods, rather than human annotators. To this end, the ontology includes definitions that support computer analysis and automated transfer of annotations between genomes, rather than relying upon human mediation.

  16. Enabling functional genomics with genome engineering.

    Science.gov (United States)

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  17. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  18. Genomic Medicine

    Directory of Open Access Journals (Sweden)

    Ignacio Briceño Balcázar

    2011-04-01

    Full Text Available Until the twilight of the 20th century, genetics was a branch of medicine applied to diseases of rare occurrence.  The advent of the human genome sequence and the possibility of studying it at affordable costs for patients and healthcare institutions, has permitted its application in high-priority diseases like cancer, cardiovascular disease, diabetes, and Alzheimer’s, among others. There is great potential in predictive and preventive medicine, through studying polymorphic genetic variants associated to risks for different diseases. Currently, clinical laboratories offer studies of over 30,000 variants associated with susceptibilities, to which individuals can access without much difficulty because a medical prescription is not required. These exams permit conducting a specific plan of preventive medicine.  For example, upon the possibility of finding a deleterious mutation in the BRCA1 and BRCA2 genes, the patient can prevent the breast cancer by mastectomy or chemoprophylaxis and in the presence of polymorphisms associated to cardiovascular risk preventive action may be undertaken through changes in life style (diet, exercise, etc.. Legal aspects are also present in this new conception of medicine.  For example, currently there is legislation for medications to indicate on their labels the different responses such medication can offer regarding the genetic variants of the patients, given that similar doses may provoke adverse reactions in an individual, while for another such dosage may be insufficient. This scenario would allow verifying the polymorphisms of drug response prior to administering medications like anticoagulants, hyperlipidemia treatments, or chemotherapy, among others. We must specially mention recessive diseases, produced by the presence of two alleles of a mutated gene, which are inherited from the mother, as well as the father. By studying the mutations, we may learn if a couple is at risk of bearing children with the

  19. GENOMIC MEDICINE

    Directory of Open Access Journals (Sweden)

    Ignacio Briceño Balcázar

    2011-03-01

    Full Text Available Until the twilight of the 20th century, genetics was a branch of medicine applied to diseases of rare occurrence. The advent of the human genome sequence and the possibility of studying it at affordable costs for patients and healthcare institutions, has permitted its application in high-priority diseases like cancer, cardiovascular disease, diabetes, and Alzheimer’s, among others.There is great potential in predictive and preventive medicine, through studying polymorphic genetic variants associated to risks for different diseases. Currently, clinical laboratories offer studies of over 30,000 variants associated with susceptibilities, to which individuals can access without much difficulty because a medical prescription is not required. These exams permit conducting a specific plan of preventive medicine. For example, upon the possibility of finding a deleterious mutation in the BRCA1 and BRCA2 genes, the patient can prevent the breast cancer by mastectomy or chemoprophylaxis and in the presence of polymorphisms associated to cardiovascular risk preventive action may be undertaken through changes in life style (diet, exercise, etc..Legal aspects are also present in this new conception of medicine. For example, currently there is legislation for medications to indicate on their labels the different responses such medication can offer regarding the genetic variants of the patients, given that similar doses may provoke adverse reactions in an individual, while for another such dosage may be insufficient. This scenario would allow verifying the polymorphisms of drug response prior to administering medications like anticoagulants, hyperlipidemia treatments, or chemotherapy, among others.We must specially mention recessive diseases, produced by the presence of two alleles of a mutated gene, which are inherited from the mother, as well as the father. By studying the mutations, we may learn if a couple is at risk of bearing children with the disease

  20. Between Two Fern Genomes

    OpenAIRE

    Sessa, Emily B.; Banks, Jo; Michael S Barker; Der, Joshua P; Duffy, Aaron M; Graham, Sean W.; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D; Kathleen M. Pryer; Rothfels, Carl J.; Roux, Stanley J.; Salmi, Mari L; Sigel, Erin M.

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense divers...

  1. Genomes and evolutionary genomics of animals

    Institute of Scientific and Technical Information of China (English)

    Luting SONG; Wen WANG

    2013-01-01

    Alongside recent advances and booming applications of DNA sequencing technologies,a great number of complete genome sequences for animal species are available to researchers.Hundreds of animals have been involved in whole genome sequencing,and at least 87 non-human animal species' complete or draft genome sequences have been published since 1998.Based on these technological advances and the subsequent accumulation of large quantity of genomic data,evolutionary genomics has become one of the most rapidly advancing disciplines in biology.Scientists now can perform a number of comparative and evolutionary genomic studies for animals,to identify conserved genes or other functional elements among species,genomic elements that confer animals their own specific characteristics and new phenotypes for adaptation.This review deals with the current genomic and evolutionary research on non-human animals,and displays a comprehensive landscape of genomes and the evolutionary genomics of non-human animals.It is very helpful to a better understanding of the biology and evolution of the myriad forms within the animal kingdom [Current Zoology 59 (1):87-98,2013].

  2. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  3. Genome Maps, a new generation genome browser

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  4. Sentra : a database of signal transduction proteins for comparative genome analysis.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Glass, E. M.; Syed, M. H.; Zhang, Y.; Rodriguez, A.; Maltsev, N.; Galerpin, M. Y.; Mathematics and Computer Science; Univ. of Chicago; NIH

    2007-01-01

    Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.

  5. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  6. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  7. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  8. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2002-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies. Usi

  9. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2003-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies. Usi

  10. Directed genome engineering for genome optimization.

    Science.gov (United States)

    D'Halluin, Kathleen; Ruiter, Rene

    2013-01-01

    The ability to develop nucleases with tailor-made activities for targeted DNA double-strand break induction at will at any desired position in the genome has been a major breakthrough to make targeted genome optimization feasible in plants. The development of site specific nucleases for precise genome modification has expanded the repertoire of tools for the development and optimization of traits, already including mutation breeding, molecular breeding and transgenesis.Through directed genome engineering technology, the huge amount of information provided by genomics and systems biology can now more effectively be used for the creation of plants with improved or new traits, and for the dissection of gene functions. Although still in an early phase of deployment, its utility has been demonstrated for engineering disease resistance, herbicide tolerance, altered metabolite profiles, and for molecular trait stacking to allow linked transmission of transgenes. In this article, we will briefly review the different approaches for directed genome engineering with the emphasis on double strand break (DSB)-mediated engineering to-wards genome optimization for crop improvement and towards the acceleration of functional genomics.

  11. Genomic Data Commons | Office of Cancer Genomics

    Science.gov (United States)

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  12. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  13. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  14. Genomics of Sorghum

    OpenAIRE

    PATERSON, ANDREW H

    2008-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relatin...

  15. National Human Genome Research Institute

    Science.gov (United States)

    ... the Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... Landscape Social Media Videos Image Gallery Fact Sheets Human Genome Project Clinical Studies Genomic Careers DNA Day Calendar ...

  16. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms...

  17. Chicken's Genome Decoded

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ After completing the work on mapping chicken genome sequence and chicken genome variation in early March, 2004, two international research consortiums have made significant progress in reading the maps, shedding new light on the studies into the first bird as well as the first agricultural animal that has its genome sequenced and analyzed in the world.

  18. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D;

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribut...

  19. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D;

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribut...

  20. Challenges in medical applications of whole exome/genome sequencing discoveries.

    Science.gov (United States)

    Marian, Ali J

    2012-11-01

    Despite the well-documented influence of genetics on susceptibility to cardiovascular diseases, delineation of the full spectrum of the risk alleles had to await the development of modern next-generation sequencing technologies. The techniques provide unbiased approaches for identification of the DNA sequence variants (DSVs) in the entire genome (whole genome sequencing [WGS]) or the protein-coding exons (whole exome sequencing [WES]). Each genome contains approximately 4 million DSVs and each exome approximately 13,000 single nucleotide variants. The challenge facing researchers and clinicians alike is to decipher the biological and clinical significance of these variants and harness the information for the practice of medicine. The common DSVs typically exert modest effect sizes, as evidenced by the results of genome-wide association studies, and hence have modest or negligible clinical implications. The focus is on the rare variants with large effect sizes, which are expected to have stronger clinical implications, as in single gene disorders with Mendelian patterns of inheritance. However, the clinical implications of the rare variants for common complex cardiovascular diseases remain to be established. The most important contribution of WES or WGS is in delineation of the novel molecular pathways involved in the pathogenesis of the phenotype, which would be expected to provide for preventive and therapeutic opportunities.

  1. [Genomics and functional genomics in microbiology].

    Science.gov (United States)

    Encarnación-Guevara, Sergio

    2006-01-01

    Functional genomics is changing our understanding of biology and changing our approach to biological research. It brings about concerted, high-throughput genetics with analyses of gene transcripts, proteins, and metabolites to answer the ultimate question posed by all genome-sequencing projects: what is the biological function of each and every gene? Functional genomics is stimulating a change in the research paradigm away from the analysis of single genes, proteins, or metabolites towards the analysis of each of these parameters on a global scale. By identifying and measuring several, if not the entire, molecular group of actors that take part in a given biological process, functional genomics offers the panorama of obtaining a truly holistic representation of life. Functional genomics methods are defined by high-throughput methods which are, not necessarily hypothesis-dependent. They offer insights into mRNA expression, protein expression, protein localization, and protein interactions and may cast light on the flow of information within signaling pathways. At its beginning, biology involved observing nature and experimenting on its isolated parts. Genomic research now generates new types of complex observational data derived from nature. This review describes the tools that are currently being used for functional genomics work and considers the impact that this new discipline on microbiology research.

  2. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    . RESULTS: We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide...... a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains...

  3. Microbial genomic taxonomy.

    Science.gov (United States)

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-12-23

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups.

  4. UCSC genome browser tutorial.

    Science.gov (United States)

    Zweig, Ann S; Karolchik, Donna; Kuhn, Robert M; Haussler, David; Kent, W James

    2008-08-01

    The University of California Santa Cruz (UCSC) Genome Bioinformatics website consists of a suite of free, open-source, on-line tools that can be used to browse, analyze, and query genomic data. These tools are available to anyone who has an Internet browser and an interest in genomics. The website provides a quick and easy-to-use visual display of genomic data. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. Many of the annotation tracks are submitted by scientists worldwide; the others are computed by the UCSC Genome Bioinformatics group from publicly available sequence data. It also allows users to upload and display their own experimental results or annotation sets by creating a custom track. The suite of tools, downloadable data files, and links to documentation and other information can be found at http://genome.ucsc.edu/.

  5. Awaiting the Cyber 9/11

    Science.gov (United States)

    2012-04-11

    Department of Defense’s (DOD) responsibility.10 Similarly, Maersk Lines is not responsible for defense of the sea domain, but in the cyber domain every...DOD. Defense of the air trade routes is not the responsibility of the Federal Aviation Administration or American Air Lines ; it is the the...rely on firewalls to block attacks. This method is similar to the post World War I French creation of the Maginot Line .11 The Maginot Line was an

  6. Convergent Mobile News Media: Tranquility Awaiting Eruption?

    Directory of Open Access Journals (Sweden)

    Oscar Westlund

    2010-01-01

    Full Text Available Los periódicos tradicionales se han convertido en empresas de medios dedicados a la producción de noticias, tanto en formato impreso como digital. En este contexto, el teléfono móvil ha ganado importancia, dado que tecnológicamente ha cambiado de ser una herramienta de comunicación de voz y texto a un dispositivo multimedio. Cada vez más, los diarios están explorando oportunidades para el desarrollo de servicios móviles y modelos de negocios. El artículo aborda una cuestión central para los gerentes de medios de comunicación de hoy en día: ¿Cómo son las personas que utilizan sus dispositivos móviles para tener acceso a las noticias? Un análisis empírico explora los patrones de uso en Suecia, entre 2005 y 2008. Se identifican los primeros adoptantes como hombres de 15 a 49 años, que tienen una suscripción, son de orientación tecnológica y disfrutan de un estilo de vida activo. Estos, a menudo, se hacen usuarios de los medios de noticias en línea. En la sección final se discute si estamos al borde de un boom. Los hallazgos descritos en el artículo se basan en las encuestas anuales postales realizado por el Instituto SOM de la Universidad de Gotemburgo, en Suecia. Cada año, estas encuestas se envían a 6.000 habitantes suecos entre 15 y 85 años, seleccionados al azar. La tasa neta de respuesta, en promedio, es de más del 60 por ciento, por lo que es una muestra representativa de la población sueca.

  7. THE TYRE INDUSTRY:Awaiting A Change

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Shen Jinrong wouldn't have thought that things were so bad: rubber prices were going high and high from Jan to Sept 2008 and rubber products plunged in Oct.As president of Hangzhou Rubber Group Company, Shen has been thinking how to survive the crisis.

  8. Whole-exome/genome sequencing and genomics.

    Science.gov (United States)

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  9. Genome evolution of Oryza

    Directory of Open Access Journals (Sweden)

    Tieyan Liu

    2014-01-01

    Full Text Available The genus Oryza is composed of approximately 24 species. Wild species of Oryza contain a largely untapped resource of agronomically important genes. As an increasing number of genomes of wild rice species have been or will be sequenced, Oryza is becoming a model system for plant comparative, functional and evolutionary genomics studies. Comparative analyses of large genomic regions and whole-genome sequences have revealed molecular mechanisms involved in genome size variation, gene movement, genome evolution of polyploids, transition of euchromatin to heterochromatin and centromere evolution in the genus Oryza. Transposon activity and removal of transposable elements by unequal recombination or illegitimate recombination are two important factors contributing to expansion or contraction of Oryza genomes. Double-strand break repair mediated gene movement, especially non-homologous end joining, is an important source of non-colinear genes. Transition of euchromatin to heterochromatin is accompanied by transposable element amplification, segmental and tandem duplication of genic segments, and acquisition of heterochromatic genes from other genomic locations. Comparative analyses of multiple genomes dramatically improve the precision and sensitivity of evolutionary inference than single-genome analyses can provide. Further investigations on the impact of structural variation, lineage-specific genes and evolution of agriculturally important genes on phenotype diversity and adaptation in the genus Oryza should facilitate molecular breeding and genetic improvement of rice.

  10. Bioinformatics decoding the genome

    CERN Document Server

    CERN. Geneva; Deutsch, Sam; Michielin, Olivier; Thomas, Arthur; Descombes, Patrick

    2006-01-01

    Extracting the fundamental genomic sequence from the DNA From Genome to Sequence : Biology in the early 21st century has been radically transformed by the availability of the full genome sequences of an ever increasing number of life forms, from bacteria to major crop plants and to humans. The lecture will concentrate on the computational challenges associated with the production, storage and analysis of genome sequence data, with an emphasis on mammalian genomes. The quality and usability of genome sequences is increasingly conditioned by the careful integration of strategies for data collection and computational analysis, from the construction of maps and libraries to the assembly of raw data into sequence contigs and chromosome-sized scaffolds. Once the sequence is assembled, a major challenge is the mapping of biologically relevant information onto this sequence: promoters, introns and exons of protein-encoding genes, regulatory elements, functional RNAs, pseudogenes, transposons, etc. The methodological ...

  11. Genomics of oral bacteria.

    Science.gov (United States)

    Duncan, Margaret J

    2003-01-01

    Advances in bacterial genetics came with the discovery of the genetic code, followed by the development of recombinant DNA technologies. Now the field is undergoing a new revolution because of investigators' ability to sequence and assemble complete bacterial genomes. Over 200 genome projects have been completed or are in progress, and the oral microbiology research community has benefited through projects for oral bacteria and their non-oral-pathogen relatives. This review describes features of several oral bacterial genomes, and emphasizes the themes of species relationships, comparative genomics, and lateral gene transfer. Genomics is having a broad impact on basic research in microbial pathogenesis, and will lead to new approaches in clinical research and therapeutics. The oral microbiota is a unique community especially suited for new challenges to sequence the metagenomes of microbial consortia, and the genomes of uncultivable bacteria.

  12. State of cat genomics.

    Science.gov (United States)

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  13. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  14. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    , genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  15. Querying genomic databases

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  16. Reference Based Genome Compression

    OpenAIRE

    Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...

  17. Genomic Database Searching.

    Science.gov (United States)

    Hutchins, James R A

    2017-01-01

    The availability of reference genome sequences for virtually all species under active research has revolutionized biology. Analyses of genomic variations in many organisms have provided insights into phenotypic traits, evolution and disease, and are transforming medicine. All genomic data from publicly funded projects are freely available in Internet-based databases, for download or searching via genome browsers such as Ensembl, Vega, NCBI's Map Viewer, and the UCSC Genome Browser. These online tools generate interactive graphical outputs of relevant chromosomal regions, showing genes, transcripts, and other genomic landmarks, and epigenetic features mapped by projects such as ENCODE.This chapter provides a broad overview of the major genomic databases and browsers, and describes various approaches and the latest resources for searching them. Methods are provided for identifying genomic locus and sequence information using gene names or codes, identifiers for DNA and RNA molecules and proteins; also from karyotype bands, chromosomal coordinates, sequences, motifs, and matrix-based patterns. Approaches are also described for batch retrieval of genomic information, performing more complex queries, and analyzing larger sets of experimental data, for example from next-generation sequencing projects.

  18. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  19. Between two fern genomes.

    Science.gov (United States)

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  20. [Landscape and ecological genomics].

    Science.gov (United States)

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment.

  1. Genomic Prediction in Barley

    DEFF Research Database (Denmark)

    Edriss, Vahid; Cericola, Fabio; Jensen, Jens D

    2015-01-01

    Genomic prediction uses markers (SNPs) across the whole genome to predict individual breeding values at an early growth stage potentially before large scale phenotyping. One of the applications of genomic prediction in plant breeding is to identify the best individual candidate lines to contribute...... to next generation. The main goal of this study was to see the potential of using genomic prediction in a commercial Barley breeding program. The data used in this study was from Nordic Seed company which is located in Denmark. Around 350 advanced lines were genotyped with 9K Barely chip from Illumina...

  2. Genomics of Clostridium tetani.

    Science.gov (United States)

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies.

  3. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  4. Editorial: 3Rs tightly intertwined to maintain genome stability

    DEFF Research Database (Denmark)

    2017-01-01

    DNA recombination, repair and replication are three large and vibrant research fields where each ‘R’ could deserve a series of reviews in its own right. However, as the 3Rs are tightly interwoven processes, one R can often not be fully understood without including the others. For example, replica......DNA recombination, repair and replication are three large and vibrant research fields where each ‘R’ could deserve a series of reviews in its own right. However, as the 3Rs are tightly interwoven processes, one R can often not be fully understood without including the others. For example......, replication of damaged DNA results in stalled replication forks that await DNA damage repair before replication can be resumed. In turn, the repair of most lesions depends on processes involving DNA synthesis. At the same time, the stalled forks may engage in recombination, either as part of a controlled...... repair process or by accident, just because it can, with the risk of producing genome rearrangements and loss of heterozygosity. The set of reviews presented in this thematic issue (https://academic-oup-com.proxy.findit.dtu.dk/femsyr/pages/replication_recombination_and_repair) of FEMSYR has been selected...

  5. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... Breve guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is ... genetic basis for health and disease. Implications of Genomics for Medical Science Virtually every human ailment has ...

  6. Ensembl Genomes 2013

    DEFF Research Database (Denmark)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel

    2014-01-01

    genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely...

  7. Estimation of genome length

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genome length is a fundamental feature of a species. This note outlined the general concept and estimation method of the physical and genetic length. Some formulae for estimating the genetic length were derived in detail. As examples, the genome genetic length of Pinus pinaster Ait. and the genetic length of chromosome Ⅵ of Oryza sativa L. were estimated from partial linkage data.

  8. Genetics and Genomics

    Science.gov (United States)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  9. Breeding-assisted genomics.

    Science.gov (United States)

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition.

  10. Safeguarding genome integrity

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Syljuåsen, Randi G

    2012-01-01

    Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA...

  11. Genome-Scale Models

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Sonnenschein, Nikolaus; Machado, Daniel

    2016-01-01

    An introduction to genome-scale models, how to build and use them, will be given in this chapter. Genome-scale models have become an important part of systems biology and metabolic engineering, and are increasingly used in research, both in academica and in industry, both for modeling chemical pr...

  12. Unlocking the bovine genome

    Directory of Open Access Journals (Sweden)

    Worley Kim C

    2009-04-01

    Full Text Available Abstract The draft genome sequence of cattle (Bos taurus has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries.

  13. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  14. NCBI viral genomes resource.

    Science.gov (United States)

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  15. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  16. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  17. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  18. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  19. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  20. Center for Cancer Genomics | Office of Cancer Genomics

    Science.gov (United States)

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  1. Genomic libraries: I. Construction and screening of fosmid genomic libraries.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Large insert genome libraries have been a core resource required to sequence genomes, analyze haplotypes, and aid gene discovery. While next generation sequencing technologies are revolutionizing the field of genomics, traditional genome libraries will still be required for accurate genome assembly. Their utility is also being extended to functional studies for understanding DNA regulatory elements. Here, we present a detailed method for constructing genomic fosmid libraries, testing for common contaminants, gridding the library to nylon membranes, then hybridizing the library membranes with a radiolabeled probe to identify corresponding genomic clones. While this chapter focuses on fosmid libraries, many of these steps can also be applied to bacterial artificial chromosome libraries.

  2. Toward 959 nematode genomes

    National Research Council Canada - National Science Library

    Kumar, Sujai; Koutsovoulos, Georgios; Kaur, Gaganjot; Blaxter, Mark

    2012-01-01

    The sequencing of the complete genome of the nematode Caenorhabditis elegans was a landmark achievement and ushered in a new era of whole-organism, systems analyses of the biology of this powerful model organism...

  3. The genomics of adaptation.

    Science.gov (United States)

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.

  4. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  5. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  6. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  7. The Lotus japonicus genome

    DEFF Research Database (Denmark)

    This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation......, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family...... Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example...

  8. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  9. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  10. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  11. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  12. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    enetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome

  13. An Introduction to Genome Annotation.

    Science.gov (United States)

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  14. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  15. How the genome folds

    Science.gov (United States)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  16. An archaeal genomic signature

    Science.gov (United States)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  17. Genomics and personalized medicine.

    Science.gov (United States)

    Sadee, Wolfgang

    2011-08-30

    The role of genomics in personalized medicine continues to undergo profound changes, in step with dramatic technological advances. Ability to sequence the entire human genome with relative ease raises expectations that we can use an individual's complete genomic blueprint to understand disease risk and predicting therapy outcomes, thereby, optimizing drug therapy. Yet, doubts persist as to what extent genetic/genomic factors influence disease and treatment outcomes or whether robust predictive biomarker tests can be developed. Encompassing more than just DNA sequences, the definition of genomics now often is taken to include transcriptomics, proteomics, metabolomics, and epigenomics, with integration of genomic and environmental factors, in an area referred to systems biology. While we can learn much about a cell's innermost workings, summation of these diverse areas is far from enabling the prediction of therapeutic outcomes. Typically, only a handful of specific biomarkers, genetic or otherwise, are 'actionable', i.e., they can be used to guide therapy. I will focus on pharmacogenetic biomarkers, highlighting current successes but also the main challenges that remain in optimizing individualized therapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Evolution of small prokaryotic genomes

    OpenAIRE

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent ...

  19. Evolution of small prokaryotic genomes

    OpenAIRE

    David José Martínez-Cano; Mariana eReyes-Prieto; Esperanza eMartinez-Romero; Laila Pamela Partida-Martinez; Amparo eLatorre; Andres eMoya; Luis eDelaye

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent ...

  20. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls...

  1. A Review on Genomics APIs

    Directory of Open Access Journals (Sweden)

    Rajeswari Swaminathan

    2016-01-01

    Full Text Available The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a Google Genomics, b SMART Genomics, and c 23andMe. The functionalities, reference implementations (if available and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare.

  2. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  3. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  4. Domestication and plant genomes.

    Science.gov (United States)

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  5. Genomics of Preterm Birth

    Science.gov (United States)

    Swaggart, Kayleigh A.; Pavlicev, Mihaela; Muglia, Louis J.

    2015-01-01

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms. PMID:25646385

  6. Genomic Imprinting in Mammals

    Science.gov (United States)

    Barlow, Denise P.

    2014-01-01

    Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation. PMID:24492710

  7. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure...... the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  8. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    The aim of this paper is to discuss the potential consequences of modern dairy cattle breeding for the welfare of dairy cows. The paper focuses on so-called genomic selection, which deploys thousands of genetic markers to estimate breeding values. The discussion should help to structure...... the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits......, unfavourable genetic trends for metabolic, reproductive, claw and leg diseases indicate that these attempts have been insufficient. Today, novel genome-wide sequencing techniques are revolutionising dairy cattle breeding; these enable genetic changes to occur at least twice as rapidly as previously. While...

  9. Genomics and drug discovery.

    Science.gov (United States)

    Haseltine, W A

    2001-09-01

    Genomics, the systematic study of all the genes of an organism, offers a new and much-needed source of systematic productivity for the pharmaceutical industry. The isolation of the majority of human genes in their most useful form is leading to the creation of new drugs based on human proteins, antibodies, peptides, and genes. Human Genome Sciences, Inc, was the first company to use the systematic, genomics approach to discovering drugs, and we have placed 4 of these in clinical trials. Two are described: repifermin (keratinocyte growth factor-2, KGF-2) for wound healing and treatment of mucositis caused by cancer therapy, and B lymphocyte stimulator (BLyS) for stimulation of the immune system. An anti-BLyS antibody drug is in advanced preclinical development for treatment of autoimmune diseases.

  10. Screening of genomic libraries.

    Science.gov (United States)

    Novelli, Valdenice M; Cristofani-Yaly, Mariângela; Bastianel, Marinês; Palmieri, Dario A; Machado, Marcos A

    2013-01-01

    Microsatellites, or simple sequence repeats (SSRs), have proven to be an important molecular marker in plant genetics and breeding research. The main strategies to obtain these markers can be through genomic DNA and from expressed sequence tags (ESTs) from mRNA/cDNA libraries. Genetic studies using microsatellite markers have increased rapidly because they can be highly polymorphic, codominant markers and they show heterozygous conserved sequences. Here, we describe a methodology to obtain microsatellite using the enrichment library of DNA genomic sequences. This method is highly efficient to development microsatellite markers especially in plants that do not have available ESTs or genome databases. This methodology has been used to enrich SSR marker libraries in Citrus spp., an important tool to genotype germplasm, to select zygotic hybrids, and to saturate genetic maps in breeding programs.

  11. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  12. Ebolavirus comparative genomics

    Science.gov (United States)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  13. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  14. Methanococcus jannaschii genome: revisited

    Science.gov (United States)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  15. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previo......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...

  16. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...... misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan-and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity...

  17. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  18. Exploring functional elements and genomic variation in the noncoding genome

    NARCIS (Netherlands)

    van Heesch, S.A.A.C.

    2014-01-01

    Gene expression regulation is a delicate process that depends on multiple aspects including genome structure and transcription factor binding to DNA elements. The majority of our genome consists of noncoding DNA, which was shown to be crucial in providing the correct context for genome function. Alt

  19. Improving pan-genome annotation using whole genome multiple alignment

    Directory of Open Access Journals (Sweden)

    Salzberg Steven L

    2011-06-01

    Full Text Available Abstract Background Rapid annotation and comparisons of genomes from multiple isolates (pan-genomes is becoming commonplace due to advances in sequencing technology. Genome annotations can contain inconsistencies and errors that hinder comparative analysis even within a single species. Tools are needed to compare and improve annotation quality across sets of closely related genomes. Results We introduce a new tool, Mugsy-Annotator, that identifies orthologs and evaluates annotation quality in prokaryotic genomes using whole genome multiple alignment. Mugsy-Annotator identifies anomalies in annotated gene structures, including inconsistently located translation initiation sites and disrupted genes due to draft genome sequencing or pseudogenes. An evaluation of species pan-genomes using the tool indicates that such anomalies are common, especially at translation initiation sites. Mugsy-Annotator reports alternate annotations that improve consistency and are candidates for further review. Conclusions Whole genome multiple alignment can be used to efficiently identify orthologs and annotation problem areas in a bacterial pan-genome. Comparisons of annotated gene structures within a species may show more variation than is actually present in the genome, indicating errors in genome annotation. Our new tool Mugsy-Annotator assists re-annotation efforts by highlighting edits that improve annotation consistency.

  20. Exploring functional elements and genomic variation in the noncoding genome

    NARCIS (Netherlands)

    van Heesch, S.A.A.C.|info:eu-repo/dai/nl/336463286

    2014-01-01

    Gene expression regulation is a delicate process that depends on multiple aspects including genome structure and transcription factor binding to DNA elements. The majority of our genome consists of noncoding DNA, which was shown to be crucial in providing the correct context for genome function. Alt

  1. Whole-genome prokaryotic phylogeny

    National Research Council Canada - National Science Library

    Henz, Stefan R; Huson, Daniel H; Auch, Alexander F; Nieselt-Struwe, Kay; Schuster, Stephan C

    2005-01-01

    .... We introduce a new strategy, GBDP, 'genome blast distance phylogeny', and show that different variants of this approach robustly produce phylogenies that are biologically sound, when applied to 91 prokaryotic genomes...

  2. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  3. On genomics, kin, and privacy.

    Science.gov (United States)

    Telenti, Amalio; Ayday, Erman; Hubaux, Jean Pierre

    2014-01-01

    The storage of greater numbers of exomes or genomes raises the question of loss of privacy for the individual and for families if genomic data are not properly protected. Access to genome data may result from a personal decision to disclose, or from gaps in protection. In either case, revealing genome data has consequences beyond the individual, as it compromises the privacy of family members. Increasing availability of genome data linked or linkable to metadata through online social networks and services adds one additional layer of complexity to the protection of genome privacy.  The field of computer science and information technology offers solutions to secure genomic data so that individuals, medical personnel or researchers can access only the subset of genomic information required for healthcare or dedicated studies.

  4. Better chocolate through genomics

    Science.gov (United States)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  5. Genetics, genomics and fertility

    Science.gov (United States)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  6. The Genomic Standards Consortium

    DEFF Research Database (Denmark)

    Field, Dawn; Amaral-Zettler, Linda; Cochrane, Guy;

    2011-01-01

    A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic S...

  7. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  8. Comparative genomics of Eukaryotes

    NARCIS (Netherlands)

    Noort, Vera van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  9. Poster: the macaque genome.

    Science.gov (United States)

    2007-04-13

    The rhesus macaque (Macaca mulatta) facilitates an extraordinary range of biomedical and basic research, and the publication of the genome only makes it a more powerful model for studies of human disease; moreover, the macaque's position relative to humans and chimpanzees affords the opportunity to learn about the processes that have shaped the last 25 million years of primate evolution. To allow users to explore these themes of the macaque genome, Science has created a special interactive version of the poster published in the print edition of the 13 April 2007 issue. The interactive version includes additional text and exploration, as well as embedded video featuring seven scientists discussing the importance of the macaque and its genome sequence in studies of biomedicine and evolution. We have also created an accompanying teaching resource, including a lesson plan aimed at teachers of advanced high school life science students, for exploring what a comparison of the macaque and human genomes can tell us about human biology and evolution. These items are free to all site visitors.

  10. RIKEN mouse genome encyclopedia.

    Science.gov (United States)

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  11. The tomato genome

    Science.gov (United States)

    The tomato genome sequence was undertaken at a time when state-of-the-art sequencing methodologies were undergoing a transition to co-called next generation methodologies. The result was an international consortium undertaking a strategy merging both old and new approaches. Because biologists were...

  12. The Genome Atlas Resource

    DEFF Research Database (Denmark)

    Azam Qureshi, Matloob; Rotenberg, Eva; Stærfeldt, Hans Henrik;

    2010-01-01

    with scripts and algorithms developed in a variety of programming languages at the Centre for Biological Sequence Analysis in order to create a three-tier software application for genome analysis. The results are made available via a web interface developed in Java, PHP and Perl CGI. User...

  13. Statistical Methods in Integrative Genomics

    OpenAIRE

    Richardson, Sylvia; Tseng, George C.; Sun, Wei

    2016-01-01

    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and f...

  14. Genome stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Haaften, G.W. van

    2006-01-01

    Genome stability is closely linked to cancer. Most, if not all tumor cells show some form of genome instability, mutations can range from single point mutations to gross chromosomal rearrangements and aneuploidy. Genome instability is believed to be the driving force behind tumorigenesis. In order t

  15. Genome stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Haaften, G.W. van

    2006-01-01

    Genome stability is closely linked to cancer. Most, if not all tumor cells show some form of genome instability, mutations can range from single point mutations to gross chromosomal rearrangements and aneuploidy. Genome instability is believed to be the driving force behind tumorigenesis. In order t

  16. The UCSC genome browser database

    DEFF Research Database (Denmark)

    Kuhn, R M; Karolchik, D; Zweig, A S

    2007-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up t...

  17. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Hinrichs, A S; Karolchik, D; Baertsch, R

    2006-01-01

    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, ...

  18. Nongenetic functions of the genome.

    Science.gov (United States)

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  19. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-ping

    2004-01-01

    @@ Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  20. Microbial Genomics Research in China

    Institute of Scientific and Technical Information of China (English)

    ZHAOGuo-ping

    2004-01-01

    Microorganisms, including phage/virus, were initial targets and tools for developing DNA sequencing technology. Microbial genomic study was started as a model system for the Human Genome Project (HGP) and it did successfully supported the HGP, particularly with respect to BAC contig construction and large-scale shotgun sequencing and assembly. Microbial genomics study has become the fastest developed genomics discipline along with HGP, taking the advantage of the organisms' highly diversified physiology, extremely long history of evolution, close relationship with human/environment,as well as relatively small genome sizes and simple systems for functional analysis.

  1. Genomic Databases for Crop Improvement

    Directory of Open Access Journals (Sweden)

    David Edwards

    2012-03-01

    Full Text Available Genomics is playing an increasing role in plant breeding and this is accelerating with the rapid advances in genome technology. Translating the vast abundance of data being produced by genome technologies requires the development of custom bioinformatics tools and advanced databases. These range from large generic databases which hold specific data types for a broad range of species, to carefully integrated and curated databases which act as a resource for the improvement of specific crops. In this review, we outline some of the features of plant genome databases, identify specific resources for the improvement of individual crops and comment on the potential future direction of crop genome databases.

  2. Genomics and the immune system.

    Science.gov (United States)

    Pipkin, Matthew E; Monticelli, Silvia

    2008-05-01

    While the hereditary information encoded in the Watson-Crick base pairing of genomes is largely static within a given individual, access to this information is controlled by dynamic mechanisms. The human genome is pervasively transcribed, but the roles played by the majority of the non-protein-coding genome sequences are still largely unknown. In this review we focus on insights to gene transcriptional regulation by placing special emphasis on genome-wide approaches, and on how non-coding RNAs, which derive from global transcription of the genome, in turn control gene expression. We review recent progress in the field with highlights on the immune system.

  3. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  4. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so.

  5. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  6. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  7. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  8. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species......, twelve Enterococcus genomes of four species and a single Weissella genome. Genomes of pathogenic strains or species were not included. Since the gene density in these genomes is relatively constant, genome size is a measure of gene content. The genomes of Enterococcus were significantly larger than...... that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively...

  9. Marine Bacterial Genomics

    DEFF Research Database (Denmark)

    Machado, Henrique

    microorganisms to be used as cell factories for production. Therefore exploitation of new microbial niches and use of different strategies is an opportunity to boost discoveries. Even though scientists have started to explore several habitats other than the terrestrial ones, the marine environment stands out...... as a hitherto under-explored niche. This thesis work uses high-throughput sequencing technologies on a collection of marine bacteria established during the Galathea 3 expedition, with the purpose of unraveling new biodiversity and new bioactivities. Several tools were used for genomic analysis in order...... to better understand the potential harbored in marine bacteria. The work presented makes use of whole genome sequencing of marine bacteria to prove that the genetic repertoire for secondary metabolite production harbored in these bacteria is far larger than anticipated; to identify and develop a new...

  10. The Genomic Standards Consortium.

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2011-06-01

    Full Text Available A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC, an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences.

  11. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  12. Genomic Feature Models

    DEFF Research Database (Denmark)

    Sørensen, Peter; Edwards, Stefan McKinnon; Rohde, Palle Duun

    Whole-genome sequences and multiple trait phenotypes from large numbers of individuals will soon be available in many populations. Well established statistical modeling approaches enable the genetic analyses of complex trait phenotypes while accounting for a variety of additive and non-additive g...... regions and gene ontologies) that provide better model fit and increase predictive ability of the statistical model for this trait....

  13. Malaria Genome Sequencing Project

    Science.gov (United States)

    2004-01-01

    million cases and up to 2.7 million A whole chromosome shotgun sequencing strategy was used to deaths from malaria each year. The mortality levels are...deaths from malaria each year. The mortality levels are greatest in determine the genome sequence of P. falciparum clone 3D7. This sub-Saharan Africa...aminolevulinic acid dehydratase. Cura . Genet. 40, 391-398 (2002). 15. Lasonder, E. et al Analysis of the Plasmodium falciparum proteome by high-accuracy mass

  14. Genomic landscape of liposarcoma.

    Science.gov (United States)

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.

  15. The Giardia lamblia genome.

    Science.gov (United States)

    Adam, R D

    2000-04-10

    Giardia lamblia is a protozoan parasite of humans and other mammals that is thought to be one of the most primitive extant eukaryotic organisms. Although distinctly eukaryotic, it is notable for its lack of mitochondria, nucleoli, and perixosomes. It has been suggested that Giardia spp. are pre-mitochondriate organisms, but the identification of genes in G. lamblia thought to be of mitochondrial origin has generated controversy regarding that designation. Giardi lamblia trophozoites have two nuclei that are identical in all ways that have been studied. They are polyploid with at least four, and perhaps eight or more, copies of each of five chromosomes per organism and have an estimated genome complexity of 1.2x10(7)bp of DNA, and GC content of 46%. There is evidence for recombination at the telomeres of some of the chromosomes, and multiple size variants of single chromosomes have been identified within cloned isolates. However, the internal regions of the chromosomes demonstrate no evidence of recombination. For example, there is no evidence for control of vsp gene expression by DNA recombination, and no evidence for rapid mutation in the vsp genes. Single pass sequences of approximately 9% of the G. lamblia genome have already been obtained. An ongoing genome project plans to obtain approximately 95% of the genome by a random approach, as well as a complete physical map using a bacterial artificial chromosome library. The results will facilitate a better understanding of the biology of Giardia spp. as well as their phylogenetic relationship to other primitive organisms.

  16. Genome sequencing conference II

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  17. Microarray Genomic Systems Development

    Science.gov (United States)

    2008-06-01

    D Canada Contract Report DRDC Suffield CR 2009-145 June 2008 V. Lam, M. Crichton , T. Dickinson Laing, and D.C. Mah Canada West Biosciences Inc...Genomic Systems Development V. Lam, M. Crichton , T. Dickinson Laing, and D.C. Mah Canada West Biosciences Inc. Canada West Biosciences Inc. 5429... Crichton , M.; Dickinson Laing, T.; Mah, D.C.; DRDC Suffield CR 2009- 145; Defence R&D Canada – Suffield; June 2008. Introduction: Conventional

  18. Conditioned genome reconstruction: how to avoid choosing the conditioning genome.

    Science.gov (United States)

    Spencer, Matthew; Bryant, David; Susko, Edward

    2007-02-01

    Genome phylogenies can be inferred from data on the presence and absence of genes across taxa. Logdet distances may be a good method, because they allow expected genome size to vary across the tree. Recently, Lake and Rivera proposed conditioned genome reconstruction (calculation of logdet distances using only those genes present in a conditioning genome) to deal with unobservable genes that are absent from every taxon of interest. We prove that their method can consistently estimate the topology for almost any choice of conditioning genome. Nevertheless, the choice of conditioning genome is important for small samples. For real bacterial genome data, different choices of conditioning genome can result in strong bootstrap support for different tree topologies. To overcome this problem, we developed supertree methods that combine information from all choices of conditioning genome. One of these methods, based on the BIONJ algorithm, performs well on simulated data and may have applications to other supertree problems. However, an analysis of 40 bacterial genomes using this method supports an incorrect clade of parasites. This is a common feature of model-based gene content methods and is due to parallel gene loss.

  19. Personalized genomic medicine with a patchwork, partially owned genome.

    Science.gov (United States)

    Mason, Christopher E; Seringhaus, Michael R; Sattler de Sousa e Brito, Clara

    2007-12-01

    "His book was known as the Book of Sand, because neither the book nor the sand have any beginning or end." - Jorge Luis BorgesThe human genome is a three billion-letter recipe for the genesis of a human being, directing development from a single-celled embryo to the trillions of adult cells. Since the sequencing of the human genome was announced in 2001, researchers have an increased ability to discern the genetic basis for diseases. This reference genome has opened the door to genomic medicine, aimed at detecting and understanding all genetic variations of the human genome that contribute to the manifestation and progression of disease. The overarching vision of genomic (or "personalized") medicine is to custom-tailor each treatment for maximum effectiveness in an individual patient. Detecting the variation in a patient's deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein structures is no longer an insurmountable hurdle. Today, the challenge for genomic medicine lies in contextualizing those myriad genetic variations in terms of their functional consequences for a person's health and development throughout life and in terms of that patient's susceptibility to disease and differential clinical responses to medication. Additionally, several recent developments have complicated our understanding of the nominal human genome and, thereby, altered the progression of genomic medicine. In this brief review, we shall focus on these developments and examine how they are changing our understanding of our genome.

  20. Personalized Genomic Medicine with a Patchwork, Partially Owned Genome

    Science.gov (United States)

    Mason, Christopher E.; Seringhaus, Michael R.; Sattler de Sousa e Brito, Clara

    2008-01-01

    “His book was known as the Book of Sand, because neither the book nor the sand have any beginning or end.” — Jorge Luis Borges The human genome is a three billion-letter recipe for the genesis of a human being, directing development from a single-celled embryo to the trillions of adult cells. Since the sequencing of the human genome was announced in 2001, researchers have an increased ability to discern the genetic basis for diseases. This reference genome has opened the door to genomic medicine, aimed at detecting and understanding all genetic variations of the human genome that contribute to the manifestation and progression of disease. The overarching vision of genomic (or “personalized”) medicine is to custom-tailor each treatment for maximum effectiveness in an individual patient. Detecting the variation in a patient’s deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein structures is no longer an insurmountable hurdle. Today, the challenge for genomic medicine lies in contextualizing those myriad genetic variations in terms of their functional consequences for a person’s health and development throughout life and in terms of that patient’s susceptibility to disease and differential clinical responses to medication. Additionally, several recent developments have complicated our understanding of the nominal human genome and, thereby, altered the progression of genomic medicine. In this brief review, we shall focus on these developments and examine how they are changing our understanding of our genome. PMID:18449389

  1. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  2. Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea

    Directory of Open Access Journals (Sweden)

    S.M.G. Massironi

    2006-09-01

    Full Text Available When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s. Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s. Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives. Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc. This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.

  3. Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster.

    Science.gov (United States)

    Frank, Josef; Cichon, Sven; Treutlein, Jens; Ridinger, Monika; Mattheisen, Manuel; Hoffmann, Per; Herms, Stefan; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Maier, Wolfgang; Mössner, Rainald; Gaebel, Wolfgang; Dahmen, Norbert; Scherbaum, Norbert; Schmäl, Christine; Steffens, Michael; Lucae, Susanne; Ising, Marcus; Müller-Myhsok, Bertram; Nöthen, Markus M; Mann, Karl; Kiefer, Falk; Rietschel, Marcella

    2012-01-01

    Alcohol dependence (AD) is an important contributory factor to the global burden of disease. The etiology of AD involves both environmental and genetic factors, and the disorder has a heritability of around 50%. The aim of the present study was to identify susceptibility genes for AD by performing a genome-wide association study (GWAS). The sample comprised 1333 male in-patients with severe AD according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and 2168 controls. These included 487 patients and 1358 controls from a previous GWAS study by our group. All individuals were of German descent. Single-marker tests and a polygenic score-based analysis to assess the combined contribution of multiple markers with small effects were performed. The single nucleotide polymorphism (SNP) rs1789891, which is located between the ADH1B and ADH1C genes, achieved genome-wide significance [P = 1.27E-8, odds ratio (OR) = 1.46]. Other markers from this region were also associated with AD, and conditional analyses indicated that these made a partially independent contribution. The SNP rs1789891 is in complete linkage disequilibrium with the functional Arg272Gln variant (P = 1.24E-7, OR = 1.31) of the ADH1C gene, which has been reported to modify the rate of ethanol oxidation to acetaldehyde in vitro. A polygenic score-based approach produced a significant result (P = 9.66E-9). This is the first GWAS of AD to provide genome-wide significant support for the role of the ADH gene cluster and to suggest a polygenic component to the etiology of AD. The latter result may indicate that many more AD susceptibility genes still await identification.

  4. Mapping the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  5. Family genome browser: visualizing genomes with pedigree information.

    Science.gov (United States)

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    Science.gov (United States)

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  7. Genome update: the 1000th genome - a cautionary tale

    DEFF Research Database (Denmark)

    Lagesen, Karin; Ussery, David; Wassenaar, Gertrude Maria

    2010-01-01

    conclusions for example about the largest bacterial genome sequenced. Biological diversity is far greater than many have thought. For example, analysis of multiple Escherichia coli genomes has led to an estimate of around 45 000 gene families more genes than are recognized in the human genome. Moreover......There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level...... for a variety of logistical reasons, including differences in format and loading errors, such as those caused by file transfer protocol interruptions. This means that the 1000th genome will be different in the various databases. Some of the data on the highly accessed web pages are inaccurate, leading to false...

  8. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  9. GO4genome: A Prokaryotic Phylogeny Based on Genome Organization

    OpenAIRE

    Merkl, Rainer; Wiezer, Arnim

    2009-01-01

    Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replac...

  10. Integrated genome browser: visual analytics platform for genomics

    OpenAIRE

    2016-01-01

    Motivation: Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Results: Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experime...

  11. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    OpenAIRE

    Henrique Machado; Lone Gram

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationship...

  12. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  13. The coffee genome hub: a resource for coffee genomes.

    Science.gov (United States)

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  15. Genome Update: alignment of bacterial chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and......, as an example, an alignment of seven Staphylococcus aureus genomes and one Staphylococcus epidermidis genome is presented....

  16. Big Data: Astronomical or Genomical?

    Directory of Open Access Journals (Sweden)

    Zachary D Stephens

    2015-07-01

    Full Text Available Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  17. Domestication genomics: evidence from animals.

    Science.gov (United States)

    Wang, Guo-Dong; Xie, Hai-Bing; Peng, Min-Sheng; Irwin, David; Zhang, Ya-Ping

    2014-02-01

    Animal domestication has far-reaching significance for human society. The sequenced genomes of domesticated animals provide critical resources for understanding the genetic basis of domestication. Various genomic analyses have shed a new light on the mechanism of artificial selection and have allowed the mapping of genes involved in important domestication traits. Here, we summarize the published genomes of domesticated animals that have been generated over the past decade, as well as their origins, from a phylogenomic point of view. This review provides a general description of the genomic features encountered under a two-stage domestication process. We also introduce recent findings for domestication traits based on results from genome-wide association studies and selective-sweep scans for artificially selected genomic regions. Particular attention is paid to issues relating to the costs of domestication and the convergent evolution of genes between domesticated animals and humans.

  18. Big Data: Astronomical or Genomical?

    Science.gov (United States)

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  19. Genomics of Bacillus Species

    Science.gov (United States)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  20. Bacterial genome reengineering.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2011-01-01

    The web application PrimerPair at ecogene.org generates large sets of paired DNA sequences surrounding- all protein and RNA genes of Escherichia coli K-12. Many DNA fragments, which these primers amplify, can be used to implement a genome reengineering strategy using complementary in vitro cloning and in vivo recombineering. The integration of a primer design tool with a model organism database increases the level of quality control. Computer-assisted design of gene primer pairs relies upon having highly accurate genomic DNA sequence information that exactly matches the DNA of the cells being used in the laboratory to ensure predictable DNA hybridizations. It is equally crucial to have confidence that the predicted start codons define the locations of genes accurately. Annotations in the EcoGene database are queried by PrimerPair to eliminate pseudogenes, IS elements, and other problematic genes before the design process starts. These projects progressively familiarize users with the EcoGene content, scope, and application interfaces that are useful for genome reengineering projects. The first protocol leads to the design of a pair of primer sequences that were used to clone and express a single gene. The N-terminal protein sequence was experimentally verified and the protein was detected in the periplasm. This is followed by instructions to design PCR primer pairs for cloning gene fragments encoding 50 periplasmic proteins without their signal peptides. The design process begins with the user simply designating one pair of forward and reverse primer endpoint positions relative to all start and stop codon positions. The gene name, genomic coordinates, and primer DNA sequences are reported to the user. When making chromosomal deletions, the integrity of the provisional primer design is checked to see whether it will generate any unwanted double deletions with adjacent genes. The bad designs are recalculated and replacement primers are provided alongside the

  1. Vaccinology in the genome era

    OpenAIRE

    Rinaudo, C. Daniela; Telford, John L.; Rappuoli, Rino; Seib, Kate L.

    2009-01-01

    Vaccination has played a significant role in controlling and eliminating life-threatening infectious diseases throughout the world, and yet currently licensed vaccines represent only the tip of the iceberg in terms of controlling human pathogens. However, as we discuss in this Review, the arrival of the genome era has revolutionized vaccine development and catalyzed a shift from conventional culture-based approaches to genome-based vaccinology. The availability of complete bacterial genomes h...

  2. Programs | Office of Cancer Genomics

    Science.gov (United States)

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  3. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  4. Phototroph genomics ten years on.

    Science.gov (United States)

    Raymond, Jason; Swingley, Wesley D

    2008-07-01

    The onset of the genome era means different things to different people, but it is clear that this new age brings with it paradigm shifts that will forever affect biological research. Less clear is just how these shifts are changing the scope and scale of research. Are gigabases of raw data more useful than a single well-understood gene? Do we really need a full genome to understand the physiology of a single organism? The photosynthetic field is poised at the periphery of the bulk of genome sequencing work--understandably skewed toward health-related disciplines--and, as such, is subject to different motivations, limitations, and primary focus for each new genome. To understand some of these differences, we focus here on various indicators of the impact that genomics has had on the photosynthetic community, now a full decade since the publication of the first photosynthetic genome. Many useful indicators are indexed in public databases, providing pre- and post-genome sequence snapshots of changes in factors such as publication rate, number of proteins characterized, and sequenced genome coverage versus known diversity. As more genomes are sequenced and metagenomic projects begin to pour out billions of bases, it becomes crucial to understand how to harness this data in order to accumulate possible benefits and avoid possible pitfalls, especially as resources become increasingly directed toward natural environments governed by photosynthetic activity, ranging from hot springs to tropical forest ecosystems to the open ocean.

  5. Comparative Microbial Genomics and Forensics.

    Science.gov (United States)

    Massey, Steven E

    2016-08-01

    Forensic science concerns the application of scientific techniques to questions of a legal nature and may also be used to address questions of historical importance. Forensic techniques are often used in legal cases that involve crimes against persons or property, and they increasingly may involve cases of bioterrorism, crimes against nature, medical negligence, or tracing the origin of food- and crop-borne disease. Given the rapid advance of genome sequencing and comparative genomics techniques, we ask how these might be used to address cases of a forensic nature, focusing on the use of microbial genome sequence analysis. Such analyses rely on the increasingly large numbers of microbial genomes present in public databases, the ability of individual investigators to rapidly sequence whole microbial genomes, and an increasing depth of understanding of their evolution and function. Suggestions are made as to how comparative microbial genomics might be applied forensically and may represent possibilities for the future development of forensic techniques. A particular emphasis is on the nascent field of genomic epidemiology, which utilizes rapid whole-genome sequencing to identify the source and spread of infectious outbreaks. Also discussed is the application of comparative microbial genomics to the study of historical epidemics and deaths and how the approaches developed may also be applicable to more recent and actionable cases.

  6. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  7. Preemptive public policy for genomics.

    Science.gov (United States)

    Carlson, Rick J

    2008-02-01

    To many, genomics is merely exploitable technology for the leviathan of biotechnology. This is both shallow and short sighted. Genomics is applied knowledge based on profound and evolving science about how living things develop, how healthy or sick we are, and what our future will be like. In health care, genomics technologies are disruptive yet potentially cost-effective because they enable primary prevention, the antidote to runaway costs and declining productivity. The challenges to integration are great, however, and many bioethical and social-policy implications are alarming. Because it is poorly understood today, we must debate genomics vigorously if we are to act wisely. Public policy must lead.

  8. Advances in yeast genome engineering.

    Science.gov (United States)

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  9. Histones and genome integrity.

    Science.gov (United States)

    Williamson, Wes D; Pinto, Ines

    2012-01-01

    Chromosomes undergo extensive structural rearrangements during the cell cycle, from the most open chromatin state required for DNA replication to the highest level of compaction and condensation essential for mitotic segregation of sister chromatids. It is now widely accepted that chromatin is a highly dynamic structure that participates in all DNA-related functions, including transcription, DNA replication, repair, and mitosis; hence, histones have emerged as key players in these cellular processes. We review here the studies that implicate histones in functions that affect the chromosome cycle, defined as the cellular processes involved in the maintenance, replication, and segregation of chromosomal DNA. Disruption of the chromosome cycle affects the integrity of the cellular genome, leading to aneuploidy, polyploidy or cell death. Histone stoichiometry, mutations that affect the structure of the nucleosome core particle, and mutations that affect the structure and/or modifications of the histone tails, all have a direct impact on the fidelity of chromosome transmission and the integrity of the genome.

  10. Genomics of human longevity.

    Science.gov (United States)

    Slagboom, P E; Beekman, M; Passtoors, W M; Deelen, J; Vaarhorst, A A M; Boer, J M; van den Akker, E B; van Heemst, D; de Craen, A J M; Maier, A B; Rozing, M; Mooijaart, S P; Heijmans, B T; Westendorp, R G J

    2011-01-12

    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.

  11. Parsing of genomic graffiti

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, C.; Golden, J. III; Torgersen, D. [Vanderbilt Univ. School of Engineering, Nashville, TN (United States)

    1996-12-31

    A focal point of modern biology is investigation of wide varieties of phenomena at the level of molecular genetics. The nucleotide sequences of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) define the ultimate resolution of this reductionist approach to understand the determinants of heritable traits. The structure and function of genes, their composite genomic organization, and their regulated expression have been studied in systems representing every class of organism. Many human diseases or pathogenic syndromes can be directly attributed to inherited defects in either the regulated expression, or the quality of the products of specific genes. Genetic determinants of susceptibility to infectious agents or environmental hazards are amply documented. Mapping and sequencing of the DNA molecules encoding human genes have provided powerful technology for pharmaceutical bioengineering and forensic investigations. From an alternative perspective, we may anticipate that voluminous archives of singular DNA sequences alone will not suffice to define and understand the functional determinants of genome organization, allelic diversity and evolutionary plasticity of living organisms. New insights will accumulate pertaining to human evolutionary origins and relationships of human biology to models based on other mammals. Investigators of population genetics and epidemiology now exploit the technology of molecular genetics to more powerfully probe variation within the human gene pool at the level of DNA sequences. 40 refs., 7 figs., 2 tabs.

  12. Genomics of Myeloproliferative Neoplasms.

    Science.gov (United States)

    Zoi, Katerina; Cross, Nicholas C P

    2017-03-20

    Myeloproliferative neoplasms (MPNs) are a group of related clonal hematologic disorders characterized by excess accumulation of one or more myeloid cell lineages and a tendency to transform to acute myeloid leukemia. Deregulated JAK2 signaling has emerged as the central phenotypic driver of BCR -ABL1-negative MPNs and a unifying therapeutic target. In addition, MPNs show unexpected layers of genetic complexity, with multiple abnormalities associated with disease progression, interactions between inherited factors and phenotype driver mutations, and effects related to the order in which mutations are acquired. Although morphology and clinical laboratory analysis continue to play an important role in defining these conditions, genomic analysis is providing a platform for better disease definition, more accurate diagnosis, direction of therapy, and refined prognostication. There is an emerging consensus with regard to many prognostic factors, but there is a clear need to synthesize genomic findings into robust, clinically actionable and widely accepted scoring systems as well as the need to standardize the laboratory methodologies that are used.

  13. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using eithe...

  14. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  15. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  16. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  17. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  18. Genetic determinants of cardiovascular events among women with migraine: a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Markus Schürks

    Full Text Available BACKGROUND: Migraine is associated with an increased risk for cardiovascular disease (CVD. Both migraine and CVD are highly heritable. However, the genetic liability for CVD among migraineurs is unclear. METHODS: We performed a genome-wide association study for incident CVD events during 12 years of follow-up among 5,122 migraineurs participating in the population-based Women's Genome Health Study. Migraine was self-reported and CVD events were confirmed after medical records review. We calculated odds ratios (OR and 95% confidence intervals (CI and considered a genome-wide p-value <5×10(-8 as significant. RESULTS: Among the 5,122 women with migraine 164 incident CVD events occurred during follow-up. No SNP was associated with major CVD, ischemic stroke, myocardial infarction, or CVD death at the genome-wide level; however, five SNPs showed association with p<5×10(-6. Among migraineurs with aura rs7698623 in MEPE (OR = 6.37; 95% CI 3.15-12.90; p = 2.7×10(-7 and rs4975709 in IRX4 (OR = 5.06; 95% CI 2.66-9.62; p = 7.7×10(-7 appeared to be associated with ischemic stroke, rs2143678 located close to MDF1 with major CVD (OR = 3.05; 95% CI 1.98-4.69; p = 4.3×10(-7, and the intergenic rs1406961 with CVD death (OR = 12.33; 95% CI 4.62-32.87; p = 5.2×10(-7. Further, rs1047964 in BACE1 appeared to be associated with CVD death among women with any migraine (OR = 4.67; 95% CI 2.53-8.62; p = 8.0×10(-7. CONCLUSION: Our results provide some suggestion for an association of five SNPs with CVD events among women with migraine; none of the results was genome-wide significant. Four associations appeared among migraineurs with aura, two of those with ischemic stroke. Although our population is among the largest with migraine and incident CVD information, these results must be treated with caution, given the limited number of CVD events among women with migraine and the low minor allele frequencies for three of the SNPs

  19. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  20. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    Science.gov (United States)

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  1. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts tha...

  2. Fueling Future with Algal Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  3. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Karolchik, D; Kuhn, R M; Baertsch, R

    2008-01-01

    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrat...

  4. Bioinformatics for plant genome annotation

    NARCIS (Netherlands)

    Fiers, M.W.E.J.

    2006-01-01

    Large amounts of genome sequence data are available and much more will become available in the near future. A DNA sequence alone has, however, limited use. Genome annotation is required to assign biological interpretation to the DNA sequence. This thesis describ

  5. Genome editing in cardiovascular diseases.

    Science.gov (United States)

    Strong, Alanna; Musunuru, Kiran

    2017-01-01

    Genome-editing tools, which include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems, have emerged as an invaluable technology to achieve somatic and germline genomic manipulation in cells and model organisms for multiple applications, including the creation of knockout alleles, introducing desired mutations into genomic DNA, and inserting novel transgenes. Genome editing is being rapidly adopted into all fields of biomedical research, including the cardiovascular field, where it has facilitated a greater understanding of lipid metabolism, electrophysiology, cardiomyopathies, and other cardiovascular disorders, has helped to create a wider variety of cellular and animal models, and has opened the door to a new class of therapies. In this Review, we discuss the applications of genome-editing technology throughout cardiovascular disease research and the prospect of in vivo genome-editing therapies in the future. We also describe some of the existing limitations of genome-editing tools that will need to be addressed if cardiovascular genome editing is to achieve its full scientific and therapeutic potential.

  6. Comparative genomic hybridization: practical guidelines.

    NARCIS (Netherlands)

    Jeuken, J.W.M.; Sprenger, S.H.; Wesseling, P.

    2002-01-01

    Comparative genomic hybridization (CGH) is a technique used to identify copy number changes throughout a genome. Until now, hundreds of CGH studies have been published reporting chromosomal imbalances in a large variety of human neoplasms. Additionally, technical improvements of specific steps in a

  7. Plant cytogenetics in genome databases

    Science.gov (United States)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  8. Genomic medicine: too great expectations?

    Science.gov (United States)

    O'Rourke, P P

    2013-08-01

    As advances in genomic medicine have captured the interest and enthusiasm of the public, an unintended consequence has been the creation of unrealistic expectations. Because these expectations may have a negative impact on individuals as well as genomics in general, it is important that they be understood and confronted.

  9. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  10. Integrating genome assemblies with MAIA

    NARCIS (Netherlands)

    Nijkamp, J.F.; Winterbach, W.; Van den Broek, M.; Daran, J.M.; Reinders, M.J.T.; De Ridder, D.

    2010-01-01

    De novo assembly of a eukaryotic genome with next-generation sequencing data is still a challenging task. Over the past few years several assemblers have been developed, often suitable for one specific type of sequencing data. The number of known genomes is expanding rapidly, therefore it becomes po

  11. Cloud computing for comparative genomics.

    Science.gov (United States)

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  12. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Genome Resources Access to the full human sequence All About The Human Genome Project (HGP) The Human ... an international research effort to sequence and map all of the genes - together known as the genome - ...

  13. International genomic evaluation methods for dairy cattle

    Science.gov (United States)

    Background Genomic evaluations are rapidly replacing traditional evaluation systems used for dairy cattle selection. Economies of scale in genomics promote cooperation across country borders. Genomic information can be transferred across countries using simple conversion equations, by modifying mult...

  14. Genomic Heritability: What Is It?

    DEFF Research Database (Denmark)

    de los Campos, Gustavo; Sorensen, Daniel; Gianola, Daniel

    2015-01-01

    of phenotypic variance that can be explained by regression on molecular markers. This is so even though some of the assumptions commonly adopted for data analysis are at odds with important quantitative genetic concepts. In this article we develop theory that leads to a precise definition of parameters arising...... in high dimensional genomic regressions; we focus on the so-called genomic heritability: the proportion of variance of a trait that can be explained (in the population) by a linear regression on a set of markers. We propose a definition of this parameter that is framed within the classical quantitative...... genetics theory and show that the genomic heritability and the trait heritability parameters are equal only when all causal variants are typed. Further, we discuss how the genomic variance and genomic heritability, defined as quantitative genetic parameters, relate to parameters of statistical models...

  15. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call...

  16. Genomics in Neurological Disorders

    Institute of Scientific and Technical Information of China (English)

    Guangchun Han; Jiya Sun; Jiajia Wang; Zhouxian Bai; Fuhai Song; Hongxing Lei

    2014-01-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be dis-cussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer’s disease and autism spectrum disorder.

  17. Sequencing the maize genome.

    Science.gov (United States)

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  18. The Video Genome

    CERN Document Server

    Bronstein, Alexander M; Kimmel, Ron

    2010-01-01

    Fast evolution of Internet technologies has led to an explosive growth of video data available in the public domain and created unprecedented challenges in the analysis, organization, management, and control of such content. The problems encountered in video analysis such as identifying a video in a large database (e.g. detecting pirated content in YouTube), putting together video fragments, finding similarities and common ancestry between different versions of a video, have analogous counterpart problems in genetic research and analysis of DNA and protein sequences. In this paper, we exploit the analogy between genetic sequences and videos and propose an approach to video analysis motivated by genomic research. Representing video information as video DNA sequences and applying bioinformatic algorithms allows to search, match, and compare videos in large-scale databases. We show an application for content-based metadata mapping between versions of annotated video.

  19. The South Asian genome.

    Science.gov (United States)

    Chambers, John C; Abbott, James; Zhang, Weihua; Turro, Ernest; Scott, William R; Tan, Sian-Tsung; Afzal, Uzma; Afaq, Saima; Loh, Marie; Lehne, Benjamin; O'Reilly, Paul; Gaulton, Kyle J; Pearson, Richard D; Li, Xinzhong; Lavery, Anita; Vandrovcova, Jana; Wass, Mark N; Miller, Kathryn; Sehmi, Joban; Oozageer, Laticia; Kooner, Ishminder K; Al-Hussaini, Abtehale; Mills, Rebecca; Grewal, Jagvir; Panoulas, Vasileios; Lewin, Alexandra M; Northwood, Korrinne; Wander, Gurpreet S; Geoghegan, Frank; Li, Yingrui; Wang, Jun; Aitman, Timothy J; McCarthy, Mark I; Scott, James; Butcher, Sarah; Elliott, Paul; Kooner, Jaspal S

    2014-01-01

    The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.

  20. Genomics of sex determination.

    Science.gov (United States)

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution.

  1. The South Asian genome.

    Directory of Open Access Journals (Sweden)

    John C Chambers

    Full Text Available The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.

  2. Human myoblast genome therapy

    Institute of Scientific and Technical Information of China (English)

    Peter K Law; Leo A Bockeria; Choong-Chin Liew; Danlin M Law; Ping Lu; Eugene KW Sim; Khawja H Haider; Lei Ye; Xun Li; Margarita N Vakhromeeva; Ilia I Berishvili

    2006-01-01

    Human Myoblast Genome Therapy (HMGT) is a platform technology of cell transplantation, nuclear transfer, and tissue engineering. Unlike stem cells, myoblasts are differentiated, immature cells destined to become muscles. Myoblasts cultured from satellite cells of adult muscle biopsies survive, develop, and function to revitalize degenerative muscles upon transplantation. Injection injury activates regeneration of host myofibers that fuse with the engrafted myoblasts, sharing their nuclei in a common gene pool of the syncytium. Thus, through nuclear transfer and complementation, the normal human genome can be transferred into muscles of patients with genetic disorders to achieve phenotype repair or disease prevention. Myoblasts are safe and efficient gene transfer vehicles endogenous to muscles that constitute 50% of body weight. Results of over 280 HMGT procedures on Duchenne Muscular Dystrophy (DMD) subjects in the past 15 years demonstrated absolute safety. Myoblast-injected DMD muscles showed improved histology.Strength increase at 18 months post-operatively averaged 123%. In another application of HMGT on ischemic cardiomyopathy, the first human myoblast transfer into porcine myocardium revealed that it was safe and effective. Clinical trials on approximately 220 severe cardiomyopathy patients in 15 countries showed a <10% mortality. Most subjects received autologous cells implanted on the epicardial surface during coronory artery bypass graft, or injected on the endomyocardial surface percutaneously through guiding catheters. Significant increases in left ventricular ejection fraction, wall thickness, and wall motion have been reported, with reduction in perfusion defective areas, angina, and shortness of breath. As a new modality of treatment for disease in the skeletal muscle or myocardium, HMGT emerged as safe and effective. Large randomized multi-center trials are under way to confirm these preliminary results. The future of HMGT is bright and exciting

  3. Wheat Landrace Genome Diversity.

    Science.gov (United States)

    Wingen, Luzie U; West, Claire; Leverington-Waite, Michelle; Collier, Sarah; Orford, Simon; Goram, Richard; Yang, Cai-Yun; King, Julie; Allen, Alexandra M; Burridge, Amanda; Edwards, Keith J; Griffiths, Simon

    2017-02-17

    Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focussing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating bi-parental populations were developed mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity (WINGEN et al. 2014). A modern spring elite variety, 'Paragon,' was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1,611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC) was constructed and contained 2,498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g. by comparing at marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot-spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the

  4. Privacy in the Genomic Era

    Science.gov (United States)

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  5. Recombination drives vertebrate genome contraction.

    Directory of Open Access Journals (Sweden)

    Kiwoong Nam

    Full Text Available Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process.

  6. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  7. Genomic SELEX: a discovery tool for genomic aptamers.

    Science.gov (United States)

    Zimmermann, Bob; Bilusic, Ivana; Lorenz, Christina; Schroeder, Renée

    2010-10-01

    Genomic SELEX is a discovery tool for genomic aptamers, which are genomically encoded functional domains in nucleic acid molecules that recognize and bind specific ligands. When combined with genomic libraries and using RNA-binding proteins as baits, Genomic SELEX used with high-throughput sequencing enables the discovery of genomic RNA aptamers and the identification of RNA-protein interaction networks. Here we describe how to construct and analyze genomic libraries, how to choose baits for selections, how to perform the selection procedure and finally how to analyze the enriched sequences derived from deep sequencing. As a control procedure, we recommend performing a "Neutral" SELEX experiment in parallel to the selection, omitting the selection step. This control experiment provides a background signal for comparison with the positively selected pool. We also recommend deep sequencing the initial library in order to facilitate the final in silico analysis of enrichment with respect to the initial levels. Counter selection procedures, using modified or inactive baits, allow strengthening the binding specificity of the winning selected sequences.

  8. The UCSC Archaeal Genome Browser: 2012 update

    OpenAIRE

    Chan, Patricia P.; Holmes, Andrew D.; Smith, Andrew M.; Tran, Danny; Lowe, Todd M.

    2011-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of ...

  9. Microbiology in the post-genomic era.

    Science.gov (United States)

    Medini, Duccio; Serruto, Davide; Parkhill, Julian; Relman, David A; Donati, Claudio; Moxon, Richard; Falkow, Stanley; Rappuoli, Rino

    2008-06-01

    Genomics has revolutionized every aspect of microbiology. Now, 13 years after the first bacterial genome was sequenced, it is important to pause and consider what has changed in microbiology research as a consequence of genomics. In this article, we review the evolving field of bacterial typing and the genomic technologies that enable comparative analysis of multiple genomes and the metagenomes of complex microbial environments, and address the implications of the genomic era for the future of microbiology.

  10. Evaluating the role of genome downsizing and size thresholds from genome size distributions in angiosperms.

    Science.gov (United States)

    Zenil-Ferguson, Rosana; Ponciano, José M; Burleigh, J Gordon

    2016-07-01

    Whole-genome duplications (WGDs) can rapidly increase genome size in angiosperms. Yet their mean genome size is not correlated with ploidy. We compared three hypotheses to explain the constancy of genome size means across ploidies. The genome downsizing hypothesis suggests that genome size will decrease by a given percentage after a WGD. The genome size threshold hypothesis assumes that taxa with large genomes or large monoploid numbers will fail to undergo or survive WGDs. Finally, the genome downsizing and threshold hypothesis suggests that both genome downsizing and thresholds affect the relationship between genome size means and ploidy. We performed nonparametric bootstrap simulations to compare observed angiosperm genome size means among species or genera against simulated genome sizes under the three different hypotheses. We evaluated the hypotheses using a decision theory approach and estimated the expected percentage of genome downsizing. The threshold hypothesis improves the approximations between mean genome size and simulated genome size. At the species level, the genome downsizing with thresholds hypothesis best explains the genome size means with a 15% genome downsizing percentage. In the genus level simulations, the monoploid number threshold hypothesis best explains the data. Thresholds of genome size and monoploid number added to genome downsizing at species level simulations explain the observed means of angiosperm genome sizes, and monoploid number is important for determining the genome size mean at the genus level. © 2016 Botanical Society of America.

  11. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  12. Genomic Scans of Zygotic Disequilibrium and Epistatic SNPs in HapMap Phase III Populations.

    Directory of Open Access Journals (Sweden)

    Xin-Sheng Hu

    Full Text Available Previous theory indicates that zygotic linkage disequilibrium (LD is more informative than gametic or composite digenic LD in revealing natural population history. Further, the difference between the composite digenic and maximum zygotic LDs can be used to detect epistatic selection for fitness. Here we corroborate the theory by investigating genome-wide zygotic LDs in HapMap phase III human populations. Results show that non-Africa populations have much more significant zygotic LDs than do Africa populations. Africa populations (ASW, LWK, MKK, and YRI possess more significant zygotic LDs for the double-homozygotes (DAABB than any other significant zygotic LDs (DAABb, DAaBB, and DAaBb, while non-Africa populations generally have more significant DAaBb's than any other significant zygotic LDs (DAABB, DAABb, and DAaBB. Average r-squares for any significant zygotic LDs increase generally in an order of populations YRI, MKK, CEU, CHB, LWK, JPT, CHD, TSI, GIH, ASW, and MEX. Average r-squares are greater for DAABB and DAaBb than for DAaBB and DAABb in each population. YRI and MKK can be separated from LWK and ASW in terms of the pattern of average r-squares. All population divergences in zygotic LDs can be interpreted with the model of Out of Africa for modern human origins. We have also detected 19735-95921 SNP pairs exhibiting strong signals of epistatic selection in different populations. Gene-gene interactions for some epistatic SNP pairs are evident from empirical findings, but many more epistatic SNP pairs await evidence. Common epistatic SNP pairs rarely exist among all populations, but exist in distinct regions (Africa, Europe, and East Asia, which helps to understand geographical genomic medicine.

  13. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  14. Genome Annotation Transfer Utility (GATU: rapid annotation of viral genomes using a closely related reference genome

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2006-06-01

    Full Text Available Abstract Background Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics – Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU, to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. Results GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. Conclusion GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome

  15. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.

    Science.gov (United States)

    Tcherepanov, Vasily; Ehlers, Angelika; Upton, Chris

    2006-06-13

    Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics - Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU), to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome annotations to the target genome. The program is freely

  16. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  17. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  18. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  19. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  20. Jumbled Genomes: Missing Apicomplexan Synteny

    Science.gov (United States)

    DeBarry, Jeremy D.; Kissinger, Jessica C.

    2011-01-01

    Whole-genome comparisons provide insight into genome evolution by informing on gene repertoires, gene gains/losses, and genome organization. Most of our knowledge about eukaryotic genome evolution is derived from studies of multicellular model organisms. The eukaryotic phylum Apicomplexa contains obligate intracellular protist parasites responsible for a wide range of human and veterinary diseases (e.g., malaria, toxoplasmosis, and theileriosis). We have developed an in silico protein-encoding gene based pipeline to investigate synteny across 12 apicomplexan species from six genera. Genome rearrangement between lineages is extensive. Syntenic regions (conserved gene content and order) are rare between lineages and appear to be totally absent across the phylum, with no group of three genes found on the same chromosome and in the same order within 25 kb up- and downstream of any orthologous genes. Conserved synteny between major lineages is limited to small regions in Plasmodium and Theileria/Babesia species, and within these conserved regions, there are a number of proteins putatively targeted to organelles. The observed overall lack of synteny is surprising considering the divergence times and the apparent absence of transposable elements (TEs) within any of the species examined. TEs are ubiquitous in all other groups of eukaryotes studied to date and have been shown to be involved in genomic rearrangements. It appears that there are different criteria governing genome evolution within the Apicomplexa relative to other well-studied unicellular and multicellular eukaryotes. PMID:21504890

  1. Radiation Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  2. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  3. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  4. Recurring genomic breaks in independent lineages support genomic fragility

    Directory of Open Access Journals (Sweden)

    Hannenhalli Sridhar

    2006-11-01

    Full Text Available Abstract Background Recent findings indicate that evolutionary breaks in the genome are not randomly distributed, and that certain regions, so-called fragile regions, are predisposed to breakages. Previous approaches to the study of genomic fragility have examined the distribution of breaks, as well as the coincidence of breaks with segmental duplications and repeats, within a single species. In contrast, we investigate whether this regional fragility is an inherent genomic characteristic and is thus conserved over multiple independent lineages. Results We do this by quantifying the extent to which certain genomic regions are disrupted repeatedly in independent lineages. Our investigation, based on Human, Chimp, Mouse, Rat, Dog and Chicken, suggests that the propensity of a chromosomal region to break is significantly correlated among independent lineages, even when covariates are considered. Furthermore, the fragile regions are enriched for segmental duplications. Conclusion Based on a novel methodology, our work provides additional support for the existence of fragile regions.

  5. The bonobo genome compared with the chimpanzee and human genomes.

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  6. Genome Modeling System: A Knowledge Management Platform for Genomics.

    Directory of Open Access Journals (Sweden)

    Malachi Griffith

    2015-07-01

    Full Text Available In this work, we present the Genome Modeling System (GMS, an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395 and matched lymphoblastoid line (HCC1395BL. These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.

  7. [Targeted genome modifications using TALEN].

    Science.gov (United States)

    Dupret, Barbara; Angrand, Pierre-Olivier

    2014-02-01

    Precise modifications of genomes have been one of the biggest goals in the fields of biotechnology and biomedical research. Recent discovery of TALE (transcription activator-like effectors) and the engineering of customized TALEN (transcription activator-like effector nucleases) allowed rapid genome editing in a variety of cell types and different model organisms. TALEN are molecular scissors used to induce a wide range of specific and efficient genomic modifications. TALEN promise to have profound impacts on biological and medical research over the coming years.

  8. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  9. Functional genomics in reproductive medicine.

    Science.gov (United States)

    Barratt, Christopher L R; Hughes, David C; Afnan, Masoud; Brewis, Ian A

    2002-02-01

    The British Fertility Society organised a workshop on Functional Genomics in Reproductive Medicine at the University of Birmingham on 13-14 September 2001. The primary aim was to inform delegates about the power of the technology that has been made available after completion of the sequencing of the human genome, and to stimulate debate about using functional genomics to address both clinical and scientific questions in reproductive medicine. Three specific areas were addressed: proteomics, gene expression and bioinformatics. Although the sophistication and plethora of techniques available were obvious, major limitations in the technology were also discussed. The future promises to be very challenging indeed.

  10. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  11. The Materials Genome Project

    Science.gov (United States)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  12. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  13. Genomics, environmental genomics and the issue of microbial species.

    Science.gov (United States)

    Ward, D M; Cohan, F M; Bhaya, D; Heidelberg, J F; Kühl, M; Grossman, A

    2008-02-01

    A microbial species concept is crucial for interpreting the variation detected by genomics and environmental genomics among cultivated microorganisms and within natural microbial populations. Comparative genomic analyses of prokaryotic species as they are presently described and named have led to the provocative idea that prokaryotes may not form species as we think about them for plants and animals. There are good reasons to doubt whether presently recognized prokaryotic species are truly species. To achieve a better understanding of microbial species, we believe it is necessary to (i) re-evaluate traditional approaches in light of evolutionary and ecological theory, (ii) consider that different microbial species may have evolved in different ways and (iii) integrate genomic, metagenomic and genome-wide expression approaches with ecological and evolutionary theory. Here, we outline how we are using genomic methods to (i) identify ecologically distinct populations (ecotypes) predicted by theory to be species-like fundamental units of microbial communities, and (ii) test their species-like character through in situ distribution and gene expression studies. By comparing metagenomic sequences obtained from well-studied hot spring cyanobacterial mats with genomic sequences of two cultivated cyanobacterial ecotypes, closely related to predominant native populations, we can conduct in situ population genetics studies that identify putative ecotypes and functional genes that determine the ecotypes' ecological distinctness. If individuals within microbial communities are found to be grouped into ecologically distinct, species-like populations, knowing about such populations should guide us to a better understanding of how genomic variation is linked to community function.

  14. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Science.gov (United States)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  15. The CGView Server: a comparative genomics tool for circular genomes.

    Science.gov (United States)

    Grant, Jason R; Stothard, Paul

    2008-07-01

    The CGView Server generates graphical maps of circular genomes that show sequence features, base composition plots, analysis results and sequence similarity plots. Sequences can be supplied in raw, FASTA, GenBank or EMBL format. Additional feature or analysis information can be submitted in the form of GFF (General Feature Format) files. The server uses BLAST to compare the primary sequence to up to three comparison genomes or sequence sets. The BLAST results and feature information are converted to a graphical map showing the entire sequence, or an expanded and more detailed view of a region of interest. Several options are included to control which types of features are displayed and how the features are drawn. The CGView Server can be used to visualize features associated with any bacterial, plasmid, chloroplast or mitochondrial genome, and can aid in the identification of conserved genome segments, instances of horizontal gene transfer, and differences in gene copy number. Because a collection of sequences can be used in place of a comparison genome, maps can also be used to visualize regions of a known genome covered by newly obtained sequence reads. The CGView Server can be accessed at http://stothard.afns.ualberta.ca/cgview_server/

  16. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    Science.gov (United States)

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors.

  17. Effects of sedative music on anxiety, heart rates and skin-surface temperature in patients awaiting cardiac catheterization examination%镇静音乐对等待心导管检查患者焦虑水平与心率及皮肤温度的影响

    Institute of Scientific and Technical Information of China (English)

    周荣; 刘皇军; 金立军; 何小玲; 黄敏

    2012-01-01

    Objective To explore the effects of sedative music on-anxiety, heart rates and fingertip skin-surface temperature in patients awaiting cardiac catheterization examination. Methods Forty subjects scheduled for cardiac catheterization examination were commensurately and randomly assigned to two groups. The control group were given conventional care, while the music group additionally received sedative music: patients were asked to listen to their favorable music for 30 min with the music rhythm ranging from 40 to 60 beats/min. Results Heart rates and fingertip skin-surface temperature changed significantly at all time points after the intervention in both groups (P<0. 05,P<0. 01), with the changes being more noticeable in the music group (P<0. 05). Conclusion Sedative music applied to patients awaiting cardiac catheterization examination, can reduce anxiety and heart rates, and increase fingertip skin-surface temperature. It is a safe and effective intervention against anxiety.%目的 探讨镇静音乐对等待心导管检查患者焦虑水平、心率(HR)及指端皮肤温度(ST)的影响.方法 将40例行心导管检查的患者随机分为音乐组和对照组,各20例.对照组按常规护理;音乐组在此基础上采用镇静音乐疗法,即助患者从CD中选择自己喜欢的一种镇静音乐播放,音乐节奏为40~60次/min,持续30min.结果 两组干预后的HR与ST在每个时间点(T1~T6)均有明显改变(P<0.05,P<0.01),但音乐组效果更显著(P<0.05).结论 镇静音乐可显著降低等待心导管检查患者的焦虑水平,减慢HR及提高指端ST,是对抗焦虑安全、有效的干预措施.

  18. Comparative genomic analysis of sixty mycobacteriophage genomes: Genome clustering, gene acquisition and gene size

    Science.gov (United States)

    Hatfull, Graham F.; Jacobs-Sera, Deborah; Lawrence, Jeffrey G.; Pope, Welkin H.; Russell, Daniel A.; Ko, Ching-Chung; Weber, Rebecca J.; Patel, Manisha C.; Germane, Katherine L.; Edgar, Robert H.; Hoyte, Natasha N.; Bowman, Charles A.; Tantoco, Anthony T.; Paladin, Elizabeth C.; Myers, Marlana S.; Smith, Alexis L.; Grace, Molly S.; Pham, Thuy T.; O'Brien, Matthew B.; Vogelsberger, Amy M.; Hryckowian, Andrew J.; Wynalek, Jessica L.; Donis-Keller, Helen; Bogel, Matt W.; Peebles, Craig L.; Cresawn, Steve G.; Hendrix, Roger W.

    2010-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of sixty – all infecting a common bacterial host – provides further insight into their diversity and evolution. Of the sixty phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, five of which can be further divided into subclusters; five genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the six genomes in cluster D share more than 97.5% average nucleotide similarity with each other. In contrast, similarity between the two genomes in Cluster I is barely detectable by diagonal plot analysis. The total of 6,858 predicted ORFs have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit smaller average size than genes of their host (205 residues compared to 315), phage genes in higher flux average only ∼100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains. PMID:20064525

  19. Spectrogram Analysis of Genomes

    Directory of Open Access Journals (Sweden)

    David Sussillo

    2004-01-01

    Full Text Available We performed frequency-domain analysis in the genomes of various organisms using tricolor spectrograms, identifying several types of distinct visual patterns characterizing specific DNA regions. We relate patterns and their frequency characteristics to the sequence characteristics of the DNA. At times, the spectrogram patterns could be related to the structure of the corresponding protein region by using various public databases such as GenBank. Some patterns are explained from the biological nature of the corresponding regions, which relate to chromosome structure and protein coding, and some patterns have yet unknown biological significance. We found biologically meaningful patterns, on the scale of millions of base pairs, to a few hundred base pairs. Chromosome-wide patterns include periodicities ranging from 2 to 300. The color of the spectrogram depends on the nucleotide content at specific frequencies, and therefore can be used as a local indicator of CG content and other measures of relative base content. Several smaller-scale patterns were found to represent different types of domains made up of various tandem repeats.

  20. Structural variations in pig genomes

    NARCIS (Netherlands)

    Paudel, Y.

    2015-01-01

    Abstract Paudel, Y. (2015). Structural variations in pig genomes. PhD thesis, Wageningen University, the Netherlands Structural variations are chromosomal rearrangements such as insertions-deletions (INDELs), duplications, inversions, translocations, and copy number variations (CNVs

  1. Empowering marine science through genomics

    NARCIS (Netherlands)

    Volckaert, F.A M J; Barbier, M.; Canario, A; Olsen, J.L.; Wesnigk, J; Clark, M; Boyen, C

    Marine scientists in Europe summarize their successes with genome technologies in the marine sciences and make a plea for a concerted international effort to raise greater public education for support. (C) 2008 Elsevier B.V. All rights reserved.

  2. Genomic Resources for Cancer Epidemiology

    Science.gov (United States)

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  3. Gene finding in novel genomes

    Directory of Open Access Journals (Sweden)

    Korf Ian

    2004-05-01

    Full Text Available Abstract Background Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. Results I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. Conclusion Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.

  4. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  5. The circadian clock goes genomic.

    Science.gov (United States)

    Staiger, Dorothee; Shin, Jieun; Johansson, Mikael; Davis, Seth J

    2013-06-24

    Large-scale biology among plant species, as well as comparative genomics of circadian clock architecture and clock-regulated output processes, have greatly advanced our understanding of the endogenous timing system in plants.

  6. Genomic understanding of glioblastoma expanded

    Science.gov (United States)

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  7. Genomic Datasets for Cancer Research

    Science.gov (United States)

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  8. Collaborators | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  9. Genomics and Health Impact Update

    Science.gov (United States)

    ... Comparative Effectiveness Developmental Disabilities Liquid Biopsy Lung Cancer Microbiome Nutrigenomics Sudden Death Impact Scan CDC Publications Birth Defects/ Child Health Cancer Cardiovascular Diseases Chronic Disease Ethics, Policy and Law Genomics in ...

  10. Empowering marine science through genomics

    NARCIS (Netherlands)

    Volckaert, F.A M J; Barbier, M.; Canario, A; Olsen, J.L.; Wesnigk, J; Clark, M; Boyen, C

    2008-01-01

    Marine scientists in Europe summarize their successes with genome technologies in the marine sciences and make a plea for a concerted international effort to raise greater public education for support. (C) 2008 Elsevier B.V. All rights reserved.

  11. Probability landscapes for integrative genomics

    Directory of Open Access Journals (Sweden)

    Benecke Arndt

    2008-05-01

    Full Text Available Abstract Background The comprehension of the gene regulatory code in eukaryotes is one of the major challenges of systems biology, and is a requirement for the development of novel therapeutic strategies for multifactorial diseases. Its bi-fold degeneration precludes brute force and statistical approaches based on the genomic sequence alone. Rather, recursive integration of systematic, whole-genome experimental data with advanced statistical regulatory sequence predictions needs to be developed. Such experimental approaches as well as the prediction tools are only starting to become available and increasing numbers of genome sequences and empirical sequence annotations are under continual discovery-driven change. Furthermore, given the complexity of the question, a decade(s long multi-laboratory effort needs to be envisioned. These constraints need to be considered in the creation of a framework that can pave a road to successful comprehension of the gene regulatory code. Results We introduce here a concept for such a framework, based entirely on systematic annotation in terms of probability profiles of genomic sequence using any type of relevant experimental and theoretical information and subsequent cross-correlation analysis in hypothesis-driven model building and testing. Conclusion Probability landscapes, which include as reference set the probabilistic representation of the genomic sequence, can be used efficiently to discover and analyze correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide measurements. Furthermore, this structure is usable as a support for automatically generating and testing hypotheses for alternative gene regulatory grammars and the evaluation of those through statistical analysis of the high-dimensional correlations between genomic sequence, sequence annotations, and experimental data. Finally, this structure provides a concrete and tangible basis for attempting to formulate a

  12. Genomic heritability: what is it?

    Directory of Open Access Journals (Sweden)

    Gustavo de Los Campos

    2015-05-01

    Full Text Available Whole-genome regression methods are being increasingly used for the analysis and prediction of complex traits and diseases. In human genetics, these methods are commonly used for inferences about genetic parameters, such as the amount of genetic variance among individuals or the proportion of phenotypic variance that can be explained by regression on molecular markers. This is so even though some of the assumptions commonly adopted for data analysis are at odds with important quantitative genetic concepts. In this article we develop theory that leads to a precise definition of parameters arising in high dimensional genomic regressions; we focus on the so-called genomic heritability: the proportion of variance of a trait that can be explained (in the population by a linear regression on a set of markers. We propose a definition of this parameter that is framed within the classical quantitative genetics theory and show that the genomic heritability and the trait heritability parameters are equal only when all causal variants are typed. Further, we discuss how the genomic variance and genomic heritability, defined as quantitative genetic parameters, relate to parameters of statistical models commonly used for inferences, and indicate potential inferential problems that are assessed further using simulations. When a large proportion of the markers used in the analysis are in LE with QTL the likelihood function can be misspecified. This can induce a sizable finite-sample bias and, possibly, lack of consistency of likelihood (or Bayesian estimates. This situation can be encountered if the individuals in the sample are distantly related and linkage disequilibrium spans over short regions. This bias does not negate the use of whole-genome regression models as predictive machines; however, our results indicate that caution is needed when using marker-based regressions for inferences about population parameters such as the genomic heritability.

  13. Genomic methods take the plunge

    DEFF Research Database (Denmark)

    Cammen, Kristina M.; Andrews, Kimberly R.; Carroll, Emma L.

    2016-01-01

    The dramatic increase in the application of genomic techniques to non-model organisms (NMOs) over the past decade has yielded numerous valuable contributions to evolutionary biology and ecology, many of which would not have been possible with traditional genetic markers. We review this recent...... of fitness, demography, and population structure. Here we review the primary options for generating genomic data, introduce several emerging techniques, and discuss the suitability of each approach for different applications in the study of NMOs....

  14. Gender And The Human Genome

    Directory of Open Access Journals (Sweden)

    Chadwick Ruth

    2009-01-01

    Full Text Available Gender issues arise in relation to the human genome across a number of dimensions: the level of attention given to the nuclear genome as opposed to the mitochondrial; the level of basic scientific research; decision-making in the clinic related to both reproductive decision-making on the one hand, and diagnostic and predictive testing on the other; and wider societal implications. Feminist bioethics offers a useful perspective for addressing these issues.

  15. Plague in the genomic area.

    Science.gov (United States)

    Drancourt, M

    2012-03-01

    With plague being not only a subject of interest for historians, but still a disease of public health concern in several countries, mainly in Africa, there were hopes that analyses of the Yersinia pestis genomes would put an end to this deadly epidemic pathogen. Genomics revealed that Y. pestis isolates evolved from Yersinia pseudotuberculosis in Central Asia some millennia ago, after the acquisition of two Y. pestis-specific plasmids balanced genomic reduction parallel with the expansion of insertion sequences, illustrating the modern concept that, except for the acquisition of plasmid-borne toxin-encoding genes, the increased virulence of Y. pestis resulted from gene loss rather than gene acquisition. The telluric persistence of Y. pestis reminds us of this close relationship, and matters in terms of plague epidemiology. Whereas biotype Orientalis isolates spread worldwide, the Antiqua and Medievalis isolates showed more limited expansion. In addition to animal ectoparasites, human ectoparasites such as the body louse may have participated in this expansion and in devastating historical epidemics. The recent analysis of a Black Death genome indicated that it was more closely related to the Orientalis branch than to the Medievalis branch. Modern Y. pestis isolates grossly exhibit the same gene content, but still undergo micro-evolution in geographically limited areas by differing in the genome architecture, owing to inversions near insertion sequences and the stabilization of the YpfPhi prophage in Orientalis biotype isolates. Genomics have provided several new molecular tools for the genotyping and phylogeographical tracing of isolates and description of plague foci. However, genomics and post-genomics approaches have not yet provided new tools for the prevention, diagnosis and management of plague patients and the plague epidemics still raging in some sub-Saharan countries. © 2012 The Author. Clinical Microbiology and Infection © 2012 European Society of

  16. Genome Exploitation and Bioinformatics Tools

    Science.gov (United States)

    de Jong, Anne; van Heel, Auke J.; Kuipers, Oscar P.

    Bioinformatic tools can greatly improve the efficiency of bacteriocin screening efforts by limiting the amount of strains. Different classes of bacteriocins can be detected in genomes by looking at different features. Finding small bacteriocins can be especially challenging due to low homology and because small open reading frames (ORFs) are often omitted from annotations. In this chapter, several bioinformatic tools/strategies to identify bacteriocins in genomes are discussed.

  17. Contact | Office of Cancer Genomics

    Science.gov (United States)

    For more information about the Office of Cancer Genomics, please contact: Office of Cancer Genomics National Cancer Institute 31 Center Drive, 10A07 Bethesda, Maryland 20892-2580 Phone: (301) 451-8027 Fax: (301) 480-4368 Email: ocg@mail.nih.gov *Please note that this site will not function properly in Internet Explorer unless you completely turn off the Compatibility View*

  18. International network of cancer genome projects

    NARCIS (Netherlands)

    Hudson, Thomas J.; Anderson, Warwick; Aretz, Axel; Barker, Anna D.; Bell, Cindy; Bernabe, Rosa R.; Bhan, M. K.; Calvo, Fabien; Eerola, Iiro; Gerhard, Daniela S.; Guttmacher, Alan; Guyer, Mark; Hemsley, Fiona M.; Jennings, Jennifer L.; Kerr, David; Klatt, Peter; Kolar, Patrik; Kusuda, Jun; Lane, David P.; Laplace, Frank; Lu, Youyong; Nettekoven, Gerd; Ozenberger, Brad; Peterson, Jane; Rao, T. S.; Remacle, Jacques; Schafer, Alan J.; Shibata, Tatsuhiro; Stratton, Michael R.; Vockley, Joseph G.; Watanabe, Koichi; Yang, Huanming; Yuen, Matthew M. F.; Knoppers, M.; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn G.; Dyke, Stephanie O. M.; Joly, Yann; Kato, Kazuto; Kennedy, Karen L.; Nicolas, Pilar; Parker, Michael J.; Rial-Sebbag, Emmanuelle; Romeo-Casabona, Carlos M.; Shaw, Kenna M.; Wallace, Susan; Wiesner, Georgia L.; Zeps, Nikolajs; Lichter, Peter; Biankin, Andrew V.; Chabannon, Christian; Chin, Lynda; Clement, Bruno; de Alava, Enrique; Degos, Francoise; Ferguson, Martin L.; Geary, Peter; Hayes, D. Neil; Johns, Amber L.; Nakagawa, Hidewaki; Penny, Robert; Piris, Miguel A.; Sarin, Rajiv; Scarpa, Aldo; Shibata, Tatsuhiro; van de Vijver, Marc; Futreal, P. Andrew; Aburatani, Hiroyuki; Bayes, Monica; Bowtell, David D. L.; Campbell, Peter J.; Estivill, Xavier; Grimmond, Sean M.; Gut, Ivo; Hirst, Martin; Lopez-Otin, Carlos; Majumder, Partha; Marra, Marco; Nakagawa, Hidewaki; Ning, Zemin; Puente, Xose S.; Ruan, Yijun; Shibata, Tatsuhiro; Stratton, Michael R.; Stunnenberg, Hendrik G.; Swerdlow, Harold; Velculescu, Victor E.; Wilson, Richard K.; Xue, Hong H.; Yang, Liu; Spellman, Paul T.; Bader, Gary D.; Boutros, Paul C.; Campbell, Peter J.; Flicek, Paul; Getz, Gad; Guigo, Roderic; Guo, Guangwu; Haussler, David; Heath, Simon; Hubbard, Tim J.; Jiang, Tao; Jones, Steven M.; Li, Qibin; Lopez-Bigas, Nuria; Luo, Ruibang; Pearson, John V.; Puente, Xose S.; Quesada, Victor; Raphael, Benjamin J.; Sander, Chris; Shibata, Tatsuhiro; Speed, Terence P.; Stuart, Joshua M.; Teague, Jon W.; Totoki, Yasushi; Tsunoda, Tatsuhiko; Valencia, Alfonso; Wheeler, David A.; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Stein, Lincoln D.; Guigo, Roderic; Hubbard, Tim J.; Joly, Yann; Jones, Steven M.; Lathrop, Mark; Lopez-Bigas, Nuria; Ouellette, B. F. Francis; Spellman, Paul T.; Teague, Jon W.; Thomas, Gilles; Valencia, Alfonso; Yoshida, Teruhiko; Kennedy, Karen L.; Axton, Myles; Dyke, Stephanie O. M.; Futreal, P. Andrew; Gunter, Chris; Guyer, Mark; McPherson, John D.; Miller, Linda J.; Ozenberger, Brad; Kasprzyk, Arek; Zhang, Junjun; Haider, Syed A.; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Bobrow, Martin; Chalmers, Don R. C.; Hasel, Karl W.; Joly, Yann; Kaan, Terry S. H.; Kennedy, Karen L.; Knoppers, Bartha M.; Lowrance, William W.; Masui, Tohru; Nicolas, Pilar; Rial-Sebbag, Emmanuelle; Rodriguez, Laura Lyman; Vergely, Catherine; Yoshida, Teruhiko; Grimmond, Sean M.; Biankin, Andrew V.; Bowtell, David D. L.; Cloonan, Nicole; Defazio, Anna; Eshleman, James R.; Etemadmoghadam, Dariush; Gardiner, Brooke A.; Kench, James G.; Scarpa, Aldo; Sutherland, Robert L.; Tempero, Margaret A.; Waddell, Nicola J.; Wilson, Peter J.; Gallinger, Steve; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Mukhopadhyay, Debabrata; Chin, Lynda; DePinho, Ronald A.; Thayer, Sarah; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa; Lu, Youyong; Ji, Jiafu; Zhang, Xiuqing; Chen, Feng; Hu, Xueda; Zhou, Guangyu; Yang, Qi; Tian, Geng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong; Zhu, Zhenggang; Yu, Yingyan; Yu, Jun; Yang, Huanming; Lathrop, Mark; Tost, Joerg; Brennan, Paul; Holcatova, Ivana; Zaridze, David; Brazma, Alvis; Egevad, Lars; Prokhortchouk, Egor; Banks, Rosamonde Elizabeth; Uhlen, Mathias; Cambon-Thomsen, Anne; Viksna, Juris; Ponten, Fredrik; Skryabin, Konstantin; Stratton, Michael R.; Futreal, P. Andrew; Birney, Ewan; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Martin, Sancha; Reis-Filho, Jorge S.; Richardson, Andrea L.; Sotiriou, Christos; Stunnenberg, Hendrik G.; Thomas, Gilles; van de Vijver, Marc; van't Veer, Laura; Birnbaum, Daniel; Blanche, Helene; Boucher, Pascal; Boyault, Sandrine; Chabannon, Christian; Gut, Ivo; Masson-Jacquemier, Jocelyne D.; Lathrop, Mark; Pauporte, Iris; Pivot, Xavier; Vincent-Salomon, Anne; Tabone, Eric; Theillet, Charles; Thomas, Gilles; Tost, Joerg; Treilleux, Isabelle; Bioulac-Sage, Paulette; Clement, Bruno; Decaens, Thomas; Degos, Francoise; Franco, Dominique; Gut, Ivo; Gut, Marta; Heath, Simon; Lathrop, Mark; Samuel, Didier; Thomas, Gilles; Zucman-Rossi, Jessica; Lichter, Peter; Eils, Roland; Brors, Benedikt; Korbel, Jan O.; Korshunov, Andrey; Landgraf, Pablo; Lehrach, Hans; Pfister, Stefan; Radlwimmer, Bernhard; Reifenberger, Guido; Taylor, Michael D.; von Kalle, Christof; Majumder, Partha P.; Sarin, Rajiv; Scarpa, Aldo; Pederzoli, Paolo; Lawlor, Rita T.; Delledonne, Massimo; Bardelli, Alberto; Biankin, Andrew V.; Grimmond, Sean M.; Gress, Thomas; Klimstra, David; Zamboni, Giuseppe; Shibata, Tatsuhiro; Nakamura, Yusuke; Nakagawa, Hidewaki; Kusuda, Jun; Tsunoda, Tatsuhiko; Miyano, Satoru; Aburatani, Hiroyuki; Kato, Kazuto; Fujimoto, Akihiro; Yoshida, Teruhiko; Campo, Elias; Lopez-Otin, Carlos; Estivill, Xavier; Guigo, Roderic; de Sanjose, Silvia; Piris, Miguel A.; Montserrat, Emili; Gonzalez-Diaz, Marcos; Puente, Xose S.; Jares, Pedro; Valencia, Alfonso; Himmelbaue, Heinz; Quesada, Victor; Bea, Silvia; Stratton, Michael R.; Futreal, P. Andrew; Campbell, Peter J.; Vincent-Salomon, Anne; Richardson, Andrea L.; Reis-Filho, Jorge S.; van de Vijver, Marc; Thomas, Gilles; Masson-Jacquemier, Jocelyne D.; Aparicio, Samuel; Borg, Ake; Borresen-Dale, Anne-Lise; Caldas, Carlos; Foekens, John A.; Stunnenberg, Hendrik G.; van't Veer, Laura; Easton, Douglas F.; Spellman, Paul T.; Martin, Sancha; Chin, Lynda; Collins, Francis S.; Compton, Carolyn C.; Ferguson, Martin L.; Getz, Gad; Gunter, Chris; Guyer, Mark; Hayes, D. Neil; Lander, Eric S.; Ozenberger, Brad; Penny, Robert; Peterson, Jane; Sander, Chris; Speed, Terence P.; Spellman, Paul T.; Wheeler, David A.; Wilson, Richard K.; Chin, Lynda; Knoppers, Bartha M.; Lander, Eric S.; Lichter, Peter; Stratton, Michael R.; Bobrow, Martin; Burke, Wylie; Collins, Francis S.; DePinho, Ronald A.; Easton, Douglas F.; Futreal, P. Andrew; Green, Anthony R.; Guyer, Mark; Hamilton, Stanley R.; Hubbard, Tim J.; Kallioniemi, Olli P.; Kennedy, Karen L.; Ley, Timothy J.; Liu, Edison T.; Lu, Youyong; Majumder, Partha; Marra, Marco; Ozenberger, Brad; Peterson, Jane; Schafer, Alan J.; Spellman, Paul T.; Stunnenberg, Hendrik G.; Wainwright, Brandon J.; Wilson, Richard K.; Yang, Huanming

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic

  19. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  20. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  1. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  2. Application of bioinformatics in cardiovascular genomics

    NARCIS (Netherlands)

    Tragante Do O, V.

    2014-01-01

    Genetic research made a remarkable progress in the past 20 years, with the Human Genome Project, which sequenced an entire genome; the HapMap project, that identified common genetic variation in hundreds of genomes from different populations; and the 1000 Genomes project, which identified common and

  3. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  4. Implementing genomic medicine in pathology.

    Science.gov (United States)

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.

  5. The dynamic genome of Hydra

    Science.gov (United States)

    Chapman, Jarrod A.; Kirkness, Ewen F.; Simakov, Oleg; Hampson, Steven E.; Mitros, Therese; Weinmaier, Therese; Rattei, Thomas; Balasubramanian, Prakash G.; Borman, Jon; Busam, Dana; Disbennett, Kathryn; Pfannkoch, Cynthia; Sumin, Nadezhda; Sutton, Granger G.; Viswanathan, Lakshmi Devi; Walenz, Brian; Goodstein, David M.; Hellsten, Uffe; Kawashima, Takeshi; Prochnik, Simon E.; Putnam, Nicholas H.; Shu, Shengquiang; Blumberg, Bruce; Dana, Catherine E.; Gee, Lydia; Kibler, Dennis F.; Law, Lee; Lindgens, Dirk; Martinez, Daniel E.; Peng, Jisong; Wigge, Philip A.; Bertulat, Bianca; Guder, Corina; Nakamura, Yukio; Ozbek, Suat; Watanabe, Hiroshi; Khalturin, Konstantin; Hemmrich, Georg; Franke, André; Augustin, René; Fraune, Sebastian; Hayakawa, Eisuke; Hayakawa, Shiho; Hirose, Mamiko; Hwang, Jung Shan; Ikeo, Kazuho; Nishimiya-Fujisawa, Chiemi; Ogura, Atshushi; Takahashi, Toshio; Steinmetz, Patrick R. H.; Zhang, Xiaoming; Aufschnaiter, Roland; Eder, Marie-Kristin; Gorny, Anne-Kathrin; Salvenmoser, Willi; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Böttger, Angelika; Tischler, Patrick; Wolf, Alexander; Gojobori, Takashi; Remington, Karin A.; Strausberg, Robert L.; Venter, J. Craig; Technau, Ulrich; Hobmayer, Bert; Bosch, Thomas C. G.; Holstein, Thomas W.; Fujisawa, Toshitaka; Bode, Hans R.; David, Charles N.; Rokhsar, Daniel S.; Steele, Robert E.

    2015-01-01

    The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction. PMID:20228792

  6. Genomics and marine microbial ecology.

    Science.gov (United States)

    Pedrós-Alió, Carlos

    2006-09-01

    Genomics has brought about a revolution in all fields of biology. Before the development of microbial ecology in the 1970s, microbes were not even considered in marine ecological studies. Today we know that half of the total primary production of the planet must be credited to microorganisms. This and other discoveries have changed dramatically the perspective and the focus of marine microbial ecology. The application of genomics-based approaches has provided new challenges and has allowed the discovery of novel functions, an appreciation of the great diversity of microorganisms, and the introduction of controversial ideas regarding the concepts of species, genome, and niche. Nevertheless, thorough knowledge of the traditional disciplines of biology is necessary to explore the possibilities arising from these new insights. This work reviews the different genomic techniques that can be applied to marine microbial ecology, including both sequencing of the complete genomes of microorganisms and metagenomics, which, in turn, can be complemented with the study of mRNAs (transcriptomics) and proteins (proteomics). The example of proteorhodopsin illustrates the type of information that can be gained from these approaches. A genomics perspective constitutes a map that will allow microbiologists to focus their research on potentially more productive aspects.

  7. Comparative genomics of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Quan-Jiang Dong; Qing Wang; Ying-Nin Xin; Ni Li; Shi-Ying Xuan

    2009-01-01

    Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria.With the development of microarray analysis and the wide use of subtractive hybridization techniques,comparative studies have been carried out with respect to the interstrain differences between H pylori and inter-species differences in the genome of related bacteria.It was found that the core genome of H pylori constitutes 1111 genes that are determinants of the species properties.A great pool of auxillary genes are mainly from the categories of cag pathogenicity islands,outer membrane proteins,restriction-modification system and hypothetical proteins of unknown function.Persistence of H pylori in the human stomach leads to the diversification of the genome.Comparative genomics suggest that a host jump has occurs from humans to felines.Candidate genes specific for the development of the gastric diseases were identified.With the aid of proteomics,population genetics and other molecular methods,future comparative genomic studies would dramatically promote our understanding of the evolution,pathogenesis and microbiology of H pylori.

  8. Genom-undersøgelser

    DEFF Research Database (Denmark)

    Mark, Edith

    2012-01-01

    Genom-undersøgelser bør anvendes varsomt, da de kan kompromittere den undersøgtes ret til ikke-viden, til selvbestemmelse og til privatliv. Myndighederne bør ikke forhindre borgere i at købe genom-undersøgelser hos private udbydere, uanset at testens sundhedsmæssige værdi kan være tvivlsom, men...... bør derudover sikre tilstrækkelig regulering • Såfremt genom-undersøgelser anvendes i forskning, bør forsøgspersoner ikke tilbydes tilbagemelding om fund af genetiske risikofaktorer • Såfremt genom-undersøgelser anvendes i diagnostik bør patienters ønsker om tilbagemelding af tilfældighedsfund aftales......, før undersøgelse igangsættes. Omfanget af tilbagemelding bør aftales i fællesskab mellem patient og læge • Genom-undersøgelser bør i både offentlig og privat regi være ledsaget af fyldestgørende og uvildig rådgivning og information • Information, rådgivning, henvisning og opfølgning på genom...

  9. The integrated microbial genome resource of analysis.

    Science.gov (United States)

    Checcucci, Alice; Mengoni, Alessio

    2015-01-01

    Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.

  10. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo

    2012-09-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  11. Genomic medicine implementation: learning by example.

    Science.gov (United States)

    Williams, Marc S

    2014-03-01

    Genomic Medicine is beginning to emerge into clinical practice. The National Human Genome Research Institute's Genomic Medicine Working Group consists of organizations that have begun to implement some aspect of genomic medicine (e.g., family history, systematic implementation of Mendelian disease program, pharmacogenomics, whole exome/genome sequencing). This article concisely reviews the working group and provides a broader context for the articles in the special issue including an assessment of anticipated provider needs and ethical, legal, and social issues relevant to the implementation of genomic medicine. The challenges of implementation of innovation in clinical practice and the potential value of genomic medicine are discussed.

  12. Genome size and genome evolution in diploid Triticeae species.

    Science.gov (United States)

    Eilam, T; Anikster, Y; Millet, E; Manisterski, J; Sagi-Assif, O; Feldman, M

    2007-11-01

    One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.

  13. Correlation between genome reduction and bacterial growth.

    Science.gov (United States)

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences.

  14. Genomics and museum specimens.

    Science.gov (United States)

    Nachman, Michael W

    2013-12-01

    Nearly 25 years ago, Allan Wilson and colleagues isolated DNA sequences from museum specimens of kangaroo rats (Dipodomys panamintinus) and compared these sequences with those from freshly collected animals (Thomas et al. 1990). The museum specimens had been collected up to 78 years earlier, so the two samples provided a direct temporal comparison of patterns of genetic variation. This was not the first time DNA sequences had been isolated from preserved material, but it was the first time it had been carried out with a population sample. Population geneticists often try to make inferences about the influence of historical processes such as selection, drift, mutation and migration on patterns of genetic variation in the present. The work of Wilson and colleagues was important in part because it suggested a way in which population geneticists could actually study genetic change in natural populations through time, much the same way that experimentalists can do with artificial populations in the laboratory. Indeed, the work of Thomas et al. (1990) spawned dozens of studies in which museum specimens were used to compare historical and present-day genetic diversity (reviewed in Wandeler et al. 2007). All of these studies, however, were limited by the same fundamental problem: old DNA is degraded into short fragments. As a consequence, these studies mostly involved PCR amplification of short templates, usually short stretches of mitochondrial DNA or microsatellites. In this issue, Bi et al. (2013) report a breakthrough that should open the door to studies of genomic variation in museum specimens. They used target enrichment (exon capture) and next-generation (Illumina) sequencing to compare patterns of genetic variation in historic and present-day population samples of alpine chipmunks (Tamias alpinus) (Fig. 1). The historic samples came from specimens collected in 1915, so the temporal span of this comparison is nearly 100 years.

  15. Genomic disorders: A window into human gene and genome evolution

    Science.gov (United States)

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  16. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  17. GIPSy: Genomic island prediction software.

    Science.gov (United States)

    Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

    2016-08-20

    Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits.

  18. Genomic Treasure Troves: Complet Genome Sequencing of Herbarium and Insect Museum Specimens

    NARCIS (Netherlands)

    Staats, M.; Erkens, R.H.J.; Vossenberg, van de B.; Wieringa, J.J.; Kraaijeveld, K.; Stielow, B.; Geml, J.; Richardson, J.E.; Bakker, F.T.

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies

  19. Genomic Treasure Troves: Complet Genome Sequencing of Herbarium and Insect Museum Specimens

    NARCIS (Netherlands)

    Staats, M.; Erkens, R.H.J.; Vossenberg, van de B.; Wieringa, J.J.; Kraaijeveld, K.; Stielow, B.; Geml, J.; Richardson, J.E.; Bakker, F.T.

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies b

  20. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  1. NCBI prokaryotic genome annotation pipeline.

    Science.gov (United States)

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  2. The genome of Chenopodium quinoa

    KAUST Repository

    Jarvis, David E.

    2017-02-08

    Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.

  3. Pseudomonas genomes: diverse and adaptable.

    Science.gov (United States)

    Silby, Mark W; Winstanley, Craig; Godfrey, Scott A C; Levy, Stuart B; Jackson, Robert W

    2011-07-01

    Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

  4. The genome of Chenopodium quinoa.

    Science.gov (United States)

    Jarvis, David E; Ho, Yung Shwen; Lightfoot, Damien J; Schmöckel, Sandra M; Li, Bo; Borm, Theo J A; Ohyanagi, Hajime; Mineta, Katsuhiko; Michell, Craig T; Saber, Noha; Kharbatia, Najeh M; Rupper, Ryan R; Sharp, Aaron R; Dally, Nadine; Boughton, Berin A; Woo, Yong H; Gao, Ge; Schijlen, Elio G W M; Guo, Xiujie; Momin, Afaque A; Negrão, Sónia; Al-Babili, Salim; Gehring, Christoph; Roessner, Ute; Jung, Christian; Murphy, Kevin; Arold, Stefan T; Gojobori, Takashi; Linden, C Gerard van der; van Loo, Eibertus N; Jellen, Eric N; Maughan, Peter J; Tester, Mark

    2017-02-16

    Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.

  5. Evolutionary engineering by genome shuffling.

    Science.gov (United States)

    Biot-Pelletier, Damien; Martin, Vincent J J

    2014-05-01

    An upsurge in the bioeconomy drives the need for engineering microorganisms with increasingly complex phenotypes. Gains in productivity of industrial microbes depend on the development of improved strains. Classical strain improvement programmes for the generation, screening and isolation of such mutant strains have existed for several decades. An alternative to traditional strain improvement methods, genome shuffling, allows the directed evolution of whole organisms via recursive recombination at the genome level. This review deals chiefly with the technical aspects of genome shuffling. It first presents the diversity of organisms and phenotypes typically evolved using this technology and then reviews available sources of genetic diversity and recombination methodologies. Analysis of the literature reveals that genome shuffling has so far been restricted to microorganisms, both prokaryotes and eukaryotes, with an overepresentation of antibiotics- and biofuel-producing microbes. Mutagenesis is the main source of genetic diversity, with few studies adopting alternative strategies. Recombination is usually done by protoplast fusion or sexual recombination, again with few exceptions. For both diversity and recombination, prospective methods that have not yet been used are also presented. Finally, the potential of genome shuffling for gaining insight into the genetic basis of complex phenotypes is also discussed.

  6. Accelerated genome engineering through multiplexing.

    Science.gov (United States)

    Bao, Zehua; Cobb, Ryan E; Zhao, Huimin

    2016-01-01

    Throughout the biological sciences, the past 15 years have seen a push toward the analysis and engineering of biological systems at the organism level. Given the complexity of even the simplest organisms, though, to elicit a phenotype of interest often requires genotypic manipulation of several loci. By traditional means, sequential editing of genomic targets requires a significant investment of time and labor, as the desired editing event typically occurs at a very low frequency against an overwhelming unedited background. In recent years, the development of a suite of new techniques has greatly increased editing efficiency, opening up the possibility for multiple editing events to occur in parallel. Termed as multiplexed genome engineering, this approach to genome editing has greatly expanded the scope of possible genome manipulations in diverse hosts, ranging from bacteria to human cells. The enabling technologies for multiplexed genome engineering include oligonucleotide-based and nuclease-based methodologies, and their application has led to the great breadth of successful examples described in this review. While many technical challenges remain, there also exists a multiplicity of opportunities in this rapidly expanding field.

  7. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks.

    Science.gov (United States)

    Lanza, Val F; Baquero, Fernando; de la Cruz, Fernando; Coque, Teresa M

    2017-01-15

    AcCNET (Accessory genome Constellation Network) is a Perl application that aims to compare accessory genomes of a large number of genomic units, both at qualitative and quantitative levels. Using the proteomes extracted from the analysed genomes, AcCNET creates a bipartite network compatible with standard network analysis platforms. AcCNET allows merging phylogenetic and functional information about the concerned genomes, thus improving the capability of current methods of network analysis. The AcCNET bipartite network opens a new perspective to explore the pangenome of bacterial species, focusing on the accessory genome behind the idiosyncrasy of a particular strain and/or population.

  8. Polyploidy and genome evolution in plants.

    Science.gov (United States)

    Soltis, Pamela S; Marchant, D Blaine; Van de Peer, Yves; Soltis, Douglas E

    2015-12-01

    Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales. Copyright © 2015. Published by Elsevier Ltd.

  9. Poor man status awaits if Estonia adopts euro too soon

    Index Scriptorium Estoniae

    2009-01-01

    Akadeemia Nord Euroopa uuringute instituudi juhataja professor Ivar Raig leiab, et eurole üleminek tekitab veel rohkem probleeme Eesti majanduses ning et Eesti vajab uut majanduspoliitikat. Tema sõnul peaks euroga liituma aastatel 2016-2018

  10. REMOTE SURVEILLANCE OF FACILITIES AWAITING D AND D

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The purpose of this investigation is to compile the remote surveillance needs of different DOE facilities and to design and build a system that can measure the required parameters (such as radiation field, temperature, roof leakage), and transmit the data to a base location. The base station with its transceiver, computer, and software will receive, store, retrieve, and manipulate the data so that the values can be graphically represented and trends predicted. It is also important that the components should be commercially available, so that they can be configured into a user-friendly system. Since the measurements need to be performed over extended periods, mostly unattended, the components and system should be able to withstand adverse conditions, such as varying temperatures and relative humidities, and corrosive and radioactive atmospheres. The integrated system will be tested at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and at a DOE site. Based on these tests, and cost-benefit analysis, plans for deployment of the system will be made. The closed facilities may not have main power and telephone lines. An alternative method of solar-powering the system with storage batteries has been considered, which would be capable of supplying power to the system for a week in cloudy conditions. RF module and RF radio will be used for transmission of data to the remote station and receipt at the base station.

  11. Minister: Estonia, NATO await greater transparency from Zapad exercise

    Index Scriptorium Estoniae

    2017-01-01

    Eesti kaitseminister Jüri Luik kinnitas, et Eesti ja NATO jälgivad hoolikalt Venemaa sõjalise õppuse Zapad 2017 ettevalmistusi. Venemaalt ja Valgevenelt oodatakse rahvusvahelistest lepingutest kinnipidamist ning välisvaatlejate lubamist õppusele

  12. Astronaut Scott Carpenter in pressure suit awaiting simulated mission

    Science.gov (United States)

    1962-01-01

    Project Mercury Astronaut M. Scott Carpenter smiles, in his pressure suit, prior to participating in a simulated mission run at Cape Canaveral, Florida. Astronaut Carpenter had been selected as the prime pilot on the nation's second attempt to put a man into orbit around the earth.

  13. The awaited miracle: reflections of Marian apparitions in Garabandal, Spain

    Directory of Open Access Journals (Sweden)

    Niklas Sjöström

    2010-01-01

    Full Text Available This article reflects upon Marian apparitions that occurred during the years 1961 to 1965 in the village of San Sebastián de Garabandal, or Garabandal, in northern Spain, giving rise to pilgrimages ever since. The events coincided with the Second Ecumenical Council of the Vatican, or Vatican II. Garabandal is the only Marian apparition event to have prophesied and commented on Vatican II. Nevertheless, in Christendom, travelling to Garabandal is regarded as an alternative pilgrimage.The pilgrimage route is in several ways unique compared to journeys to other Marian pilgrimage shrines, since it has not yet been approved by the Catholic Church. Pilgrimages to Garabandal were even officially forbidden for several years. The Catholic Church authorities originally declared travelling to Garabandal as forbidden for church officials such as priests and others. This article gives an overview of the case of Garabandal through the years and reflect upon why this place is considered special in comparison to other pilgrimage sites. The study examines such aspects of pilgrimages to this village as location and motivation, the Virgin Mary and Marian apparitions and also the messages and miracles of Garabandal.

  14. Hormesis in Aging and Neurodegeneration—A Prodigy Awaiting Dissection

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2013-06-01

    Full Text Available Hormesis describes the drug action of low dose stimulation and high dose inhibition. The hormesis phenomenon has been observed in a wide range of biological systems. Although known in its descriptive context, the underlying mode-of-action of hormesis is largely unexplored. Recently, the hormesis concept has been receiving increasing attention in the field of aging research. It has been proposed that within a certain concentration window, reactive oxygen species (ROS or reactive nitrogen species (RNS could act as major mediators of anti-aging and neuroprotective processes. Such hormetic phenomena could have potential therapeutic applications, if properly employed. Here, we review the current theories of hormetic phenomena in regard to aging and neurodegeneration, with the focus on its underlying mechanism. Facilitated by a simple mathematical model, we show for the first time that ROS-mediated hormesis can be explained by the addition of different biomolecular reactions including oxidative damage, MAPK signaling and autophagy stimulation. Due to their divergent scales, the optimal hormetic window is sensitive to each kinetic parameter, which may vary between individuals. Therefore, therapeutic utilization of hormesis requires quantitative characterizations in order to access the optimal hormetic window for each individual. This calls for a personalized medicine approach for a longer human healthspan.

  15. Living with vesico-vaginal fistula: experiences of women awaiting ...

    African Journals Online (AJOL)

    3Department of Social Work, University of Nigeria, Nsukka, Nigeria ... Worldwide two million women are living with vesico-vaginal fistula (VVF) with an annual incidence of 50,000 to 100,000 new ..... disability characteristics and well-being.

  16. STRUCTURE OF PULMONARY HYPERTENSION IN PATIENTS AWAITING HEART TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    A. A. Piontek

    2009-01-01

    Full Text Available The selection of recipients for the orthotopic heart transplantation is of great importance. In 2006–2009 we examined 25 tests on reversibility of pulmonary hypertension, i.e. in 14 patients with dilated cardiomyopathy (DCM (11 males and 3 females aged 41,1 ± 9,3 and in 11 patients with coronary artery disease (CAD (all males aged 50 ± 4.9. Initial pulmonary vascular resistance (PVR was 3,61 ± 1,02 and 3,59 ± 0,98 respectively. Alprostadil was infused to all the patients. Pulmonary hypertension was irreversible in 4 (28,5% DCM patients and in 2 (18% CAD patients. Initial PVR in those patients was 6,27 ± 3,2 and 5,7 ± 2,4 respectively. The average alprostadil dose necessary for the reverse of pulmonary hypertension was 0,054 ± 0,027 μg/kg/min in DCM patients, and 0,047 ± 0,022 μg/kg/min in CAD patients. Thus, the application of alprostadil for the pharmacological correction of pulmonary vascular resistance is most effective in patients with moderate pulmonary hypertension according to Rich classification. 

  17. Surviving the wait: defining support while awaiting breast cancer surgery.

    Science.gov (United States)

    Dickerson, Suzanne S; Alqaissi, Nesreen; Underhill, Meghan; Lally, Robin M

    2011-07-01

    This paper is a report of a descriptive study of the common meanings, shared experiences and practices of social support of women within the days between breast cancer diagnosis and treatment initiation. Support needs, types of social support and support outcomes during and after breast cancer treatment have been explored worldwide. However, to promote women's psychological wellbeing it is essential to understand how women define support in the highly stressful period initially following diagnosis. Secondary analysis of narrative texts using interpretive phenomenology from 18 women in the Midwestern United States newly diagnosed with breast cancer who were interviewed in 2005 for a study of women's pretreatment thought processes. 'Surviving the wait for surgery by balancing support needs to maintain a hopeful outlook' was the overarching pattern linking six other related themes: (1) controlling access to information for self and to others, (2) knowing which supportive network members to access, (3) controlling anxiety through distraction to maintain hope while waiting, (4) being in good hands and comfortable with decision (provider support), (5) protecting others through concealment and being strong to maintain hope and (6) accepting care from others vs. maintaining a nurturing role. Implications for nurses working with women in the days following breast cancer diagnosis include assessing women's definitions and availability of support; respecting varied needs for informational support; providing a supportive clinical environment; educating clinicians, family and friends regarding unsupportive responses within the cultural context and validating women's control and balancing of support needs. © 2011 Blackwell Publishing Ltd.

  18. Leadership: A complex concept awaiting a new explanation?

    Directory of Open Access Journals (Sweden)

    Tom Cockburn

    2013-12-01

    Full Text Available Leaders have the task of developing future strategy while being consciously engaged in executing current strategy and mapping landmarks, pathways and obstacles which they meet asthey endeavor to traverse challenging, rapidly evolving terrain. In an era in which there is a global leadership credibility crisis, business as usual is no longer an option in the pursuit of the longer-term survival of any organization. The leadership approach to complexity outlined here is based on learning to achieve results through experimentation, learning, and reflection. A case study is presented that illustrates the application of this approach. In this paper, the reader is first introduced to a brief overview of some key definitions and debates, shifting leadership boundaries, and emerging accountabilities and opportunities. This is followed by a summary of some of the key topics and issues that face current and future leaders.

  19. Mitochondrial genomes of parasitic flatworms.

    Science.gov (United States)

    Le, Thanh H; Blair, David; McManus, Donald P

    2002-05-01

    Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.

  20. Genomics of Escherichia and Shigella

    Science.gov (United States)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  1. Enhancer Identification through Comparative Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Bristow, James; Pennacchio, Len A.

    2006-10-01

    With the availability of genomic sequence from numerousvertebrates, a paradigm shift has occurred in the identification ofdistant-acting gene regulatory elements. In contrast to traditionalgene-centric studies in which investigators randomly scanned genomicfragments that flank genes of interest in functional assays, the modernapproach begins electronically with publicly available comparativesequence datasets that provide investigators with prioritized lists ofputative functional sequences based on their evolutionary conservation.However, although a large number of tools and resources are nowavailable, application of comparative genomic approaches remains far fromtrivial. In particular, it requires users to dynamically consider thespecies and methods for comparison depending on the specific biologicalquestion under investigation. While there is currently no single generalrule to this end, it is clear that when applied appropriately,comparative genomic approaches exponentially increase our power ingenerating biological hypotheses for subsequent experimentaltesting.

  2. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious that the a......Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...... that the application of the existing methods of genome, transcriptome, proteome and metabolome analysis to other fungi has enormous potential, especially for the production of food and food ingredients. The developments in the past year demonstrate that we have only just started to exploit this potential....

  3. Bioprospecting in the genomic age.

    Science.gov (United States)

    Hicks, Michael A; Prather, Kristala L J

    2014-01-01

    The genomic revolution promises great advances in the search for useful biocatalysts. Function-based metagenomic approaches have identified several enzymes with properties that make them useful candidates for a variety of bioprocesses. As DNA sequencing costs continue to decline, the volume of genomic data, along with their corresponding predicted protein sequences, will continue to increase dramatically, necessitating new approaches to leverage this information for gene-based bioprospecting efforts. Additionally, as new functions are discovered and correlated with this sequence information, the knowledge of the often complex relationship between a protein's sequence and function will improve. This in turn will lead to better gene-based bioprospecting approaches and facilitate the tailoring of desired properties through protein engineering projects. In this chapter, we discuss a number of recent advances in bioprospecting within the context of the genomic age.

  4. Genome-enabled plant metabolomics.

    Science.gov (United States)

    Tohge, Takayuki; de Souza, Leonardo Perez; Fernie, Alisdair R

    2014-09-01

    The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Explosives, Genomics, and the Environment

    Directory of Open Access Journals (Sweden)

    Kieran C. O’Doherty

    2013-03-01

    Full Text Available RDX is an explosive that is also a neurotoxin and implicated in adverse health outcomes. Because of its widespread use in military and civilian operations, there is growing concern about potential environmental and health implications. One promising method of bioremediation involves genomic studies of soil microbes. These health concerns and technological issues intersect with social and political dimensions raising questions about public responses to genomic technologies and the degree of environmental accounting expected from the military. In cases of novel technologies entering into contested social spaces, public engagement can be useful to inform broader policy debates. Building on previous work, in this article, we outline the rationale, methods, and results of a public deliberation on these issues. To our knowledge, this is the first study of its kind on the issues of RDX pollution and microbial genomics, and thus provides an important baseline on public sentiment on these issues.

  6. How good is our genome?

    Science.gov (United States)

    Weill, Jean-Claude; Radman, Miroslav

    2004-01-29

    Our genome has evolved to perpetuate itself through the maintenance of the species via an uninterrupted chain of reproductive somas. Accordingly, evolution is not concerned with diseases occurring after the soma's reproductive stage. Following Richard Dawkins, we would like to reassert that we indeed live as disposable somas, slaves of our germline genome, but could soon start rebelling against such slavery. Cancer and its relation to the TP53 gene may offer a paradigmatic example. The observation that the latency period in cancer can be prolonged in mice by increasing the number of TP53 genes in their genome, suggests that sooner or later we will have to address the question of heritable disease avoidance via the manipulation of the human germline.

  7. Genomics, medicine and public health

    Directory of Open Access Journals (Sweden)

    Alexander M. Trbovich

    2006-12-01

    Full Text Available Public health genomics unifies the scientific disciplines of genetics and public health. Public health genomics aims to facilitate the transfer of newly acquired knowledge in genetic and molecular biology into classical medicine, to evaluate the currently available genetic tests, and to educate both the medical community and the general population about advancements in molecular and cell biology of medical interest. Due to various factors, the application of new genetic discoveries in classical medicine and the evaluation of the current genetic clinical tests occur at relatively slow paste. The challenge of public health genomics is to create the most effective modus for coexistence of new molecular and cell biology discoveries and classical medical techniques in applied medicine. The ultimate goal is to accomplish a truly individualized medical therapy.

  8. The genome of Theobroma cacao.

    Science.gov (United States)

    Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; Legavre, Thierry; Maximova, Siela N; Abrouk, Michael; Murat, Florent; Fouet, Olivier; Poulain, Julie; Ruiz, Manuel; Roguet, Yolande; Rodier-Goud, Maguy; Barbosa-Neto, Jose Fernandes; Sabot, Francois; Kudrna, Dave; Ammiraju, Jetty Siva S; Schuster, Stephan C; Carlson, John E; Sallet, Erika; Schiex, Thomas; Dievart, Anne; Kramer, Melissa; Gelley, Laura; Shi, Zi; Bérard, Aurélie; Viot, Christopher; Boccara, Michel; Risterucci, Ange Marie; Guignon, Valentin; Sabau, Xavier; Axtell, Michael J; Ma, Zhaorong; Zhang, Yufan; Brown, Spencer; Bourge, Mickael; Golser, Wolfgang; Song, Xiang; Clement, Didier; Rivallan, Ronan; Tahi, Mathias; Akaza, Joseph Moroh; Pitollat, Bertrand; Gramacho, Karina; D'Hont, Angélique; Brunel, Dominique; Infante, Diogenes; Kebe, Ismael; Costet, Pierre; Wing, Rod; McCombie, W Richard; Guiderdoni, Emmanuel; Quetier, Francis; Panaud, Olivier; Wincker, Patrick; Bocs, Stephanie; Lanaud, Claire

    2011-02-01

    We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.

  9. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90......% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group...

  10. : a database of ciliate genome rearrangements.

    Science.gov (United States)

    Burns, Jonathan; Kukushkin, Denys; Lindblad, Kelsi; Chen, Xiao; Jonoska, Nataša; Landweber, Laura F

    2016-01-01

    Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors. The (http://oxytricha.princeton.edu/mds_ies_db) is a database of genome recombination and rearrangement annotations, and it provides tools for visualization and comparative analysis of precursor and product genomes. The database currently contains annotations for two completely sequenced ciliate genomes: Oxytricha trifallax and Tetrahymena thermophila.

  11. Genomics and the origin of species.

    Science.gov (United States)

    Seehausen, Ole; Butlin, Roger K; Keller, Irene; Wagner, Catherine E; Boughman, Janette W; Hohenlohe, Paul A; Peichel, Catherine L; Saetre, Glenn-Peter; Bank, Claudia; Brännström, Ake; Brelsford, Alan; Clarkson, Chris S; Eroukhmanoff, Fabrice; Feder, Jeffrey L; Fischer, Martin C; Foote, Andrew D; Franchini, Paolo; Jiggins, Chris D; Jones, Felicity C; Lindholm, Anna K; Lucek, Kay; Maan, Martine E; Marques, David A; Martin, Simon H; Matthews, Blake; Meier, Joana I; Möst, Markus; Nachman, Michael W; Nonaka, Etsuko; Rennison, Diana J; Schwarzer, Julia; Watson, Eric T; Westram, Anja M; Widmer, Alex

    2014-03-01

    Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

  12. Delivery technologies for genome editing.

    Science.gov (United States)

    Yin, Hao; Kauffman, Kevin J; Anderson, Daniel G

    2017-03-24

    With the recent development of CRISPR technology, it is becoming increasingly easy to engineer the genome. Genome-editing systems based on CRISPR, as well as transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs), are becoming valuable tools for biomedical research, drug discovery and development, and even gene therapy. However, for each of these systems to effectively enter cells of interest and perform their function, efficient and safe delivery technologies are needed. This Review discusses the principles of biomacromolecule delivery and gene editing, examines recent advances and challenges in non-viral and viral delivery methods, and highlights the status of related clinical trials.

  13. How retrotransposons shape genome regulation.

    Science.gov (United States)

    Mita, Paolo; Boeke, Jef D

    2016-04-01

    Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease.

  14. Genome editing comes of age.

    Science.gov (United States)

    Kim, Jin-Soo

    2016-09-01

    Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.

  15. Translating genomics in cancer care.

    Science.gov (United States)

    Bombard, Yvonne; Bach, Peter B; Offit, Kenneth

    2013-11-01

    There is increasing enthusiasm for genomics and its promise in advancing personalized medicine. Genomic information has been used to personalize health care for decades, spanning the fields of cardiovascular disease, infectious disease, endocrinology, metabolic medicine, and hematology. However, oncology has often been the first test bed for the clinical translation of genomics for diagnostic, prognostic, and therapeutic applications. Notable hereditary cancer examples include testing for mutations in BRCA1 or BRCA2 in unaffected women to identify those at significantly elevated risk for developing breast and ovarian cancers, and screening patients with newly diagnosed colorectal cancer for mutations in 4 mismatch repair genes to reduce morbidity and mortality in their relatives. Somatic genomic testing is also increasingly used in oncology, with gene expression profiling of breast tumors and EGFR testing to predict treatment response representing commonly used examples. Health technology assessment provides a rigorous means to inform clinical and policy decision-making through systematic assessment of the evidentiary base, along with precepts of clinical effectiveness, cost-effectiveness, and consideration of risks and benefits for health care delivery and society. Although this evaluation is a fundamental step in the translation of any new therapeutic, procedure, or diagnostic test into clinical care, emerging developments may threaten this standard. These include "direct to consumer" genomic risk assessment services and the challenges posed by incidental results generated from next-generation sequencing (NGS) technologies. This article presents a review of the evidentiary standards and knowledge base supporting the translation of key cancer genomic technologies along the continuum of validity, utility, cost-effectiveness, health service impacts, and ethical and societal issues, and offers future research considerations to guide the responsible introduction of

  16. Genomic Signals of Reoriented ORFs

    Directory of Open Access Journals (Sweden)

    Paul Dan Cristea

    2004-01-01

    Full Text Available Complex representation of nucleotides is used to convert DNA sequences into complex digital genomic signals. The analysis of the cumulated phase and unwrapped phase of DNA genomic signals reveals large-scale features of eukaryote and prokaryote chromosomes that result from statistical regularities of base and base-pair distributions along DNA strands. By reorienting the chromosome coding regions, a “hidden” linear variation of the cumulated phase has been revealed, along with the conspicuous almost linear variation of the unwrapped phase. A model of chromosome longitudinal structure is inferred on these bases.

  17. Biocommunication and natural genome editing

    Institute of Scientific and Technical Information of China (English)

    Guenther; Witzany

    2010-01-01

    The biocommunicative approach investigates communication processes within and among cells,tissues,organs and organisms as sign-mediated interactions,and nucleotide sequences as code,i.e.language-like text,which follows in parallel three kinds of rules:combinatorial (syntactic),context-sensitive(pragmatic),and contentspecific(semantic).Natural genome editing from a bio-communicative perspective is competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements and the ability to(re-)combine and(re-)regulate them according to context-dependent(i.e.adaptational) purposes of the host organism.

  18. Genomic profiling of breast cancer.

    Science.gov (United States)

    Pandey, Anjita; Singh, Alok Kumar; Maurya, Sanjeev Kumar; Rai, Rajani; Tewari, Mallika; Kumar, Mohan; Shukla, Hari S

    2009-05-01

    Genome study provides significant changes in the advancement of molecular diagnosis and treatment in Breast cancer. Several recent critical advances and high-throughput techniques identified the genomic trouble and dramatically accelerated the pace of research in preventing and curing this malignancy. Tumor-suppressor genes, proto-oncogenes, DNA-repair genes, carcinogen-metabolism genes are critically involved in progression of breast cancer. We reviewed imperative finding in breast genetics, ongoing work to segregate further susceptible genes, and preliminary studies on molecular profiling.

  19. Engineering Relative Compression of Genomes

    CERN Document Server

    Grabowski, Szymon

    2011-01-01

    Technology progress in DNA sequencing boosts the genomic database growth at faster and faster rate. Compression, accompanied with random access capabilities, is the key to maintain those huge amounts of data. In this paper we present an LZ77-style compression scheme for relative compression of multiple genomes of the same species. While the solution bears similarity to known algorithms, it offers significantly higher compression ratios at compression speed over a order of magnitude greater. One of the new successful ideas is augmenting the reference sequence with phrases from the other sequences, making more LZ-matches available.

  20. Cancer Genome Anatomy Project (CGAP) | Office of Cancer Genomics

    Science.gov (United States)

    CGAP generated a wide range of genomics data on cancerous cells that are accessible through easy-to-use online tools. Researchers, educators, and students can find "in silico" answers to biological questions through the CGAP website. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov to learn how to navigate the website.

  1. Parameters affecting genome simulation for evaluating genomic selection method.

    Science.gov (United States)

    Nishio, Motohide; Satoh, Masahiro

    2014-10-01

    The present study investigated the parameter settings for obtaining a simulated genome at steady state of allele frequency (mutation-drift equilibrium) and linkage disequilibrium (LD), and evaluated the impact of whether or not the simulated genome reached steady state of allele frequency and LD on the accuracy of genomic estimated breeding values (GEBVs). After 500 to 50,000 historical generations, the base population and subsequent seven generations were generated as recent populations. The allele frequency distribution of the last generations of the historical population and LD in the base population were calculated when varying the values of five parameters: initial minor allele frequency, mutation rate, effective population size, number of markers and chromosome length. The accuracies of GEBVs in the last generation of the recent population were calculated by genomic best linear unbiased prediction. The number of historical generations required to reach mutation-drift equilibrium depended on the initial allele frequency and mutation rate. Regardless of the parameters, LD reached a steady state before allele frequency distribution reached mutation-drift equilibrium. The accuracies of GEBVs largely reflect the extent of linkage disequilibrium with the exception of varying chromosome length, although there were no associations between the accuracies of GEBVs and allele frequency distribution. © 2014 Japanese Society of Animal Science.

  2. Translational Genomics of Onion: Challenges of an Enormous Nuclear Genome

    Science.gov (United States)

    The use of high throughput DNA sequencing to address important production constraints has been termed “translational genomics”. Classical breeding of onion (Allium cepa) is expensive and slow due to a long generation time and the high costs of crossing with insects. Translational genomics should r...

  3. A genome wide dosage suppressor network reveals genomic robustness

    Science.gov (United States)

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  4. Cancer Genome Anatomy Project | Office of Cancer Genomics

    Science.gov (United States)

    The National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) is an online resource designed to provide the research community access to biological tissue characterization data. Request a free copy of the CGAP Website Virtual Tour CD from ocg@mail.nih.gov.

  5. Human and mouse genome analysis using array comparative genomic hybridization

    NARCIS (Netherlands)

    Snijders, Antoine Maria

    2004-01-01

    Almost all human cancers as well as developmental abnormalities are characterized by the presence of genetic alterations, most of which target a gene or a particular genomic locus resulting in altered gene expression and ultimately an altered phenotype. Different types of genetic alterations include

  6. Burkholderia pseudomallei genome plasticity associated with genomic island variation

    Directory of Open Access Journals (Sweden)

    Currie Bart J

    2008-04-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a soil-dwelling saprophyte and the cause of melioidosis. Horizontal gene transfer contributes to the genetic diversity of this pathogen and may be an important determinant of virulence potential. The genome contains genomic island (GI regions that encode a broad array of functions. Although there is some evidence for the variable distribution of genomic islands in B. pseudomallei isolates, little is known about the extent of variation between related strains or their association with disease or environmental survival. Results Five islands from B. pseudomallei strain K96243 were chosen as representatives of different types of genomic islands present in this strain, and their presence investigated in other B. pseudomallei. In silico analysis of 10 B. pseudomallei genome sequences provided evidence for the variable presence of these regions, together with micro-evolutionary changes that generate GI diversity. The diversity of GIs in 186 isolates from NE Thailand (83 environmental and 103 clinical isolates was investigated using multiplex PCR screening. The proportion of all isolates positive by PCR ranged from 12% for a prophage-like island (GI 9, to 76% for a metabolic island (GI 16. The presence of each of the five GIs did not differ between environmental and disease-associated isolates (p > 0.05 for all five islands. The cumulative number of GIs per isolate for the 186 isolates ranged from 0 to 5 (median 2, IQR 1 to 3. The distribution of cumulative GI number did not differ between environmental and disease-associated isolates (p = 0.27. The presence of GIs was defined for the three largest clones in this collection (each defined as a single sequence type, ST, by multilocus sequence typing; these were ST 70 (n = 15 isolates, ST 54 (n = 11, and ST 167 (n = 9. The rapid loss and/or acquisition of gene islands was observed within individual clones. Comparisons were drawn between isolates obtained

  7. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  8. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  9. An Exploration into Fern Genome Space.

    Science.gov (United States)

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.

  10. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    Science.gov (United States)

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  11. Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes

    Directory of Open Access Journals (Sweden)

    Teresa Mousinho Resina Ribeiro

    2016-04-01

    Full Text Available The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S locus while the AT-rich het pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich het, along with genome sizes estimations, supports the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich het was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1 previously assessed to linkage group 10 (LG10 was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.

  12. The Arab genome: Health and wealth.

    Science.gov (United States)

    Zayed, Hatem

    2016-11-01

    The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases.

  13. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  14. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  15. Preparation of genomic DNA from bacteria.

    Science.gov (United States)

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Picky: oligo microarray design for large genomes

    National Research Council Canada - National Science Library

    Chou, Hui-Hsien; Hsia, An-Ping; Mooney, Denise L; Schnable, Patrick S

    2004-01-01

    Many large genomes are getting sequenced nowadays. Biologists are eager to start microarray analysis taking advantage of all known genes of a species, but existing microarray design tools were very inefficient for large genomes...

  17. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    OpenAIRE

    Brown, Pamela J.B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  18. Genome sequences of eight morphologically diverse Alphaproteobacteria.

    Science.gov (United States)

    Brown, Pamela J B; Kysela, David T; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-09-01

    The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  19. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    Science.gov (United States)

    Brown, Pamela J. B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V.

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium. PMID:21705585

  20. Strategies and tools for whole genome alignments

    Energy Technology Data Exchange (ETDEWEB)

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  1. Genomic inflation factors under polygenic inheritance

    NARCIS (Netherlands)

    Yang, Jian; Weedon, Michael N.; Purcell, Shaun; Lettre, Guillaume; Estrada, Karol; Willer, Cristen J.; Smith, Albert V.; Ingelsson, Erik; O'Connell, Jeffrey R.; Mangino, Massimo; Maegi, Reedik; Madden, Pamela A.; Heath, Andrew C.; Nyholt, Dale R.; Martin, Nicholas G.; Montgomery, Grant W.; Frayling, Timothy M.; Hirschhorn, Joel N.; McCarthy, Mark I.; Goddard, Michael E.; Visscher, Peter M.

    2011-01-01

    Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome i

  2. Quality Assessment of Domesticated Animal Genome Assemblies.

    Science.gov (United States)

    Seemann, Stefan E; Anthon, Christian; Palasca, Oana; Gorodkin, Jan

    2015-01-01

    The era of high-throughput sequencing has made it relatively simple to sequence genomes and transcriptomes of individuals from many species. In order to analyze the resulting sequencing data, high-quality reference genome assemblies are required. However, this is still a major challenge, and many domesticated animal genomes still need to be sequenced deeper in order to produce high-quality assemblies. In the meanwhile, ironically, the extent to which RNAseq and other next-generation data is produced frequently far exceeds that of the genomic sequence. Furthermore, basic comparative analysis is often affected by the lack of genomic sequence. Herein, we quantify the quality of the genome assemblies of 20 domesticated animals and related species by assessing a range of measurable parameters, and we show that there is a positive correlation between the fraction of mappable reads from RNAseq data and genome assembly quality. We rank the genomes by their assembly quality and discuss the implications for genotype analyses.

  3. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  4. Applied Genomics of Foodborne Pathogens

    DEFF Research Database (Denmark)

    set. Further complicating the challenge is the large and ever evolving body of bioinformatics tools that can obfuscate newcomers to this area. Although reviews, tutorials and books are not in short supply in the fields of bioinformatics and genomics, until now there has not been a comprehensive...

  5. Comparative genomics of Dothideomycete fungi

    NARCIS (Netherlands)

    Burgt, van der A.

    2014-01-01

    Fungi are a diverse group of eukaryotic micro-organisms particularly suited for comparative genomics analyses. Fungi are important to industry, fundamental science and many of them are notorious pathogens of crops, thereby endangering global food supply. Dozens of fungi have been sequenced in the la

  6. Genomic Signal Enhancement by Clustering

    Institute of Scientific and Technical Information of China (English)

    ZHENG Wei-Mou

    2003-01-01

    Weight matrix models for signal sequence motif are simple. A main limitation of the models is the assumption of independence between positions. Signal enhancement is achieved by taking the total likelihood as the objective function for maximization to cluster sequences into groups with different patterns. As an example, the initial and terminal signals for translation in rice genome are examined.

  7. Genomics: Implementatie, toepassing en toekomst

    NARCIS (Netherlands)

    Pennings JLA; Hoebee B; TOX

    2007-01-01

    Genomics - the large scale analysis of hereditary information encoded in the DNA - has been implemented at the National Institute for Public Health and the Environment (RIVM) in the Netherlands. In the near future other large-scale technologies will become important for the RIVM, including proteomic

  8. Scalable Computing for Evolutionary Genomics

    NARCIS (Netherlands)

    Prins, J.C.P.; Belhachemi, D.; Möller, S.; Smant, G.

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving

  9. Causal Factors in Genome Control

    NARCIS (Netherlands)

    O'Duibhir, E.

    2015-01-01

    The aim of this thesis is to study how genes are switched on and off in a coordinated way across an entire genome. In order to do this yeast is used as a model organism. The mechanisms that control gene expression in yeast are very similar to those of human cells. Chapter 1 provides a general introd

  10. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    . This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  11. Genomic continuity of Argentinean Mennonites

    Science.gov (United States)

    Pardo-Seco, Jacobo; Llull, Cintia; Berardi, Gabriela; Gómez, Andrea; Andreatta, Fernando; Martinón-Torres, Federico; Toscanini, Ulises; Salas, Antonio

    2016-01-01

    Mennonites are Anabaptist communities that originated in Central Europe about 500 years ago. They initially migrated to different European countries, and in the early 18th century they established their first communities in North America, from where they moved to other American regions. We aimed to analyze an Argentinean Mennonite congregation from a genome-wide perspective by way of investigating >580.000 autosomal SNPs. Several analyses show that Argentinean Mennonites have European ancestry without signatures of admixture with other non-European American populations. Among the worldwide datasets used for population comparison, the CEU, which is the best-subrogated Central European population existing in The 1000 Genome Project, is the dataset showing the closest genome affinity to the Mennonites. When compared to other European population samples, the Mennonites show higher inbreeding coefficient values. Argentinean Mennonites show signatures of genetic continuity with no evidence of admixture with Americans of Native American or sub-Saharan African ancestry. Their genome indicates the existence of an increased endogamy compared to other Europeans most likely mirroring their lifestyle that involve small communities and historical consanguineous marriages. PMID:27824108

  12. Genomic counseling: next generation counseling.

    Science.gov (United States)

    Mills, Rachel; Haga, Susanne B

    2014-08-01

    Personalized medicine continues to expand with the development and increasing use of genome-based testing. While these advances present new opportunities for diagnosis and risk assessment, they also present challenges to clinical delivery. Genetic counselors will play an important role in ushering in this new era of testing; however, it will warrant a shift from traditional genetic counseling to "genomic counseling." This shift will be marked by a move from reactive genetic testing for diagnosis of primarily single-gene diseases to proactive genome-based testing for multiple complex diseases for the purpose of disease prevention. It will also require discussion of risk information for a number of diseases, some of which may have low relative risks or weak associations, and thus, may not substantially impact clinical care. Additionally, genomic counselors will expand their roles, particularly in the area of health promotion to reduce disease risk. This additional role will require a style of counseling that is more directive than traditional counseling and require greater knowledge about risk reducing behaviors and disease screening.

  13. Genome dynamics in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.

    2016-01-01

    Fusarium oxysporum is an important fungal pathogen of many crops. The genome of this pathogen has a "core" part and a highly dynamic lineage-specific part. Certain lineage specific chromosomes are determinants of host range. It has been shown previously that some chromosomes that are important for i

  14. Test: Construction of genomic libraries.

    Science.gov (United States)

    Szeberényi, Jozséf

    2005-03-01

    Terms to be familiar with before you start to solve the test: genomic library, gel filtration, restriction endonuclease, plasmid, sticky ends, blunt ends, ligation, recombinant DNA, bacterium transformation, denaturation and renaturation of DNA, satellite DNA, telomere, centromere, unique and repetitive sequences.

  15. Fungal genome resources at NCBI.

    Science.gov (United States)

    Robbertse, B; Tatusova, T

    2011-09-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools.

  16. Small RNA in rice genome

    Institute of Scientific and Technical Information of China (English)

    王凯; 朱小蓬; 钟兰; 陈润生

    2002-01-01

    Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and noncoding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have homologs in 108 rice scaffolds, and almost all of them (99.41%) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special U14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants, 86% sequences of them can be compared as the same sequence in rice, Arabidopsis and maize; the other conserved sRNA XLHS7CU14 has a segment which appears in almost all these species from plants to animals. All these results indicate that sRNA do not have evident borderline between plants and animals.

  17. Genome chaos: survival strategy during crisis.

    Science.gov (United States)

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  18. Evolution, language and analogy in functional genomics.

    Science.gov (United States)

    Benner, S A; Gaucher, E A

    2001-07-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  19. Pseudomonas aeruginosa genomic structure and diversity

    Directory of Open Access Journals (Sweden)

    Jens eKlockgether

    2011-07-01

    Full Text Available The Pseudomonas aeruginosa genome (G + C content 65-67%, size 5.5 – 7 Mbp is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5 – 0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNALys or tRNAGly genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. 198 of the 231 SNPs were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.

  20. Interpreting Mammalian Evolution using Fugu Genome Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, L; Ovcharenko, I; Loots, G G

    2004-04-02

    Comparative sequence analysis of the human and the pufferfish Fugu rubripes (fugu) genomes has revealed several novel functional coding and noncoding regions in the human genome. In particular, the fugu genome has been extremely valuable for identifying transcriptional regulatory elements in human loci harboring unusually high levels of evolutionary conservation to rodent genomes. In such regions, the large evolutionary distance between human and fishes provides an additional filter through which functional noncoding elements can be detected with high efficiency.

  1. Evolution, language and analogy in functional genomics

    Science.gov (United States)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  2. GENOMIC FEATURES OF COTESIA PLUTELLAE POLYDNAVIRUS

    Institute of Scientific and Technical Information of China (English)

    LIUCai-ling; ZHUXiang-xiong; FuWen-jun; ZHAOMu-jun

    2003-01-01

    Polydnavirus was purified from the calyx fluid of Cotesia plutellae ovary. The genomic features of C. plutellae polydnavirus (CpPDV) were investigated. The viral genome consists of at least 12 different segments and the aggregate genome size is a lower estimate of 80kbp. By partial digestion of CpPDV DNA with BamHI and subsequent ligation with BamHI-cut plasmid Bluescript, a representative library of CpPDV genome was obtained.

  3. Searching and Indexing Genomic Databases via Kernelization

    Directory of Open Access Journals (Sweden)

    Travis eGagie

    2015-02-01

    Full Text Available The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper we survey the twenty-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  4. Genetics and Genomics of Pathogens: Fighting Infections with Genome-Sequencing Technology.

    Science.gov (United States)

    Plavskin, Alexandra

    2016-01-01

    Discussions of clinical genetics and genomics often focus on screening for disease-causing genes in humans and the promise of targeted therapies. Another important area of research is analysis of pathogen genomes. Genetics and genomics-based approaches, such as population genomics and phylogenetics, provide insight into mechanisms of resistance, sources of infections, and pathogen transmission routes.

  5. GRAbB : Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    NARCIS (Netherlands)

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    2016-01-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often negle

  6. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  7. Genomics, Obesity and the Struggle over Responsibilities

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2011-01-01

    This volume addresses the overlapping aspects of the fields of genomics, obesity and (non- ) medical ethics. It is unique in its examination of the implications of genomics for obesity from an ethical perspective. Genomics covers the sciences and technologies involved in the pathways that DNA takes

  8. Accounting for discovery bias in genomic EPD

    Science.gov (United States)

    Genomics has contributed substantially to genetic improvement of beef cattle. The implementation is through computation of genomically enhanced expected progeny differences (GE-EPD), which are predictions of genetic merit of individual animals based on genomic information, pedigree, and data on the ...

  9. Pig genome sequence - analysis and publication strategy

    NARCIS (Netherlands)

    Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.

    2010-01-01

    Background - The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. Results - Assemblies of the B

  10. THE PHYLOGENY AND GENOME OF TRICHINELLA SPECIES

    Science.gov (United States)

    In 2004, funding was received by Washington University’s Genome Sequencing Center through NHGRI, to completely sequence several nematode genomes as part of a holistic effort to advance our understanding of the human genome. Trichinella spiralis was among this group because of its strategic ...

  11. Empowering African genomics for infectious disease control.

    Science.gov (United States)

    Folarin, Onikepe A; Happi, Anise N; Happi, Christian T

    2014-11-07

    At present, African scientists can only participate minimally in the genomics revolution that is transforming the understanding, surveillance and clinical treatment of infectious diseases. We discuss new initiatives to equip African scientists with knowledge of cutting-edge genomics tools, and build a sustainable critical mass of well-trained African infectious diseases genomics scientists.

  12. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  13. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  14. Reticulate evolution of the rye genome.

    Science.gov (United States)

    Martis, Mihaela M; Zhou, Ruonan; Haseneyer, Grit; Schmutzer, Thomas; Vrána, Jan; Kubaláková, Marie; König, Susanne; Kugler, Karl G; Scholz, Uwe; Hackauf, Bernd; Korzun, Viktor; Schön, Chris-Carolin; Dolezel, Jaroslav; Bauer, Eva; Mayer, Klaus F X; Stein, Nils

    2013-10-01

    Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution.

  15. Whole Genome Fine Map of Rice Completed

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Rice is a staple crop for more than half of the world's population, and it was hoped that the availability of its genome sequence might enable scientists to develop more productive and environment friendly rice strains.Furthermore, the rice genome might provide the key to understanding the genetics of other major cereal crops,as all of them have much larger genomes.

  16. Impact of genomics on microbial food safety

    NARCIS (Netherlands)

    Abee, T.; Schaik, van W.; Siezen, R.J.

    2004-01-01

    Genome sequences are now available for many of the microbes that cause food-borne diseases. The information contained in pathogen genome sequences, together with the development of themed and whole-genome DNA microarrays and improved proteomics techniques, might provide tools for the rapid detection

  17. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj

    2014-01-01

    and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses...

  18. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  19. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben;

    2013-01-01

    to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  20. Goodbye genome paper, hello genome report: the increasing popularity of 'genome announcements' and their impact on science.

    Science.gov (United States)

    Smith, David Roy

    2016-06-23

    Next-generation sequencing technologies have revolutionized genomics and altered the scientific publication landscape. Life-science journals abound with genome papers-peer-reviewed descriptions of newly sequenced chromosomes. Although they once filled the pages of Nature and Science, genome papers are now mostly relegated to journals with low-impact factors. Some have forecast the death of the genome paper and argued that they are using up valuable resources and not advancing science. However, the publication rate of genome papers is on the rise. This increase is largely because some journals have created a new category of manuscript called genome reports, which are short, fast-tracked papers describing a chromosome sequence(s), its GenBank accession number and little else. In 2015, for example, more than 2000 genome reports were published, and 2016 is poised to bring even more. Here, I highlight the growing popularity of genome reports and discuss their merits, drawbacks and impact on science and the academic publication infrastructure. Genome reports can be excellent assets for the research community, but they are also being used as quick and easy routes to a publication, and in some instances they are not peer reviewed. One of the best arguments for genome reports is that they are a citable, user-generated genomic resource providing essential methodological and biological information, which may not be present in the sequence database. But they are expensive and time-consuming avenues for achieving such a goal.

  1. The Human Genome Project, and recent advances in personalized genomics

    Directory of Open Access Journals (Sweden)

    Wilson BJ

    2015-02-01

    Full Text Available Brenda J Wilson, Stuart G Nicholls Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada Abstract: The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. Keywords: genomics, personalized medicine, ethics, population health, evidence, education

  2. Genomics and Public Health: Development of Web-based Training Tools for Increasing Genomic Awareness

    OpenAIRE

    Kardia, Sharon LR; Bodzin, Jennifer; Goldenberg, Aaron; Citrin, Toby; Raup, Sarah F; Bach, Janice V

    2005-01-01

    In 2001, the Centers for Disease Control and Prevention funded three Centers for Genomics and Public Health to develop training tools for increasing genomic awareness. Over the past three years, the centers, working together with the Centers for Disease Control and Prevention's Office of Genomics and Disease Prevention, have developed tools to increase awareness of the impact genomics will have on public health practice, to provide a foundation for understanding basic genomic advances, and to...

  3. Comparative genomics and genome biology of invasive Campylobacter jejuni.

    Science.gov (United States)

    Skarp, C P A; Akinrinade, O; Nilsson, A J E; Ellström, P; Myllykangas, S; Rautelin, H

    2015-11-25

    Campylobacter jejuni is a major pathogen in bacterial gastroenteritis worldwide and can cause bacteremia in severe cases. C. jejuni is highly structured into clonal lineages of which the ST677CC lineage has been overrepresented among C. jejuni isolates derived from blood. In this study, we characterized the genomes of 31 C. jejuni blood isolates and 24 faecal isolates belonging to ST677CC in order to study the genome biology related to C. jejuni invasiveness. We combined the genome analyses with phenotypical evidence on serum resistance which was associated with phase variation of wcbK; a GDP-mannose 4,6-dehydratase involved in capsular biosynthesis. We also describe the finding of a Type III restriction-modification system unique to the ST-794 sublineage. However, features previously considered to be related to pathogenesis of C. jejuni were either absent or disrupted among our strains. Our results refine the role of capsule features associated with invasive disease and accentuate the possibility of methylation and restriction enzymes in the potential of C. jejuni to establish invasive infections. Our findings underline the importance of studying clinically relevant well-characterized bacterial strains in order to understand pathogenesis mechanisms important in human infections.

  4. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas

    Directory of Open Access Journals (Sweden)

    L.C. Veiga-Castelli

    2010-08-01

    Full Text Available Endometriosis is a complex and multifactorial disease. Chromosomal imbalance screening in endometriotic tissue can be used to detect hot-spot regions in the search for a possible genetic marker for endometriosis. The objective of the present study was to detect chromosomal imbalances by comparative genomic hybridization (CGH in ectopic tissue samples from ovarian endometriomas and eutopic tissue from the same patients. We evaluated 10 ovarian endometriotic tissues and 10 eutopic endometrial tissues by metaphase CGH. CGH was prepared with normal and test DNA enzymatically digested, ligated to adaptors and amplified by PCR. A second PCR was performed for DNA labeling. Equal amounts of both normal and test-labeled DNA were hybridized in human normal metaphases. The Isis FISH Imaging System V 5.0 software was used for chromosome analysis. In both eutopic and ectopic groups, 4/10 samples presented chromosomal alterations, mainly chromosomal gains. CGH identified 11q12.3-q13.1, 17p11.1-p12, 17q25.3-qter, and 19p as critical regions. Genomic imbalances in 11q, 17p, 17q, and 19p were detected in normal eutopic and/or ectopic endometrium from women with ovarian endometriosis. These regions contain genes such as POLR2G, MXRA7 and UBA52 involved in biological processes that may lead to the establishment and maintenance of endometriotic implants. This genomic imbalance may affect genes in which dysregulation impacts both eutopic and ectopic endometrium.

  5. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  6. Prospects for Genomic Research in Forestry

    Directory of Open Access Journals (Sweden)

    K. V. Krutovsky

    2014-08-01

    Full Text Available Conifers are keystone species of boreal forests. Their whole genome sequencing, assembly and annotation will allow us to understand the evolution of the complex ancient giant conifer genomes that are 4 times larger in larch and 7–9 times larger in pines than the human genome. Genomic studies will allow also to obtain important whole genome sequence data and develop highly polymorphic and informative genetic markers, such as microsatellites and single nucleotide polymorphisms (SNPs that can be efficiently used in timber origin identification, for genetic variation monitoring, to study local and climate change adaptation and in tree improvement and conservation programs.

  7. The ecoresponsive genome of Daphnia pulex

    Energy Technology Data Exchange (ETDEWEB)

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  8. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol;

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  9. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  10. Microbial genomics: from sequence to function.

    OpenAIRE

    Schwartz, I

    2000-01-01

    The era of genomics (the study of genes and their function) began a scant dozen years ago with a suggestion by James Watson that the complete DNA sequence of the human genome be determined. Since that time, the human genome project has attracted a great deal of attention in the scientific world and the general media; the scope of the sequencing effort, and the extraordinary value that it will provide, has served to mask the enormous progress in sequencing other genomes. Microbial genome seque...

  11. Recent advances in fruit crop genomics

    Directory of Open Access Journals (Sweden)

    Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG

    2014-02-01

    Full Text Available In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

  12. The UCSC Archaeal Genome Browser: 2012 update.

    Science.gov (United States)

    Chan, Patricia P; Holmes, Andrew D; Smith, Andrew M; Tran, Danny; Lowe, Todd M

    2012-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes.

  13. Genomic diversity and evolution of the lyssaviruses.

    Directory of Open Access Journals (Sweden)

    Olivier Delmas

    Full Text Available Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as 'Lagos Bat'. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses.

  14. The UCSC Cancer Genomics Browser: update 2011.

    Science.gov (United States)

    Sanborn, J Zachary; Benz, Stephen C; Craft, Brian; Szeto, Christopher; Kober, Kord M; Meyer, Laurence; Vaske, Charles J; Goldman, Mary; Smith, Kayla E; Kuhn, Robert M; Karolchik, Donna; Kent, W James; Stuart, Joshua M; Haussler, David; Zhu, Jingchun

    2011-01-01

    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) comprises a suite of web-based tools to integrate, visualize and analyze cancer genomics and clinical data. The browser displays whole-genome views of genome-wide experimental measurements for multiple samples alongside their associated clinical information. Multiple data sets can be viewed simultaneously as coordinated 'heatmap tracks' to compare across studies or different data modalities. Users can order, filter, aggregate, classify and display data interactively based on any given feature set including clinical features, annotated biological pathways and user-contributed collections of genes. Integrated standard statistical tools provide dynamic quantitative analysis within all available data sets. The browser hosts a growing body of publicly available cancer genomics data from a variety of cancer types, including data generated from the Cancer Genome Atlas project. Multiple consortiums use the browser on confidential prepublication data enabled by private installations. Many new features have been added, including the hgMicroscope tumor image viewer, hgSignature for real-time genomic signature evaluation on any browser track, and 'PARADIGM' pathway tracks to display integrative pathway activities. The browser is integrated with the UCSC Genome Browser; thus inheriting and integrating the Genome Browser's rich set of human biology and genetics data that enhances the interpretability of the cancer genomics data.

  15. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  16. Functional Genomics of Wood Quality and Properties

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Xiaoyan Luo; Aaron Nelson; Hilary Collver; Katherine Kinken

    2003-01-01

    Genomics promises to enrich the investigations of biology and biochemistry. Current advancements in genomics have major implications for genetic improvement in animals, plants, and microorganisms, and for our understanding of cell growth, development, differentiation, and communication. Significant progress has been made in the understanding of plant genomics in recent years, and the area continues to progress rapidly. Functional genomics offers enormous potential to tree improvement and the understanding of gene expression in this area of science worldwide.In this review we focus on functional genomics of wood quality and properties in trees, mainly based on progresses made in genomics study of Pinus and Populus.The aims of this review are to summarize the current status of functional genomics including: (1) Gene discovery; (2) EST and genomic sequencing; (3) From EST to functional genomics; (4) Approaches to functional analysis; (5) Engineering lignin biosynthesis; (6) Modification of cell wall biogenesis; and (7) Molecular modelling.Functional genomics has been greatly invested worldwide and will be important in identifying candidate genes whose function is critical to all aspects of plant growth, development, differentiation, and defense. Forest biotechnology industry will significantly benefit from the advent of functional genomics of wood quality and properties.

  17. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  18. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.

    Science.gov (United States)

    Arora, Rita; Agarwal, Pinky; Ray, Swatismita; Singh, Ashok Kumar; Singh, Vijay Pal; Tyagi, Akhilesh K; Kapoor, Sanjay

    2007-07-18

    MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Malpha, Mbeta and Mgamma groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mbeta group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development. Differential expression of seven

  19. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress

    Directory of Open Access Journals (Sweden)

    Tyagi Akhilesh K

    2007-07-01

    Full Text Available Abstract Background MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. Results A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Mα, Mβ and Mγ groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mβ group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development

  20. From genomic variation to personalized medicine

    DEFF Research Database (Denmark)

    Wesolowska, Agata; Schmiegelow, Kjeld

    Genomic variation is the basis of interindividual differences in observable traits and disease susceptibility. Genetic studies are the driving force of personalized medicine, as many of the differences in treatment efficacy can be attributed to our genomic background. The rapid development of nex...... alternative to data-driven genome-wide association studies. Finally, the findings of the presented studies set new directions for future pharmacognenetic investigations and provide a framework for future implementation of personalized medicine.......Genomic variation is the basis of interindividual differences in observable traits and disease susceptibility. Genetic studies are the driving force of personalized medicine, as many of the differences in treatment efficacy can be attributed to our genomic background. The rapid development...... the thesis and includes some final remarks on the perspectives of genomic variation research and personalized medicine. In summary, this thesis demonstrates the feasibility of integrative analyses of genomic variations and introduces large-scale hypothesis-driven SNP exploration studies as an emerging...

  1. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  2. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  3. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  4. Mating ecology explains patterns of genome elimination.

    Science.gov (United States)

    Gardner, Andy; Ross, Laura

    2014-12-01

    Genome elimination - whereby an individual discards chromosomes inherited from one parent, and transmits only those inherited from the other parent - is found across thousands of animal species. It is more common in association with inbreeding, under male heterogamety, in males, and in the form of paternal genome elimination. However, the reasons for this broad pattern remain unclear. We develop a mathematical model to determine how degree of inbreeding, sex determination, genomic location, pattern of gene expression and parental origin of the eliminated genome interact to determine the fate of genome-elimination alleles. We find that: inbreeding promotes paternal genome elimination in the heterogametic sex; this may incur population extinction under female heterogamety, owing to eradication of males; and extinction is averted under male heterogamety, owing to countervailing sex-ratio selection. Thus, we explain the observed pattern of genome elimination. Our results highlight the interaction between mating system, sex-ratio selection and intragenomic conflict.

  5. The UCSC Genome Browser database: 2016 update.

    Science.gov (United States)

    Speir, Matthew L; Zweig, Ann S; Rosenbloom, Kate R; Raney, Brian J; Paten, Benedict; Nejad, Parisa; Lee, Brian T; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P; Haussler, David; Kuhn, Robert M; Kent, W James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.

  6. BIG DATA TECHNOLOGY ACCELERATE GENOMICS PRECISION MEDICINE

    Directory of Open Access Journals (Sweden)

    HAO LI

    2017-01-01

    Full Text Available During genomics life science research, the data volume of whole genomics and life science algorithm is going bigger and bigger, which is calculated as TB, PB or EB etc. The key problem will be how to store and analyze the data with optimized way. This paper demonstrates how Intel Big Data Technology and Architecture help to facilitate and accelerate the genomics life science research in data store and utilization. Intel defines high performance GenomicsDB for variant call data query and Lustre filesystem with Hierarchal Storage Management for genomics data store. Based on these great technology, Intel defines genomics knowledge share and exchange architecture, which is landed and validated in BGI China and Shanghai Children Hospital with very positive feedback. And these big data technology can definitely be scaled to much more genomics life science partners in the world

  7. Crenarchaeal Viruses: Morphotypes and Genomes,

    DEFF Research Database (Denmark)

    Prangishvili, P.; Basta, P.; Garrett, Roger Antony

    2008-01-01

    not been observed among viruses from the other two domains of life, the Bacteria and the Eukarya. Also the sequences of circular and linear genomes of crenarchaeal viruses are remarkable because the vast majority of predicted genes have no homologs in the public sequence databases. Viruses......In this article we present our current knowledge about double-stranded (dsDNA) viruses infecting hyperthermophilic Crenarchaeaota, the organisms which predominate in hot terrestrial springs with temperatures over 80 °C. These viruses exhibit extraordinary diversity of morphotypes most of which have...... genomics studies revealed that crenarchaeal viruses form a distinctive group, unrelated to any other viruses, with a small pool of shared genes and a unique origin, or more likely, multiple origins....

  8. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  9. Genome engineering with targetable nucleases.

    Science.gov (United States)

    Carroll, Dana

    2014-01-01

    Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.

  10. Adaptation, aging, and genomic information.

    Science.gov (United States)

    Rose, Michael R

    2009-05-21

    Aging is not simply an accumulation of damage or inappropriate higher-order signaling, though it does secondarily involve both of these subsidiary mechanisms. Rather, aging occurs because of the extensive absence of adaptive genomic information required for survival to, and function at, later adult ages, due to the declining forces of natural selection during adult life. This absence of information then secondarily leads to misallocations and damage at every level of biological organization. But the primary problem is a failure of adaptation at later ages. Contemporary proposals concerning means by which human aging can be ended or cured which are based on simple signaling or damage theories will thus reliably fail. Strategies based on reverse-engineering age-extended adaptation using experimental evolution and genomics offer the prospect of systematically greater success.

  11. Mathematical Analysis of Genomic Evolution

    Directory of Open Access Journals (Sweden)

    Cedric Green

    2011-01-01

    Full Text Available Changes in nucleotide sequences, or mutations, accumulate from generation to generation in the genomes of all living organisms. The mutations can be advantageous, deleterious, or neutral. The goal of this project is to determine the amount of advantageous mutations it takes to get human (Homo sapiens DNA from the DNA of genetically distinct organisms. We do this by collecting the genomic data of such organisms, and estimating the amount of mutations it takes to transform yeast (Saccharomyces cerevisiae DNA to the DNA of a human. We calculate the typical number of mutations occurring annually through the organism's average life span and the average mutation rate. This allows us to determine the total number of mutations as well as the probability of advantageous mutations. Not surprisingly, this probability proves to be fairly small. A more precise estimate can be determined by accounting for the differences in the chromosomal structure and phenomena like horizontal gene transfer.

  12. Clinical Interpretation of Genomic Variations.

    Science.gov (United States)

    Sayitoğlu, Müge

    2016-09-05

    Novel high-throughput sequencing technologies generate large-scale genomic data and are used extensively for disease mapping of monogenic and/or complex disorders, personalized treatment, and pharmacogenomics. Next-generation sequencing is rapidly becoming routine tool for diagnosis and molecular monitoring of patients to evaluate therapeutic efficiency. The next-generation sequencing platforms generate huge amounts of genetic variation data and it remains a challenge to interpret the variations that are identified. Such data interpretation needs close collaboration among bioinformaticians, clinicians, and geneticists. There are several problems that must be addressed, such as the generation of new algorithms for mapping and annotation, harmonization of the terminology, correct use of nomenclature, reference genomes for different populations, rare disease variant databases, and clinical reports.

  13. Genomic determinants of cancer immunotherapy.

    Science.gov (United States)

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.

  14. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  15. The genome of Yoka poxvirus.

    Science.gov (United States)

    Zhao, Guoyan; Droit, Lindsay; Tesh, Robert B; Popov, Vsevolod L; Little, Nicole S; Upton, Chris; Virgin, Herbert W; Wang, David

    2011-10-01

    Yoka poxvirus was isolated almost four decades ago from a mosquito pool in the Central African Republic. Its classification as a poxvirus is based solely upon the morphology of virions visualized by electron microscopy. Here we describe sequencing of the Yoka poxvirus genome using a combination of Roche/454 and Illumina next-generation sequencing technologies. A single consensus contig of ∼175 kb in length that encodes 186 predicted genes was generated. Multiple methods were used to show that Yoka poxvirus is most closely related to viruses in the Orthopoxvirus genus, but it is clearly distinct from previously described poxviruses. Collectively, the phylogenetic and genomic sequence analyses suggest that Yoka poxvirus is the prototype member of a new genus in the family Poxviridae.

  16. Microbial genomes: Blueprints for life

    Energy Technology Data Exchange (ETDEWEB)

    Relman, David A.; Strauss, Evelyn

    2000-12-31

    Complete microbial genome sequences hold the promise of profound new insights into microbial pathogenesis, evolution, diagnostics, and therapeutics. From these insights will come a new foundation for understanding the evolution of single-celled life, as well as the evolution of more complex life forms. This report is an in-depth analysis of scientific issues that provides recommendations and will be widely disseminated to the scientific community, federal agencies, industry and the public.

  17. Genome cartography through domain annotation.

    Science.gov (United States)

    Ponting, C P; Dickens, N J

    2001-01-01

    The evolutionary history of eukaryotic proteins involves rapid sequence divergence, addition and deletion of domains, and fusion and fission of genes. Although the protein repertoires of distantly related species differ greatly, their domain repertoires do not. To account for the great diversity of domain contexts and an unexpected paucity of ortholog conservation, we must categorize the coding regions of completely sequenced genomes into domain families, as well as protein families.

  18. Genome Sequence of Mycobacteriophage Momo.

    Science.gov (United States)

    Pope, Welkin H; Bina, Elizabeth A; Brahme, Indraneel S; Hill, Amy B; Himmelstein, Philip H; Hunsicker, Sara M; Ish, Amanda R; Le, Tinh S; Martin, Mary M; Moscinski, Catherine N; Shetty, Sameer A; Swierzewski, Tomasz; Iyengar, Varun B; Kim, Hannah; Schafer, Claire E; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-06-18

    Momo is a newly discovered phage of Mycobacterium smegmatis mc(2)155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages. Copyright © 2015 Pope et al.

  19. Genomic dysregulation in gastric tumors.

    Science.gov (United States)

    Janjigian, Yelena Y; Kelsen, David P

    2013-03-01

    Gastric cancer is among the most common human malignancies and the second leading cause of cancer-related death. The different epidemiologic and histopathology of subtypes of gastric cancer are associated with different genomic patterns. Data suggests that gene expression patterns of proximal, distal gastric cancers-intestinal type, and diffuse/signet cell are well separated. This review summarizes the genetic and epigenetic changes thought to drive gastric cancer and the emerging paradigm of gastric cancer as three unique disease subtypes.

  20. [Genomic medicine and infectious diseases].

    Science.gov (United States)

    Fellay, Jacques

    2014-05-07

    Relentless progress in our knowledge of the nature and functional consequences of human genetic variation allows for a better understanding of the protracted battle between pathogens and their human hosts. Multiple polymorphisms have been identified that impact our response to infections or to anti-infective drugs, and some of them are already used in the clinic. However, to make personalized medicine a reality in infectious diseases, a sustained effort is needed not only in research but also in genomic education.