WorldWideScience

Sample records for genomics approach identifies

  1. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu......The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result...

  2. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    Directory of Open Access Journals (Sweden)

    Tom O. Delmont

    2016-03-01

    Full Text Available High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  3. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    Science.gov (United States)

    Delmont, Tom O.

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes. PMID:27069789

  4. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies.

    Science.gov (United States)

    Delmont, Tom O; Eren, A Murat

    2016-01-01

    High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today's microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  5. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract.

    Science.gov (United States)

    Patel, Nisha; Anand, Deepti; Monies, Dorota; Maddirevula, Sateesh; Khan, Arif O; Algoufi, Talal; Alowain, Mohammed; Faqeih, Eissa; Alshammari, Muneera; Qudair, Ahmed; Alsharif, Hadeel; Aljubran, Fatimah; Alsaif, Hessa S; Ibrahim, Niema; Abdulwahab, Firdous M; Hashem, Mais; Alsedairy, Haifa; Aldahmesh, Mohammed A; Lachke, Salil A; Alkuraya, Fowzan S

    2017-02-01

    Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.

  6. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid).

    Science.gov (United States)

    Bos, Jorunn I B; Prince, David; Pitino, Marco; Maffei, Massimo E; Win, Joe; Hogenhout, Saskia A

    2010-11-18

    Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid

  7. A systems biological approach to identify key transcription factors and their genomic neighborhoods in human sarcomas

    Institute of Scientific and Technical Information of China (English)

    Antti Ylip(a)(a); Olli Yli-Harja; Wei Zhang; Matti Nykter

    2011-01-01

    Identification of genetic signatures is the main objective for many computational oncology studies. The signature usually consists of numerous genes that are differentially expressed between two clinically distinct groups of samples, such as tumor subtypes. Prospectively, many signatures have been found to generalize poorly to other datasets and, thus, have rarely been accepted into clinical use. Recognizing the limited success of traditionally generated signatures, we developed a systems biology-based framework for robust identification of key transcription factors and their genomic regulatory neighborhoods. Application of the framework to study the differences between gastrointestinal stromal tumor (GIST) and leiomyosarcoma (LMS) resulted in the identification of nine transcription factors (SRF, NKX2-5, CCDC6, LEF1, VDR, ZNF250, TRIM63, MAF, and MYC). Functional annotations of the obtained neighborhoods identified the biological processes which the key transcription factors regulate differently between the tumor types. Analyzing the differences in the expression patterns using our approach resulted in a more robust genetic signature and more biological insight into the diseases compared to a traditional genetic signature.

  8. Candidate fire blight resistance genes in Malus identified with the use of genomic tools and approaches

    Science.gov (United States)

    The goal of this research is to utilize current advances in Rosaceae genomics to identify DNA markers for use in marker-assisted selection of durable resistance to fire blight. Candidate fire blight resistance genes were selected and ranked based upon differential expression after inoculation with ...

  9. In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans

    Directory of Open Access Journals (Sweden)

    Jiang Xu-Cheng

    2006-11-01

    Full Text Available Abstract Background Currently available vaccines against leptospirosis are of low efficacy, have an unacceptable side-effect profile, do not induce long-term protection, and provide no cross-protection against the different serovars of pathogenic leptospira. The current major focus in leptospirosis research is to discover conserved protective antigens that may elicit longer-term protection against a broad range of Leptospira. There is a need to screen vaccine candidate genes in the genome of Leptospira interrogans. Results Bioinformatics, comparative genomic hybridization (CGH analysis and transcriptional analysis were used to identify vaccine candidates in the genome of L. interrogans serovar Lai strain #56601. Of a total of 4727 open reading frames (ORFs, 616 genes were predicted to encode surface-exposed proteins by P-CLASSIFIER combined with signal peptide prediction, α-helix transmembrane topology prediction, integral β-barrel outer membrane protein and lipoprotein prediction, as well as by retaining the genes shared by the two sequenced L. interrogans genomes and by subtracting genes with human homologues. A DNA microarray of L. interrogans strain #56601 was constructed for CGH analysis and transcriptome analysis in vitro. Three hundred and seven differential genes were identified in ten pathogenic serovars by CGH; 1427 genes had high transcriptional levels (Cy3 signal ≥ 342 and Cy5 signal ≥ 363.5, respectively. There were 565 genes in the intersection between the set encoding surface-exposed proteins and the set of 307 differential genes. The number of genes in the intersection between this set of 565 and the set of 1427 highly transcriptionally active genes was 226. These 226 genes were thus identified as putative vaccine candidates. The proteins encoded by these genes are not only potentially surface-exposed in the bacterium, but also conserved in two sequenced L. interrogans. Moreover, these genes are conserved among ten epidemic

  10. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions.

    Science.gov (United States)

    Nelson, M R; Bacanu, S-A; Mosteller, M; Li, L; Bowman, C E; Roses, A D; Lai, E H; Ehm, M G

    2009-02-01

    Adverse drug reactions (ADRs) have a major impact on patients, physicians, health care providers, regulatory agencies and pharmaceutical companies. Identifying the genetic contributions to ADR risk may lead to a better understanding of the underlying mechanisms, identification of patients at risk and a decrease in the number of events. Technological advances have made the routine monitoring and investigation of the genetic basis of ADRs during clinical trials possible. We demonstrate through simulation that genome-wide genotyping, coupled with the use of clinically matched or population controls, can yield sufficient statistical power to permit the identification of strong genetic predictors of ADR risk in a prospective manner with modest numbers of ADR cases. The results of a 500,000 single nucleotide polymorphism analysis of abacavir-associated hypersensitivity reaction suggest that the known HLA-B gene region could be identified with as few as 15 cases and 200 population controls in a sequential analysis.

  11. A new experimental approach for studying bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns

    Directory of Open Access Journals (Sweden)

    Nickerson Cheryl A

    2006-01-01

    Full Text Available Abstract Background Genomic islands are regions of bacterial genomes that have been acquired by horizontal transfer and often contain blocks of genes that function together for specific processes. Recently, it has become clear that the impact of genomic islands on the evolution of different bacterial species is significant and represents a major force in establishing bacterial genomic variation. However, the study of genomic island evolution has been mostly performed at the sequence level using computer software or hybridization analysis to compare different bacterial genomic sequences. We describe here a novel experimental approach to study the evolution of species-specific bacterial genomic islands that identifies island genes that have evolved in such a way that they are differentially-expressed depending on the bacterial host background into which they are transferred. Results We demonstrate this approach by using a "test" genomic island that we have cloned from the Salmonella typhimurium genome (island 4305 and transferred to a range of Gram negative bacterial hosts of differing evolutionary relationships to S. typhimurium. Systematic analysis of the expression of the island genes in the different hosts compared to proper controls allowed identification of genes with genera-specific expression patterns. The data from the analysis can be arranged in a matrix to give an expression "array" of the island genes in the different bacterial backgrounds. A conserved 19-bp DNA site was found upstream of at least two of the differentially-expressed island genes. To our knowledge, this is the first systematic analysis of horizontally-transferred genomic island gene expression in a broad range of Gram negative hosts. We also present evidence in this study that the IS200 element found in island 4305 in S. typhimurium strain LT2 was inserted after the island had already been acquired by the S. typhimurium lineage and that this element is likely not

  12. Pan-Genome Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Amjad Ali

    2015-01-01

    Full Text Available Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70% around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193 constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.

  13. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Dilafruz Juraeva

    2014-06-01

    Full Text Available In the present study, an integrated hierarchical approach was applied to: (1 identify pathways associated with susceptibility to schizophrenia; (2 detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3 annotate the functional consequences of such single-nucleotide polymorphisms (SNPs in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1 identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2 detection of genes of interest for future follow-up studies; and (3 the highlighting of novel genes in previously reported candidate regions for schizophrenia.

  14. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Science.gov (United States)

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  15. A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2012-05-01

    Full Text Available Abstract Background The efficacy of chemotherapy regimens in breast cancer patients is variable and unpredictable. Whether individual patients either achieve long-term remission or suffer recurrence after therapy may be dictated by intrinsic properties of their breast tumors including genetic lesions and consequent aberrant transcriptional programs. Global gene expression profiling provides a powerful tool to identify such tumor-intrinsic transcriptional programs, whose analyses provide insight into the underlying biology of individual patient tumors. For example, multi-gene expression signatures have been identified that can predict the likelihood of disease reccurrence, and thus guide patient prognosis. Whereas such prognostic signatures are being introduced in the clinical setting, similar signatures that predict sensitivity or resistance to chemotherapy are not currently clinically available. Methods We used gene expression profiling to identify genes that were co-expressed with genes whose transcripts encode the protein targets of commonly used chemotherapeutic agents. Results Here, we present target based expression indices that predict breast tumor response to anthracycline and taxane based chemotherapy. Indeed, these signatures were independently predictive of chemotherapy response after adjusting for standard clinic-pathological variables such as age, grade, and estrogen receptor status in a cohort of 488 breast cancer patients treated with adriamycin and taxotere/taxol. Conclusions Importantly, our findings suggest the practicality of developing target based indices that predict response to therapeutics, as well as highlight the possibility of using gene signatures to guide the use of chemotherapy during treatment of breast cancer patients.

  16. A Bayesian Approach for Analysis of Whole-Genome Bisulphite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation.

    Science.gov (United States)

    Rackham, Owen J L; Langley, Sarah R; Oates, Thomas; Vradi, Eleni; Harmston, Nathan; Srivastava, Prashant K; Behmoaras, Jacques; Dellaportas, Petros; Bottolo, Leonardo; Petretto, Enrico

    2017-02-17

    DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility remains to be fully understood. Here, we present a novel Bayesian smoothing approach (called ABBA) to detect differentially methylated regions (DMRs) from whole-genome bisulphite sequencing (WGBS). We also show how this approach can be leveraged to identify disease-associated changes in DNA methylation, suggesting mechanisms through which these alterations might affect disease. From a data modeling perspective, ABBA has the distinctive feature of automatically adapting to different correlation structures in CpG methylation levels across the genome whilst taking into account the distance between CpG sites as a covariate. Our simulation study shows that ABBA has greater power to detect DMRs than existing methods, providing an accurate identification of DMRs in the large majority of simulated cases. To empirically demonstrate the method's efficacy in generating biological hypotheses, we performed WGBS of primary macrophages derived from an experimental rat system of glomerulonephritis and used ABBA to identify >1,000 disease-associated DMRs. Investigation of these DMRs revealed differential DNA methylation localized to a 600bp region in the promoter of the Ifitm3 gene. This was confirmed by ChIP-seq and RNA-seq analyses, showing differential transcription factor binding at the Ifitm3 promoter by JunD (an established determinant of glomerulonephritis) and a consistent change in Ifitm3 expression. Our ABBA analysis allowed us to propose a new role for Ifitm3 in the pathogenesis of glomerulonephritis via a mechanism involving promoter hypermethylation that is associated with Ifitm3 repression in the rat strain susceptible to glomerulonephritis.

  17. An evolutionary genomic approach to identify genes involved in human birth timing.

    Directory of Open Access Journals (Sweden)

    Jevon Plunkett

    2011-04-01

    Full Text Available Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.

  18. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2006-11-01

    Full Text Available Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

  19. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Deodutta Roy

    2015-10-01

    Full Text Available We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs, bisphenols (BPs, and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors.

  20. Integrated Bioinformatics, Environmental Epidemiologic and Genomic Approaches to Identify Environmental and Molecular Links between Endometriosis and Breast Cancer

    Science.gov (United States)

    Roy, Deodutta; Morgan, Marisa; Yoo, Changwon; Deoraj, Alok; Roy, Sandhya; Yadav, Vijay Kumar; Garoub, Mohannad; Assaggaf, Hamza; Doke, Mayur

    2015-01-01

    We present a combined environmental epidemiologic, genomic, and bioinformatics approach to identify: exposure of environmental chemicals with estrogenic activity; epidemiologic association between endocrine disrupting chemical (EDC) and health effects, such as, breast cancer or endometriosis; and gene-EDC interactions and disease associations. Human exposure measurement and modeling confirmed estrogenic activity of three selected class of environmental chemicals, polychlorinated biphenyls (PCBs), bisphenols (BPs), and phthalates. Meta-analysis showed that PCBs exposure, not Bisphenol A (BPA) and phthalates, increased the summary odds ratio for breast cancer and endometriosis. Bioinformatics analysis of gene-EDC interactions and disease associations identified several hundred genes that were altered by exposure to PCBs, phthalate or BPA. EDCs-modified genes in breast neoplasms and endometriosis are part of steroid hormone signaling and inflammation pathways. All three EDCs–PCB 153, phthalates, and BPA influenced five common genes—CYP19A1, EGFR, ESR2, FOS, and IGF1—in breast cancer as well as in endometriosis. These genes are environmentally and estrogen responsive, altered in human breast and uterine tumors and endometriosis lesions, and part of Mitogen Activated Protein Kinase (MAPK) signaling pathways in cancer. Our findings suggest that breast cancer and endometriosis share some common environmental and molecular risk factors. PMID:26512648

  1. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    OpenAIRE

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associat...

  2. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    Science.gov (United States)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  3. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    Science.gov (United States)

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at Pdiscovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  4. swDMR: A Sliding Window Approach to Identify Differentially Methylated Regions Based on Whole Genome Bisulfite Sequencing.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available DNA methylation is a widespread epigenetic modification that plays an essential role in gene expression through transcriptional regulation and chromatin remodeling. The emergence of whole genome bisulfite sequencing (WGBS represents an important milestone in the detection of DNA methylation. Characterization of differential methylated regions (DMRs is fundamental as well for further functional analysis. In this study, we present swDMR (http://sourceforge.net/projects/swDMR/ for the comprehensive analysis of DMRs from whole genome methylation profiles by a sliding window approach. It is an integrated tool designed for WGBS data, which not only implements accessible statistical methods to perform hypothesis test adapted to two or more samples without replicates, but false discovery rate was also controlled by multiple test correction. Downstream analysis tools were also provided, including cluster, annotation and visualization modules. In summary, based on WGBS data, swDMR can produce abundant information of differential methylated regions. As a convenient and flexible tool, we believe swDMR will bring us closer to unveil the potential functional regions involved in epigenetic regulation.

  5. Identifying associations between genomic alterations in tumors.

    Science.gov (United States)

    George, Joshy; Gorringe, Kylie L; Smyth, Gordon K; Bowtell, David D L

    2013-01-01

    Single-nucleotide polymorphism (SNP) mapping arrays are a reliable method for identifying somatic copy number alterations in cancer samples. Though this is immensely useful to identify potential driver genes, it is not sufficient to identify genes acting in a concerted manner. In cancer cells, co-amplified genes have been shown to provide synergistic effects, and genomic alterations targeting a pathway have been shown to occur in a mutually exclusive manner. We therefore developed a bioinformatic method for detecting such gene pairs using an integrated analysis of genomic copy number and gene expression data. This approach allowed us to identify a gene pair that is co-amplified and co-expressed in high-grade serous ovarian cancer. This finding provided information about the interaction of specific genetic events that contribute to the development and progression of this disease.

  6. Pan-Genome Analysis of Human Gastric Pathogen H. pylori: Comparative Genomics and Pathogenomics Approaches to Identify Regions Associated with Pathogenicity and Prediction of Potential Core Therapeutic Targets

    DEFF Research Database (Denmark)

    Ali, Amjad; Naz, Anam; Soares, Siomar C.

    2015-01-01

    . Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome...

  7. PATE, a gene expressed in prostate cancer, normal prostate, and testis, identified by a functional genomic approach

    Science.gov (United States)

    Bera, Tapan K.; Maitra, Rangan; Iavarone, Carlo; Salvatore, Giuliana; Kumar, Vasantha; Vincent, James J.; Sathyanarayana, B. K.; Duray, Paul; Lee, B. K.; Pastan, Ira

    2002-03-01

    To identify target antigens for prostate cancer therapy, we have combined computer-based screening of the human expressed sequence tag database and experimental expression analysis to identify genes that are expressed in normal prostate and prostate cancer but not in essential human tissues. Using this approach, we identified a gene that is expressed specifically in prostate cancer, normal prostate, and testis. The gene has a 1.5-kb transcript that encodes a protein of 14 kDa. We named this gene PATE (expressed in prostate and testis). In situ hybridization shows that PATE mRNA is expressed in the epithelial cells of prostate cancers and in normal prostate. Transfection of the PATE cDNA with a Myc epitope tag into NIH 3T3 cells and subsequent cell fractionation analysis shows that the PATE protein is localized in the membrane fraction of the cell. Analysis of the amino acid sequence of PATE shows that it has structural similarities to a group of proteins known as three-finger toxins, which includes the extracellular domain of the type transforming growth factor receptor. Restricted expression of PATE makes it a potential candidate for the immunotherapy of prostate cancer.

  8. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    NARCIS (Netherlands)

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Boettcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbaton-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V.; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M.; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S.; Franzosi, Maria Grazia; Franks, Paul W.; Frayling, Timothy M.; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Goeran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A.; Johnson, Paul C. D.; Jukema, J. Wouter; Jula, Antti; Kao, W. H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G. Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stephane; Loos, Ruth J. F.; Luan, Jian'an; Lyssenko, Valeriya; Magi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A.; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Raikkonen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J. G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stancakova, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Toenjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikstrom, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M.; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C. M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josee; Meigs, James B.; Langenberg, Claudia

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathw

  9. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  10. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    DEFF Research Database (Denmark)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A

    2012-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance...... in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology....

  11. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia

    Science.gov (United States)

    Ferrari, Raffaele; Grassi, Mario; Salvi, Erika; Borroni, Barbara; Palluzzi, Fernando; Pepe, Daniele; D'Avila, Francesca; Padovani, Alessandro; Archetti, Silvana; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Galimberti, Daniela; Scarpini, Elio; Serpente, Maria; Rossi, Giacomina; Giaccone, Giorgio; Tagliavini, Fabrizio; Nacmias, Benedetta; Piaceri, Irene; Bagnoli, Silvia; Bruni, Amalia C.; Maletta, Raffaele G.; Bernardi, Livia; Postiglione, Alfredo; Milan, Graziella; Franceschi, Massimo; Puca, Annibale A.; Novelli, Valeria; Barlassina, Cristina; Glorioso, Nicola; Manunta, Paolo; Singleton, Andrew; Cusi, Daniele; Hardy, John; Momeni, Parastoo

    2015-01-01

    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer's disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel single nucleotide polymorphisms (SNPs)-to-genes approach and functional annotation analysis. We identified 2 novel potential loci for FTD. Suggestive SNPs reached p-values ∼10−7 and odds ratio > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of –cis genes such as RFNG and AATK involved in neuronal genesis and differentiation and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation, and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD–genome-wide association study. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis. PMID:26154020

  12. A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia.

    Science.gov (United States)

    Ferrari, Raffaele; Grassi, Mario; Salvi, Erika; Borroni, Barbara; Palluzzi, Fernando; Pepe, Daniele; D'Avila, Francesca; Padovani, Alessandro; Archetti, Silvana; Rainero, Innocenzo; Rubino, Elisa; Pinessi, Lorenzo; Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta; Galimberti, Daniela; Scarpini, Elio; Serpente, Maria; Rossi, Giacomina; Giaccone, Giorgio; Tagliavini, Fabrizio; Nacmias, Benedetta; Piaceri, Irene; Bagnoli, Silvia; Bruni, Amalia C; Maletta, Raffaele G; Bernardi, Livia; Postiglione, Alfredo; Milan, Graziella; Franceschi, Massimo; Puca, Annibale A; Novelli, Valeria; Barlassina, Cristina; Glorioso, Nicola; Manunta, Paolo; Singleton, Andrew; Cusi, Daniele; Hardy, John; Momeni, Parastoo

    2015-10-01

    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer's disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel single nucleotide polymorphisms (SNPs)-to-genes approach and functional annotation analysis. We identified 2 novel potential loci for FTD. Suggestive SNPs reached p-values ∼10(-7) and odds ratio > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation, and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-genome-wide association study. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis.

  13. Identifying Loci for the Overlap between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-Wide QTL Linkage Approach

    Science.gov (United States)

    Nijmeijer, Judith S.; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Anney, Richard J. L.; Asherson, Philip; Banaschewski, Tobias; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Gill, Michael; Minderaa, Ruud B.; Poustka, Luise; Sergeant, Joseph A.; Buitelaar, Jan K.; Franke, Barbara; Ebstein, Richard P.; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sonuga-Barke, Edmund J. S.; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Hartman, Catharina A.; Hoekstra, Pieter J.

    2010-01-01

    Objective: The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. Method: Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and…

  14. Identifying Loci for the Overlap Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-wide QTL Linkage Approach

    NARCIS (Netherlands)

    Nijmeijer, Judith S.; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Anney, Richard J. L.; Asherson, Philip; Banaschewski, Tobias; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Gill, Michael; Minderaa, Ruud B.; Poustka, Luise; Sergeant, Joseph A.; Buitelaar, Jan K.; Franke, Barbara; Ebstein, Richard P.; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sonuga-Barke, Edmund J. S.; Steinhausen, Hans-Christoph; Faraone, Stephen. V.; Hartman, Catharina A.; Hoekstra, Pieter J.

    Objective: The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. Method: Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD

  15. Identifying Synonymous Regulatory Elements in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, I; Nobrega, M A

    2005-02-07

    Synonymous gene regulation, defined as driving shared temporal and/or spatial expression of groups of genes, is likely predicated on genomic elements that contain similar modules of certain transcription factor binding sites (TFBS). We have developed a method to scan vertebrate genomes for evolutionary conserved modules of TFBS in a predefined configuration, and created a tool, named SynoR that identify synonymous regulatory elements (SREs) in vertebrate genomes. SynoR performs de novo identification of SREs utilizing known patterns of TFBS in active regulatory elements (REs) as seeds for genome scans. Layers of multiple-species conservation allow the use of differential phylogenetic sequence conservation filters in the search of SREs and the results are displayed as to provide an extensive annotation of genes containing detected REs. Gene Ontology categories are utilized to further functionally classify the identified genes, and integrated GNF Expression Atlas 2 data allow the cataloging of tissue-specificities of the predicted SREs. We illustrate how this new tool can be used to establish a linkage between human diseases and noncoding genomic content. SynoR is publicly available at http://synor.dcode.org.

  16. [Genomic approach to pathophysiology of rheumatoid arthritis].

    Science.gov (United States)

    Yamada, Ryo

    2012-11-01

    Genetic studies identified multiple genes and polymorphisms that increase risk to develop rheumatoid arthritis. Genomic approach is characterized with its integrative style using mathematical and statistical models. Its main targets include (1)combinatorial effect of multiple genetic and environmental factors, (2)heterogeneity of pathological states and its individuality, and (3)their chronological heterogeneity. Genomic approach will clarify pathophysiology of various diseases along with the progresses in molecular biology and other researches on individual molecules.

  17. Multiple genome alignment for identifying the core structure among moderately related microbial genomes.

    Science.gov (United States)

    Uchiyama, Ikuo

    2008-10-31

    Identifying the set of intrinsically conserved genes, or the genomic core, among related genomes is crucial for understanding prokaryotic genomes where horizontal gene transfers are common. Although core genome identification appears to be obvious among very closely related genomes, it becomes more difficult when more distantly related genomes are compared. Here, we consider the core structure as a set of sufficiently long segments in which gene orders are conserved so that they are likely to have been inherited mainly through vertical transfer, and developed a method for identifying the core structure by finding the order of pre-identified orthologous groups (OGs) that maximally retains the conserved gene orders. The method was applied to genome comparisons of two well-characterized families, Bacillaceae and Enterobacteriaceae, and identified their core structures comprising 1438 and 2125 OGs, respectively. The core sets contained most of the essential genes and their related genes, which were primarily included in the intersection of the two core sets comprising around 700 OGs. The definition of the genomic core based on gene order conservation was demonstrated to be more robust than the simpler approach based only on gene conservation. We also investigated the core structures in terms of G+C content homogeneity and phylogenetic congruence, and found that the core genes primarily exhibited the expected characteristic, i.e., being indigenous and sharing the same history, more than the non-core genes. The results demonstrate that our strategy of genome alignment based on gene order conservation can provide an effective approach to identify the genomic core among moderately related microbial genomes.

  18. Multiple genome alignment for identifying the core structure among moderately related microbial genomes

    Directory of Open Access Journals (Sweden)

    Uchiyama Ikuo

    2008-10-01

    Full Text Available Abstract Background Identifying the set of intrinsically conserved genes, or the genomic core, among related genomes is crucial for understanding prokaryotic genomes where horizontal gene transfers are common. Although core genome identification appears to be obvious among very closely related genomes, it becomes more difficult when more distantly related genomes are compared. Here, we consider the core structure as a set of sufficiently long segments in which gene orders are conserved so that they are likely to have been inherited mainly through vertical transfer, and developed a method for identifying the core structure by finding the order of pre-identified orthologous groups (OGs that maximally retains the conserved gene orders. Results The method was applied to genome comparisons of two well-characterized families, Bacillaceae and Enterobacteriaceae, and identified their core structures comprising 1438 and 2125 OGs, respectively. The core sets contained most of the essential genes and their related genes, which were primarily included in the intersection of the two core sets comprising around 700 OGs. The definition of the genomic core based on gene order conservation was demonstrated to be more robust than the simpler approach based only on gene conservation. We also investigated the core structures in terms of G+C content homogeneity and phylogenetic congruence, and found that the core genes primarily exhibited the expected characteristic, i.e., being indigenous and sharing the same history, more than the non-core genes. Conclusion The results demonstrate that our strategy of genome alignment based on gene order conservation can provide an effective approach to identify the genomic core among moderately related microbial genomes.

  19. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D.; Khan, Yusuf; Das, Shouvik; Badoni, Saurabh; Shree, Tanima; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Singh, Sube; Sharma, Shivali; Tyagi, Akhilesh K.; Chattopdhyay, Debasis; Parida, Swarup K.

    2015-01-01

    High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea. PMID:25786576

  20. A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer.

    Science.gov (United States)

    Li, Ning; Kaur, Sippy; Greshock, Joel; Lassus, Heini; Zhong, Xiaomin; Wang, Yanling; Leminen, Arto; Shao, Zhongjun; Hu, Xiaowen; Liang, Shun; Katsaros, Dionyssios; Huang, Qihong; Bützow, Ralf; Weber, Barbara L; Coukos, George; Zhang, Lin

    2012-01-01

    Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and migration. The chromosomal locus harboring mir-30d was amplified in more than 30% of multiple types of human solid tumors (n = 1,283). Importantly, higher levels of mir-30d expression were associated significantly with poor clinical outcomes in ovarian cancer patients (n = 330, P = 0.0016). Mechanistic investigations suggested that mir-30d regulates a large number of cancer-associated genes, including the apoptotic caspase CASP3. The guided genetic screening approach validated by this study offers a powerful tool to identify oncomirs that may have utility as biomarkers or targets for drug development.

  1. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  2. Identifying genetics and genomics nursing competencies common among published recommendations.

    Science.gov (United States)

    Greco, Karen E; Salveson, Catherine

    2009-10-01

    The purpose of this article is to identify published recommendations for genetics and genomics competencies or curriculum for nurses in the United States and to summarize genetic and genomic nursing competencies based on common themes among these documents. A review of the literature between January 1998 and June 2008 was conducted. Efforts were also made to access the gray literature. Five consensus documents describing recommendations for genetics and genomics competencies for nurses meeting inclusion criteria were analyzed. Twelve genetics and genomics competencies were created based on common themes among the recommendations. These competencies include: demonstrate an understanding of basic genetic and genomic concepts, provide and explain genetic and genomic information, refer to appropriate genetics professionals and services, and identify the limits of one's own genetics and genomics expertise. The competencies represent fundamental genetics and genomics competencies for nurses on the basis of common themes among several consensus recommendations identified in the literature.

  3. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    OpenAIRE

    Kristopher J. L. Irizarry; Josep Rutllant

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 g...

  4. Genomic Imbalances in Rhabdomyosarcoma Cell Lines Affect Expression of Genes Frequently Altered in Primary Tumors: An Approach to Identify Candidate Genes Involved in Tumor Development

    NARCIS (Netherlands)

    E. Missiaglia; J. Selfe; M. Hamdi; D. Williamson; G. Schaaf; C. Fang; J. Koster; B. Summersgill; B. Messahel; R Versteeg; K. Pritchard-Jones; M. Kool; J. Shipley

    2009-01-01

    Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3- and PAX7-FOXO1 fusion genes in alveolar case

  5. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2011-09-01

    Full Text Available Abstract Background Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L. fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2 that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Results Two near-isogenic lines of Ligon lintless-2 (Li2 cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5. An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991 that displayed complete linkage to the Li2 locus. Conclusions In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on

  6. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  7. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Science.gov (United States)

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  8. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  9. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L.; Hottenga, Jouke-Jan

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including g...

  10. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    OpenAIRE

    Chambers, John C.; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E.; Coin, Lachlan J.; Abecasis, Goncalo R.; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, includi...

  11. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    Science.gov (United States)

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines.

  12. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  13. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  14. Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders

    Science.gov (United States)

    Traglia, Michela; Tsang, Kathryn; Bearden, Carrie E.; Rauen, Katherine A.

    2017-01-01

    Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10−16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway. PMID:28076348

  15. Intronic alternative splicing regulators identified by comparative genomics in nematodes.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kabat

    2006-07-01

    Full Text Available Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high-scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (TGCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis

  16. Identifying Geographic Clusters: A Network Analytic Approach

    CERN Document Server

    Catini, Roberto; Penner, Orion; Riccaboni, Massimo

    2015-01-01

    In recent years there has been a growing interest in the role of networks and clusters in the global economy. Despite being a popular research topic in economics, sociology and urban studies, geographical clustering of human activity has often studied been by means of predetermined geographical units such as administrative divisions and metropolitan areas. This approach is intrinsically time invariant and it does not allow one to differentiate between different activities. Our goal in this paper is to present a new methodology for identifying clusters, that can be applied to different empirical settings. We use a graph approach based on k-shell decomposition to analyze world biomedical research clusters based on PubMed scientific publications. We identify research institutions and locate their activities in geographical clusters. Leading areas of scientific production and their top performing research institutions are consistently identified at different geographic scales.

  17. Distributed design approach in persistent identifiers systems

    Science.gov (United States)

    Golodoniuc, Pavel; Car, Nicholas; Klump, Jens

    2017-04-01

    The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementations, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have catered for identifier uniqueness, integrity, persistence, and trustworthiness, regardless of the identifier's application domain, the scope of which has expanded significantly in the past two decades. Since many PID systems have been largely conceived and developed by small communities, or even a single organisation, they have faced challenges in gaining widespread adoption and, most importantly, the ability to survive change of technology. This has left a legacy of identifiers that still exist and are being used but which have lost their resolution service. We believe that one of the causes of once successful PID systems fading is their reliance on a centralised technical infrastructure or a governing authority. Golodoniuc et al. (2016) proposed an approach to the development of PID systems that combines the use of (a) the Handle system, as a distributed system for the registration and first-degree resolution of persistent identifiers, and (b) the PID Service (Golodoniuc et al., 2015), to enable fine-grained resolution to different information object representations. The proposed approach solved the problem of guaranteed first-degree resolution of identifiers, but left fine-grained resolution and information delivery under the control of a single authoritative source, posing risk to the long-term availability of information resources. Herein, we develop these approaches further and explore the potential of large-scale decentralisation at all levels: (i) persistent identifiers and information resources registration; (ii) identifier resolution; and (iii) data delivery. To achieve large-scale decentralisation

  18. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  19. Genomic approaches in aquaculture and fisheries

    DEFF Research Database (Denmark)

    Cancela, M. Leonor; Bargelloni, Luca; Boudry, Pierre

    2010-01-01

    Despite the enormous input into the worldwide development of fish and shellfish farming in the recent decades, in part as an attempt to minimize the impact of fishing on already overexploited natural populations, the application of genomics to aquaculture and fisheries remains poorly developed....... Improving state-of-the-art genomics research in various aquaculture systems, as well as its industrial applications, remains one of the major challenges in this area and should be the focus of well developed strategies to be implemented in the next generation of projects. This chapter will first provide...... an overview of the genomic tools and resources available, then discuss the application of genomic approaches to the improvement of fish and shellfish farming (e.g. breeding, reproduction, growth, nutrition and product quality), including the evaluation of stock diversity and the use of selection procedures...

  20. (Post-)genomics approaches in fungal research.

    Science.gov (United States)

    Aguilar-Pontes, María Victoria; de Vries, Ronald P; Zhou, Miaomiao

    2014-11-01

    To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functional studies beyond genomes are required. Thanks to the developments of current -omics techniques, it is possible to produce large amounts of fungal functional data in a high-throughput fashion (e.g. transcriptome, proteome, etc.). The increasing ease of creating -omics data has also created a major challenge for downstream data handling and analysis. Numerous databases, tools and software have been created to meet this challenge. Facing such a richness of techniques and information, hereby we provide a brief roadmap on current wet-lab and bioinformatics approaches to study functional genomics in fungi.

  1. Identifying elemental genomic track types and representing them uniformly

    Directory of Open Access Journals (Sweden)

    Gundersen Sveinung

    2011-12-01

    Full Text Available Abstract Background With the recent advances and availability of various high-throughput sequencing technologies, data on many molecular aspects, such as gene regulation, chromatin dynamics, and the three-dimensional organization of DNA, are rapidly being generated in an increasing number of laboratories. The variation in biological context, and the increasingly dispersed mode of data generation, imply a need for precise, interoperable and flexible representations of genomic features through formats that are easy to parse. A host of alternative formats are currently available and in use, complicating analysis and tool development. The issue of whether and how the multitude of formats reflects varying underlying characteristics of data has to our knowledge not previously been systematically treated. Results We here identify intrinsic distinctions between genomic features, and argue that the distinctions imply that a certain variation in the representation of features as genomic tracks is warranted. Four core informational properties of tracks are discussed: gaps, lengths, values and interconnections. From this we delineate fifteen generic track types. Based on the track type distinctions, we characterize major existing representational formats and find that the track types are not adequately supported by any single format. We also find, in contrast to the XML formats, that none of the existing tabular formats are conveniently extendable to support all track types. We thus propose two unified formats for track data, an improved XML format, BioXSD 1.1, and a new tabular format, GTrack 1.0. Conclusions The defined track types are shown to capture relevant distinctions between genomic annotation tracks, resulting in varying representational needs and analysis possibilities. The proposed formats, GTrack 1.0 and BioXSD 1.1, cater to the identified track distinctions and emphasize preciseness, flexibility and parsing convenience.

  2. Genome classification by gene distribution: An overlapping subspace clustering approach

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods. Results We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: Staphylococcus 71, phiPVL108, Listeria A118, 2389, Lactobacillus phi AT3, A2

  3. genomic and transcriptomic approaches towards the genetic ...

    African Journals Online (AJOL)

    USER

    to the complex nature of these stresses, and the genotype x environment interaction (GxE). .... collection (Azam-Ali et al., 2001); (vi) biological .... Integrative platform to study gene function and gene evolution in legumes ..... a powerful dissection of the genetic control of ... complemented by a new approach called genomic.

  4. Genomic approaches to research in pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Tuder Rubin M

    2001-05-01

    Full Text Available Abstract Genomics, or the study of genes and their function, is a burgeoning field with many new technologies. In the present review, we explore the application of genomic approaches to the study of pulmonary hypertension (PH. Candidate genes, important to the pathobiology of the disease, have been investigated. Rodent models enable the manipulation of selected genes, either by transgenesis or targeted disruption. Mutational analysis of genes in the transforming growth factor-β family have proven pivotal in both familial and sporadic forms of primary PH. Finally, microarray gene expression analysis is a robust molecular tool to aid in delineating the pathobiology of this disease.

  5. Identifying trait clusters by linkage profiles: application in genetical genomics.

    Science.gov (United States)

    Sampson, Joshua N; Self, Steven G

    2008-04-01

    Genes often regulate multiple traits. Identifying clusters of traits influenced by a common group of genes helps elucidate regulatory networks and can improve linkage mapping. We show that the Pearson correlation coefficient, rho L, between two LOD score profiles can, with high specificity and sensitivity, identify pairs of genes that have their transcription regulated by shared quantitative trait loci (QTL). Furthermore, using theoretical and/or empirical methods, we can approximate the distribution of rho L under the null hypothesis of no common QTL. Therefore, it is possible to calculate P-values and false discovery rates for testing whether two traits share common QTL. We then examine the properties of rho L through simulation and use rho L to cluster genes in a genetical genomics experiment examining Saccharomyces cerevisiae. Simulations show that rho L can have more power than the clustering methods currently used in genetical genomics. Combining experimental results with Gene Ontology (GO) annotations show that genes within a purported cluster often share similar function. R-code included in online Supplementary Material.

  6. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  7. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  8. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes.

    Science.gov (United States)

    Wheeler, Nicole E; Barquist, Lars; Kingsley, Robert A; Gardner, Paul P

    2016-12-01

    Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS CONTACT: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts

    Science.gov (United States)

    Lorenz, C.; Gesell, T.; Zimmermann, B.; Schoeberl, U.; Bilusic, I.; Rajkowitsch, L.; Waldsich, C.; von Haeseler, A.; Schroeder, R.

    2010-01-01

    An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs. PMID:20348540

  10. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-01

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  11. The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles

    Directory of Open Access Journals (Sweden)

    Gleb N. Artemov

    2017-01-01

    Full Text Available The genome of the Neotropical malaria vector Anopheles albimanus was sequenced as part of the 16 Anopheles Genomes Project published in 2015. The draft assembly of this species consisted of 204 scaffolds with an N50 scaffold size of 18.1 Mb and a total assembly size of 170.5 Mb. It was among the smallest genomes with the longest scaffolds in the 16 Anopheles species cluster, making An. albimanus the logical choice for anchoring the genome assembly to chromosomes. In this study, we developed a high-resolution cytogenetic photomap with completely straightened polytene chromosomes from the salivary glands of the mosquito larvae. Based on this photomap, we constructed a chromosome-based genome assembly using fluorescent in situ hybridization of PCR-amplified DNA probes. Our physical mapping, assisted by an ortholog-based bioinformatics approach, identified and corrected nine misassemblies in five large genomic scaffolds. Misassemblies mostly occurred in junctions between contigs. Our comparative analysis of scaffolds with the An. gambiae genome detected multiple genetic exchanges between pericentromeric regions of chromosomal arms caused by partial-arm translocations. The final map consists of 40 ordered genomic scaffolds and corrected fragments of misassembled scaffolds. The An. albimanus physical map comprises 98.2% of the total genome assembly and represents the most complete genome map among mosquito species. This study demonstrates that physical mapping is a powerful tool for correcting errors in draft genome assemblies and for creating chromosome-anchored reference genomes.

  12. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python. We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1 production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2 enhanced assisted reproduction technology for endangered and captive reptiles; and (3 novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  13. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    Science.gov (United States)

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  14. Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics.

    Directory of Open Access Journals (Sweden)

    Sacha J Pidot

    Full Text Available A specific and sensitive serodiagnostic test for Mycobacterium ulcerans infection would greatly assist the diagnosis of Buruli ulcer and would also facilitate seroepidemiological surveys. By comparative genomics, we identified 45 potential M. ulcerans specific proteins, of which we were able to express and purify 33 in E. coli. Sera from 30 confirmed Buruli ulcer patients, 24 healthy controls from the same endemic region and 30 healthy controls from a non-endemic region in Benin were screened for antibody responses to these specific proteins by ELISA. Serum IgG responses of Buruli ulcer patients were highly variable, however, seven proteins (MUP045, MUP057, MUL_0513, Hsp65, and the polyketide synthase domains ER, AT propionate, and KR A showed a significant difference between patient and non-endemic control antibody responses. However, when sera from the healthy control subjects living in the same Buruli ulcer endemic area as the patients were examined, none of the proteins were able to discriminate between these two groups. Nevertheless, six of the seven proteins showed an ability to distinguish people living in an endemic area from those in a non-endemic area with an average sensitivity of 69% and specificity of 88%, suggesting exposure to M. ulcerans. Further validation of these six proteins is now underway to assess their suitability for use in Buruli ulcer seroepidemiological studies. Such studies are urgently needed to assist efforts to uncover environmental reservoirs and understand transmission pathways of the M. ulcerans.

  15. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness.

    Science.gov (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B

    2016-06-22

    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  16. Genomic convergence to identify candidate genes for Parkinson disease: SAGE analysis of the substantia nigra.

    Science.gov (United States)

    Noureddine, Maher A; Li, Yi-Ju; van der Walt, Joelle M; Walters, Robert; Jewett, Rita M; Xu, Hong; Wang, Tianyuan; Walter, Jeffrey W; Scott, Burton L; Hulette, Christine; Schmechel, Don; Stenger, Judith E; Dietrich, Fred; Vance, Jeffery M; Hauser, Michael A

    2005-10-01

    Genomic convergence is a multistep approach that combines gene expression with genomic linkage to identify and prioritize susceptibility genes for complex disease. As a first step, we previously performed linkage analysis on 174 multiplex Parkinson's disease (PD) families, identifying five peaks for PD risk and two for genes affecting age at onset (AAO) in PD [Hauser et al., Hum Mol Genet 2003;12:671-677]. We report here the next step: serial analysis of gene expression [SAGE; Scott et al., JAMA 2001;286:2239-2242] to analyze substantia nigra tissue from three PD patients and two age-matched controls. We find 933 differentially expressed genes (Pgenetic effects on AAO. Copyright (c) 2005 Movement Disorder Society.

  17. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  18. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter.

    Directory of Open Access Journals (Sweden)

    Guillaume Méric

    Full Text Available The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation--focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb. The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥ 70% identity over ≥ 50% of the locus length--aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.

  19. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    Science.gov (United States)

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  20. Leveraging human genomic information to identify nonhuman primate sequences for expression array development

    Directory of Open Access Journals (Sweden)

    Boyle Nicholas F

    2005-11-01

    Full Text Available Abstract Background Nonhuman primates (NHPs are essential for biomedical research due to their similarities to humans. The utility of NHPs will be greatly increased by the application of genomics-based approaches such as gene expression profiling. Sequence information from the 3' end of genes is the key resource needed to create oligonucleotide expression arrays. Results We have developed the algorithms and procedures necessary to quickly acquire sequence information from the 3' end of nonhuman primate orthologs of human genes. To accomplish this, we identified terminal exons of over 15,000 human genes by aligning mRNA sequences with genomic sequence. We found the mean length of complete last exons to be approximately 1,400 bp, significantly longer than previous estimates. We designed primers to amplify genomic DNA, which included at least 300 bp of the terminal exon. We cloned and sequenced the PCR products representing over 5,500 Macaca mulatta (rhesus monkey orthologs of human genes. This sequence information has been used to select probes for rhesus gene expression profiling. We have also tested 10 sets of primers with genomic DNA from Macaca fascicularis (Cynomolgus monkey, Papio hamadryas (Baboon, and Chlorocebus aethiops (African green monkey, vervet. The results indicate that the primers developed for this study will be useful for acquiring sequence from the 3' end of genes for other nonhuman primate species. Conclusion This study demonstrates that human genomic DNA sequence can be leveraged to obtain sequence from the 3' end of NHP orthologs and that this sequence can then be used to generate NHP oligonucleotide microarrays. Affymetrix and Agilent used sequences obtained with this approach in the design of their rhesus macaque oligonucleotide microarrays.

  1. Identifying MMORPG Bots: A Traffic Analysis Approach

    Science.gov (United States)

    Chen, Kuan-Ta; Jiang, Jhih-Wei; Huang, Polly; Chu, Hao-Hua; Lei, Chin-Laung; Chen, Wen-Chin

    2008-12-01

    Massively multiplayer online role playing games (MMORPGs) have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1) the regularity in the release time of client commands, 2) the trend and magnitude of traffic burstiness in multiple time scales, and 3) the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  2. Identifying MMORPG Bots: A Traffic Analysis Approach

    Directory of Open Access Journals (Sweden)

    Wen-Chin Chen

    2008-11-01

    Full Text Available Massively multiplayer online role playing games (MMORPGs have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1 the regularity in the release time of client commands, 2 the trend and magnitude of traffic burstiness in multiple time scales, and 3 the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  3. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer

    Science.gov (United States)

    Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.

    2014-01-01

    Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795

  4. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.

    Science.gov (United States)

    Nagari, Anusha; Murakami, Shino; Malladi, Venkat S; Kraus, W Lee

    2017-01-01

    Transcriptional enhancers are DNA regulatory elements that are bound by transcription factors and act to positively regulate the expression of nearby or distally located target genes. Enhancers have many features that have been discovered using genomic analyses. Recent studies have shown that active enhancers recruit RNA polymerase II (Pol II) and are transcribed, producing enhancer RNAs (eRNAs). GRO-seq, a method for identifying the location and orientation of all actively transcribing RNA polymerases across the genome, is a powerful approach for monitoring nascent enhancer transcription. Furthermore, the unique pattern of enhancer transcription can be used to identify enhancers in the absence of any information about the underlying transcription factors. Here, we describe the computational approaches required to identify and analyze active enhancers using GRO-seq data, including data pre-processing, alignment, and transcript calling. In addition, we describe protocols and computational pipelines for mining GRO-seq data to identify active enhancers, as well as known transcription factor binding sites that are transcribed. Furthermore, we discuss approaches for integrating GRO-seq-based enhancer data with other genomic data, including target gene expression and function. Finally, we describe molecular biology assays that can be used to confirm and explore further the function of enhancers that have been identified using genomic assays. Together, these approaches should allow the user to identify and explore the features and biological functions of new cell type-specific enhancers.

  5. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  6. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could...

  7. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  8. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  9. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  10. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yiel...

  11. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  12. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-04-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  13. Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates

    Directory of Open Access Journals (Sweden)

    Wojciech Szpankowski

    2007-12-01

    Full Text Available Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5′ untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS, we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an application of importance in genetic profiling.

  14. Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates

    Directory of Open Access Journals (Sweden)

    Kontoyiannis Ioannis

    2007-01-01

    Full Text Available Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's combined DNA index system (CODIS, we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an application of importance in genetic profiling.

  15. The Use of Evolutionary Approaches to Understand Single Cell Genomes

    Directory of Open Access Journals (Sweden)

    Haiwei eLuo

    2015-03-01

    Full Text Available The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.

  16. Dense genomic sampling identifies highways of pneumococcal recombination.

    Science.gov (United States)

    Chewapreecha, Claire; Harris, Simon R; Croucher, Nicholas J; Turner, Claudia; Marttinen, Pekka; Cheng, Lu; Pessia, Alberto; Aanensen, David M; Mather, Alison E; Page, Andrew J; Salter, Susannah J; Harris, David; Nosten, Francois; Goldblatt, David; Corander, Jukka; Parkhill, Julian; Turner, Paul; Bentley, Stephen D

    2014-03-01

    Evasion of clinical interventions by Streptococcus pneumoniae occurs through selection of non-susceptible genomic variants. We report whole-genome sequencing of 3,085 pneumococcal carriage isolates from a 2.4-km(2) refugee camp. This sequencing provides unprecedented resolution of the process of recombination and its impact on population evolution. Genomic recombination hotspots show remarkable consistency between lineages, indicating common selective pressures acting at certain loci, particularly those associated with antibiotic resistance. Temporal changes in antibiotic consumption are reflected in changes in recombination trends, demonstrating rapid spread of resistance when selective pressure is high. The highest frequencies of receipt and donation of recombined DNA fragments were observed in non-encapsulated lineages, implying that this largely overlooked pneumococcal group, which is beyond the reach of current vaccines, may have a major role in genetic exchange and the adaptation of the species as a whole. These findings advance understanding of pneumococcal population dynamics and provide information for the design of future intervention strategies.

  17. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    S.I. Berndt (Sonja); S. Gustafsson (Stefan); R. Mägi (Reedik); A. Ganna (Andrea); E. Wheeler (Eleanor); M.F. Feitosa (Mary Furlan); A.E. Justice (Anne); K.L. Monda (Keri); D.C. Croteau-Chonka (Damien); F.R. Day (Felix); T. Esko (Tõnu); M. Fall (Magnus); T. Ferreira (Teresa); D. Gentilini (Davide); A.U. Jackson (Anne); J. Luan; J.C. Randall (Joshua); S. Vedantam (Sailaja); C.J. Willer (Cristen); T.W. Winkler (Thomas); A.R. Wood (Andrew); T. Workalemahu (Tsegaselassie); Y.-J. Hu (Yi-Juan); S.H. Lee (Sang Hong); L. Liang (Liming); D.Y. Lin (Dan); J. Min (Josine); B.M. Neale (Benjamin); G. Thorleifsson (Gudmar); J. Yang (Jian); E. Albrecht (Eva); N. Amin (Najaf); J.L. Bragg-Gresham (Jennifer L.); G. Cadby (Gemma); M. den Heijer (Martin); N. Eklund (Niina); K. Fischer (Krista); A. Goel (Anuj); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); I. Jarick (Ivonne); A. Johansson (Åsa); T. Johnson (Toby); S. Kanoni (Stavroula); M.E. Kleber (Marcus); I.R. König (Inke); K. Kristiansson (Kati); Z. Kutalik (Zoltán); C. Lamina (Claudia); C. Lecoeur (Cécile); G. Li (Guo); M. Mangino (Massimo); W.L. McArdle (Wendy); M.C. Medina-Gomez (Carolina); M. Müller-Nurasyid (Martina); J.S. Ngwa; I.M. Nolte (Ilja); L. Paternoster (Lavinia); S. Pechlivanis (Sonali); M. Perola (Markus); M.J. Peters (Marjolein); M. Preuss (Michael); L.M. Rose (Lynda); J. Shi (Jianxin); D. Shungin (Dmitry); G.D. Smith; R.J. Strawbridge (Rona); I. Surakka (Ida); A. Teumer (Alexander); M.D. Trip (Mieke); J.P. Tyrer (Jonathan); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); L. Waite (Lindsay); J.H. Zhao (Jing); D. Absher (Devin); F.W. Asselbergs (Folkert); M. Atalay (Mustafa); A.P. Attwood (Antony); A.J. Balmforth (Anthony); D.C.G. Basart (Dick); J.P. Beilby (John); L.L. Bonnycastle (Lori); P. Brambilla (Paolo); M. Bruinenberg (M.); H. Campbell (Harry); D.I. Chasman (Daniel); P.S. Chines (Peter); F.S. Collins (Francis); J. Connell (John); W. O Cookson (William); U. de Faire (Ulf); F. de Vegt (Femmie); M. Dei (Mariano); M. Dimitriou (Maria); T. Edkins (Ted); K. Estrada Gil (Karol); D.M. Evans (David); M. Farrall (Martin); F. Ferrario (Franco); J. Ferrières (Jean); L. Franke (Lude); F. Frau (Francesca); P.V. Gejman (Pablo); H. Grallert (Harald); H. Grönberg (Henrik); V. Gudnason (Vilmundur); A. Hall (Anne); A.S. Hall (Alistair); A.L. Hartikainen; C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.C. Heath (Andrew); J. Hebebrand (Johannes); G. Homuth (Georg); F.B. Hu (Frank); S.E. Hunt (Sarah); E. Hyppönen (Elina); C. Iribarren (Carlos); K.B. Jacobs (Kevin); J.-O. Jansson (John-Olov); A. Jula (Antti); M. Kähönen (Mika); S. Kathiresan (Sekar); F. Kee (F.); K-T. Khaw (Kay-Tee); M. Kivimaki (Mika); W. Koenig (Wolfgang); A. Kraja (Aldi); M. Kumari (Meena); K. Kuulasmaa (Kari); J. Kuusisto (Johanna); J. Laitinen (Jaana); T.A. Lakka (Timo); C. Langenberg (Claudia); L.J. Launer (Lenore); L. Lind (Lars); J. Lindstrom (Jaana); J. Liu (Jianjun); A. Liuzzi (Antonio); M.L. Lokki; M. Lorentzon (Mattias); P.A. Madden (Pamela); P.K. Magnusson (Patrik); P. Manunta (Paolo); D. Marek (Diana); W. März (Winfried); I.M. Leach (Irene Mateo); B. McKnight (Barbara); S.E. Medland (Sarah Elizabeth); E. Mihailov (Evelin); L. Milani (Lili); G.W. Montgomery (Grant); V. Mooser (Vincent); T.W. Mühleisen (Thomas); P. Munroe (Patricia); A.W. Musk (Arthur); N. Narisu (Narisu); G. Navis (Gerjan); G. Nicholson (Ggeorge); C. Nohr (Christian); K. Ong (Ken); B.A. Oostra (Ben); C.N.A. Palmer (Colin); A. Palotie (Aarno); J. Peden (John); N. Pedersen; A. Peters (Annette); O. Polasek (Ozren); A. Pouta (Anneli); P.P. Pramstaller (Peter Paul); I. Prokopenko (Inga); C. Pütter (Carolin); A. Radhakrishnan (Aparna); O. Raitakari (Olli); A. Rendon (Augusto); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); T. Saaristo (Timo); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); S. Sanna (Serena); J. Saramies (Jouko); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); S.-Y. Shin; S. Signorini (Stefano); J. Sinisalo (Juha); B. Skrobek (Boris); N. Soranzo (Nicole); A. Stancáková (Alena); K. Stark (Klaus); J. Stephens (Jonathan); K. Stirrups (Kathy); R.P. Stolk (Ronald); M. Stumvoll (Michael); A.J. Swift (Amy); E.V. Theodoraki (Eirini); B. Thorand (Barbara); D.-A. Tregouet (David-Alexandre); E. Tremoli (Elena); M.M. van der Klauw (Melanie); J.B.J. van Meurs (Joyce); S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); J. Virtamo (Jarmo); V. Vitart (Veronique); G. Waeber (Gérard); Z. Wang (Zhaoming); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); B. Winkelmann; J.C.M. Witteman (Jacqueline); B.H.R. Wolffenbuttel (Bruce); A. Wong (Andrew); A.F. Wright (Alan); M.C. Zillikens (Carola); P. Amouyel (Philippe); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); L.A. Cupples (Adrienne); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); J.G. Eriksson (Johan); P.W. Franks (Paul); P. Froguel (Philippe); C. Gieger (Christian); U. Gyllensten (Ulf); A. Hamsten (Anders); T.B. Harris (Tamara); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hinney (Anke); A. Hofman (Albert); G.K. Hovingh (Kees); K. Hveem (Kristian); T. Illig (Thomas); M.-R. Jarvelin (Marjo-Riitta); K.-H. Jöckel (Karl-Heinz); S. Keinanen-Kiukaanniemi (Sirkka); L.A.L.M. Kiemeney (Bart); D. Kuh (Diana); M. Laakso (Markku); T. Lehtimäki (Terho); D.F. Levinson (Douglas); N.G. Martin (Nicholas); A. Metspalu (Andres); A.D. Morris (Andrew); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); W.H. Ouwehand (Willem); C. Palmer (Cameron); B.W.J.H. Penninx (Brenda); C. Power (Christopher); M.A. Province (Mike); B.M. Psaty (Bruce); L. Qi (Lu); R. Rauramaa (Rainer); P.M. Ridker (Paul); S. Ripatti (Samuli); V. Salomaa (Veikko); N.J. Samani (Nilesh); H. Snieder (Harold); H.G. Sorensen; T.D. Spector (Timothy); J-A. Zwart (John-Anker); A. Tönjes (Anke); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); P. van der Harst (Pim); P. Vollenweider (Peter); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); J.F. Wilson (James F); G.R. Abecasis (Gonçalo); T.L. Assimes (Themistocles); I. Barroso (Inês); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C. Fox (Craig); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunian (Talin); I.M. Heid (Iris); D. Hunter (David); R.C. Kaplan (Robert); F. Karpe (Fredrik); M.F. Moffatt (Miriam); K.L. Mohlke (Karen); J.R. O´Connell; Y. Pawitan (Yudi); E.E. Schadt (Eric); D. Schlessinger (David); V. Steinthorsdottir (Valgerdur); D.P. Strachan (David); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cock); P.M. Visscher (Peter); A.M. Di Blasio (Anna Maria); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia); A.D. Morris (Andrew); D. Meyre (David); A. Scherag (Andre); M.I. McCarthy (Mark); E.K. Speliotes (Elizabeth); K.E. North (Kari); R.J.F. Loos (Ruth); E. Ingelsson (Erik)

    2013-01-01

    textabstractApproaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of b

  18. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    DEFF Research Database (Denmark)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass ...

  19. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass ind

  20. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass

  1. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    S.I. Berndt (Sonja); S. Gustafsson (Stefan); R. Mägi (Reedik); A. Ganna (Andrea); E. Wheeler (Eleanor); M.F. Feitosa (Mary Furlan); A.E. Justice (Anne); K.L. Monda (Keri); D.C. Croteau-Chonka (Damien); F.R. Day (Felix); T. Esko (Tõnu); M. Fall (Magnus); T. Ferreira (Teresa); D. Gentilini (Davide); A.U. Jackson (Anne); J. Luan; J.C. Randall (Joshua); S. Vedantam (Sailaja); C.J. Willer (Cristen); T.W. Winkler (Thomas); A.R. Wood (Andrew); T. Workalemahu (Tsegaselassie); Y.-J. Hu (Yi-Juan); S.H. Lee (Sang Hong); L. Liang (Liming); D.Y. Lin (Dan); J. Min (Josine); B.M. Neale (Benjamin); G. Thorleifsson (Gudmar); J. Yang (Jian); E. Albrecht (Eva); N. Amin (Najaf); J.L. Bragg-Gresham (Jennifer L.); G. Cadby (Gemma); M. den Heijer (Martin); N. Eklund (Niina); K. Fischer (Krista); A. Goel (Anuj); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); I. Jarick (Ivonne); A. Johansson (Åsa); T. Johnson (Toby); S. Kanoni (Stavroula); M.E. Kleber (Marcus); I.R. König (Inke); K. Kristiansson (Kati); Z. Kutalik (Zoltán); C. Lamina (Claudia); C. Lecoeur (Cécile); G. Li (Guo); M. Mangino (Massimo); W.L. McArdle (Wendy); M.C. Medina-Gomez (Carolina); M. Müller-Nurasyid (Martina); J.S. Ngwa; I.M. Nolte (Ilja); L. Paternoster (Lavinia); S. Pechlivanis (Sonali); M. Perola (Markus); M.J. Peters (Marjolein); M. Preuss (Michael); L.M. Rose (Lynda); J. Shi (Jianxin); D. Shungin (Dmitry); G.D. Smith; R.J. Strawbridge (Rona); I. Surakka (Ida); A. Teumer (Alexander); M.D. Trip (Mieke); J.P. Tyrer (Jonathan); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); L. Waite (Lindsay); J.H. Zhao (Jing); D. Absher (Devin); F.W. Asselbergs (Folkert); M. Atalay (Mustafa); A.P. Attwood (Antony); A.J. Balmforth (Anthony); D.C.G. Basart (Dick); J.P. Beilby (John); L.L. Bonnycastle (Lori); P. Brambilla (Paolo); M. Bruinenberg (M.); H. Campbell (Harry); D.I. Chasman (Daniel); P.S. Chines (Peter); F.S. Collins (Francis); J. Connell (John); W. O Cookson (William); U. de Faire (Ulf); F. de Vegt (Femmie); M. Dei (Mariano); M. Dimitriou (Maria); T. Edkins (Ted); K. Estrada Gil (Karol); D.M. Evans (David); M. Farrall (Martin); F. Ferrario (Franco); J. Ferrières (Jean); L. Franke (Lude); F. Frau (Francesca); P.V. Gejman (Pablo); H. Grallert (Harald); H. Grönberg (Henrik); V. Gudnason (Vilmundur); A. Hall (Anne); A.S. Hall (Alistair); A.L. Hartikainen; C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.C. Heath (Andrew); J. Hebebrand (Johannes); G. Homuth (Georg); F.B. Hu (Frank); S.E. Hunt (Sarah); E. Hyppönen (Elina); C. Iribarren (Carlos); K.B. Jacobs (Kevin); J.-O. Jansson (John-Olov); A. Jula (Antti); M. Kähönen (Mika); S. Kathiresan (Sekar); F. Kee (F.); K-T. Khaw (Kay-Tee); M. Kivimaki (Mika); W. Koenig (Wolfgang); A. Kraja (Aldi); M. Kumari (Meena); K. Kuulasmaa (Kari); J. Kuusisto (Johanna); J. Laitinen (Jaana); T.A. Lakka (Timo); C. Langenberg (Claudia); L.J. Launer (Lenore); L. Lind (Lars); J. Lindstrom (Jaana); J. Liu (Jianjun); A. Liuzzi (Antonio); M.L. Lokki; M. Lorentzon (Mattias); P.A. Madden (Pamela); P.K. Magnusson (Patrik); P. Manunta (Paolo); D. Marek (Diana); W. März (Winfried); I.M. Leach (Irene Mateo); B. McKnight (Barbara); S.E. Medland (Sarah Elizabeth); E. Mihailov (Evelin); L. Milani (Lili); G.W. Montgomery (Grant); V. Mooser (Vincent); T.W. Mühleisen (Thomas); P. Munroe (Patricia); A.W. Musk (Arthur); N. Narisu (Narisu); G. Navis (Gerjan); G. Nicholson (Ggeorge); C. Nohr (Christian); K. Ong (Ken); B.A. Oostra (Ben); C.N.A. Palmer (Colin); A. Palotie (Aarno); J. Peden (John); N. Pedersen; A. Peters (Annette); O. Polasek (Ozren); A. Pouta (Anneli); P.P. Pramstaller (Peter Paul); I. Prokopenko (Inga); C. Pütter (Carolin); A. Radhakrishnan (Aparna); O. Raitakari (Olli); A. Rendon (Augusto); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); T. Saaristo (Timo); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); S. Sanna (Serena); J. Saramies (Jouko); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); S.-Y. Shin; S. Signorini (Stefano); J. Sinisalo (Juha); B. Skrobek (Boris); N. Soranzo (Nicole); A. Stancáková (Alena); K. Stark (Klaus); J. Stephens (Jonathan); K. Stirrups (Kathy); R.P. Stolk (Ronald); M. Stumvoll (Michael); A.J. Swift (Amy); E.V. Theodoraki (Eirini); B. Thorand (Barbara); D.-A. Tregouet (David-Alexandre); E. Tremoli (Elena); M.M. van der Klauw (Melanie); J.B.J. van Meurs (Joyce); S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); J. Virtamo (Jarmo); V. Vitart (Veronique); G. Waeber (Gérard); Z. Wang (Zhaoming); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); B. Winkelmann; J.C.M. Witteman (Jacqueline); B.H.R. Wolffenbuttel (Bruce); A. Wong (Andrew); A.F. Wright (Alan); M.C. Zillikens (Carola); P. Amouyel (Philippe); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); L.A. Cupples (Adrienne); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); J.G. Eriksson (Johan); P.W. Franks (Paul); P. Froguel (Philippe); C. Gieger (Christian); U. Gyllensten (Ulf); A. Hamsten (Anders); T.B. Harris (Tamara); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hinney (Anke); A. Hofman (Albert); G.K. Hovingh (Kees); K. Hveem (Kristian); T. Illig (Thomas); M.-R. Jarvelin (Marjo-Riitta); K.-H. Jöckel (Karl-Heinz); S. Keinanen-Kiukaanniemi (Sirkka); L.A.L.M. Kiemeney (Bart); D. Kuh (Diana); M. Laakso (Markku); T. Lehtimäki (Terho); D.F. Levinson (Douglas); N.G. Martin (Nicholas); A. Metspalu (Andres); A.D. Morris (Andrew); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); W.H. Ouwehand (Willem); C. Palmer (Cameron); B.W.J.H. Penninx (Brenda); C. Power (Christopher); M.A. Province (Mike); B.M. Psaty (Bruce); L. Qi (Lu); R. Rauramaa (Rainer); P.M. Ridker (Paul); S. Ripatti (Samuli); V. Salomaa (Veikko); N.J. Samani (Nilesh); H. Snieder (Harold); H.G. Sorensen; T.D. Spector (Timothy); J-A. Zwart (John-Anker); A. Tönjes (Anke); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); P. van der Harst (Pim); P. Vollenweider (Peter); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); J.F. Wilson (James F); G.R. Abecasis (Gonçalo); T.L. Assimes (Themistocles); I. Barroso (Inês); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C. Fox (Craig); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunian (Talin); I.M. Heid (Iris); D. Hunter (David); R.C. Kaplan (Robert); F. Karpe (Fredrik); M.F. Moffatt (Miriam); K.L. Mohlke (Karen); J.R. O´Connell; Y. Pawitan (Yudi); E.E. Schadt (Eric); D. Schlessinger (David); V. Steinthorsdottir (Valgerdur); D.P. Strachan (David); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cock); P.M. Visscher (Peter); A.M. Di Blasio (Anna Maria); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia); A.D. Morris (Andrew); D. Meyre (David); A. Scherag (Andre); M.I. McCarthy (Mark); E.K. Speliotes (Elizabeth); K.E. North (Kari); R.J.F. Loos (Ruth); E. Ingelsson (Erik)

    2013-01-01

    textabstractApproaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of

  2. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Odir A. Dellagostin

    2017-01-01

    Full Text Available Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.

  3. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates

    Science.gov (United States)

    Dellagostin, Odir A.; Grassmann, André A.; Rizzi, Caroline; Schuch, Rodrigo A.; Jorge, Sérgio; Oliveira, Thais L.; McBride, Alan J. A.; Hartwig, Daiane D.

    2017-01-01

    Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins) are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV) has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis. PMID:28098813

  4. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2011-03-01

    Full Text Available Genome-wide interaction-based association (GWIBA analysis has the potential to identify novel susceptibility loci. These interaction effects could be missed with the prevailing approaches in genome-wide association studies (GWAS. However, no convincing loci have been discovered exclusively from GWIBA methods, and the intensive computation involved is a major barrier for application. Here, we developed a fast, multi-thread/parallel program named "pair-wise interaction-based association mapping" (PIAM for exhaustive two-locus searches. With this program, we performed a complete GWIBA analysis on seven diseases with stringent control for false positives, and we validated the results for three of these diseases. We identified one pair-wise interaction between a previously identified locus, C1orf106, and one new locus, TEC, that was specific for Crohn's disease, with a Bonferroni corrected P < 0.05 (P = 0.039. This interaction was replicated with a pair of proxy linked loci (P = 0.013 on an independent dataset. Five other interactions had corrected P < 0.5. We identified the allelic effect of a locus close to SLC7A13 for coronary artery disease. This was replicated with a linked locus on an independent dataset (P = 1.09 × 10⁻⁷. Through a local validation analysis that evaluated association signals, rather than locus-based associations, we found that several other regions showed association/interaction signals with nominal P < 0.05. In conclusion, this study demonstrated that the GWIBA approach was successful for identifying novel loci, and the results provide new insights into the genetic architecture of common diseases. In addition, our PIAM program was capable of handling very large GWAS datasets that are likely to be produced in the future.

  5. (Post-)genomics approaches in fungal research

    NARCIS (Netherlands)

    Aguilar-Pontes, María Victoria; de Vries, Ronald P; Zhou, M.; van den Brink, J.

    2014-01-01

    To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functio

  6. Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle.

    Science.gov (United States)

    Peñagaricano, F; Weigel, K A; Khatib, H

    2012-07-01

    The decline in the reproductive efficiency of dairy cattle has become a challenging problem worldwide. Female fertility is now taken into account in breeding goals while generally less attention is given to male fertility. The objective of this study was to perform a genome-wide association study in Holstein bulls to identify genetic variants significantly related to sire conception rate (SCR), a new phenotypic evaluation of bull fertility. The analysis included 1755 sires with SCR data and 38,650 single nucleotide polymorphisms (SNPs) spanning the entire bovine genome. Associations between SNPs and SCR were analyzed using a mixed linear model that included a random polygenic effect and SNP genotype either as a linear covariate or as a categorical variable. A multiple testing correction approach was used to account for the correlation between SNPs because of linkage disequilibrium. After genome-wide correction, eight SNPs showed significant association with SCR. Some of these SNPs are located close to or in the middle of genes with functions related to male fertility, such as the sperm acrosome reaction, chromatin remodeling during the spermatogenesis, and the meiotic process during male germ cell maturation. Some SNPs showed marked dominance effects, which provide more evidence for the relevance of non-additive effects in traits closely related to fitness such as fertility. The results could contribute to the identification of genes and pathways associated with male fertility in dairy cattle.

  7. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural.

  8. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    Science.gov (United States)

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  9. Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries

    Directory of Open Access Journals (Sweden)

    Okimoto Ron

    2011-02-01

    Full Text Available Abstract Background Variation within individual genomes ranges from single nucleotide polymorphisms (SNPs to kilobase, and even megabase, sized structural variants (SVs, such as deletions, insertions, inversions, and more complex rearrangements. Although much is known about the extent of SVs in humans and mice, species in which they exert significant effects on phenotypes, very little is known about the extent of SVs in the 2.5-times smaller and less repetitive genome of the chicken. Results We identified hundreds of shared and divergent SVs in four commercial chicken lines relative to the reference chicken genome. The majority of SVs were found in intronic and intergenic regions, and we also found SVs in the coding regions. To identify the SVs, we combined high-throughput short read paired-end sequencing of genomic reduced representation libraries (RRLs of pooled samples from 25 individuals and computational mapping of DNA sequences from a reference genome. Conclusion We provide a first glimpse of the high abundance of small structural genomic variations in the chicken. Extrapolating our results, we estimate that there are thousands of rearrangements in the chicken genome, the majority of which are located in non-coding regions. We observed that structural variation contributes to genetic differentiation among current domesticated chicken breeds and the Red Jungle Fowl. We expect that, because of their high abundance, SVs might explain phenotypic differences and play a role in the evolution of the chicken genome. Finally, our study exemplifies an efficient and cost-effective approach for identifying structural variation in sequenced genomes.

  10. Methods for identifying and mapping recent segmental and gene duplications in eukaryotic genomes.

    Science.gov (United States)

    Khaja, Razi; MacDonald, Jeffrey R; Zhang, Junjun; Scherer, Stephen W

    2006-01-01

    The aim of this chapter is to provide instruction for analyzing and mapping recent segmental and gene duplications in eukaryotic genomes. We describe a bioinformatics-based approach utilizing computational tools to manage eukaryotic genome sequences to characterize and understand the evolutionary fates and trajectories of duplicated genes. An introduction to bioinformatics tools and programs such as BLAST, Perl, BioPerl, and the GFF specification provides the necessary background to complete this analysis for any eukaryotic genome of interest.

  11. Genome-wide approaches to understanding behaviour in Drosophila melanogaster.

    Science.gov (United States)

    Neville, Megan; Goodwin, Stephen F

    2012-09-01

    Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.

  12. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis

    Science.gov (United States)

    Sanchis, Marta; Lopez-Fernandez, Loida; Torres-Martínez, Santiago; Garre, Victoriano; Ruiz-Vázquez, Rosa María

    2017-01-01

    Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies. PMID:28107502

  13. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  14. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen.

    Science.gov (United States)

    Mendes-Pereira, Ana M; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan

    2012-02-21

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment.

  15. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Science.gov (United States)

    Li, Qisheng; Zhang, Yong-Yuan; Chiu, Stephan; Hu, Zongyi; Lan, Keng-Hsin; Cha, Helen; Sodroski, Catherine; Zhang, Fang; Hsu, Ching-Sheng; Thomas, Emmanuel; Liang, T Jake

    2014-05-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc) siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp), single-cycle infectious particles (HCVsc), subgenomic replicons, and HCV cell culture systems (HCVcc), we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE), a proviral factor, and N-Myc down regulated Gene 1 (NDRG1), an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study of HCV host

  16. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Directory of Open Access Journals (Sweden)

    Qisheng Li

    2014-05-01

    Full Text Available Recent functional genomics studies including genome-wide small interfering RNA (siRNA screens demonstrated that hepatitis C virus (HCV exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp, single-cycle infectious particles (HCVsc, subgenomic replicons, and HCV cell culture systems (HCVcc, we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE, a proviral factor, and N-Myc down regulated Gene 1 (NDRG1, an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study

  17. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jibril Hirbo

    Full Text Available Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB, a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23-34% are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.

  18. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years.

    Science.gov (United States)

    Keim, Paul; Grunow, Roland; Vipond, Richard; Grass, Gregor; Hoffmaster, Alex; Birdsell, Dawn N; Klee, Silke R; Pullan, Steven; Antwerpen, Markus; Bayer, Brittany N; Latham, Jennie; Wiggins, Kristin; Hepp, Crystal; Pearson, Talima; Brooks, Tim; Sahl, Jason; Wagner, David M

    2015-11-01

    Anthrax is a rare disease in humans but elicits great public fear because of its past use as an agent of bioterrorism. Injectional anthrax has been occurring sporadically for more than ten years in heroin consumers across multiple European countries and this outbreak has been difficult to trace back to a source. We took a molecular epidemiological approach in understanding this disease outbreak, including whole genome sequencing of Bacillus anthracis isolates from the anthrax victims. We also screened two large strain repositories for closely related strains to provide context to the outbreak. Analyzing 60 Bacillus anthracis isolates associated with injectional anthrax cases and closely related reference strains, we identified 1071 Single Nucleotide Polymorphisms (SNPs). The synapomorphic SNPs (350) were used to reconstruct phylogenetic relationships, infer likely epidemiological sources and explore the dynamics of evolving pathogen populations. Injectional anthrax genomes separated into two tight clusters: one group was exclusively associated with the 2009-10 outbreak and located primarily in Scotland, whereas the second comprised more recent (2012-13) cases but also a single Norwegian case from 2000. Genome-based differentiation of injectional anthrax isolates argues for at least two separate disease events spanning > 12 years. The genomic similarity of the two clusters makes it likely that they are caused by separate contamination events originating from the same geographic region and perhaps the same site of drug manufacturing or processing. Pathogen diversity within single patients challenges assumptions concerning population dynamics of infecting B. anthracis and host defensive barriers for injectional anthrax. This work was supported by the United States Department of Homeland Security grant no. HSHQDC-10-C-00,139 and via a binational cooperative agreement between the United States Government and the Government of Germany. This work was supported by funds

  19. Whole genome approaches to quantitative genetics.

    Science.gov (United States)

    Visscher, Peter M

    2009-06-01

    Apart from parent-offspring pairs and clones, relative pairs vary in the proportion of the genome that they share identical by descent. In the past, quantitative geneticists have used the expected value of sharing genes by descent to estimate genetic parameters and predict breeding values. With the possibility to genotype individuals for many markers across the genome it is now possible to empirically estimate the actual relationship between relatives. We review some of the theory underlying the variation in genetic identity, show applications to estimating genetic variance for height in humans and discuss other applications.

  20. Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield

    NARCIS (Netherlands)

    Nelen, M.; Veltman, J.A.

    2012-01-01

    For the reasons discussed here, we think whole-genome- or exome-based approaches are currently most suited for diagnostic implementation in genetically heterogeneous diseases, initially to complement and later to replace Sanger sequencing, qPCR and genomic microarrays. Patients do need to be counsel

  1. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  2. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-02-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ∼ 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution.

  3. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  4. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans

    NARCIS (Netherlands)

    Smeekens, Sanne P.; Ng, Aylwin; Kumar, Vinod; Johnson, Melissa D.; Plantinga, Theo S.; van Diemen, Cleo; Arts, Peer; Verwiel, Eugene T. P.; Gresnigt, Mark S.; Fransen, Karin; van Sommeren, Suzanne; Oosting, Marije; Cheng, Shih-Chin; Joosten, Leo A. B.; Hoischen, Alexander; Kullberg, Bart-Jan; Scott, William K.; Perfect, John R.; van der Meer, Jos W. M.; Wijmenga, Cisca; Netea, Mihai G.; Xavier, Ramnik J.

    Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defence mechanisms in humans.

  5. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans

    NARCIS (Netherlands)

    Smeekens, Sanne P.; Ng, Aylwin; Kumar, Vinod; Johnson, Melissa D.; Plantinga, Theo S.; van Diemen, Cleo; Arts, Peer; Verwiel, Eugene T. P.; Gresnigt, Mark S.; Fransen, Karin; van Sommeren, Suzanne; Oosting, Marije; Cheng, Shih-Chin; Joosten, Leo A. B.; Hoischen, Alexander; Kullberg, Bart-Jan; Scott, William K.; Perfect, John R.; van der Meer, Jos W. M.; Wijmenga, Cisca; Netea, Mihai G.; Xavier, Ramnik J.

    2013-01-01

    Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defence mechanisms in humans. Candid

  6. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  7. Identifying statistical dependence in genomic sequences via mutual information estimates

    CERN Document Server

    Aktulga, H M; Lyznik, L A; Szpankowski, L; Grama, A Y; Szpankowski, W

    2007-01-01

    Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unkno...

  8. Economic evidence on identifying clinically actionable findings with whole-genome sequencing: a scoping review.

    OpenAIRE

    2016-01-01

    The American College of Medical Genetics and Genomics (ACMG) recommends that mutations in 56 genes for 24 conditions are clinically actionable and should be reported as secondary findings after whole-genome sequencing (WGS). Our aim was to identify published economic evaluations of detecting mutations in these genes among the general population or among targeted/high-risk populations and conditions and identify gaps in knowledge. A targeted PubMed search from 1994 through November 2014 was pe...

  9. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    OpenAIRE

    Stahl, Eli A; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.

    2010-01-01

    To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P

  10. Genome-wide association identifies multiple genomic regions associated with susceptibility to and control of ovine lentivirus.

    Directory of Open Access Journals (Sweden)

    Stephen N White

    Full Text Available BACKGROUND: Like human immunodeficiency virus (HIV, ovine lentivirus (OvLV is macrophage-tropic and causes lifelong infection. OvLV infects one quarter of U.S. sheep and induces pneumonia and body condition wasting. There is no vaccine to prevent OvLV infection and no cost-effective treatment for infected animals. However, breed differences in prevalence and proviral concentration have indicated a genetic basis for susceptibility to OvLV. A recent study identified TMEM154 variants in OvLV susceptibility. The objective here was to identify additional loci associated with odds and/or control of OvLV infection. METHODOLOGY/PRINCIPAL FINDINGS: This genome-wide association study (GWAS included 964 sheep from Rambouillet, Polypay, and Columbia breeds with serological status and proviral concentration phenotypes. Analytic models accounted for breed and age, as well as genotype. This approach identified TMEM154 (nominal P=9.2×10(-7; empirical P=0.13, provided 12 additional genomic regions associated with odds of infection, and provided 13 regions associated with control of infection (all nominal P<1 × 10(-5. Rapid decline of linkage disequilibrium with distance suggested many regions included few genes each. Genes in regions associated with odds of infection included DPPA2/DPPA4 (empirical P=0.006, and SYTL3 (P=0.051. Genes in regions associated with control of infection included a zinc finger cluster (ZNF192, ZSCAN16, ZNF389, and ZNF165; P=0.001, C19orf42/TMEM38A (P=0.047, and DLGAP1 (P=0.092. CONCLUSIONS/SIGNIFICANCE: These associations provide targets for mutation discovery in sheep susceptibility to OvLV. Aside from TMEM154, these genes have not been associated previously with lentiviral infection in any species, to our knowledge. Further, data from other species suggest functional hypotheses for future testing of these genes in OvLV and other lentiviral infections. Specifically, SYTL3 binds and may regulate RAB27A, which is required for enveloped

  11. MuSiC: identifying mutational significance in cancer genomes.

    Science.gov (United States)

    Dees, Nathan D; Zhang, Qunyuan; Kandoth, Cyriac; Wendl, Michael C; Schierding, William; Koboldt, Daniel C; Mooney, Thomas B; Callaway, Matthew B; Dooling, David; Mardis, Elaine R; Wilson, Richard K; Ding, Li

    2012-08-01

    Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery.

  12. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  13. Overview Article: Identifying transcriptional cis-regulatory modules in animal genomes

    Science.gov (United States)

    Suryamohan, Kushal; Halfon, Marc S.

    2014-01-01

    Gene expression is regulated through the activity of transcription factors and chromatin modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily-identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods has led to an explosion of both computational and empirical methods for CRM discovery in model and non-model organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against transcription factors or histone post-translational modifications, identification of nucleosome-depleted “open” chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted transcription factor binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. PMID:25704908

  14. Covert Flow Graph Approach to Identifying Covert Channels

    OpenAIRE

    XiangMei Song; ShiGuang Ju

    2011-01-01

    In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of ...

  15. Impact of genomics approaches on plant genetics and physiology.

    Science.gov (United States)

    Tabata, Satoshi

    2002-08-01

    Comprehensive analysis of genetic information in higher plants is under way for several plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of Brassica family, and Oryza sativa(rice) have been chosen as model plants most suitable for genome analysis. Sequencing of the genome of A. thaliana was completed in December 2000, and rice genome sequencing is in progress. The accumulated genome sequences, together with the hundreds of thousands of ESTs from several tens of plant species, have drastically changed the strategy of plant genetics. By utilizing the information on the genome and gene structures, comprehensive approaches for genome-wide functional analysis of the genes, including transcriptome analysis using microarray systems and a comprehensive analysis of a large number of insertion mutant lines, have been widely adopted. As a consequence, a large quantity of information on both the structure and function of genes in these model plants has been accumulated. However, other plant species may have their own characteristics and advantages to study individual phenomena. Application of knowledge from the model plants to other plant species and vice versa through the common language, namely the genome information, should facilitate understanding of the genetic systems underlying a variety of biological phenomena. Introduction of this common language may not be very simple, especially in the case of complex pathways such as a process of cell-covering formation. Nevertheless, it should be emphasized that genomics approaches are the most promising way to understand these processes.

  16. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  17. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  18. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Science.gov (United States)

    Mann, Rachel A; Smits, Theo H M; Bühlmann, Andreas; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Plummer, Kim M; Beer, Steven V; Luck, Joanne; Duffy, Brion; Rodoni, Brendan

    2013-01-01

    The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea) and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  19. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  20. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    Science.gov (United States)

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  1. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    Science.gov (United States)

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  2. Identifying losses and expansions of selected gene families in incomplete genomic datasets

    OpenAIRE

    2013-01-01

    Plantae (Archaeplastida) are a natural group of organisms with plastids of primary endosymbiotic origin. Within this group, members of the red algae show evidence of a reduction of their genomic content. In this work, we designed a bioinformatics approach to investigate the few, sometimes incomplete, genomic datasets available for red algae, with the purpose of pointing out possible gene family losses and expansions. Our pipeline first populates a relational database with precomputed ortholog...

  3. Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations.

    Science.gov (United States)

    Jones, Matthew R; Forester, Brenna R; Teufel, Ashley I; Adams, Rachael V; Anstett, Daniel N; Goodrich, Betsy A; Landguth, Erin L; Joost, Stéphane; Manel, Stéphanie

    2013-12-01

    Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under "weak" selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment.

  4. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome().

    Science.gov (United States)

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    Science.gov (United States)

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites.

  6. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  7. Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches.

    Science.gov (United States)

    Sahin, Ibrahim H; Lowery, Maeve A; Stadler, Zsofia K; Salo-Mullen, Erin; Iacobuzio-Donahue, Christine A; Kelsen, David P; O'Reilly, Eileen M

    2016-08-01

    Pancreatic cancer is one of the most challenging cancers. Whole genome sequencing studies have been conducted to elucidate the underlying fundamentals underscoring disease behavior. Studies have identified a subgroup of pancreatic cancer patients with distinct molecular and clinical features. Genetic fingerprinting of these tumors is consistent with an unstable genome and defective DNA repair pathways, which creates unique susceptibility to agents inducing DNA damage. BRCA1/2 mutations, both germline and somatic, which lead to impaired DNA repair, are found to be important biomarkers of genomic instability as well as of response to DNA damaging agents. Recent studies have elucidated that PARP inhibitors and platinum agents may be effective to induce tumor regression in solid tumors bearing an unstable genome including pancreatic cancer. In this review we discuss the characteristics of genomic instability in pancreatic cancer along with its clinical implications and the utility of DNA targeting agents particularly PARP inhibitors as a novel treatment approach.

  8. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.

  9. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions.

    Directory of Open Access Journals (Sweden)

    Soumya Raychaudhuri

    2009-06-01

    Full Text Available Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical method, Gene Relationships Among Implicated Loci (GRAIL, that takes a list of disease regions and automatically assesses the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally associated Crohn's disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to disease risk. We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically robust approach to identifying functionally related genes from across multiple disease regions--that likely represent key disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/.

  10. Contemporary approaches for modifying the mouse genome

    Science.gov (United States)

    Adams, David J.; van der Weyden, Louise

    2008-01-01

    The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a “how-to” guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice. PMID:18559964

  11. cgaTOH: extended approach for identifying tracts of homozygosity.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Identification of disease variants via homozygosity mapping and investigation of the effects of genome-wide homozygosity regions on traits of biomedical importance have been widely applied recently. Nonetheless, the existing methods and algorithms to identify long tracts of homozygosity (TOH are not able to provide efficient and rigorous regions for further downstream association investigation. We expanded current methods to identify TOHs by defining "surrogate-TOH", a region covering a cluster of TOHs with specific characteristics. Our defined surrogate-TOH includes cTOH, viz a common TOH region where at least ten TOHs present; gTOH, whereby a group of highly overlapping TOHs share proximal boundaries; and aTOH, which are allelically-matched TOHs. Searching for gTOH and aTOH was based on a repeated binary spectral clustering algorithm, where a hierarchy of clusters is created and represented by a TOH cluster tree. Based on the proposed method of identifying different species of surrogate-TOH, our cgaTOH software was developed. The software provides an intuitive and interactive visualization tool for better investigation of the high-throughput output with special interactive navigation rings, which will find its applicability in both conventional association studies and more sophisticated downstream analyses. NCBI genome map viewer is incorporated into the system. Moreover, we discuss the choice of implementing appropriate empirical ranges of critical parameters by applying to disease models. This method identifies various patterned clusters of SNPs demonstrating extended homozygosity, thus one can observe different aspects of the multi-faceted characteristics of TOHs.

  12. A predictive approach to identify genes differentially expressed

    Science.gov (United States)

    Saraiva, Erlandson F.; Louzada, Francisco; Milan, Luís A.; Meira, Silvana; Cobre, Juliana

    2012-10-01

    The main objective of gene expression data analysis is to identify genes that present significant changes in expression levels between a treatment and a control biological condition. In this paper, we propose a Bayesian approach to identify genes differentially expressed calculating credibility intervals from predictive densities which are constructed using sampled mean treatment effect from all genes in study excluding the treatment effect of genes previously identified with statistical evidence for difference. We compare our Bayesian approach with the standard ones based on the use of the t-test and modified t-tests via a simulation study, using small sample sizes which are common in gene expression data analysis. Results obtained indicate that the proposed approach performs better than standard ones, especially for cases with mean differences and increases in treatment variance in relation to control variance. We also apply the methodologies to a publicly available data set on Escherichia coli bacteria.

  13. A genome-wide association study identifies protein quantitative trait loci (pQTLs.

    Directory of Open Access Journals (Sweden)

    David Melzer

    2008-05-01

    Full Text Available There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57, CCL4L1 (p = 3.9x10(-21, IL18 (p = 6.8x10(-13, LPA (p = 4.4x10(-10, GGT1 (p = 1.5x10(-7, SHBG (p = 3.1x10(-7, CRP (p = 6.4x10(-6 and IL1RN (p = 7.3x10(-6 genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R, altered secretion rates of different sized proteins (LPA, variation in gene copy number (CCL4L1 and altered transcription (GGT1. We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha levels (p = 6.8x10(-40, but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis

  14. Covert Flow Graph Approach to Identifying Covert Channels

    Directory of Open Access Journals (Sweden)

    XiangMei Song

    2011-12-01

    Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.

  15. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  16. Genome wide association study identifies KCNMA1 contributing to human obesity

    DEFF Research Database (Denmark)

    Jiao, Hong; Arner, Peter; Hoffstedt, Johan;

    2011-01-01

    Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population....... Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity....

  17. Genome-wide Association Study of Postburn Scarring Identifies a Novel Protective Variant.

    Science.gov (United States)

    Sood, Ravi F; Hocking, Anne M; Muffley, Lara A; Ga, Maricar; Honari, Shari; Reiner, Alexander P; Gibran, Nicole S

    2015-10-01

    To identify genetic variants associated with the severity of postburn hypertrophic scarring (HTS) using a genome-wide approach. Risk of severe postburn HTS is known to depend on race, but the genetic determinants of HTS are unknown. We conducted a genome-wide association study (GWAS) in a prospective cohort of adults admitted with deep-partial-thickness burns from 2007 through 2014. Scar severity was assessed over time using the Vancouver Scar Scale (VSS), and DNA was genotyped with a >500,000-marker array. We performed association testing of single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) >0.01 using linear regression of VSS height score on genotype adjusted for patient and injury characteristics as well as population genetic structure. Array-wide significance was based on Bonferroni correction for multiple testing. Of 538 patients (median age 40 years, median burn size 6.0% of body surface area), 71% were men and 76% were White. The mean VSS height score was 1.2 (range: 0-3). Of 289,639 SNPs tested, a variant in the CUB and Sushi multiple domains 1 (CSMD1) gene (rs11136645; MAF = 0.49), was significantly associated with decreased scar height (regression coefficient = -0.23, P = 7.9 × 10). In the first published GWAS of HTS, we report that a common intronic variant in the CSMD1 gene is associated with reduced severity of postburn HTS. If this association is confirmed in an independent cohort, investigating the potential role of CSMD1 in wound healing may elucidate HTS pathophysiology.

  18. Genome Wide Association Study Identifies New Loci Associated with Undesired Coat Color Phenotypes in Saanen Goats.

    Directory of Open Access Journals (Sweden)

    Pauline Marie Martin

    Full Text Available This paper reports a quantitative genetics and genomic analysis of undesirable coat color patterns in goats. Two undesirable coat colors have routinely been recorded for the past 15 years in French Saanen goats. One fifth of Saanen females have been phenotyped "pink" (8.0% or "pink neck" (11.5% and consequently have not been included in the breeding program as elite animals. Heritability of the binary "pink" and "pink neck" phenotype, estimated from 103,443 females was 0.26 for "pink" and 0.21 for "pink neck". Genome wide association studies (using haplotypes or single SNPs were implemented using a daughter design of 810 Saanen goats sired by 9 Artificial Insemination bucks genotyped with the goatSNP50 chip. A highly significant signal (-log10pvalue = 10.2 was associated with the "pink neck" phenotype on chromosome 11, suggesting the presence of a major gene. Highly significant signals for the "pink" phenotype were found on chromosomes 5 and 13 (-log10p values of 7.2 and, 7.7 respectively. The most significant SNP on chromosome 13 was in the ASIP gene region, well known for its association with coat color phenotypes. Nine significant signals were also found for both traits. The highest signal for each trait was detected by both single SNP and haplotype approaches, whereas the smaller signals were not consistently detected by the two methods. Altogether these results demonstrated a strong genetic control of the "pink" and "pink neck" phenotypes in French Saanen goats suggesting that SNP information could be used to identify and remove undesired colored animals from the breeding program.

  19. Bioinformatics approaches for identifying new therapeutic bioactive peptides in food

    Directory of Open Access Journals (Sweden)

    Nora Khaldi

    2012-10-01

    Full Text Available ABSTRACT:The traditional methods for mining foods for bioactive peptides are tedious and long. Similar to the drug industry, the length of time to identify and deliver a commercial health ingredient that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time and effort is crucial in order to create new commercially viable products with clear and important health benefits. In the past few years, bioinformatics, the science that brings together fast computational biology, and efficient genome mining, is appearing as the long awaited solution to this problem. By quickly mining food genomes for characteristics of certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics in mining for food bioactives.The absence of food specific bioinformatic mining tools, the slow integration of both experimental mining and bioinformatics, and the important difference between different experimental platforms are some of the reasons for the slow progress of bioinformatics in the field of functional food and more specifically in bioactive peptide discovery.In this paper I discuss some methods that could be easily translated, using a rational peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an integrated food peptide database. I also discuss how to better integrate experimental work with bioinformatics in order to improve the mining of food for bioactive peptides, therefore achieving a higher success rates.

  20. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns

    Science.gov (United States)

    Jansen, Robert K.; Cai, Zhengqiu; Raubeson, Linda A.; Daniell, Henry; dePamphilis, Claude W.; Leebens-Mack, James; Müller, Kai F.; Guisinger-Bellian, Mary; Haberle, Rosemarie C.; Hansen, Anne K.; Chumley, Timothy W.; Lee, Seung-Bum; Peery, Rhiannon; McNeal, Joel R.; Kuehl, Jennifer V.; Boore, Jeffrey L.

    2007-01-01

    Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements. PMID:18048330

  1. A Computer Vision Approach to Identify Einstein Rings and Arcs

    Science.gov (United States)

    Lee, Chien-Hsiu

    2017-03-01

    Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.

  2. 2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features?

    Science.gov (United States)

    Jaillard, S; Dubourg, C; Gérard-Blanluet, M; Delahaye, A; Pasquier, L; Dupont, C; Henry, C; Tabet, A-C; Lucas, J; Aboura, A; David, V; Benzacken, B; Odent, S; Pipiras, E

    2009-12-01

    Genome-wide screening of patients with mental retardation using array comparative genomic hybridisation (CGH) has identified several novel imbalances. With this genotype-first approach, the 2q22.3q23.3 deletion was recently described as a novel microdeletion syndrome. The authors report two unrelated patients with a de novo interstitial deletion mapping in this genomic region and presenting similar "pseudo-Angelman" phenotypes, including severe psychomotor retardation, speech impairment, epilepsy, microcephaly, ataxia, and behavioural disabilities. The microdeletions were identified by array CGH using oligonucleotide and bacterial artificial chromosome (BAC) arrays, and further confirmed by fluorescence in situ hybridisation (FISH) and semi-quantitative polymerase chain reaction (PCR). The boundaries and sizes of the deletions in the two patients were different but an overlapping region of about 250 kb was defined, which mapped to 2q23.1 and included two genes: MBD5 and EPC2. The SIP1 gene associated with the Mowat-Wilson syndrome was not included in the deleted genomic region. Haploinsufficiency of one of the deleted genes (MBD5 or EPC2) could be responsible for the common clinical features observed in the 2q23.1 microdeletion syndrome, and this hypothesis needs further investigation.

  3. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    Science.gov (United States)

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  4. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    Directory of Open Access Journals (Sweden)

    Diego Robledo

    2016-02-01

    Full Text Available Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs. Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.

  5. Whole Genome Sequencing Demonstrates Limited Transmission within Identified Mycobacterium tuberculosis Clusters in New South Wales, Australia

    Science.gov (United States)

    Gurjav, Ulziijargal; Outhred, Alexander C.; Jelfs, Peter; McCallum, Nadine; Wang, Qinning; Hill-Cawthorne, Grant A.; Marais, Ben J.; Sintchenko, Vitali

    2016-01-01

    Australia has a low tuberculosis incidence rate with most cases occurring among recent immigrants. Given suboptimal cluster resolution achieved with 24-locus mycobacterium interspersed repetitive unit (MIRU-24) genotyping, the added value of whole genome sequencing was explored. MIRU-24 profiles of all Mycobacterium tuberculosis culture-confirmed tuberculosis cases diagnosed between 2009 and 2013 in New South Wales (NSW), Australia, were examined and clusters identified. The relatedness of cases within the largest MIRU-24 clusters was assessed using whole genome sequencing and phylogenetic analyses. Of 1841 culture-confirmed TB cases, 91.9% (1692/1841) had complete demographic and genotyping data. East-African Indian (474; 28.0%) and Beijing (470; 27.8%) lineage strains predominated. The overall rate of MIRU-24 clustering was 20.1% (340/1692) and was highest among Beijing lineage strains (35.7%; 168/470). One Beijing and three East-African Indian (EAI) clonal complexes were responsible for the majority of observed clusters. Whole genome sequencing of the 4 largest clusters (30 isolates) demonstrated diverse single nucleotide polymorphisms (SNPs) within identified clusters. All sequenced EAI strains and 70% of Beijing lineage strains clustered by MIRU-24 typing demonstrated distinct SNP profiles. The superior resolution provided by whole genome sequencing demonstrated limited M. tuberculosis transmission within NSW, even within identified MIRU-24 clusters. Routine whole genome sequencing could provide valuable public health guidance in low burden settings. PMID:27737005

  6. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dai Wei

    2009-11-01

    Full Text Available Abstract Background The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4. Results We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. Conclusion We have undertaken a whole genome approach in order to further understand the mechanism(s regulating the cell

  7. Genetic and genomic approaches to understanding macrophage identity and function.

    Science.gov (United States)

    Glass, Christopher K

    2015-04-01

    A major goal of our laboratory is to understand the molecular mechanisms that underlie the development and functions of diverse macrophage phenotypes in health and disease. Recent studies using genetic and genomic approaches suggest a relatively simple model of collaborative and hierarchical interactions between lineage-determining and signal-dependent transcription factors that enable selection and activation of transcriptional enhancers that specify macrophage identity and function. In addition, we have found that it is possible to use natural genetic variation as a powerful tool for advancing our understanding of how the macrophage deciphers the information encoded by the genome to attain specific phenotypes in a context-dependent manner. Here, I will describe our recent efforts to extend genetic and genomic approaches to investigate the roles of distinct tissue environments in determining the phenotypes of different resident populations of macrophages.

  8. Using functional genomics to identify molecular markers for fire blight resistance (Erwinia amylovora) in apple (Malus)

    Science.gov (United States)

    Fire blight, caused by Erwinia amylovora (Ea), is a destructive disease of apple (Malus), pear (Pyrus) and some woody ornamentals in the rose family (Rosaceae). The goal of this project is to use a functional genomics approach to develop tools to breed fire blight resistant apples. Six hundred fifty...

  9. Patient-controlled encrypted genomic data: an approach to advance clinical genomics

    Directory of Open Access Journals (Sweden)

    Trakadis Yannis J

    2012-07-01

    Full Text Available Abstract Background The revolution in DNA sequencing technologies over the past decade has made it feasible to sequence an individual’s whole genome at a relatively low cost. The potential value of the information generated by genomic technologies for medicine and society is enormous. However, in order for exome sequencing, and eventually whole genome sequencing, to be implemented clinically, a number of major challenges need to be overcome. For instance, obtaining meaningful informed-consent, managing incidental findings and the great volume of data generated (including multiple findings with uncertain clinical significance, re-interpreting the genomic data and providing additional counselling to patients as genetic knowledge evolves are issues that need to be addressed. It appears that medical genetics is shifting from the present “phenotype-first” medical model to a “data-first” model which leads to multiple complexities. Discussion This manuscript discusses the different challenges associated with integrating genomic technologies into clinical practice and describes a “phenotype-first” approach, namely, “Individualized Mutation-weighed Phenotype Search”, and its benefits. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab based on both the patient’s phenotype and his/her entire genomic data. It simplifies “informed-consent” for clinical use of genomic technologies and helps to protect the patient’s autonomy and privacy. Overall, this approach could potentially render widespread use of genomic technologies, in the immediate future, practical, ethical and clinically useful. Summary The “Individualized Mutation-weighed Phenotype Search” approach allows for an incremental integration of genomic technologies into clinical practice. It ensures that we do not over-medicalize genomic data but, rather, continue our current medical model which is based on serving

  10. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    Science.gov (United States)

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (Phormone regulation.

  11. Similarity transformation approach to identifiability analysis of nonlinear compartmental models.

    Science.gov (United States)

    Vajda, S; Godfrey, K R; Rabitz, H

    1989-04-01

    Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.

  12. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity.

    Science.gov (United States)

    Bosi, Emanuele; Monk, Jonathan M; Aziz, Ramy K; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø

    2016-06-28

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world.

  13. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity

    Science.gov (United States)

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.

    2016-01-01

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  14. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete

    Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation...... at nucleotide level, thus potentially identify genetic variants. However, testing million of polymorphic nucleotide positions requires conservative correction for multiple testing which lowers the probability of finding genes with small to moderate effects. To alleviate this, we apply a gene based association...... approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...

  15. A novel data mining method to identify assay-specific signatures in functional genomic studies

    Directory of Open Access Journals (Sweden)

    Guidarelli Jack W

    2006-08-01

    Full Text Available Abstract Background: The highly dimensional data produced by functional genomic (FG studies makes it difficult to visualize relationships between gene products and experimental conditions (i.e., assays. Although dimensionality reduction methods such as principal component analysis (PCA have been very useful, their application to identify assay-specific signatures has been limited by the lack of appropriate methodologies. This article proposes a new and powerful PCA-based method for the identification of assay-specific gene signatures in FG studies. Results: The proposed method (PM is unique for several reasons. First, it is the only one, to our knowledge, that uses gene contribution, a product of the loading and expression level, to obtain assay signatures. The PM develops and exploits two types of assay-specific contribution plots, which are new to the application of PCA in the FG area. The first type plots the assay-specific gene contribution against the given order of the genes and reveals variations in distribution between assay-specific gene signatures as well as outliers within assay groups indicating the degree of importance of the most dominant genes. The second type plots the contribution of each gene in ascending or descending order against a constantly increasing index. This type of plots reveals assay-specific gene signatures defined by the inflection points in the curve. In addition, sharp regions within the signature define the genes that contribute the most to the signature. We proposed and used the curvature as an appropriate metric to characterize these sharp regions, thus identifying the subset of genes contributing the most to the signature. Finally, the PM uses the full dataset to determine the final gene signature, thus eliminating the chance of gene exclusion by poor screening in earlier steps. The strengths of the PM are demonstrated using a simulation study, and two studies of real DNA microarray data – a study of

  16. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    Directory of Open Access Journals (Sweden)

    William R Swindell

    Full Text Available Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1. While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  17. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening.

    Directory of Open Access Journals (Sweden)

    Patxi San Martin-Uriz

    Full Text Available Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY. This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.

  18. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  19. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  20. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    NARCIS (Netherlands)

    Chambers, John C; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Van der Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E; Coin, Lachlan J; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Kühnel, Brigitte; Kumar, Vinod; Lagou, Vasiliki; Liang, Liming; Luan, Jian'an; Vidal, Pedro Marques; Mateo Leach, Irene; O'Reilly, Paul F; Peden, John F; Rahmioglu, Nilufer; Soininen, Pasi; Speliotes, Elizabeth K; Yuan, Xin; Thorleifsson, Gudmar; Alizadeh, Behrooz Z; Atwood, Larry D; Borecki, Ingrid B; Brown, Morris J; Charoen, Pimphen; Cucca, Francesco; Das, Debashish; de Geus, Eco J C; Dixon, Anna L; Döring, Angela; Ehret, Georg; Eyjolfsson, Gudmundur I; Farrall, Martin; Forouhi, Nita G; Friedrich, Nele; Goessling, Wolfram; Gudbjartsson, Daniel F; Harris, Tamara B; Hartikainen, Anna-Liisa; Heath, Simon; Hirschfield, Gideon M; Hofman, Albert; Homuth, Georg; Hyppönen, Elina; Janssen, Harry L A; Johnson, Toby; Kangas, Antti J; Kema, Ido P; Kühn, Jens P; Lai, Sandra; Lathrop, Mark; Lerch, Markus M; Li, Yun; Liang, T Jake; Lin, Jing-Ping; Loos, Ruth J F; Martin, Nicholas G; Moffatt, Miriam F; Montgomery, Grant W; Munroe, Patricia B; Musunuru, Kiran; Nakamura, Yusuke; O'Donnell, Christopher J; Olafsson, Isleifur; Penninx, Brenda W; Pouta, Anneli; Prins, Bram P; Prokopenko, Inga; Puls, Ralf; Ruokonen, Aimo; Savolainen, Markku J; Schlessinger, David; Schouten, Jeoffrey N L; Seedorf, Udo; Sen-Chowdhry, Srijita; Siminovitch, Katherine A; Smit, Johannes H; Spector, Timothy D; Tan, Wenting; Teslovich, Tanya M; Tukiainen, Taru; Uitterlinden, Andre G; Van der Klauw, Melanie M; Vasan, Ramachandran S; Wallace, Chris; Wallaschofski, Henri; Wichmann, H-Erich; Willemsen, Gonneke; Würtz, Peter; Xu, Chun; Yerges-Armstrong, Laura M; Abecasis, Goncalo R; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark; Cookson, William O; van Duijn, Cornelia M; Froguel, Philippe; Matsuda, Koichi; McCarthy, Mark I; Meisinger, Christa; Mooser, Vincent; Pietiläinen, Kirsi H; Schumann, Gunter; Snieder, Harold; Sternberg, Michael J E; Stolk, Ronald P; Thomas, Howard C; Thorsteinsdottir, Unnur; Uda, Manuela; Waeber, Gérard; Wareham, Nicholas J; Waterworth, Dawn M; Watkins, Hugh; Whitfield, John B; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Fox, Caroline S; Ala-Korpela, Mika; Stefansson, Kari; Vollenweider, Peter; Völzke, Henry; Schadt, Eric E; Scott, James; Järvelin, Marjo-Riitta; Elliott, Paul; Kooner, Jaspal S

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190))

  1. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    NARCIS (Netherlands)

    Stahl, Eli A.; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P.; Catanese, Joseph J.; Coblyn, Jonathan; Coenen, Marieke J. H.; Costenbader, Karen H.; Criswell, Lindsey A.; Crusius, J. Bart A.; Cui, Jing; de Bakker, Paul I. W.; De Jager, Philip L.; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J.; Huizinga, Tom W. J.; Kastner, Daniel L.; Ke, Xiayi; Lee, Annette T.; Liu, Xiangdong; Martin, Paul; Morgan, Ann W.; Padyukov, Leonid; Posthumus, Marcel D.; Radstake, Timothy R. D. J.; Reid, David M.; Seielstad, Mark; Seldin, Michael F.; Shadick, Nancy A.; Steer, Sophia; Tak, Paul P.; Thomson, Wendy; van der Helm-van Mil, Annette H. M.; van der Horst-Bruinsma, Irene E.; van der Schoot, C. Ellen; van Riel, Piet L. C. M.; Weinblatt, Michael E.; Wilson, Anthony G.; Wolbink, Gert Jan; Wordsworth, B. Paul; Wijmenga, Cisca; Karlson, Elizabeth W.; Toes, Rene E. M.; de Vries, Niek; Begovich, Ann B.; Worthington, Jane; Siminovitch, Katherine A.; Gregersen, Peter K.; Klareskog, Lars; Plenge, Robert M.

    2010-01-01

    To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheum

  2. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D'Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Mateo Leach, Irene; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with se

  3. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of Euro

  4. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  5. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis

    NARCIS (Netherlands)

    D.S. Evans (Daniel); F. Cailotto (Frederic); N. Parimi (Neeta); A.M. Valdes (Ana Maria); M.C. Castaño Betancourt (Martha); Y. Liu (Youfang); R.C. Kaplan (Robert); M. Bidlingmaier (Martin); R.S. Vasan (Ramachandran Srini); A. Teumer (Alexander); G.J. Tranah (Gregory); M.C. Nevitt (Michael); S. Cummings; E.S. Orwoll (Eric); E. Barrett-Connor (Elizabeth); J.B. Renner (Jordan); J.M. Jordan (Joanne); M. Doherty (Michael); S. Doherty (Sally); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); T.D. Spector (Timothy); R.J. Lories (Rik); N.E. Lane

    2014-01-01

    textabstractObjectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and

  6. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus

    NARCIS (Netherlands)

    Radstake, Timothy R D J; Gorlova, Olga; Rueda, Blanca; Martin, Jose-Ezequiel; Alizadeh, Behrooz Z; Palomino-Morales, Rogelio; Coenen, Marieke J; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Broen, Jasper C; van Riel, Piet L C M; van 't Slot, Ruben; Italiaander, Annet; Ophoff, Roel A; Riemekasten, Gabriela; Hunzelmann, Nico; Simeon, Carmen P; Ortego-Centeno, Norberto; González-Gay, Miguel A; González-Escribano, María F; Airo, Paolo; van Laar, Jaap; Herrick, Ariane; Worthington, Jane; Hesselstrand, Roger; Smith, Vanessa; de Keyser, Filip; Houssiau, Fredric; Chee, Meng May; Madhok, Rajan; Shiels, Paul; Westhovens, Rene; Kreuter, Alexander; Kiener, Hans; de Baere, Elfride; Witte, Torsten; Padykov, Leonid; Klareskog, Lars; Beretta, Lorenzo; Scorza, Rafaella; Lie, Benedicte A; Hoffmann-Vold, Anna-Maria; Carreira, Patricia; Varga, John; Hinchcliff, Monique; Gregersen, Peter K; Lee, Annette T; Ying, Jun; Han, Younghun; Weng, Shih-Feng; Amos, Christopher I; Wigley, Fredrick M; Hummers, Laura; Nelson, J Lee; Agarwal, Sandeep K; Assassi, Shervin; Gourh, Pravitt; Tan, Filemon K; Koeleman, Bobby P C; Arnett, Frank C; Martin, Javier; Mayes, Maureen D

    2010-01-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify new SSc susceptibility loci, we conducted the first genome-wide association study in a population of European ancestry includ

  7. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  8. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22

    NARCIS (Netherlands)

    J.M. Kerkhof (Hanneke); R.J. Lories (Rik); I. Meulenbelt (Ingrid); I. Jonsdottir (Ingileif); A.M. Valdes (Ana Maria); P.P. Arp (Pascal); T. Ingvarsson (Torvaldur); M. Jhamai (Mila); H. Jonsson (Helgi); L. Stolk (Lisette); G. Thorleifsson (Gudmar); G. Zhai (Guangju); F. Zhang (Feng); Y. Zhu (Yicheng); R. van der Breggen (Ruud); M. Doherty (Michael); D. Felson; A. Gonzalez (Antonio); B.V. Halldorsson (Bjarni); D.J. Hart (Deborah); V.B. Hauksson (Valdimar); A. Hofman (Albert); J.P.A. Ioannidis (John); M. Kloppenburg (Margreet); N.E. Lane (Nancy); J. Loughlin (John); F.P. Luyten (Frank); M.C. Nevitt (Michael); N. Parimi (Neeta); H.A.P. Pols (Huib); F. Rivadeneira Ramirez (Fernando); E. Slagboom (Eline); U. Styrkarsdottir (Unnur); A. Tsezou (Aspasia); T. van de Putte (Tom); J. Zmuda (Joseph); T.D. Spector (Timothy); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); A.J. Carr (Andrew Jonathan)

    2010-01-01

    markdownabstract__Objective__ To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. Methods. We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2

  9. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D'Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Mateo Leach, Irene; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  10. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  11. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  12. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  13. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evid

  14. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  15. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    NARCIS (Netherlands)

    Chambers, J.C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M.N.; Harst, P. van der; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S.E.; Coin, L.J.; Deng, G.; Gieger, C.; Heard-Costa, N.L.; Hottenga, J.J.; Kuhnel, B.; Kumar, V.; Lagou, V.; Liang, L.; Luan, J.; Vidal, P.M.; Mateo Leach, I.; O'Reilly, P.F.; Peden, J.F.; Rahmioglu, N.; Soininen, P.; Speliotes, E.K.; Yuan, X.; Thorleifsson, G.; Alizadeh, B.Z.; Atwood, L.D.; Borecki, I.B.; Brown, M.J.; Charoen, P.; Cucca, F.; Das, D.; Geus, E.J. de; Dixon, A.L.; Doring, A.; Ehret, G.; Eyjolfsson, G.I.; Farrall, M.; Forouhi, N.G.; Friedrich, N.; Goessling, W.; Gudbjartsson, D.F.; Harris, T.B.; Hartikainen, A.L.; Heath, S.; Hirschfield, G.M.; Hofman, A.; Homuth, G.; Hypponen, E.; Janssen, H.L.; Johnson, T.; Kangas, A.J.; Kema, I.P.; Kuhn, J.P.; Lai, S.; Lathrop, M.; Lerch, M.M.; Li, Y.; Liang, T.J.; Lin, J.P.; Loos, R.J.; Martin, N.G.; Moffatt, M.F.; Montgomery, G.W.; Munroe, P.B.; Musunuru, K.; Nakamura, Y.; O'Donnell, C.J.; Olafsson, I.; Penninx, B.W.J.H.; Pouta, A.; Prins, B.P.; Prokopenko, I.; Puls, R.; Ruokonen, A.; Savolainen, M.J.; Schlessinger, D.; Schouten, J.N.; Seedorf, U.; Sen-Chowdhry, S.; Siminovitch, K.A.; Smit, J.H.; Spector, T.D.; Tan, W.; Teslovich, T.M.; Tukiainen, T.; Uitterlinden, A.G.; Klauw, M.M. Van der; Vasan, R.S.; Wallace, C.; Wallaschofski, H.; Wichmann, H.E.; Willemsen, G.; Wurtz, P.; Xu, C.; Yerges-Armstrong, L.M.; Abecasis, G.R.; Ahmadi, K.R.; Boomsma, D.I.; Caulfield, M.; Cookson, W.O.; Duijn, C.M. van; Froguel, P.; Matsuda, K.; McCarthy, M.I.; Meisinger, C.; Mooser, V.; Pietilainen, K.H.; Schumann, G.; Snieder, H.; Sternberg, M.J.; Stolk, R.P.; Thomas, H.C.; Thorsteinsdottir, U.; Uda, M.; Waeber, G.; Wareham, N.J.; Waterworth, D.M.; Watkins, H.; Whitfield, J.B.; Witteman, J.C.; Wolffenbuttel, B.H.R.; Fox, C.S.; Ala-Korpela, M.; Stefansson, K.; Vollenweider, P.; Volzke, H.; Schadt, E.E.; Scott, J.; Jarvelin, M.R.; Elliott, P.; Kooner, J.S.; Heijer, M. den; et al.,

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P =

  16. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes.

    Directory of Open Access Journals (Sweden)

    María José Aranzana

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  17. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  18. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features.

    Science.gov (United States)

    Gevaert, Olivier; Plevritis, Sylvia

    2013-01-01

    Vast amounts of molecular data characterizing the genome, epigenome and transcriptome are becoming available for a variety of cancers. The current challenge is to integrate these diverse layers of molecular biology information to create a more comprehensive view of key biological processes underlying cancer. We developed a biocomputational algorithm that integrates copy number, DNA methylation, and gene expression data to study master regulators of cancer and identify their targets. Our algorithm starts by generating a list of candidate driver genes based on the rationale that genes that are driven by multiple genomic events in a subset of samples are unlikely to be randomly deregulated. We then select the master regulators from the candidate driver and identify their targets by inferring the underlying regulatory network of gene expression. We applied our biocomputational algorithm to identify master regulators and their targets in glioblastoma multiforme (GBM) and serous ovarian cancer. Our results suggest that the expression of candidate drivers is more likely to be influenced by copy number variations than DNA methylation. Next, we selected the master regulators and identified their downstream targets using module networks analysis. As a proof-of-concept, we show that the GBM and ovarian cancer module networks recapitulate known processes in these cancers. In addition, we identify master regulators that have not been previously reported and suggest their likely role. In summary, focusing on genes whose expression can be explained by their genomic and epigenomic aberrations is a promising strategy to identify master regulators of cancer.

  19. Deciphering Squamous Cell Carcinoma Using Multidimensional Genomic Approaches

    Directory of Open Access Journals (Sweden)

    Ewan A. Gibb

    2011-01-01

    Full Text Available Squamous cell carcinomas (SqCCs arise in a wide range of tissues including skin, lung, and oral mucosa. Although all SqCCs are epithelial in origin and share common nomenclature, these cancers differ greatly with respect to incidence, prognosis, and treatment. Current knowledge of genetic similarities and differences between SqCCs is insufficient to describe the biology of these cancers, which arise from diverse tissue origins. In this paper we provide a general overview of whole genome approaches for gene and pathway discovery and highlight the advancement of integrative genomics as a state-of-the-art technology in the study of SqCC genetics.

  20. A new approach for using genome scans to detect recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Kun Tang

    2007-07-01

    Full Text Available Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting the extended haplotype homozygosity (EHH profiles between populations. We applied this method to the genome single nucleotide polymorphism (SNP data of both the International HapMap Project and Perlegen Sciences, and detected widespread signals of recent local selection across the genome, consisting of both complete and partial sweeps. A challenging problem of genomic scans of recent positive selection is to clearly distinguish selection from neutral effects, given the high sensitivity of the test statistics to departures from neutral demographic assumptions and the lack of a single, accurate neutral model of human history. We therefore developed a new procedure that is robust across a wide range of demographic and ascertainment models, one that indicates that certain portions of the genome clearly depart from neutrality. Simulations of positive selection showed that our tests have high power towards strong selection sweeps that have undergone fixation. Gene ontology analysis of the candidate regions revealed several new functional groups that might help explain some important interpopulation differences in phenotypic traits.

  1. A genome-wide association study identifies five loci influencing facial morphology in Europeans.

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2012-09-01

    Full Text Available Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes--PRDM16, PAX3, TP63, C5orf50, and COL17A1--in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.

  2. INNOVATIVE STRATEGIES TO IDENTIFY M. TUBERCULOSIS ANTIGENS AND EPITOPES USING GENOME-WIDE ANALYSES

    Directory of Open Access Journals (Sweden)

    Annemieke eGeluk

    2014-06-01

    Full Text Available In view of the fact that only a small part of the Mtb expressome has been explored for identification of antigens capable of activating human T-cell responses, which is critically required for the design of better TB vaccination strategies, more emphasis should be placed on innovative ways to discover new Mtb antigens and explore their function at the several stages of infection. Better protective antigens for TB vaccines are urgently needed, also in view of the disappointing results of the MVA85 vaccine which failed to induce additional protection in BCG vaccinated infants [54]. Moreover, immune responses to relevant antigens may be useful to identify TB-specific biomarker signatures. Here we describe the potency of novel tools and strategies to reveal such Mtb antigens. Using proteins specific for different Mtb infection phases, many new antigens of the latency-associated Mtb DosR regulon as well as Rpf proteins, associated with resuscitating TB, were discovered that were recognized by CD4+ and CD8+ T-cells. Furthermore, by employing MHC binding algorithms and bioinformatics combined with high throughput human T-cell screens and tetramers, HLA-class Ia restricted poly-functional CD8+ T-cells were identified in TB patients. Comparable methods, led to the identification of HLA-E-restricted Mtb epitopes recognized by CD8+ T-cells. A genome-wide unbiased antigen discovery approach was applied to analyse the in vivo Mtb gene expression profiles in the lungs of mice, resulting in the identification of IVE-TB antigens, which are expressed during infection in the lung, the main target organ of Mtb. IVE-TB antigens induce strong T cell responses in long-term latently Mtb infected individuals, and represent an interesting new group of TB antigens for vaccination. In summary, new tools have helped expand our view on the Mtb antigenome involved in human cellular immunity and provided new candidates for TB vaccination.

  3. Genome-wide approaches to understanding human ageing

    Directory of Open Access Journals (Sweden)

    Kaeberlein Matt

    2006-06-01

    Full Text Available Abstract The use of genomic technologies in biogerontology has the potential to greatly enhance our understanding of human ageing. High-throughput screens for alleles correlated with survival in long-lived people have uncovered novel genes involved in age-associated disease. Genome-wide longevity studies in simple eukaryotes are identifying evolutionarily conserved pathways that determine longevity. It is hoped that validation of these 'public' aspects of ageing in mice, along with analyses of variation in candidate human ageing genes, will provide targets for future interventions to slow the ageing process and retard the onset of age-associated pathologies.

  4. Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations.

    Science.gov (United States)

    Cooper, Margaret E; Goldstein, Toby H; Maher, Brion S; Marazita, Mary L

    2005-12-30

    In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p value value value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.

  5. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  6. Cross-Genome Comparisons of Newly Identified Domains in Mycoplasma gallisepticum and Domain Architectures with Other Mycoplasma species

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Reddy Chilamakuri

    2011-01-01

    Full Text Available Accurate functional annotation of protein sequences is hampered by important factors such as the failure of sequence search methods to identify relationships and the inherent diversity in function of proteins related at low sequence similarities. Earlier, we had employed intermediate sequence search approach to establish new domain relationships in the unassigned regions of gene products at the whole genome level by taking Mycoplasma gallisepticum as a specific example and established new domain relationships. In this paper, we report a detailed comparison of the conservation status of the domain and domain architectures of the gene products that bear our newly predicted domains amongst 14 other Mycoplasma genomes and reported the probable implications for the organisms. Some of the domain associations, observed in Mycoplasma that afflict humans and other non-human primates, are involved in regulation of solute transport and DNA binding suggesting specific modes of host-pathogen interactions.

  7. Identifying acute coronary syndrome patients approaching end-of-life.

    Directory of Open Access Journals (Sweden)

    Stephen Fenning

    Full Text Available BACKGROUND: Acute coronary syndrome (ACS is common in patients approaching the end-of-life (EoL, but these patients rarely receive palliative care. We compared the utility of a palliative care prognostic tool (Gold Standards Framework (GSF and the Global Registry of Acute Coronary Events (GRACE score, to help identify patients approaching EoL. METHODS AND FINDINGS: 172 unselected consecutive patients with confirmed ACS admitted over an eight-week period were assessed using prognostic tools and followed up for 12 months. GSF criteria identified 40 (23% patients suitable for EoL care while GRACE identified 32 (19% patients with ≥ 10% risk of death within 6 months. Patients meeting GSF criteria were older (p = 0.006, had more comorbidities (1.6 ± 0.7 vs. 1.2 ± 0.9, p = 0.007, more frequent hospitalisations before (p = 0.001 and after (0.0001 their index admission, and were more likely to die during follow-up (GSF+ 20% vs GSF- 7%, p = 0.03. GRACE score was predictive of 12-month mortality (C-statistic 0.75 and this was improved by the addition of previous hospital admissions and previous history of stroke (C-statistic 0.88. CONCLUSIONS: This study has highlighted a potentially large number of ACS patients eligible for EoL care. GSF or GRACE could be used in the hospital setting to help identify these patients. GSF identifies ACS patients with more comorbidity and at increased risk of hospital readmission.

  8. Kinomic profiling approach identifies Trk as a novel radiation modulator.

    Science.gov (United States)

    Jarboe, John S; Jaboin, Jerry J; Anderson, Joshua C; Nowsheen, Somaira; Stanley, Jennifer A; Naji, Faris; Ruijtenbeek, Rob; Tu, Tianxiang; Hallahan, Dennis E; Yang, Eddy S; Bonner, James A; Willey, Christopher D

    2012-06-01

    Ionizing radiation treatment is used in over half of all cancer patients, thus determining the mechanisms of response or resistance is critical for the development of novel treatment approaches. In this report, we utilize a high-content peptide array platform that performs multiplex kinase assays with real-time kinetic readout to investigate the mechanism of radiation response in vascular endothelial cells. We applied this technology to irradiated human umbilical vein endothelial cells (HUVEC). We identified 49 specific tyrosine phosphopeptides that were differentially affected by irradiation over a time course of 1h. In one example, the Tropomyosin receptor kinase (Trk) family members, TrkA and TrkB, showed transient activation between 2 and 15 min following irradiation. When we targeted TrkA and TrkB using small molecule inhibitors, HUVEC were protected from radiation damage. Conversely, stimulation of TrkA using gambogic amide promoted radiation enhancement. Thus, we show that our approach not only can identify rapid changes in kinase activity but also identify novel targets such as TrkA. TrkA inhibition resulted in radioprotection that correlated with enhanced repair of radiation-induced damage while TrkA stimulation by gambogic amide produced radiation sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kylie L Gorringe

    Full Text Available Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  10. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Science.gov (United States)

    Gorringe, Kylie L; George, Joshy; Anglesio, Michael S; Ramakrishna, Manasa; Etemadmoghadam, Dariush; Cowin, Prue; Sridhar, Anita; Williams, Louise H; Boyle, Samantha E; Yanaihara, Nozomu; Okamoto, Aikou; Urashima, Mitsuyoshi; Smyth, Gordon K; Campbell, Ian G; Bowtell, David D L

    2010-09-10

    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  11. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins,where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine.The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species.Available computational tools fail to correctly predict selenoproteins.Thus,we devel-oped a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information,several programs were edited with PERL language to identify selenocysteine insertion sequence(SECIS)element,the coding potential of TGA codons,and cys-teine-containing homologs of selenoprotein genes.Our results showed that 11365 genes were termi-nated with TGA codons,918 of which contained SECIS elements.Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons.Finally,7 genes were found to fully meet requirements for selenoproteins,although they have not been anno-tated as selenoproteins in NCBI databases.Deduced from their basic properties,the newly found se-lenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles’ vectorial capacity of Plasmodium.This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  12. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  13. Analysis of the Campylobacter jejuni genome by SMRT DNA sequencing identifies restriction-modification motifs.

    Directory of Open Access Journals (Sweden)

    Jason L O'Loughlin

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni.

  14. A Sensitivity Analysis Approach to Identify Key Environmental Performance Factors

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2014-01-01

    Full Text Available Life cycle assessment (LCA is widely used in design phase to reduce the product’s environmental impacts through the whole product life cycle (PLC during the last two decades. The traditional LCA is restricted to assessing the environmental impacts of a product and the results cannot reflect the effects of changes within the life cycle. In order to improve the quality of ecodesign, it is a growing need to develop an approach which can reflect the changes between the design parameters and product’s environmental impacts. A sensitivity analysis approach based on LCA and ecodesign is proposed in this paper. The key environmental performance factors which have significant influence on the products’ environmental impacts can be identified by analyzing the relationship between environmental impacts and the design parameters. Users without much environmental knowledge can use this approach to determine which design parameter should be first considered when (redesigning a product. A printed circuit board (PCB case study is conducted; eight design parameters are chosen to be analyzed by our approach. The result shows that the carbon dioxide emission during the PCB manufacture is highly sensitive to the area of PCB panel.

  15. Contemporary Approaches for Identifying Rare Bone Disease Causing Genes

    Institute of Scientific and Technical Information of China (English)

    Charles R.Farber; Thomas L.Clemens

    2013-01-01

    Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisti-cated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.

  16. An Efficient Approach for Identifying Stable Lobes with Discretization Method

    Directory of Open Access Journals (Sweden)

    Baohai Wu

    2013-01-01

    Full Text Available This paper presents a new approach for quick identification of chatter stability lobes with discretization method. Firstly, three different kinds of stability regions are defined: absolute stable region, valid region, and invalid region. Secondly, while identifying the chatter stability lobes, three different regions within the chatter stability lobes are identified with relatively large time intervals. Thirdly, stability boundary within the valid regions is finely calculated to get exact chatter stability lobes. The proposed method only needs to test a small portion of spindle speed and cutting depth set; about 89% computation time is savedcompared with full discretization method. It spends only about10 minutes to get exact chatter stability lobes. Since, based on discretization method, the proposed method can be used for different immersion cutting including low immersion cutting process, the proposed method can be directly implemented in the workshop to promote machining parameters selection efficiency.

  17. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  18. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    Science.gov (United States)

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  19. Genome-Wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population

    Directory of Open Access Journals (Sweden)

    Liu Xinmin

    2011-08-01

    Full Text Available Abstract Background To date, nine Parkinson disease (PD genome-wide association studies in North American, European and Asian populations have been published. The majority of studies have confirmed the association of the previously identified genetic risk factors, SNCA and MAPT, and two studies have identified three new PD susceptibility loci/genes (PARK16, BST1 and HLA-DRB5. In a recent meta-analysis of datasets from five of the published PD GWAS an additional 6 novel candidate genes (SYT11, ACMSD, STK39, MCCC1/LAMP3, GAK and CCDC62/HIP1R were identified. Collectively the associations identified in these GWAS account for only a small proportion of the estimated total heritability of PD suggesting that an 'unknown' component of the genetic architecture of PD remains to be identified. Methods We applied a GWAS approach to a relatively homogeneous Ashkenazi Jewish (AJ population from New York to search for both 'rare' and 'common' genetic variants that confer risk of PD by examining any SNPs with allele frequencies exceeding 2%. We have focused on a genetic isolate, the AJ population, as a discovery dataset since this cohort has a higher sharing of genetic background and historically experienced a significant bottleneck. We also conducted a replication study using two publicly available datasets from dbGaP. The joint analysis dataset had a combined sample size of 2,050 cases and 1,836 controls. Results We identified the top 57 SNPs showing the strongest evidence of association in the AJ dataset (p -5. Six SNPs located within gene regions had positive signals in at least one other independent dbGaP dataset: LOC100505836 (Chr3p24, LOC153328/SLC25A48 (Chr5q31.1, UNC13B (9p13.3, SLCO3A1(15q26.1, WNT3(17q21.3 and NSF (17q21.3. We also replicated published associations for the gene regions SNCA (Chr4q21; rs3775442, p = 0.037, PARK16 (Chr1q32.1; rs823114 (NUCKS1, p = 6.12 × 10-4, BST1 (Chr4p15; rs12502586, p = 0.027, STK39 (Chr2q24.3; rs3754775, p = 0

  20. Genome-wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population.

    Science.gov (United States)

    Liu, Xinmin; Cheng, Rong; Verbitsky, Miguel; Kisselev, Sergey; Browne, Andrew; Mejia-Sanatana, Helen; Louis, Elan D; Cote, Lucien J; Andrews, Howard; Waters, Cheryl; Ford, Blair; Frucht, Steven; Fahn, Stanley; Marder, Karen; Clark, Lorraine N; Lee, Joseph H

    2011-08-03

    To date, nine Parkinson disease (PD) genome-wide association studies in North American, European and Asian populations have been published. The majority of studies have confirmed the association of the previously identified genetic risk factors, SNCA and MAPT, and two studies have identified three new PD susceptibility loci/genes (PARK16, BST1 and HLA-DRB5). In a recent meta-analysis of datasets from five of the published PD GWAS an additional 6 novel candidate genes (SYT11, ACMSD, STK39, MCCC1/LAMP3, GAK and CCDC62/HIP1R) were identified. Collectively the associations identified in these GWAS account for only a small proportion of the estimated total heritability of PD suggesting that an 'unknown' component of the genetic architecture of PD remains to be identified. We applied a GWAS approach to a relatively homogeneous Ashkenazi Jewish (AJ) population from New York to search for both 'rare' and 'common' genetic variants that confer risk of PD by examining any SNPs with allele frequencies exceeding 2%. We have focused on a genetic isolate, the AJ population, as a discovery dataset since this cohort has a higher sharing of genetic background and historically experienced a significant bottleneck. We also conducted a replication study using two publicly available datasets from dbGaP. The joint analysis dataset had a combined sample size of 2,050 cases and 1,836 controls. We identified the top 57 SNPs showing the strongest evidence of association in the AJ dataset (p dataset: LOC100505836 (Chr3p24), LOC153328/SLC25A48 (Chr5q31.1), UNC13B (9p13.3), SLCO3A1(15q26.1), WNT3(17q21.3) and NSF (17q21.3). We also replicated published associations for the gene regions SNCA (Chr4q21; rs3775442, p = 0.037), PARK16 (Chr1q32.1; rs823114 (NUCKS1), p = 6.12 × 10(-4)), BST1 (Chr4p15; rs12502586, p = 0.027), STK39 (Chr2q24.3; rs3754775, p = 0.005), and LAMP3 (Chr3; rs12493050, p = 0.005) in addition to the two most common PD susceptibility genes in the AJ population LRRK2 (Chr12q12

  1. Novel LanT associated lantibiotic clusters identified by genome database mining.

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    Full Text Available BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and

  2. Triangulation of the human, chimpanzee and Neanderthal genome sequences identifies potentially compensated mutations

    OpenAIRE

    Zhang, Guojie; Zhang,Pei; Krawczak, Michael; Ball, Edward V.; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N.

    2010-01-01

    Abstract Triangulation of the human, chimpanzee and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently pathogenic in humans but which may represent a `compensated? wild-type state in at least one of the other two species. Of 122 such `potentially compensated mutations? (PCMs) identi...

  3. Genome-wide association study identifies a common variant associated with risk of endometrial cancer

    OpenAIRE

    Amanda B Spurdle; Thompson, Deborah J.; Ahmed, Shahana; Ferguson, Kaltin; Healey, Catherine S; O’Mara, Tracy; Walker, Logan C.; Montgomery, Stephen B.; Dermitzakis, Emmanouil T.; Fahey, Paul; Montgomery, Grant,; Webb, Penelope M; Fasching, Peter A; Beckmann, Matthias W; Ekici, Arif B.

    2011-01-01

    Endometrial cancer is the most common malignancy of the female genital tract in developed countries. To identify genetic variants associated with endometrial cancer risk, we undertook a genome-wide association study involving 1,265 endometrial cancer cases from Australia and the UK and 5,190 controls from the Wellcome Trust Case Control Consortium. Genotype frequencies in cases and controls were compared for 519,655 SNPs. Forty-seven SNPs that showed evidence of association with endometrial c...

  4. Goldilocks: a tool for identifying genomic regions that are ‘just right’

    OpenAIRE

    Nicholls, Samuel M.; Clare, Amanda; Randall, Joshua C.

    2016-01-01

    Summary: We present Goldilocks: a Python package providing functionality for collecting summary statistics, identifying shifts in variation, discovering outlier regions and locating and extracting interesting regions from one or more arbitrary genomes for further analysis, for a user-provided definition of interesting. Availability and implementation: Goldilocks is freely available open-source software distributed under the MIT licence. Source code is hosted publicly at https://github.com/Sam...

  5. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  6. Statistical Approaches in Genome-Wide Association Studies

    OpenAIRE

    Yazdani, Akram

    2014-01-01

    Genome-wide association studies, GWAS, typically contain hundreds of thousands single nucleotide polymorphisms, SNPs, genotyped for few numbers of samples. The aim of these studies is to identify regions harboring SNPs or to predict the outcomes of interest. Since the number of predictors in the GWAS far exceeds the number of samples, it is impossible to analyze the data with classical statistical methods. In the current GWAS, the widely applied methods are based on single marker analysis th...

  7. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  8. Evaluation of approaches to identify the targets of cellular immunity on a proteome-wide scale.

    Directory of Open Access Journals (Sweden)

    Fernanda C Cardoso

    Full Text Available BACKGROUND: Vaccine development against malaria and other complex diseases remains a challenge for the scientific community. The recent elucidation of the genome, proteome and transcriptome of many of these complex pathogens provides the basis for rational vaccine design by identifying, on a proteome-wide scale, novel target antigens that are recognized by T cells and antibodies from exposed individuals. However, there is currently no algorithm to effectively identify important target antigens from genome sequence data; this is especially challenging for T cell targets. Furthermore, for some of these pathogens, such as Plasmodium, protein expression using conventional platforms has been problematic but cell-free in vitro transcription translation (IVTT strategies have recently proved successful. Herein, we report a novel approach for proteome-wide scale identification of the antigenic targets of T cell responses using IVTT products. PRINCIPAL FINDINGS: We conducted a series of in vitro and in vivo experiments using IVTT proteins either unpurified, absorbed to carboxylated polybeads, or affinity purified through nickel resin or magnetic beads. In vitro studies in humans using CMV, EBV, and Influenza A virus proteins showed antigen-specific cytokine production in ELIspot and Cytometric Bead Array assays with cells stimulated with purified or unpurified IVTT antigens. In vitro and in vivo studies in mice immunized with the Plasmodium yoelii circumsporozoite DNA vaccine with or without IVTT protein boost showed antigen-specific cytokine production using purified IVTT antigens only. Overall, the nickel resin method of IVTT antigen purification proved optimal in both human and murine systems. CONCLUSIONS: This work provides proof of concept for the potential of high-throughput approaches to identify T cell targets of complex parasitic, viral or bacterial pathogens from genomic sequence data, for rational vaccine development against emerging and re

  9. New approach for identifying boundary characteristics using transmissibility

    Science.gov (United States)

    Joo, Kyung-Hoon; Min, Dongwoo; Kim, Jun-Gu; Kang, Yeon June

    2017-04-01

    A novel approach is proposed for identifying boundary properties as a response model using transmissibility. This approach differs from those proposed in previous studies dealing with frequency response functions (FRFs) for joint identification. Transmissibility includes only response data, unlike FRFs that include force measurements. The boundary properties can be estimated by comparing the characteristics of the components under the free condition and connected to boundary conditions. When analyzing the components assembled compactly in the system for setting the shaker or measuring the impact force exerted on the component correctly, the proposed method could reduce the errors caused by an incorrectly measured force. The derived equation is verified using a discrete multiple degrees of freedom system with single boundary and multiple boundary conditions and by application to a beam, which is the simplest continuous structural form to validate the feasibility of the theory. The transmissibility defined by the apparent mass matrix is used for verifying the derived equation for identifying the boundary properties in the discrete system. However, when applying the equation to practical cases, as is the purpose of this research, the transmissibility matrix should be defined using only the response data. For this purpose, the accelerance matrix is modified slightly to the response matrix using the input as a unit force. This transmissibility matrix composed of response data is used for validating the equation in a continuous system. Furthermore, the effects of measurement noise are also investigated to assess the robustness of the method for application under practical conditions. Consequently, the proposed method could show reliable results by properly extracting the boundary properties in both cases. In many practical cases, this research is expected to contribute toward identifying the boundary properties in a complex system more conveniently compared to the method

  10. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    Science.gov (United States)

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.

  11. Genome Sequences of Beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus Identified in Leafhoppers

    Science.gov (United States)

    Kamali, Mehdi; Pouramini, Najmeh; Masumi, Hossain; Farkas, Kata; Kraberger, Simona

    2017-01-01

    ABSTRACT Implementation of a vector-enabled metagenomics approach resulted in the identification of various geminiviruses. We identified the genome sequences of Beet curly top Iran virus, Turnip curly top viruses, Oat dwarf viruses, the first from Iran, and Wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants. PMID:28232449

  12. Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome.

    Directory of Open Access Journals (Sweden)

    Michael A Pickart

    Full Text Available BACKGROUND: Understanding the functional role(s of the more than 20,000 proteins of the vertebrate genome is a major next step in the post-genome era. The approximately 4,000 co-translationally translocated (CTT proteins - representing the vertebrate secretome - are important for such vertebrate-critical processes as organogenesis. However, the role(s for most of these genes is currently unknown. RESULTS: We identified 585 putative full-length zebrafish CTT proteins using cross-species genomic and EST-based comparative sequence analyses. We further investigated 150 of these genes (Figure 1 for unique function using morpholino-based analysis in zebrafish embryos. 12% of the CTT protein-deficient embryos resulted in specific developmental defects, a notably higher rate of gene function annotation than the 2%-3% estimate from random gene mutagenesis studies. CONCLUSION: This initial collection includes novel genes required for the development of vascular, hematopoietic, pigmentation, and craniofacial tissues, as well as lipid metabolism, and organogenesis. This study provides a framework utilizing zebrafish for the systematic assignment of biological function in a vertebrate genome.

  13. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci

    Science.gov (United States)

    Reveille, John D; Sims, Anne-Marie; Danoy, Patrick; Evans, David M; Leo, Paul; Pointon, Jennifer J; Jin, Rui; Zhou, Xiaodong; Bradbury, Linda A; Appleton, Louise H; Davis, John C; Diekman, Laura; Doan, Tracey; Dowling, Alison; Duan, Ran; Duncan, Emma L; Farrar, Claire; Hadler, Johanna; Harvey, David; Karaderi, Tugce; Mogg, Rebecca; Pomeroy, Emma; Pryce, Karena; Taylor, Jacqueline; Savage, Laurie; Deloukas, Panos; Kumanduri, Vasudev; Peltonen, Leena; Ring, Sue M; Whittaker, Pamela; Glazov, Evgeny; Thomas, Gethin P; Maksymowych, Walter P; Inman, Robert D; Ward, Michael M; Stone, Millicent A; Weisman, Michael H; Wordsworth, B Paul; Brown, Matthew A

    2011-01-01

    To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P ankylosing spondylitis risk and identifies a major role for the interleukin (IL)-23 and IL-1 cytokine pathways in disease susceptibility. PMID:20062062

  14. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    OpenAIRE

    Lindgren, Cecilia M; Heid, Iris M.; Randall, Joshua C.; Claudia Lamina; Valgerdur Steinthorsdottir; Lu Qi; Speliotes, Elizabeth K.; Gudmar Thorleifsson; Willer, Cristen J.; Herrera, Blanca M; Jackson, Anne U.; Noha Lim; Paul Scheet; Nicole Soranzo; Najaf Amin

    2009-01-01

    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified t...

  15. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  16. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  17. A hypervariable genomic island identified in clinical and environmental Mycobacterium avium subsp. hominissuis isolates from Germany.

    Science.gov (United States)

    Sanchini, Andrea; Semmler, Torsten; Mao, Lei; Kumar, Narender; Dematheis, Flavia; Tandon, Kshitij; Peddireddy, Vidyullatha; Ahmed, Niyaz; Lewin, Astrid

    2016-11-01

    Mycobacterium avium subsp. hominissuis (MAH) is an opportunistic human pathogen widespread in the environment. Genomic islands (GI)s represent a part of the accessory genome of bacteria and influence virulence, drug-resistance or fitness and trigger bacterial evolution. We previously identified a novel GI in four MAH genomes. Here, we further explored this GI in a larger collection of MAH isolates from Germany (n=41), including 20 clinical and 21 environmental isolates. Based on comparative whole genome analysis, we detected this GI in 39/41 (95.1%) isolates. Although all these GIs integrated in the same insertion hotspot, there is high variability in the genetic structure of this GI: eight different types of GI have been identified, designated A-H (sized 6.2-73.3kb). These GIs were arranged as single GI (23/41, 56.1%), combination of two different GIs (14/41, 34.1%) or combination of three different GIs (2/41, 4.9%) in the insertion hotspot. Moreover, two GI types shared more than 80% sequence identity with sequences of M. canettii, responsible for Tuberculosis. A total of 253 different genes were identified in all GIs, among which the previously documented virulence-related genes mmpL10 and mce. The diversity of the GI and the sequence similarity with other mycobacteria suggests cross-species transfer, involving also highly pathogenic species. Shuffling of potential virulence genes such as mmpL10 via this GI may create new pathogens that can cause future outbreaks. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Genome-wide study of resistant hypertension identified from electronic health records.

    Science.gov (United States)

    Dumitrescu, Logan; Ritchie, Marylyn D; Denny, Joshua C; El Rouby, Nihal M; McDonough, Caitrin W; Bradford, Yuki; Ramirez, Andrea H; Bielinski, Suzette J; Basford, Melissa A; Chai, High Seng; Peissig, Peggy; Carrell, David; Pathak, Jyotishman; Rasmussen, Luke V; Wang, Xiaoming; Pacheco, Jennifer A; Kho, Abel N; Hayes, M Geoffrey; Matsumoto, Martha; Smith, Maureen E; Li, Rongling; Cooper-DeHoff, Rhonda M; Kullo, Iftikhar J; Chute, Christopher G; Chisholm, Rex L; Jarvik, Gail P; Larson, Eric B; Carey, David; McCarty, Catherine A; Williams, Marc S; Roden, Dan M; Bottinger, Erwin; Johnson, Julie A; de Andrade, Mariza; Crawford, Dana C

    2017-01-01

    Resistant hypertension is defined as high blood pressure that remains above treatment goals in spite of the concurrent use of three antihypertensive agents from different classes. Despite the important health consequences of resistant hypertension, few studies of resistant hypertension have been conducted. To perform a genome-wide association study for resistant hypertension, we defined and identified cases of resistant hypertension and hypertensives with treated, controlled hypertension among >47,500 adults residing in the US linked to electronic health records (EHRs) and genotyped as part of the electronic MEdical Records & GEnomics (eMERGE) Network. Electronic selection logic using billing codes, laboratory values, text queries, and medication records was used to identify resistant hypertension cases and controls at each site, and a total of 3,006 cases of resistant hypertension and 876 controlled hypertensives were identified among eMERGE Phase I and II sites. After imputation and quality control, a total of 2,530,150 SNPs were tested for an association among 2,830 multi-ethnic cases of resistant hypertension and 876 controlled hypertensives. No test of association was genome-wide significant in the full dataset or in the dataset limited to European American cases (n = 1,719) and controls (n = 708). The most significant finding was CLNK rs13144136 at p = 1.00x10-6 (odds ratio = 0.68; 95% CI = 0.58-0.80) in the full dataset with similar results in the European American only dataset. We also examined whether SNPs known to influence blood pressure or hypertension also influenced resistant hypertension. None was significant after correction for multiple testing. These data highlight both the difficulties and the potential utility of EHR-linked genomic data to study clinically-relevant traits such as resistant hypertension.

  19. Genome-wide association study identified CNP12587 region underlying height variation in Chinese females.

    Directory of Open Access Journals (Sweden)

    Yin-Ping Zhang

    Full Text Available INTRODUCTION: Human height is a highly heritable trait considered as an important factor for health. There has been limited success in identifying the genetic factors underlying height variation. We aim to identify sequence variants associated with adult height by a genome-wide association study of copy number variants (CNVs in Chinese. METHODS: Genome-wide CNV association analyses were conducted in 1,625 unrelated Chinese adults and sex specific subgroup for height variation, respectively. Height was measured with a stadiometer. Affymetrix SNP6.0 genotyping platform was used to identify copy number polymorphisms (CNPs. We constructed a genomic map containing 1,009 CNPs in Chinese individuals and performed a genome-wide association study of CNPs with height. RESULTS: We detected 10 significant association signals for height (p<0.05 in the whole population, 9 and 11 association signals for Chinese female and male population, respectively. A copy number polymorphism (CNP12587, chr18:54081842-54086942, p = 2.41 × 10(-4 was found to be significantly associated with height variation in Chinese females even after strict Bonferroni correction (p = 0.048. Confirmatory real time PCR experiments lent further support for CNV validation. Compared to female subjects with two copies of the CNP, carriers of three copies had an average of 8.1% decrease in height. An important candidate gene, ubiquitin-protein ligase NEDD4-like (NEDD4L, was detected at this region, which plays important roles in bone metabolism by binding to bone formation regulators. CONCLUSIONS: Our findings suggest the important genetic variants underlying height variation in Chinese.

  20. A model-based approach to identify binding sites in CLIP-Seq data.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/MiClip/index.html, and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip for customized analysis.

  1. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Directory of Open Access Journals (Sweden)

    Kata Filkor

    Full Text Available Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS or peptidoglycan (PGN induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (Kegg analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified

  2. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax

    Science.gov (United States)

    Hupalo, Daniel N; Luo, Zunping; Melnikov, Alexandre; Sutton, Patrick L; Rogov, Peter; Escalante, Ananias; Vallejo, Andrés F; Herrera, Sócrates; Arévalo-Herrera, Myriam; Fan, Qi; Wang, Ying; Cui, Liwang; Lucas, Carmen M; Durand, Salomon; Sanchez, Juan F; Baldeviano, G Christian; Lescano, Andres G; Laman, Moses; Barnadas, Celine; Barry, Alyssa; Mueller, Ivo; Kazura, James W; Eapen, Alex; Kanagaraj, Deena; Valecha, Neena; Ferreira, Marcelo U; Roobsoong, Wanlapa; Nguitragool, Wang; Sattabonkot, Jetsumon; Gamboa, Dionicia; Kosek, Margaret; Vinetz, Joseph M; González-Cerón, Lilia; Birren, Bruce W; Neafsey, Daniel E; Carlton, Jane M

    2017-01-01

    Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally. PMID:27348298

  3. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records.

    Science.gov (United States)

    Peissig, Peggy L; Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries.

  4. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  5. A recursive network approach can identify constitutive regulatory circuits in gene expression data

    Science.gov (United States)

    Blasi, Monica Francesca; Casorelli, Ida; Colosimo, Alfredo; Blasi, Francesco Simone; Bignami, Margherita; Giuliani, Alessandro

    2005-03-01

    The activity of the cell is often coordinated by the organisation of proteins into regulatory circuits that share a common function. Genome-wide expression profiles might contain important information on these circuits. Current approaches for the analysis of gene expression data include clustering the individual expression measurements and relating them to biological functions as well as modelling and simulation of gene regulation processes by additional computer tools. The identification of the regulative programmes from microarray experiments is limited, however, by the intrinsic difficulty of linear methods to detect low-variance signals and by the sensitivity of the different approaches. Here we face the problem of recognising invariant patterns of correlations among gene expression reminiscent of regulation circuits. We demonstrate that a recursive neural network approach can identify genetic regulation circuits from expression data for ribosomal and genome stability genes. The proposed method, by greatly enhancing the sensitivity of microarray studies, allows the identification of important aspects of genetic regulation networks and might be useful for the discrimination of the different players involved in regulation circuits. Our results suggest that the constitutive regulatory networks involved in the generic organisation of the cell display a high degree of clustering depending on a modular architecture.

  6. A Genome-Wide Association Study Identifies Susceptibility Loci for Ovarian Cancer at 2q31 and 8q24

    Science.gov (United States)

    Goode, Ellen L.; Chenevix-Trench, Georgia; Song, Honglin; Ramus, Susan J.; Notaridou, Maria; Lawrenson, Kate; Widschwendter, Martin; Vierkant, Robert A.; Larson, Melissa C.; Kjaer, Susanne K.; Birrer, Michael J.; Berchuck, Andrew; Schildkraut, Joellen; Tomlinson, Ian; Kiemeney, Lambertus A.; Cook, Linda S.; Gronwald, Jacek; Garcia-Closas, Montserrat; Gore, Martin E.; Campbell, Ian; Whittemore, Alice S.; Sutphen, Rebecca; Phelan, Catherine; Anton-Culver, Hoda; Pearce, Celeste Leigh; Lambrechts, Diether; Rossing, Mary Anne; Chang-Claude, Jenny; Moysich, Kirsten B.; Goodman, Marc T.; Dörk, Thilo; Nevanlinna, Heli; Ness, Roberta B.; Rafnar, Thorunn; Hogdall, Claus; Hogdall, Estrid; Fridley, Brooke L.; Cunningham, Julie M.; Sieh, Weiva; McGuire, Valerie; Godwin, Andrew K.; Cramer, Daniel W.; Hernandez, Dena; Levine, Douglas; Lu, Karen; Iversen, Edwin S.; Palmieri, Rachel T.; Houlston, Richard; van Altena, Anne M.; Aben, Katja K.H.; Massuger, Leon F.A.G.; Brooks-Wilson, Angela; Kelemen, Linda E.; Le, Nhu D.; Jakubowska, Anna; Lubinski, Jan; Medrek, Krzysztof; Stafford, Anne; Easton, Douglas F.; Tyrer, Jonathan; Bolton, Kelly L.; Harrington, Patricia; Eccles, Diana; Chen, Ann; Molina, Ashley N.; Davila, Barbara N.; Arango, Hector; Tsai, Ya-Yu; Chen, Zhihua; Risch, Harvey A.; McLaughlin, John; Narod, Steven A.; Ziogas, Argyrios; Brewster, Wendy; Gentry-Maharaj, Aleksandra; Menon, Usha; Wu, Anna H.; Stram, Daniel O.; Pike, Malcolm C.; Beesley, Jonathan; Webb, Penelope M.; Chen, Xiaoqing; Ekici, Arif B.; Thiel, Falk C.; Beckmann, Matthias W.; Yang, Hannah; Wentzensen, Nicolas; Lissowska, Jolanta; Fasching, Peter A.; Despierre, Evelyn; Amant, Frederic; Vergote, Ignace; Doherty, Jennifer; Hein, Rebecca; Wang-Gohrke, Shan; Lurie, Galina; Carney, Michael E.; Thompson, Pamela J.; Runnebaum, Ingo; Hillemanns, Peter; Dürst, Matthias; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Butzow, Ralf; Heikkinen, Tuomas; Stefansson, Kari; Sulem, Patrick; Besenbacher, Sören; Sellers, Thomas A.; Gayther, Simon A.; Pharoah, Paul D.P.

    2011-01-01

    Ovarian cancer (OC) accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance OC susceptibility genes, we conducted a genome-wide association study (GWAS) of 507,094 SNPs in 1,768 cases and 2,354 controls, with follow-up of 21,955 SNPs in 4,162 cases and 4,810 controls, leading to the identification of a confirmed susceptibility locus at 9p22 (BNC2)1. Here, we report on nine additional candidate loci (p≤10-4), identified after stratifying cases by histology, genotyped in an additional 4,353 cases and 6,021 controls. Two novel susceptibility loci with p≤5×10-8 were confirmed (8q24, p=8.0×10-15 and 2q31, p=3.8×10-14); two additional loci were also identified that approached genome-wide significance (3q25, p=7.1×10-8 and 17q21, p=1.4×10-7). The associations with serous OC were generally stronger than other subtypes. Analysis of HOXD1, MYC, TiPARP, and SKAP1 at these loci, and BNC2 at 9p22, supports a functional role for these genes in OC development. PMID:20852632

  7. Structural analysis of the genome of breast cancer cell line ZR-75-30 identifies twelve expressed fusion genes

    Directory of Open Access Journals (Sweden)

    Schulte Ina

    2012-12-01

    Full Text Available Abstract Background It has recently emerged that common epithelial cancers such as breast cancers have fusion genes like those in leukaemias. In a representative breast cancer cell line, ZR-75-30, we searched for fusion genes, by analysing genome rearrangements. Results We first analysed rearrangements of the ZR-75-30 genome, to around 10kb resolution, by molecular cytogenetic approaches, combining array painting and array CGH. We then compared this map with genomic junctions determined by paired-end sequencing. Most of the breakpoints found by array painting and array CGH were identified in the paired end sequencing—55% of the unamplified breakpoints and 97% of the amplified breakpoints (as these are represented by more sequence reads. From this analysis we identified 9 expressed fusion genes: APPBP2-PHF20L1, BCAS3-HOXB9, COL14A1-SKAP1, TAOK1-PCGF2, TIAM1-NRIP1, TIMM23-ARHGAP32, TRPS1-LASP1, USP32-CCDC49 and ZMYM4-OPRD1. We also determined the genomic junctions of a further three expressed fusion genes that had been described by others, BCAS3-ERBB2, DDX5-DEPDC6/DEPTOR and PLEC1-ENPP2. Of this total of 12 expressed fusion genes, 9 were in the coamplification. Due to the sensitivity of the technologies used, we estimate these 12 fusion genes to be around two-thirds of the true total. Many of the fusions seem likely to be driver mutations. For example, PHF20L1, BCAS3, TAOK1, PCGF2, and TRPS1 are fused in other breast cancers. HOXB9 and PHF20L1 are members of gene families that are fused in other neoplasms. Several of the other genes are relevant to cancer—in addition to ERBB2, SKAP1 is an adaptor for Src, DEPTOR regulates the mTOR pathway and NRIP1 is an estrogen-receptor coregulator. Conclusions This is the first structural analysis of a breast cancer genome that combines classical molecular cytogenetic approaches with sequencing. Paired-end sequencing was able to detect almost all breakpoints, where there was adequate read depth. It supports

  8. A multi-sample based method for identifying common CNVs in normal human genomic structure using high-resolution aCGH data.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: It is difficult to identify copy number variations (CNV in normal human genomic data due to noise and non-linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic hybridization (aCGH containing 42 million probes, which is very large compared to previous arrays, was recently published. Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data and because most of the current methods were not designed to analyze normal human samples. Normal human genome analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only identify CNVs from a single sample. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a multi-sample-based genomic variations detector (MGVD that uses segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs and CNV zones (CNVZs; CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR. CONCLUSIONS AND SIGNIFICANCE: We designed a specialized algorithm to detect common CNVs from extremely high-resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set, and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL library. It is freely available at: http://embio.yonsei.ac.kr/~Park/mgvd.php.

  9. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  10. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing.

    Science.gov (United States)

    Ai, Huashui; Fang, Xiaodong; Yang, Bin; Huang, Zhiyong; Chen, Hao; Mao, Likai; Zhang, Feng; Zhang, Lu; Cui, Leilei; He, Weiming; Yang, Jie; Yao, Xiaoming; Zhou, Lisheng; Han, Lijuan; Li, Jing; Sun, Silong; Xie, Xianhua; Lai, Boxian; Su, Ying; Lu, Yao; Yang, Hui; Huang, Tao; Deng, Wenjiang; Nielsen, Rasmus; Ren, Jun; Huang, Lusheng

    2015-03-01

    Domestic pigs have evolved genetic adaptations to their local environmental conditions, such as cold and hot climates. We sequenced the genomes of 69 pigs from 15 geographically divergent locations in China and detected 41 million variants, of which 21 million were absent from the dbSNP database. In a genome-wide scan, we identified a set of loci that likely have a role in regional adaptations to high- and low-latitude environments within China. Intriguingly, we found an exceptionally large (14-Mb) region with a low recombination rate on the X chromosome that appears to have two distinct haplotypes in the high- and low-latitude populations, possibly underlying their adaptation to cold and hot environments, respectively. Surprisingly, the adaptive sweep in the high-latitude regions has acted on DNA that might have been introgressed from an extinct Sus species. Our findings provide new insights into the evolutionary history of pigs and the role of introgression in adaptation.

  11. Genome-wide association study identifies three novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A

    2014-01-01

    and 34 814 controls) identified three new loci with genome-wide significance, which were MIR129-LEP [rs791595; risk allele = A; risk allele frequency (RAF) = 0.080; P = 2.55 × 10(-13); odds ratio (OR) = 1.17], GPSM1 [rs11787792; risk allele = A; RAF = 0.874; P = 1.74 × 10(-10); OR = 1.15] and SLC16A13...... (rs312457; risk allele = G; RAF = 0.078; P = 7.69 × 10(-13); OR = 1.20). This study demonstrates that GWASs based on the imputation of genotypes using modern reference haplotypes such as that from the 1000 Genomes Project data can assist in identification of new loci for common diseases....

  12. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  13. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function.

    Science.gov (United States)

    Hancock, Dana B; Eijgelsheim, Mark; Wilk, Jemma B; Gharib, Sina A; Loehr, Laura R; Marciante, Kristin D; Franceschini, Nora; van Durme, Yannick M T A; Chen, Ting-Hsu; Barr, R Graham; Schabath, Matthew B; Couper, David J; Brusselle, Guy G; Psaty, Bruce M; van Duijn, Cornelia M; Rotter, Jerome I; Uitterlinden, André G; Hofman, Albert; Punjabi, Naresh M; Rivadeneira, Fernando; Morrison, Alanna C; Enright, Paul L; North, Kari E; Heckbert, Susan R; Lumley, Thomas; Stricker, Bruno H C; O'Connor, George T; London, Stephanie J

    2010-01-01

    Spirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV(1)) and its ratio to forced vital capacity (FEV(1)/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE Consortium studies: Atherosclerosis Risk in Communities, Cardiovascular Health Study, Framingham Heart Study and Rotterdam Study. We identified eight loci associated with FEV(1)/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1 and HTR4) and one locus associated with FEV(1) (INTS12-GSTCD-NPNT) at or near genome-wide significance (P < 5 x 10(-8)) in the CHARGE Consortium dataset. Our findings may offer insights into pulmonary function and pathogenesis of chronic lung disease.

  14. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  15. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  16. An improved probability mapping approach to assess genome mosaicism

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2003-09-01

    Full Text Available Abstract Background Maximum likelihood and posterior probability mapping are useful visualization techniques that are used to ascertain the mosaic nature of prokaryotic genomes. However, posterior probabilities, especially when calculated for four-taxon cases, tend to overestimate the support for tree topologies. Furthermore, because of poor taxon sampling four-taxon analyses suffer from sensitivity to the long branch attraction artifact. Here we extend the probability mapping approach by improving taxon sampling of the analyzed datasets, and by using bootstrap support values, a more conservative tool to assess reliability. Results Quartets of orthologous proteins were complemented with homologs from selected reference genomes. The mapping of bootstrap support values from these extended datasets gives results similar to the original maximum likelihood and posterior probability mapping. The more conservative nature of the plotted support values allows to focus further analyses on those protein families that strongly disagree with the majority or plurality of genes present in the analyzed genomes. Conclusion Posterior probability is a non-conservative measure for support, and posterior probability mapping only provides a quick estimation of phylogenetic information content of four genomes. This approach can be utilized as a pre-screen to select genes that might have been horizontally transferred. Better taxon sampling combined with subtree analyses prevents the inconsistencies associated with four-taxon analyses, but retains the power of visual representation. Nevertheless, a case-by-case inspection of individual multi-taxon phylogenies remains necessary to differentiate unrecognized paralogy and shared phylogenetic reconstruction artifacts from horizontal gene transfer events.

  17. Identifying useful project management practices: A mixed methodology approach

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes

    2013-01-01

    Full Text Available This paper describes a mixed methodological research approach for identifying practitioner perceptions of the most useful project management (PM practices to improve project management performance. By identifying the perceived most useful tools and techniques, as having the most potential for increased contribution to project management performance, practitioners and organizations can select their priorities when improving PM practices. The research involved a programme of thirty interviews with Project Management professionals in Portugal, followed by a global survey. Completed questionnaires were received from 793 practitioners worldwide, covering 75 different countries. The results showed that the top twenty of the list of the most useful tools and techniques is composed of very well-known and widely used tools, such as: progress report; requirements analysis; progress meetings; risk identification; and project scope statement. PM practices in the top of list cover the overall PM life cycle from initiation to project closing, but particular relevance is given to tools and techniques from planning. The areas of knowledge, scope, time, risk, communication and integration, assume a high relevance, each with at least three PM practices on the top of the list.

  18. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis.

    Science.gov (United States)

    Mells, George F; Floyd, James A B; Morley, Katherine I; Cordell, Heather J; Franklin, Christopher S; Shin, So-Youn; Heneghan, Michael A; Neuberger, James M; Donaldson, Peter T; Day, Darren B; Ducker, Samantha J; Muriithi, Agnes W; Wheater, Elizabeth F; Hammond, Christopher J; Dawwas, Muhammad F; Jones, David E; Peltonen, Leena; Alexander, Graeme J; Sandford, Richard N; Anderson, Carl A

    2011-03-13

    In addition to the HLA locus, six genetic risk factors for primary biliary cirrhosis (PBC) have been identified in recent genome-wide association studies (GWAS). To identify additional loci, we carried out a GWAS using 1,840 cases from the UK PBC Consortium and 5,163 UK population controls as part of the Wellcome Trust Case Control Consortium 3 (WTCCC3). We followed up 28 loci in an additional UK cohort of 620 PBC cases and 2,514 population controls. We identified 12 new susceptibility loci (at a genome-wide significance level of P < 5 × 10⁻⁸) and replicated all previously associated loci. We identified three further new loci in a meta-analysis of data from our study and previously published GWAS results. New candidate genes include STAT4, DENND1B, CD80, IL7R, CXCR5, TNFRSF1A, CLEC16A and NFKB1. This study has considerably expanded our knowledge of the genetic architecture of PBC.

  19. Complete genome sequence of a novel extrachromosomal virus-like element identified in planarian Girardia tigrina

    Directory of Open Access Journals (Sweden)

    Vagner Loura L

    2002-06-01

    Full Text Available Abstract Background Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. Results Using a combination of Suppression Subtractive Hybridization (SSH and Mirror Orientation Selection (MOS, we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element was identified in one planarian strain. The PEVE genome (about 7.5 kb consists of two unique regions (Ul and Us flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep, and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. Conclusions PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.

  20. Genomic study in Mexicans identifies a new locus for triglycerides and refines European lipid loci

    Science.gov (United States)

    Weissglas-Volkov, Daphna; Aguilar-Salinas, Carlos A.; Nikkola, Elina; Deere, Kerry A.; Cruz-Bautista, Ivette; Arellano-Campos, Olimpia; Muñoz-Hernandez, Linda Liliana; Gomez-Munguia, Lizeth; Ordoñez-Sánchez, Maria Luisa; Reddy, Prasad MV Linga; Lusis, Aldons J.; Matikainen, Niina; Taskinen, Marja-Riitta; Riba, Laura; Cantor, Rita M.; Sinsheimer, Janet S.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2013-01-01

    Background The Mexican population and others with Amerindian heritage exhibit a substantial predisposition to dyslipidemias and coronary heart disease. Yet, these populations remain underinvestigated by genomic studies, and to date, no genome-wide association (GWA) studies have been reported for lipids in these rapidly expanding populations. Methods and Findings We performed a two-stage GWA study for hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) in Mexicans (n=4,361) and identified a novel Mexican-specific genome-wide significant locus for serum triglycerides (TGs) near the Niemann-Pick type C1 protein (NPC1) gene (P=2.43×10−08). Furthermore, three European loci for TGs (APOA5, GCKR, and LPL) and four loci for HDL-C (ABCA1, CETP, LIPC and LOC55908) reached genome-wide significance in Mexicans. We utilized cross-ethnic mapping to narrow three European TG GWA loci, APOA5, MLXIPL, and CILP2 that were wide and contained multiple candidate variants in the European scan. At the APOA5 locus, this reduced the most likely susceptibility variants to one, rs964184. Importantly, our functional analysis demonstrated a direct link between rs964184 and postprandial serum apoAV protein levels, supporting rs964184 as the causative variant underlying the European and Mexican GWA signal. Overall, 52 of the 100 reported associations from European lipid GWA meta-analysis generalized to Mexicans. However, in 82 of the 100 European GWA loci, a different variant other than the European lead/best-proxy variant had the strongest regional evidence of association in Mexicans. Conclusions This first Mexican GWA study of lipids identified a novel GWA locus for high TG levels; utilized the inter-population heterogeneity to significantly restrict three previously known European GWA signals; and surveyed whether the European lipid GWA SNPs extend to the Mexican population. PMID:23505323

  1. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.

    Science.gov (United States)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    2013-05-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

  2. Identifying human disease genes: advances in molecular genetics and computational approaches.

    Science.gov (United States)

    Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

    2014-07-04

    The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information.

  3. Genome-wide association analysis identifies multiple loci related to resting heart rate

    Science.gov (United States)

    Eijgelsheim, Mark; Newton-Cheh, Christopher; Sotoodehnia, Nona; de Bakker, Paul I.W.; Müller, Martina; Morrison, Alanna C.; Smith, Albert V.; Isaacs, Aaron; Sanna, Serena; Dörr, Marcus; Navarro, Pau; Fuchsberger, Christian; Nolte, Ilja M.; de Geus, Eco J.C.; Estrada, Karol; Hwang, Shih-Jen; Bis, Joshua C.; Rückert, Ina-Maria; Alonso, Alvaro; Launer, Lenore J.; Hottenga, Jouke Jan; Rivadeneira, Fernando; Noseworthy, Peter A.; Rice, Kenneth M.; Perz, Siegfried; Arking, Dan E.; Spector, Tim D.; Kors, Jan A.; Aulchenko, Yurii S.; Tarasov, Kirill V.; Homuth, Georg; Wild, Sarah H.; Marroni, Fabio; Gieger, Christian; Licht, Carmilla M.; Prineas, Ronald J.; Hofman, Albert; Rotter, Jerome I.; Hicks, Andrew A.; Ernst, Florian; Najjar, Samer S.; Wright, Alan F.; Peters, Annette; Fox, Ervin R.; Oostra, Ben A.; Kroemer, Heyo K.; Couper, David; Völzke, Henry; Campbell, Harry; Meitinger, Thomas; Uda, Manuela; Witteman, Jacqueline C.M.; Psaty, Bruce M.; Wichmann, H-Erich; Harris, Tamara B.; Kääb, Stefan; Siscovick, David S.; Jamshidi, Yalda; Uitterlinden, André G.; Folsom, Aaron R.; Larson, Martin G.; Wilson, James F.; Penninx, Brenda W.; Snieder, Harold; Pramstaller, Peter P.; van Duijn, Cornelia M.; Lakatta, Edward G.; Felix, Stephan B.; Gudnason, Vilmundur; Pfeufer, Arne; Heckbert, Susan R.; Stricker, Bruno H.Ch.; Boerwinkle, Eric; O'Donnell, Christopher J.

    2010-01-01

    Higher resting heart rate is associated with increased cardiovascular disease and mortality risk. Though heritable factors play a substantial role in population variation, little is known about specific genetic determinants. This knowledge can impact clinical care by identifying novel factors that influence pathologic heart rate states, modulate heart rate through cardiac structure and function or by improving our understanding of the physiology of heart rate regulation. To identify common genetic variants associated with heart rate, we performed a meta-analysis of 15 genome-wide association studies (GWAS), including 38 991 subjects of European ancestry, estimating the association between age-, sex- and body mass-adjusted RR interval (inverse heart rate) and ∼2.5 million markers. Results with P < 5 × 10−8 were considered genome-wide significant. We constructed regression models with multiple markers to assess whether results at less stringent thresholds were likely to be truly associated with RR interval. We identified six novel associations with resting heart rate at six loci: 6q22 near GJA1; 14q12 near MYH7; 12p12 near SOX5, c12orf67, BCAT1, LRMP and CASC1; 6q22 near SLC35F1, PLN and c6orf204; 7q22 near SLC12A9 and UfSp1; and 11q12 near FADS1. Associations at 6q22 400 kb away from GJA1, at 14q12 MYH6 and at 1q32 near CD34 identified in previously published GWAS were confirmed. In aggregate, these variants explain ∼0.7% of RR interval variance. A multivariant regression model including 20 variants with P < 10−5 increased the explained variance to 1.6%, suggesting that some loci falling short of genome-wide significance are likely truly associated. Future research is warranted to elucidate underlying mechanisms that may impact clinical care. PMID:20639392

  4. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Steven G Potkin

    Full Text Available BACKGROUND: With the exception of APOE epsilon4 allele, the common genetic risk factors for sporadic Alzheimer's Disease (AD are unknown. METHODS AND FINDINGS: We completed a genome-wide association study on 381 participants in the ADNI (Alzheimer's Disease Neuroimaging Initiative study. Samples were genotyped using the Illumina Human610-Quad BeadChip. 516,645 unique Single Nucleotide Polymorphisms (SNPs were included in the analysis following quality control measures. The genotype data and raw genetic data are freely available for download (LONI, http://www.loni.ucla.edu/ADNI/Data/. Two analyses were completed: a standard case-control analysis, and a novel approach using hippocampal atrophy measured on MRI as an objectively defined, quantitative phenotype. A General Linear Model was applied to identify SNPs for which there was an interaction between the genotype and diagnosis on the quantitative trait. The case-control analysis identified APOE and a new risk gene, TOMM40 (translocase of outer mitochondrial membrane 40, at a genome-wide significance level of < or =10(-6 (10(-11 for a haplotype. TOMM40 risk alleles were approximately twice as frequent in AD subjects as controls. The quantitative trait analysis identified 21 genes or chromosomal areas with at least one SNP with a p-value < or =10(-6, which can be considered potential "new" candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication. CONCLUSIONS: Using

  5. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition.

    Directory of Open Access Journals (Sweden)

    Kai Xing

    Full Text Available Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.

  6. Single-molecule approach to bacterial genomic comparisons via optical mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiguo [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Bechner, M. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Deng, W. [Univ. Wisc.-Madison; Wei, J. [Univ. Wisc.-Madison; Severin, J. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Dimalanta, E. [Univ. Wisc.-Madison; Lamers, C. [Univ. Wisc.-Madison; Burland, V. [Univ. Wisc.-Madison; Blattner, F. R. [Univ. Wisc.-Madison; Schwartz, David C. [Univ. Wisc.-Madison

    2004-01-01

    Modern comparative genomics has been established, in part, by the sequencing and annotation of a broad range of microbial species. To gain further insights, new sequencing efforts are now dealing with the variety of strains or isolates that gives a species definition and range; however, this number vastly outstrips our ability to sequence them. Given the availability of a large number of microbial species, new whole genome approaches must be developed to fully leverage this information at the level of strain diversity that maximize discovery. Here, we describe how optical mapping, a single-molecule system, was used to identify and annotate chromosomal alterations between bacterial strains represented by several species. Since whole-genome optical maps are ordered restriction maps, sequenced strains of Shigella flexneri serotype 2a (2457T and 301), Yersinia pestis (CO 92 and KIM), and Escherichia coli were aligned as maps to identify regions of homology and to further characterize them as possible insertions, deletions, inversions, or translocations. Importantly, an unsequenced Shigella flexneri strain (serotype Y strain AMC[328Y]) was optically mapped and aligned with two sequenced ones to reveal one novel locus implicated in serotype conversion and several other loci containing insertion sequence elements or phage-related gene insertions. Our results suggest that genomic rearrangements and chromosomal breakpoints are readily identified and annotated against a prototypic sequenced strain by using the tools of optical mapping.

  7. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  8. Integrative genome-wide approaches in embryonic stem cell research.

    Science.gov (United States)

    Zhang, Xinyue; Huang, Jing

    2010-10-01

    Embryonic stem (ES) cells are derived from blastocysts. They can differentiate into the three embryonic germ layers and essentially any type of somatic cells. They therefore hold great potential in tissue regeneration therapy. The ethical issues associated with the use of human embryonic stem cells are resolved by the technical break-through of generating induced pluripotent stem (iPS) cells from various types of somatic cells. However, how ES and iPS cells self-renew and maintain their pluripotency is still largely unknown in spite of the great progress that has been made in the last two decades. Integrative genome-wide approaches, such as the gene expression microarray, chromatin immunoprecipitation based microarray (ChIP-chip) and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) offer unprecedented opportunities to elucidate the mechanism of the pluripotency, reprogramming and DNA damage response of ES and iPS cells. This frontier article summarizes the fundamental biological questions about ES and iPS cells and reviews the recent advances in ES and iPS cell research using genome-wide technologies. To this end, we offer our perspectives on the future of genome-wide studies on stem cells.

  9. rep-PCR-Mediated Genomic Fingerprinting: A Rapid and Effective Method to Identify Clavibacter michiganensis.

    Science.gov (United States)

    Louws, F J; Bell, J; Medina-Mora, C M; Smart, C D; Opgenorth, D; Ishimaru, C A; Hausbeck, M K; de Bruijn, F J; Fulbright, D W

    1998-08-01

    ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.

  10. Open window: when easily identifiable genomes and traits are in the public domain.

    Directory of Open Access Journals (Sweden)

    Misha Angrist

    Full Text Available "One can't be of an enquiring and experimental nature, and still be very sensible."--Charles Fort. As the costs of personal genetic testing "self-quantification" fall, publicly accessible databases housing people's genotypic and phenotypic information are gradually increasing in number and scope. The latest entrant is openSNP, which allows participants to upload their personal genetic/genomic and self-reported phenotypic data. I believe the emergence of such open repositories of human biological data is a natural reflection of inquisitive and digitally literate people's desires to make genomic and phenotypic information more easily available to a community beyond the research establishment. Such unfettered databases hold the promise of contributing mightily to science, science education and medicine. That said, in an age of increasingly widespread governmental and corporate surveillance, we would do well to be mindful that genomic DNA is uniquely identifying. Participants in open biological databases are engaged in a real-time experiment whose outcome is unknown.

  11. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation.

    Science.gov (United States)

    Hoffmann, Thomas J; Ehret, Georg B; Nandakumar, Priyanka; Ranatunga, Dilrini; Schaefer, Catherine; Kwok, Pui-Yan; Iribarren, Carlos; Chakravarti, Aravinda; Risch, Neil

    2017-01-01

    Longitudinal electronic health records on 99,785 Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort individuals provided 1,342,814 systolic and diastolic blood pressure measurements for a genome-wide association study on long-term average systolic, diastolic, and pulse pressure. We identified 39 new loci among 75 genome-wide significant loci (P ≤ 5 × 10(-8)), with most replicating in the combined International Consortium for Blood Pressure (ICBP; n = 69,396) and UK Biobank (UKB; n = 152,081) studies. Combining GERA with ICBP yielded 36 additional new loci, with most replicating in UKB. Combining all three studies (n = 321,262) yielded 241 additional genome-wide significant loci, although no replication sample was available for these. All associated loci explained 2.9%, 2.5%, and 3.1% of variation in systolic, diastolic, and pulse pressure, respectively, in GERA non-Hispanic whites. Using multiple blood pressure measurements in GERA doubled the variance explained. A normalized risk score was associated with time to onset of hypertension (hazards ratio = 1.18, P = 8.2 × 10(-45)). Expression quantitative trait locus analysis of blood pressure loci showed enrichment in aorta and tibial artery.

  12. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Science.gov (United States)

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  13. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck. in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1 genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2 master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  14. Five endometrial cancer risk loci identified through genome-wide association analysis.

    Science.gov (United States)

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.

  15. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter.

    Science.gov (United States)

    Baughman, Joshua M; Perocchi, Fabiana; Girgis, Hany S; Plovanich, Molly; Belcher-Timme, Casey A; Sancak, Yasemin; Bao, X Robert; Strittmatter, Laura; Goldberger, Olga; Bogorad, Roman L; Koteliansky, Victor; Mootha, Vamsi K

    2011-06-19

    Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter. Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.

  16. A novel prokaryotic promoter identified in the genome of some monopartite begomoviruses.

    Directory of Open Access Journals (Sweden)

    Wei-Chen Wang

    Full Text Available Geminiviruses are known to exhibit both prokaryotic and eukaryotic features in their genomes, with the ability to express their genes and even replicate in bacterial cells. We have demonstrated previously the existence of unit-length single-stranded circular DNAs of Ageratum yellow vein virus (AYVV, a species in the genus Begomovirus, family Geminiviridae in Escherichia coli cells, which prompted our search for unknown prokaryotic functions in the begomovirus genomes. By using a promoter trapping strategy, we identified a novel prokaryotic promoter, designated AV3 promoter, in nts 762-831 of the AYVV genome. Activity assays revealed that the AV3 promoter is strong, unidirectional, and constitutive, with an endogenous downstream ribosome binding site and a translatable short open reading frame of eight amino acids. Sequence analyses suggested that the AV3 promoter might be a remnant of prokaryotic ancestors that could be related to certain promoters of bacteria from marine or freshwater environments. The discovery of the prokaryotic AV3 promoter provided further evidence for the prokaryotic origin in the evolutionary history of geminiviruses.

  17. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

    Directory of Open Access Journals (Sweden)

    Gary Hon

    2008-10-01

    Full Text Available Computational methods to identify functional genomic elements using genetic information have been very successful in determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome annotation via chromatin modifications.

  18. Identifying perinatal risk factors for infant maltreatment: an ecological approach

    Directory of Open Access Journals (Sweden)

    Hallisey Elaine J

    2006-12-01

    Full Text Available Abstract Background Child maltreatment and its consequences are a persistent problem throughout the world. Public health workers, human services officials, and others are interested in new and efficient ways to determine which geographic areas to target for intervention programs and resources. To improve assessment efforts, selected perinatal factors were examined, both individually and in various combinations, to determine if they are associated with increased risk of infant maltreatment. State of Georgia birth records and abuse and neglect data were analyzed using an area-based, ecological approach with the census tract as a surrogate for the community. Cartographic visualization suggested some correlation exists between risk factors and child maltreatment, so bivariate and multivariate regression were performed. The presence of spatial autocorrelation precluded the use of traditional ordinary least squares regression, therefore a spatial regression model coupled with maximum likelihood estimation was employed. Results Results indicate that all individual factors or their combinations are significantly associated with increased risk of infant maltreatment. The set of perinatal risk factors that best predicts infant maltreatment rates are: mother smoked during pregnancy, families with three or more siblings, maternal age less than 20 years, births to unmarried mothers, Medicaid beneficiaries, and inadequate prenatal care. Conclusion This model enables public health to take a proactive stance, to reasonably predict areas where poor outcomes are likely to occur, and to therefore more efficiently allocate resources. U.S. states that routinely collect the variables the National Center for Health Statistics (NCHS defines for birth certificates can easily identify areas that are at high risk for infant maltreatment. The authors recommend that agencies charged with reducing child maltreatment target communities that demonstrate the perinatal risks

  19. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  20. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis

    Science.gov (United States)

    Liu, Xiangdong; Invernizzi, Pietro; Lu, Yue; Kosoy, Roman; Lu, Yan; Bianchi, Ilaria; Podda, Mauro; Xu, Chun; Xie, Gang; Macciardi, Fabio; Selmi, Carlo; Lupoli, Sara; Shigeta, Russell; Ransom, Michael; Lleo, Ana; Lee, Annette T; Mason, Andrew L; Myers, Robert P; Peltekian, Kevork M; Ghent, Cameron N; Bernuzzi, Francesca; Zuin, Massimo; Rosina, Floriano; Borghesio, Elisabetta; Floreani, Annarosa; Lazzari, Roberta; Niro, Grazia; Andriulli, Angelo; Muratori, Luigi; Muratori, Paolo; Almasio, Piero L; Andreone, Pietro; Margotti, Marzia; Brunetto, Maurizia; Coco, Barbara; Alvaro, Domenico; Bragazzi, Maria C; Marra, Fabio; Pisano, Alessandro; Rigamonti, Cristina; Colombo, Massimo; Marzioni, Marco; Benedetti, Antonio; Fabris, Luca; Strazzabosco, Mario; Portincasa, Piero; Palmieri, Vincenzo O; Tiribelli, Claudio; Croce, Lory; Bruno, Savino; Rossi, Sonia; Vinci, Maria; Prisco, Cleofe; Mattalia, Alberto; Toniutto, Pierluigi; Picciotto, Antonio; Galli, Andrea; Ferrari, Carlo; Colombo, Silvia; Casella, Giovanni; Morini, Lorenzo; Caporaso, Nicola; Colli, Agostino; Spinzi, Giancarlo; Montanari, Renzo; Gregersen, Peter K; Heathcote, E Jenny; Hirschfield, Gideon M; Siminovitch, Katherine A; Amos, Christopher I; Gershwin, M Eric; Seldin, Michael F

    2011-01-01

    A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 × 10–11, odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 × 10–10, OR = 1.63) and 17q12-21 (P = 1.7 × 10–10, OR = 1.38). PMID:20639880

  1. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    OpenAIRE

    Lindgren, Cecilia; Heid, Iris; Randall, Joshua; Lamina, Claudia; Steinthorsdottir, Valgerdur; Qi, Lu; Speliotes, Elizabeth; Thorleifsson, Gudmar; Willer, Cristen; Herrera, Blanca; Jackson, Anne; Lim, Noha; Scheet, Paul; Soranzo, Nicole; Amin, Najaf

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals ...

  2. Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia.

    Science.gov (United States)

    Pak, Theodore R; Altman, Deena R; Attie, Oliver; Sebra, Robert; Hamula, Camille L; Lewis, Martha; Deikus, Gintaras; Newman, Leah C; Fang, Gang; Hand, Jonathan; Patel, Gopi; Wallach, Fran; Schadt, Eric E; Huprikar, Shirish; van Bakel, Harm; Kasarskis, Andrew; Bashir, Ali

    2015-11-01

    Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy.

  3. Exploiting genomics resources to identify candidate genes underlying antioxidants content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Roberta eCalafiore

    2016-04-01

    Full Text Available The tomato is a model species for fleshy fruit development and ripening, as well as for genomics studies of others Solanaceae. Many genetic and genomics resources, including databases for sequencing, transcriptomics and metabolomics data, have been developed and are today available. The purpose of the present work was to uncover new genes and/or alleles that determine ascorbic acid and carotenoids accumulation, by exploiting one Solanum pennellii introgression lines (IL7-3 harboring quantitative trait loci (QTL that increase the content of these metabolite in the fruit. The higher ascorbic acid and carotenoids content in IL7-3 was confirmed at three fruit developmental stages. The tomato genome reference sequence and the recently released S. pennellii genome sequence were investigated to identify candidate genes that might control ascorbic acid and carotenoids accumulation. First of all, a refinement of the wild region borders in the IL7-3 was achieved by analyzing CAPS markers designed in our laboratory. Afterwards, six candidate genes associated to ascorbic acid and one with carotenoids metabolism were identified exploring the annotation and the Gene Ontology terms of genes included in the region. Variants between the sequence of the wild and the cultivated alleles of these genes were investigated for their functional relevance and their potential effects on the protein sequences were predicted. Transcriptional levels of candidate genes in the introgression region were extracted from RNA-Seq data available for the entire S. pennellii introgression lines collection and verified by Real-Time qPCR. Finally, seven IL7-3 sub-lines were genotyped using 28 species-specific markers and then were evaluated for metabolites content. These analyses evidenced a significant decrease in transcript abundance for one 9-cis-epoxycarotenoid dioxygenase and one L-ascorbate oxidase homolog, whose role in the accumulation of carotenoids and ascorbic acid is

  4. A Functional Genomic Approach to Chlorinated Ethenes Bioremediation

    Science.gov (United States)

    Lee, P. K.; Brodie, E. L.; MacBeth, T. W.; Deeb, R. A.; Sorenson, K. S.; Andersen, G. L.; Alvarez-Cohen, L.

    2007-12-01

    With the recent advances in genomic sciences, a knowledge-based approach can now be taken to optimize the bioremediation of trichloroethene (TCE). During the bioremediation of a heterogeneous subsurface, it is vital to identify and quantify the functionally important microorganisms present, characterize the microbial community and measure their physiological activity. In our field experiments, quantitative PCR (qPCR) was coupled with reverse-transcription (RT) to analyze both copy numbers and transcripts expressed by the 16S rRNA gene and three reductive dehalogenase (RDase) genes as biomarkers of Dehalococcoides spp. in the groundwater of a TCE-DNAPL site at Ft. Lewis (WA) that was serially subjected to biostimulation and bioaugmentation. Genes in the Dehalococcoides genus were targeted as they are the only known organisms that can completely dechlorinate TCE to the innocuous product ethene. Biomarker quantification revealed an overall increase of more than three orders of magnitude in the total Dehalococcoides population and quantification of the more liable and stringently regulated mRNAs confirmed that Dehalococcoides spp. were active. Parallel with our field experiments, laboratory studies were conducted to explore the physiology of Dehalococcoides isolates in order to develop relevant biomarkers that are indicative of the metabolic state of cells. Recently, we verified the function of the nitrogenase operon in Dehalococcoides sp. strain 195 and nitrogenase-encoding genes are ideal biomarker targets to assess cellular nitrogen requirement. To characterize the microbial community, we applied a high-density phylogenetic microarray (16S PhyloChip) that simultaneous monitors over 8,700 unique taxa to track the bacterial and archaeal populations through different phases of treatment. As a measure of species richness, 1,300 to 1,520 taxa were detected in groundwater samples extracted during different stages of treatment as well as in the bioaugmentation culture. We

  5. Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53-deficient mammary cancers

    Directory of Open Access Journals (Sweden)

    Adam D. Pfefferle

    2016-07-01

    Full Text Available Targeted therapies against basal-like breast tumors, which are typically ‘triple-negative breast cancers (TNBCs’, remain an important unmet clinical need. Somatic TP53 mutations are the most common genetic event in basal-like breast tumors and TNBC. To identify additional drivers and possible drug targets of this subtype, a comparative study between human and murine tumors was performed by utilizing a murine Trp53-null mammary transplant tumor model. We show that two subsets of murine Trp53-null mammary transplant tumors resemble aspects of the human basal-like subtype. DNA-microarray, whole-genome and exome-based sequencing approaches were used to interrogate the secondary genetic aberrations of these tumors, which were then compared to human basal-like tumors to identify conserved somatic genetic features. DNA copy-number variation produced the largest number of conserved candidate personalized drug targets. These candidates were filtered using a DNA-RNA Pearson correlation cut-off and a requirement that the gene was deemed essential in at least 5% of human breast cancer cell lines from an RNA-mediated interference screen database. Five potential personalized drug target genes, which were spontaneously amplified loci in both murine and human basal-like tumors, were identified: Cul4a, Lamp1, Met, Pnpla6 and Tubgcp3. As a proof of concept, inhibition of Met using crizotinib caused Met-amplified murine tumors to initially undergo complete regression. This study identifies Met as a promising drug target in a subset of murine Trp53-null tumors, thus identifying a potential shared driver with a subset of human basal-like breast cancers. Our results also highlight the importance of comparative genomic studies for discovering personalized drug targets and for providing a preclinical model for further investigations of key tumor signaling pathways.

  6. Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens.

    Science.gov (United States)

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2015-08-06

    Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0-10.0 cM/0.00-0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8. A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken (Gallus gallus; GG) chromosome 3 (i.e., GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0-11.0 cM/0.00-2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0-53.0 cM/11.37-12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken. Copyright © 2015 Sun et al.

  7. Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome

    Directory of Open Access Journals (Sweden)

    Minchella Dennis J

    2009-10-01

    Full Text Available Abstract Background New chemotherapeutic agents against Schistosoma mansoni, an etiological agent of human schistosomiasis, are a priority due to the emerging drug resistance and the inability of current drug treatments to prevent reinfection. Proteases have been under scrutiny as targets of immunological or chemotherapeutic anti-Schistosoma agents because of their vital role in many stages of the parasitic life cycle. Function has been established for only a handful of identified S. mansoni proteases, and the vast majority of these are the digestive proteases; very few of the conserved classes of regulatory proteases have been identified from Schistosoma species, despite their vital role in numerous cellular processes. To that end, we identified protease protein coding genes from the S. mansoni genome project and EST library. Results We identified 255 protease sequences from five catalytic classes using predicted proteins of the S. mansoni genome. The vast majority of these show significant similarity to proteins in KEGG and the Conserved Domain Database. Proteases include calpains, caspases, cytosolic and mitochondrial signal peptidases, proteases that interact with ubiquitin and ubiquitin-like molecules, and proteases that perform regulated intramembrane proteolysis. Comparative analysis of classes of important regulatory proteases find conserved active site domains, and where appropriate, signal peptides and transmembrane helices. Phylogenetic analysis provides support for inferring functional divergence among regulatory aspartic, cysteine, and serine proteases. Conclusion Numerous proteases are identified for the first time in S. mansoni. We characterized important regulatory proteases and focus analysis on these proteases to complement the growing knowledge base of digestive proteases. This work provides a foundation for expanding knowledge of proteases in Schistosoma species and examining their diverse function and potential as targets

  8. Functional genomic approach to the study of biodiversitywithin Trichoderma

    Institute of Scientific and Technical Information of China (English)

    Monte E; Hermosa M R; González F J; Rey M; Cardoza R E; Gutiérrez S; Delgado Jarana J; Llobell A

    2004-01-01

    @@ Trichoderma is a fungal genus of great and demonstrable biotechnological value, but its genome is poorly surveyed compared with other model microorganisms. Due to their ubiquity and rapid substrate colonization, Trichoderma species have been widely used as biocontrol organisms for agriculture, and their enzyme systems are widely used in industry. Therefore, there is a clear interest to explore beyond the phenotype to exploit the underlying genetic systems using functional genomics tools. The great diversity of species within the Trichoderma genus, the absence of optimized systems for its exploration, and the great variety of genes expressed under a wide range of ambient conditions are the main challenges to consider when starting a comprehensive functional genomics study. An initial project started by three Spanish groups has been extended into the project TRICHOEST, funded by the EU (FP5, QLRT-2001-02032) to target the transcriptome analysis of selected Trichoderma strains with biocontrol potential, in conditions related to antagonism, nutrient stress and plant interactions. Once specific conditions were defined, cDNA libraries were produced and used for EST sequencing. Nine strains from seven Trichoderma species have been considered in this study and an important amount of gene sequence data has been generated, analyzed and used to compare the gene expression in different strains.In parallel to sequencing, genomic expression studies were carried out by means of macro-arrays to identify genes expressed in specific conditions. In silico analysis of DNA sequencing data together with macro-array expression results have lead to a selection based on the potential use of the gene sequences.The selected clone sequences were completed and cloned in appropriate vectors to initiate functional analysis by means of expression studies in homologous and heterologous systems.

  9. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.

    Science.gov (United States)

    Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C P G M; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Amin, Najaf; van Duijn, Cornelia M; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce B J; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia M T; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent

    2015-10-01

    The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture

  10. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Science.gov (United States)

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  11. Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis.

    Science.gov (United States)

    Lakshmi, Bhavana Sethu; Wang, Ruobing; Madhubala, Rentala

    2014-06-24

    Leishmaniasis is a neglected tropical disease caused by Leishmania species. It is a major health concern affecting 88 countries and threatening 350 million people globally. Unfortunately, there are no vaccines and there are limitations associated with the current therapeutic regimens for leishmaniasis. The emerging cases of drug-resistance further aggravate the situation, demanding rapid drug and vaccine development. The genome sequence of Leishmania, provides access to novel genes that hold potential as chemotherapeutic targets or vaccine candidates. In this study, we selected 19 antigenic genes from about 8000 common Leishmania genes based on the Leishmania major and Leishmania infantum genome information available in the pathogen databases. Potential vaccine candidates thus identified were screened using an in vitro high throughput immunological platform developed in the laboratory. Four candidate genes coding for tuzin, flagellar glycoprotein-like protein (FGP), phospholipase A1-like protein (PLA1) and potassium voltage-gated channel protein (K VOLT) showed a predominant protective Th1 response over disease exacerbating Th2. We report the immunogenic properties and protective efficacy of one of the four antigens, tuzin, as a DNA vaccine against Leishmania donovani challenge. Our results show that administration of tuzin DNA protected BALB/c mice against L. donovani challenge and that protective immunity was associated with higher levels of IFN-γ and IL-12 production in comparison to IL-4 and IL-10. Our study presents a simple approach to rapidly identify potential vaccine candidates using the exhaustive information stored in the genome and an in vitro high-throughput immunological platform.

  12. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers.

    Directory of Open Access Journals (Sweden)

    Noriko Tonomura

    2015-02-01

    Full Text Available Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6% and hemangiosarcoma (20%. We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.

  13. Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments.

    Science.gov (United States)

    Noto, Jennifer M; Chopra, Abha; Loh, John T; Romero-Gallo, Judith; Piazuelo, M Blanca; Watson, Mark; Leary, Shay; Beckett, Amber C; Wilson, Keith T; Cover, Timothy L; Mallal, Simon; Israel, Dawn A; Peek, Richard M

    2017-09-18

    Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease. Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed. A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034). These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. DESCARTES' RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA.

    Science.gov (United States)

    Bhaskar, Anand; Song, Yun S

    2014-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.

  15. Using sheep genomes from diverse U.S. breeds to identify missense variants in genes affecting fecundity

    Science.gov (United States)

    Background: Access to sheep genome sequences significantly improves the chances of identifying genes that may influence the health, welfare, and productivity of these animals. Methods: A public, searchable DNA sequence resource for U.S. sheep was created with whole genome sequence (WGS) of 96 rams. ...

  16. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    Science.gov (United States)

    Stahl, Eli A.; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P.; Catanese, Joseph J.; Coblyn, Jonathan; Coenen, Marieke JH; Costenbader, Karen H.; Criswell, Lindsey A.; Crusius, J. Bart A.; Cui, Jing; de Bakker, Paul I.W.; De Jager, Phillip L.; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J.; Huizinga, Tom W. J.; Kastner, Daniel L.; Ke, Xiayi; Lee, Annette T.; Liu, Xiangdong; Martin, Paul; Morgan, Ann W.; Padyukov, Leonid; Posthumus, Marcel D.; Radstake, Timothy RDJ; Reid, David M.; Seielstad, Mark; Seldin, Michael F.; Shadick, Nancy A.; Steer, Sophia; Tak, Paul P.; Thomson, Wendy; van der Helm-van Mil, Annette H. M.; van der Horst-Bruinsma, Irene E.; van der Schoot, C. Ellen; van Riel, Piet LCM; Weinblatt, Michael E.; Wilson, Anthony G.; Wolbink, Gert Jan; Wordsworth, Paul; Wijmenga, Cisca; Karlson, Elizabeth W.; Toes, Rene E. M.; de Vries, Niek; Begovich, Ann B.; Worthington, Jane; Siminovitch, Katherine A.; Gregersen, Peter K.; Klareskog, Lars; Plenge, Robert M.

    2014-01-01

    To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles. PMID:20453842

  17. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

    Directory of Open Access Journals (Sweden)

    Kevin A Kwei

    2008-05-01

    Full Text Available Pancreatobiliary cancers have among the highest mortality rates of any cancer type. Discovering the full spectrum of molecular genetic alterations may suggest new avenues for therapy. To catalogue genomic alterations, we carried out array-based genomic profiling of 31 exocrine pancreatic cancers and 6 distal bile duct cancers, expanded as xenografts to enrich the tumor cell fraction. We identified numerous focal DNA amplifications and deletions, including in 19% of pancreatobiliary cases gain at cytoband 18q11.2, a locus uncommonly amplified in other tumor types. The smallest shared amplification at 18q11.2 included GATA6, a transcriptional regulator previously linked to normal pancreas development. When amplified, GATA6 was overexpressed at both the mRNA and protein levels, and strong immunostaining was observed in 25 of 54 (46% primary pancreatic cancers compared to 0 of 33 normal pancreas specimens surveyed. GATA6 expression in xenografts was associated with specific microarray gene-expression patterns, enriched for GATA binding sites and mitochondrial oxidative phosphorylation activity. siRNA mediated knockdown of GATA6 in pancreatic cancer cell lines with amplification led to reduced cell proliferation, cell cycle progression, and colony formation. Our findings indicate that GATA6 amplification and overexpression contribute to the oncogenic phenotypes of pancreatic cancer cells, and identify GATA6 as a candidate lineage-specific oncogene in pancreatobiliary cancer, with implications for novel treatment strategies.

  18. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility

    Science.gov (United States)

    Cook, James P; Morris, Andrew P

    2016-01-01

    Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10−8) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry. PMID:27189021

  19. Identifying predictors of physics item difficulty: A linear regression approach

    Directory of Open Access Journals (Sweden)

    Vanes Mesic

    2011-06-01

    Full Text Available Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal

  20. Identifying predictors of physics item difficulty: A linear regression approach

    Science.gov (United States)

    Mesic, Vanes; Muratovic, Hasnija

    2011-06-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal physics knowledge

  1. A hybrid approach for de novo human genome sequence assembly and phasing.

    Science.gov (United States)

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D; Kwok, Pui-Yan

    2016-07-01

    Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.

  2. A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers

    Directory of Open Access Journals (Sweden)

    Maher Eamonn R

    2010-02-01

    Full Text Available Abstract Background Genetic as well as epigenetic alterations are a hallmark of both epithelial and haematological malignancies. High throughput screens are required to identify epigenetic markers that can be useful for diagnostic and prognostic purposes across malignancies. Results Here we report for the first time the use of the MIRA assay (methylated CpG island recovery assay in combination with genome-wide CpG island arrays to identify epigenetic molecular markers in childhood acute lymphoblastic leukemia (ALL on a genome-wide scale. We identified 30 genes demonstrating methylation frequencies of ≥25% in childhood ALL, nine genes showed significantly different methylation frequencies in B vs T-ALL. For majority of the genes expression could be restored in methylated leukemia lines after treatment with 5-azaDC. Forty-four percent of the genes represent targets of the polycomb complex. In chronic myeloid leukemia (CML two of the genes, (TFAP2A and EBF2, demonstrated increased methylation in blast crisis compared to chronic phase (P ATG16L2 was associated with poorer prognosis in terms of molecular response to Imatinib treatment. Lastly we demonstrated that ten of these genes were also frequently methylated in common epithelial cancers. Conclusion In summary we have identified a large number of genes showing frequent methylation in childhood ALL, methylation status of two of these genes is associated with advanced disease in CML and methylation status of another gene is associated with prognosis. In addition a subset of these genes may act as epigenetic markers across hematological malignancies as well as common epithelial cancers.

  3. An integrative genomic approach to uncover molecular mechanisms of prokaryotic traits.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2006-11-01

    Full Text Available With mounting availability of genomic and phenotypic databases, data integration and mining become increasingly challenging. While efforts have been put forward to analyze prokaryotic phenotypes, current computational technologies either lack high throughput capacity for genomic scale analysis, or are limited in their capability to integrate and mine data across different scales of biology. Consequently, simultaneous analysis of associations among genomes, phenotypes, and gene functions is prohibited. Here, we developed a high throughput computational approach, and demonstrated for the first time the feasibility of integrating large quantities of prokaryotic phenotypes along with genomic datasets for mining across multiple scales of biology (protein domains, pathways, molecular functions, and cellular processes. Applying this method over 59 fully sequenced prokaryotic species, we identified genetic basis and molecular mechanisms underlying the phenotypes in bacteria. We identified 3,711 significant correlations between 1,499 distinct Pfam and 63 phenotypes, with 2,650 correlations and 1,061 anti-correlations. Manual evaluation of a random sample of these significant correlations showed a minimal precision of 30% (95% confidence interval: 20%-42%; n = 50. We stratified the most significant 478 predictions and subjected 100 to manual evaluation, of which 60 were corroborated in the literature. We furthermore unveiled 10 significant correlations between phenotypes and KEGG pathways, eight of which were corroborated in the evaluation, and 309 significant correlations between phenotypes and 166 GO concepts evaluated using a random sample (minimal precision = 72%; 95% confidence interval: 60%-80%; n = 50. Additionally, we conducted a novel large-scale phenomic visualization analysis to provide insight into the modular nature of common molecular mechanisms spanning multiple biological scales and reused by related phenotypes (metaphenotypes. We propose

  4. A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyun Kim

    Full Text Available Hirschsprung disease (HSCR is a congenital and heterogeneous disorder characterized by the absence of intramural nervous plexuses along variable lengths of the hindgut. Although RET is a well-established risk factor, a recent genome-wide association study (GWAS of HSCR has identified NRG1 as an additional susceptibility locus. To discover additional risk loci, we performed a GWAS of 123 sporadic HSCR patients and 432 unaffected controls using a large-scale platform with coverage of over 1 million polymorphic markers. The result was that our study replicated the findings of RET-CSGALNACT2-RASGEF1A genomic region (rawP = 5.69×10(-19 before a Bonferroni correction; corrP = 4.31×10(-13 after a Bonferroni correction and NRG1 as susceptibility loci. In addition, this study identified SLC6A20 (adjP = 2.71×10(-6, RORA (adjP = 1.26×10(-5, and ABCC9 (adjP = 1.86×10(-5 as new potential susceptibility loci under adjusting the already known loci on the RET-CSGALNACT2-RASGEF1A and NRG1 regions, although none of the SNPs in these genes passed the Bonferroni correction. In further subgroup analysis, the RET-CSGALNACT2-RASGEF1A genomic region was observed to have different significance levels among subgroups: short-segment (S-HSCR, corrP = 1.71×10(-5, long-segment (L-HSCR, corrP = 6.66×10(-4, and total colonic aganglionosis (TCA, corrP>0.05. This differential pattern in the significance level suggests that other genomic loci or mechanisms may affect the length of aganglionosis in HSCR subgroups during enteric nervous system (ENS development. Although functional evaluations are needed, our findings might facilitate improved understanding of the mechanisms of HSCR pathogenesis.

  5. Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    DEFF Research Database (Denmark)

    Fatemifar, Ghazaleh; Hoggart, Clive J; Paternoster, Lavinia

    2013-01-01

    , these associations explain 6.06% of the variation in 'age of first tooth' and 4.76% of the variation in 'number of teeth'. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein......-coding region of BMP4 (rs17563, P = 9.080 × 10(-17)). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy...... for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development....

  6. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    Science.gov (United States)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik

    2014-01-01

    Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607

  7. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...... could suggest the existence of evolutionarily preserved genetic mechanisms for BMI whereas the multiple suggestive loci could represent genetic effect from gene-environment interaction as a result of population-specific environmental adaptation....

  8. Resolving the question of trypanosome monophyly: a comparative genomics approach using whole genome data sets with low taxon sampling.

    Science.gov (United States)

    Leonard, Guy; Soanes, Darren M; Stevens, Jamie R

    2011-07-01

    Since the first attempts to classify the evolutionary history of trypanosomes, there have been conflicting reports regarding their true phylogenetic relationships and, in particular, their relationships with other vertebrate trypanosomatids, e.g. Leishmania sp., as well as with the many insect parasitising trypanosomatids. Perhaps the issue that has provided most debate is that concerning the monophyly (or otherwise) of genus Trypanosoma and, even with the advent of molecular methods, the findings of numerous studies have varied significantly depending on the gene sequences analysed, number of taxa included, choice of outgroup and phylogenetic methodology. While of arguably limited applied importance, resolution of the question as to whether or not trypanosomes are monophyletic is critical to accurate evaluation of competing, mutually exclusive evolutionary scenarios for these parasites, namely the 'vertebrate-first' or 'insect-first' hypotheses. Therefore, a new approach, which could overcome previous limitations was needed. At its most simple, the problem can be defined within the framework of a trifurcated tree with three hypothetical positions at which the root can be placed. Using BLASTp and whole-genome gene-by-gene phylogenetic analyses of Trypanosoma brucei, Trypanosoma cruzi, Leishmania major and Naegleria gruberi, we have identified 599 gene markers--putative homologues--that were shared between the genomes of these four taxa. Of these, 75 homologous gene families that demonstrate monophyly of the kinetoplastids were identified. We then used these data sets in combination with an additional outgroup, Euglena gracilis, coupled with large-scale gene concatenation and diverse phylogenetic techniques to investigate the relative branching order of T. brucei, T. cruzi and L. major. Our findings confirm the monophyly of genus Trypanosoma and demonstrate that <1% of the analysed gene markers shared between the genomes of T. brucei, T. cruzi and L. major reject

  9. Scanning genomic areas under selection sweep and association mapping as tools to identify horticultural important genes in watermelon

    Science.gov (United States)

    Watermelon (Citrullus lanatus var. lanatus) contains 88% water, sugars, and several important health-related compounds, including lycopene, citrulline, arginine, and glutathione. The current genetic diversity study uses microsatellites with known map positions to identify genomic regions that under...

  10. MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification.

    Science.gov (United States)

    Fiscon, Giulia; Weitschek, Emanuel; Cella, Eleonora; Lo Presti, Alessandra; Giovanetti, Marta; Babakir-Mina, Muhammed; Ciotti, Marco; Ciccozzi, Massimo; Pierangeli, Alessandra; Bertolazzi, Paola; Felici, Giovanni

    2016-01-01

    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods. We propose a supervised method based on a genetic algorithm to identify small genomic subsequences that discriminate among different species. The method identifies multiple subsequences of bounded length with the same information power in a given genomic region. The algorithm has been successfully evaluated through its integration into a rule-based classification framework and applied to three different biological data sets: Influenza, Polyoma, and Rhino virus sequences. We discover a large number of small subsequences that can be used to identify each virus type with high accuracy and low computational time, and moreover help to characterize different genomic regions. Bounding their length to 20, our method found 1164 characterizing subsequences for all the Influenza virus subtypes, 194 for all the Polyoma viruses, and 11 for Rhino viruses. The abundance of small separating subsequences extracted for each genomic region may be an important support for quick and robust virus identification. Finally, useful biological information can be derived by the relative location and abundance of such subsequences along the different regions.

  11. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.......Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  12. Characterization of genome-wide association-identified variants for atrial fibrillation in African Americans.

    Directory of Open Access Journals (Sweden)

    Jessica T Delaney

    Full Text Available BACKGROUND: Despite a greater burden of risk factors, atrial fibrillation (AF is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22. The contribution of these loci to AF risk in African American is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05. The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r(2<0.40 in HapMap CEU: 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13-0.67, P = 0.003, 4q25 rs4631108 (OR 3.43, 95% CI 1.59-7.42, P = 0.002, and 16q22 rs16971547 (OR 8.1, 95% CI 1.46-45.4, P = 0.016. Estimates of European ancestry were similar among cases (23.6% and controls (23.8%. Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls. CONCLUSIONS/SIGNIFICANCE: Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations.

  13. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.

    Directory of Open Access Journals (Sweden)

    Abigail Bigham

    2010-09-01

    Full Text Available High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2, shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association

  14. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Jasmine Foo

    2015-09-01

    Full Text Available The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such "driver" mutations from innocuous "passenger" events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery.

  15. Genome-wide meta-analyses identify multiple loci associated with smoking behavior.

    LENUS (Irish Health Repository)

    2010-05-01

    Consistent but indirect evidence has implicated genetic factors in smoking behavior. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], beta = 1.03, standard error (s.e.) = 0.053, P = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], beta = 0.367, s.e. = 0.059, P = 5.7 x 10(-10); and rs1028936[A], beta = 0.446, s.e. = 0.074, P = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], beta = 0.333, s.e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.

  16. Predicting disease trait with genomic data: a composite kernel approach.

    Science.gov (United States)

    Yang, Haitao; Li, Shaoyu; Cao, Hongyan; Zhang, Chichen; Cui, Yuehua

    2016-06-02

    With the advancement of biotechniques, a vast amount of genomic data is generated with no limit. Predicting a disease trait based on these data offers a cost-effective and time-efficient way for early disease screening. Here we proposed a composite kernel partial least squares (CKPLS) regression model for quantitative disease trait prediction focusing on genomic data. It can efficiently capture nonlinear relationships among features compared with linear learning algorithms such as Least Absolute Shrinkage and Selection Operator or ridge regression. We proposed to optimize the kernel parameters and kernel weights with the genetic algorithm (GA). In addition to improved performance for parameter optimization, the proposed GA-CKPLS approach also has better learning capacity and generalization ability compared with single kernel-based KPLS method as well as other nonlinear prediction models such as the support vector regression. Extensive simulation studies demonstrated that GA-CKPLS had better prediction performance than its counterparts under different scenarios. The utility of the method was further demonstrated through two case studies. Our method provides an efficient quantitative platform for disease trait prediction based on increasing volume of omics data.

  17. An integrative computational approach for prioritization of genomic variants.

    Directory of Open Access Journals (Sweden)

    Inna Dubchak

    Full Text Available An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB, and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.

  18. Experimental Approaches to Study Genome Packaging of Influenza A Viruses

    Directory of Open Access Journals (Sweden)

    Catherine Isel

    2016-08-01

    Full Text Available The genome of influenza A viruses (IAV consists of eight single-stranded negative sense viral RNAs (vRNAs encapsidated into viral ribonucleoproteins (vRNPs. It is now well established that genome packaging (i.e., the incorporation of a set of eight distinct vRNPs into budding viral particles, follows a specific pathway guided by segment-specific cis-acting packaging signals on each vRNA. However, the precise nature and function of the packaging signals, and the mechanisms underlying the assembly of vRNPs into sub-bundles in the cytoplasm and their selective packaging at the viral budding site, remain largely unknown. Here, we review the diverse and complementary methods currently being used to elucidate these aspects of the viral cycle. They range from conventional and competitive reverse genetics, single molecule imaging of vRNPs by fluorescence in situ hybridization (FISH and high-resolution electron microscopy and tomography of budding viral particles, to solely in vitro approaches to investigate vRNA-vRNA interactions at the molecular level.

  19. An Integrative Computational Approach for Prioritization of Genomic Variants

    Science.gov (United States)

    Wang, Sheng; Meyden, Cem; Sulakhe, Dinanath; Poliakov, Alexander; Börnigen, Daniela; Xie, Bingqing; Taylor, Andrew; Ma, Jianzhu; Paciorkowski, Alex R.; Mirzaa, Ghayda M.; Dave, Paul; Agam, Gady; Xu, Jinbo; Al-Gazali, Lihadh; Mason, Christopher E.; Ross, M. Elizabeth; Maltsev, Natalia; Gilliam, T. Conrad

    2014-01-01

    An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest. PMID:25506935

  20. Statistical techniques to construct assays for identifying likely responders to a treatment under evaluation from cell line genomic data

    Directory of Open Access Journals (Sweden)

    Shi Xiaoyan

    2010-10-01

    Full Text Available Abstract Background Developing the right drugs for the right patients has become a mantra of drug development. In practice, it is very difficult to identify subsets of patients who will respond to a drug under evaluation. Most of the time, no single diagnostic will be available, and more complex decision rules will be required to define a sensitive population, using, for instance, mRNA expression, protein expression or DNA copy number. Moreover, diagnostic development will often begin with in-vitro cell-line data and a high-dimensional exploratory platform, only later to be transferred to a diagnostic assay for use with patient samples. In this manuscript, we present a novel approach to developing robust genomic predictors that are not only capable of generalizing from in-vitro to patient, but are also amenable to clinically validated assays such as qRT-PCR. Methods Using our approach, we constructed a predictor of sensitivity to dacetuzumab, an investigational drug for CD40-expressing malignancies such as lymphoma using genomic measurements of cell lines treated with dacetuzumab. Additionally, we evaluated several state-of-the-art prediction methods by independently pairing the feature selection and classification components of the predictor. In this way, we constructed several predictors that we validated on an independent DLBCL patient dataset. Similar analyses were performed on genomic measurements of breast cancer cell lines and patients to construct a predictor of estrogen receptor (ER status. Results The best dacetuzumab sensitivity predictors involved ten or fewer genes and accurately classified lymphoma patients by their survival and known prognostic subtypes. The best ER status classifiers involved one or two genes and led to accurate ER status predictions more than 85% of the time. The novel method we proposed performed as well or better than other methods evaluated. Conclusions We demonstrated the feasibility of combining feature

  1. Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    Science.gov (United States)

    de Macedo Dossin, Fernando; Choi, Seo Yeon; Kim, Nam Youl; Kim, Hi Chul; Jung, Sung Yong; Schenkman, Sergio; Almeida, Igor C.; Emans, Neil; Freitas-Junior, Lucio H.

    2011-01-01

    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy. PMID:21625474

  2. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Auguste Genovesio

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy.

  3. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    Science.gov (United States)

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  4. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes.

    Science.gov (United States)

    Vacic, Vladimir; Ozelius, Laurie J; Clark, Lorraine N; Bar-Shira, Anat; Gana-Weisz, Mali; Gurevich, Tanya; Gusev, Alexander; Kedmi, Merav; Kenny, Eimear E; Liu, Xinmin; Mejia-Santana, Helen; Mirelman, Anat; Raymond, Deborah; Saunders-Pullman, Rachel; Desnick, Robert J; Atzmon, Gil; Burns, Edward R; Ostrer, Harry; Hakonarson, Hakon; Bergman, Aviv; Barzilai, Nir; Darvasi, Ariel; Peter, Inga; Guha, Saurav; Lencz, Todd; Giladi, Nir; Marder, Karen; Pe'er, Itsik; Bressman, Susan B; Orr-Urtreger, Avi

    2014-09-01

    The recent series of large genome-wide association studies in European and Japanese cohorts established that Parkinson disease (PD) has a substantial genetic component. To further investigate the genetic landscape of PD, we performed a genome-wide scan in the largest to date Ashkenazi Jewish cohort of 1130 Parkinson patients and 2611 pooled controls. Motivated by the reduced disease allele heterogeneity and a high degree of identical-by-descent (IBD) haplotype sharing in this founder population, we conducted a haplotype association study based on mapping of shared IBD segments. We observed significant haplotype association signals at three previously implicated Parkinson loci: LRRK2 (OR = 12.05, P = 1.23 × 10(-56)), MAPT (OR = 0.62, P = 1.78 × 10(-11)) and GBA (multiple distinct haplotypes, OR > 8.28, P = 1.13 × 10(-11) and OR = 2.50, P = 1.22 × 10(-9)). In addition, we identified a novel association signal on chr2q14.3 coming from a rare haplotype (OR = 22.58, P = 1.21 × 10(-10)) and replicated it in a secondary cohort of 306 Ashkenazi PD cases and 2583 controls. Our results highlight the power of our haplotype association method, particularly useful in studies of founder populations, and reaffirm the benefits of studying complex diseases in Ashkenazi Jewish cohorts.

  5. Five endometrial cancer risk loci identified through genome-wide association analysis

    Science.gov (United States)

    O’Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica MJ; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Consortium, CHIBCHA; Jun Li, Mulin; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-01-01

    We conducted a meta-analysis of three endometrial cancer GWAS and two replication phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five novel risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1 near SIVA1). A second independent 8q24.21 signal (rs17232730) was found. Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r2=0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103-T endometrial cancer protective allele suppressed gene expression in vitro suggesting that regulation of KLF5 expression, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  6. ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data.

    Science.gov (United States)

    Raine, Keiran M; Van Loo, Peter; Wedge, David C; Jones, David; Menzies, Andrew; Butler, Adam P; Teague, Jon W; Tarpey, Patrick; Nik-Zainal, Serena; Campbell, Peter J

    2016-12-08

    We have developed ascatNgs to aid researchers in carrying out Allele-Specific Copy number Analysis of Tumours (ASCAT). ASCAT is capable of detecting DNA copy number changes affecting a tumor genome when comparing to a matched normal sample. Additionally, the algorithm estimates the amount of tumor DNA in the sample, known as Aberrant Cell Fraction (ACF). ASCAT itself is an R-package which requires the generation of many file types. Here, we present a suite of tools to help handle this for the user. Our code is available on our GitHub site (https://github.com/cancerit). This unit describes both 'one-shot' execution and approaches more suitable for large-scale compute farms. © 2016 by John Wiley & Sons, Inc.

  7. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  8. Approaches for Comparative Genomics in Aspergillus and Penicillium

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Theobald, Sebastian; Brandl, Julian

    2016-01-01

    The number of available genomes in the closely related fungal genera Aspergillus and Penicillium is rapidly increasing. At the time of writing, the genomes of 62 species are available, and an even higher number is being prepared. Fungal comparative genomics is thus becoming steadily more powerful...... and applicable for many types of studies. In this chapter, we provide an overview of the state-of-the-art of comparative genomics in these fungi, along with recommended methods. The chapter describes databases for fungal comparative genomics. Based on experience, we suggest strategies for multiple types...... of comparative genomics, ranging from analysis of single genes, over gene clusters and CaZymes to genome-scale comparative genomics. Furthermore, we have examined published comparative genomics papers to summarize the preferred bioinformatic methods and parameters for a given type of analysis, highly useful...

  9. Genome-wide association study identifies GPC5 as a novel genetic locus protective against sudden cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Dan E Arking

    Full Text Available Existing studies indicate a significant genetic component for sudden cardiac arrest (SCA and genome-wide association studies (GWAS provide an unbiased approach for identification of novel genes. We performed a GWAS to identify genetic determinants of SCA.We used a case-control design within the ongoing Oregon Sudden Unexpected Death Study (Oregon-SUDS. Cases (n = 424 were SCAs with coronary artery disease (CAD among residents of Portland, OR (2002-07, population approximately 1,000,000 and controls (n = 226 were residents with CAD, but no history of SCA. All subjects were of White-European ancestry and GWAS was performed using Affymetrix 500K/5.0 and 6.0 arrays. High signal markers were genotyped in SCA cases (n = 521 identified from the Atherosclerosis Risk in Communities Study (ARIC and the Cardiovascular Health Study (CHS (combined n = 19,611. No SNPs reached genome-wide significance (p<5x10(-8. SNPs at 6 loci were prioritized for follow-up primarily based on significance of p<10(-4 and proximity to a known gene (CSMD2, GPR37L1, LIN9, B4GALNT3, GPC5, and ZNF592. The minor allele of GPC5 (GLYPICAN 5, rs3864180 was associated with a lower risk of SCA in Oregon-SUDS, an effect that was also observed in ARIC/CHS whites (p<0.05 and blacks (p<0.04. In a combined Cox proportional hazards model analysis that adjusted for race, the minor allele exhibited a hazard ratio of 0.85 (95% CI 0.74 to 0.98; p<0.01.A novel genetic locus for SCA, GPC5, was identified from Oregon-SUDS and successfully validated in the ARIC and CHS cohorts. Three other members of the Glypican family have been previously implicated in human disease, including cardiac conditions. The mechanism of this specific association requires further study.

  10. Genome-wide analysis of histone modifications by ChIP-chip to identify silenced genes in gastric cancer.

    Science.gov (United States)

    Zhu, Xinjiang; Liu, Jian; Xu, Xiaoyang; Zhang, Chundong; Dai, Dongqiu

    2015-05-01

    The present study aimed to identify novel histone modification markers in gastric cancer (GC) by chromatin immunoprecipitation microarray (ChIP-chip) analysis and to determine whether these markers were able to discriminate between normal and GC cells. We also tested for correlations with DNA methylation. We probed a human CpG island microarray with DNA from a GC cell line (MKN45) by chromatin immunoprecipitation (ChIP). ChIP-reverse-transcriptase quantitative polymerase chain reaction PCR (RT-qPCR) was used to validate the microarray results. Additionally, mRNA expression levels and the DNA methylation of potential target genes were evaluated by RT-qPCR and methylation-specific PCR (MSP). The moults showed that 134 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over acetylation and 46 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over H3-K4 trimethylation in MKN45 cells. The ChIP-qPCR results agreed with those obtained from the ChIP-chip analysis. Aberrant DNA methylation status and mRNA expression levels were also identified for selected genes (PSD, SMARCC1 and Vps37A) in the GC cell lines. The results suggest that CpG island microarray coupled with ChIP (ChIP-chip) can identify novel targets of gene silencing in GC. Additionally, ChIP-chip is the best approach for assessing the genome-wide status of epigenetic regulation, which may allow for a broader genomic understanding compared to the knowledge that has been accumulated from single-gene studies.

  11. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.

    Science.gov (United States)

    Shen, Hua; McHale, Cliona M; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide

  12. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Sumitra Mohan

    2014-03-01

    Full Text Available Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR, such as cetuximab and panitumumab, have evolved to important therapeutic options in metastatic colorectal cancer (CRC. However, almost all patients with clinical response to anti-EGFR therapies show disease progression within a few months and little is known about mechanism and timing of resistance evolution. Here we analyzed plasma DNA from ten patients treated with anti-EGFR therapy by whole genome sequencing (plasma-Seq and ultra-sensitive deep sequencing of genes associated with resistance to anti-EGFR treatment such as KRAS, BRAF, PIK3CA, and EGFR. Surprisingly, we observed that the development of resistance to anti-EGFR therapies was associated with acquired gains of KRAS in four patients (40%, which occurred either as novel focal amplifications (n = 3 or as high level polysomy of 12p (n = 1. In addition, we observed focal amplifications of other genes recently shown to be involved in acquired resistance to anti-EGFR therapies, such as MET (n = 2 and ERBB2 (n = 1. Overrepresentation of the EGFR gene was associated with a good initial anti-EGFR efficacy. Overall, we identified predictive biomarkers associated with anti-EGFR efficacy in seven patients (70%, which correlated well with treatment response. In contrast, ultra-sensitive deep sequencing of KRAS, BRAF, PIK3CA, and EGFR did not reveal the occurrence of novel, acquired mutations. Thus, plasma-Seq enables the identification of novel mutant clones and may therefore facilitate early adjustments of therapies that may delay or prevent disease progression.

  13. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... identifying all the components of a single biological system is within our means; however, assigning ... discovery of new candidate genes/QTLs and/or to assign ... identify putative genes involved in their genetic control .... for adaptation to different environments. ..... provides insights into fleshy fruit evolution.

  14. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    Science.gov (United States)

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.

  15. Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach

    Science.gov (United States)

    Versmissen, Jorie; Oosterveer, Daniëlla M; Yazdanpanah, Mojgan; Dehghan, Abbas; Hólm, Hilma; Erdman, Jeanette; Aulchenko, Yurii S; Thorleifsson, Gudmar; Schunkert, Heribert; Huijgen, Roeland; Vongpromek, Ranitha; Uitterlinden, André G; Defesche, Joep C; van Duijn, Cornelia M; Mulder, Monique; Dadd, Tony; Karlsson, Hróbjartur D; Ordovas, Jose; Kindt, Iris; Jarman, Amelia; Hofman, Albert; van Vark-van der Zee, Leonie; Blommesteijn-Touw, Adriana C; Kwekkeboom, Jaap; Liem, Anho H; van der Ouderaa, Frans J; Calandra, Sebastiano; Bertolini, Stefano; Averna, Maurizio; Langslet, Gisle; Ose, Leiv; Ros, Emilio; Almagro, Fátima; de Leeuw, Peter W; Civeira, Fernando; Masana, Luis; Pintó, Xavier; Simoons, Maarten L; Schinkel, Arend FL; Green, Martin R; Zwinderman, Aeilko H; Johnson, Keith J; Schaefer, Arne; Neil, Andrew; Witteman, Jacqueline CM; Humphries, Steve E; Kastelein, John JP; Sijbrands, Eric JG

    2015-01-01

    Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolemia (FH), a disorder characterized by coronary heart disease (CHD) at young age. We aimed to apply an extreme sampling method to enhance the statistical power to identify novel genetic risk variants for CHD in individuals with FH. We selected cases and controls with an extreme contrast in CHD risk from 17 000 FH patients from the Netherlands, whose functional LDLR mutation was unequivocally established. The genome-wide association (GWA) study was performed on 249 very young FH cases with CHD and 217 old FH controls without CHD (above 65 years for males and 70 years of age for females) using the Illumina HumanHap550K chip. In the next stage, two independent samples (one from the Netherlands and one from Italy, Norway, Spain, and the United Kingdom) of FH patients were used as replication samples. In the initial GWA analysis, we identified 29 independent single nucleotide polymorphisms (SNPs) with suggestive associations with premature CHD (P<1 × 10−4). We examined the association of these SNPs with CHD risk in the replication samples. After Bonferroni correction, none of the SNPs either replicated or reached genome-wide significance after combining the discovery and replication samples. Therefore, we conclude that the genetics of CHD risk in FH is complex and even applying an ‘extreme genetics' approach we did not identify new genetic risk variants. Most likely, this method is not as effective in leveraging effect size as anticipated, and may, therefore, not lead to significant gains in statistical power. PMID:24916650

  16. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.

    2014-06-13

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  17. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    Science.gov (United States)

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters.

  18. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  19. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density.

    Science.gov (United States)

    Zhang, Lei; Choi, Hyung Jin; Estrada, Karol; Leo, Paul J; Li, Jian; Pei, Yu-Fang; Zhang, Yinping; Lin, Yong; Shen, Hui; Liu, Yao-Zhong; Liu, Yongjun; Zhao, Yingchun; Zhang, Ji-Gang; Tian, Qing; Wang, Yu-ping; Han, Yingying; Ran, Shu; Hai, Rong; Zhu, Xue-Zhen; Wu, Shuyan; Yan, Han; Liu, Xiaogang; Yang, Tie-Lin; Guo, Yan; Zhang, Feng; Guo, Yan-fang; Chen, Yuan; Chen, Xiangding; Tan, Lijun; Zhang, Lishu; Deng, Fei-Yan; Deng, Hongyi; Rivadeneira, Fernando; Duncan, Emma L; Lee, Jong Young; Han, Bok Ghee; Cho, Nam H; Nicholson, Geoffrey C; McCloskey, Eugene; Eastell, Richard; Prince, Richard L; Eisman, John A; Jones, Graeme; Reid, Ian R; Sambrook, Philip N; Dennison, Elaine M; Danoy, Patrick; Yerges-Armstrong, Laura M; Streeten, Elizabeth A; Hu, Tian; Xiang, Shuanglin; Papasian, Christopher J; Brown, Matthew A; Shin, Chan Soo; Uitterlinden, André G; Deng, Hong-Wen

    2014-04-01

    Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10(-8)) level: 14q24.2 (rs227425, P-value 3.98 × 10(-13), SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10(-9), CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n = 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis.

  20. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis.

    Science.gov (United States)

    Cho, Seoae; Kim, Haseong; Oh, Sohee; Kim, Kyunga; Park, Taesung

    2009-12-15

    The current trend in genome-wide association studies is to identify regions where the true disease-causing genes may lie by evaluating thousands of single-nucleotide polymorphisms (SNPs) across the whole genome. However, many challenges exist in detecting disease-causing genes among the thousands of SNPs. Examples include multicollinearity and multiple testing issues, especially when a large number of correlated SNPs are simultaneously tested. Multicollinearity can often occur when predictor variables in a multiple regression model are highly correlated, and can cause imprecise estimation of association. In this study, we propose a simple stepwise procedure that identifies disease-causing SNPs simultaneously by employing elastic-net regularization, a variable selection method that allows one to address multicollinearity. At Step 1, the single-marker association analysis was conducted to screen SNPs. At Step 2, the multiple-marker association was scanned based on the elastic-net regularization. The proposed approach was applied to the rheumatoid arthritis (RA) case-control data set of Genetic Analysis Workshop 16. While the selected SNPs at the screening step are located mostly on chromosome 6, the elastic-net approach identified putative RA-related SNPs on other chromosomes in an increased proportion. For some of those putative RA-related SNPs, we identified the interactions with sex, a well known factor affecting RA susceptibility.

  1. Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    2009-03-01

    Full Text Available For females, menarche is a most significant physiological event. Age at menarche (AAM is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects--all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan, which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09 x 10(-3 and 4.37 x 10(-3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method of 5.19 x 10(-5 and 1.02 x 10(-4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2, a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM.

  2. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Shanmugam, Karthi; Mahadevan, Vijayalakshmi

    2015-01-01

    Histone deacetylases (HDACs) are conjugated enzymes that modulate chromatin architecture by deacetylating lysine residues on the histone tails leading to transcriptional repression. Pharmacological interventions of these enzymes with small molecule inhibitors called Histone deacetylase inhibitors (HDACi) have shown enhanced acetylation of the genome and are hence emerging as potential targets at the clinic. Type-specific inhibition of Class II HDACs has shown enhanced therapeutic benefits against developmental and neurodegenerative disorders. However, the structural identity of class-specific isoforms limits the potential of their inhibitors in precise targeting of their enzymes. Diverse strategies have been implemented to recognise the features in HDAC enzymes which may help in identifying isoform specificity factors. This work attempts a computational approach that combines in silico docking and energy-optimised pharmacophore (E-pharmacophore) mapping of 18 known HDAC inhibitors and has identified structural variations that regulate their interactions against the six Class II HDAC enzymes considered for the study. This combined approach establishes that inhibitors possessing higher number of aromatic rings in different structural regions might function as potent inhibitors, while inhibitors with scarce ring structures might point to compromised potency. This would aid the rationale for chemical optimisation and design of isoform selective HDAC inhibitors with enhanced affinity and therapeutic efficiency.

  3. An innovative and integrated approach based on DNA walking to identify unauthorised GMOs.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2014-03-15

    In the coming years, the frequency of unauthorised genetically modified organisms (GMOs) being present in the European food and feed chain will increase significantly. Therefore, we have developed a strategy to identify unauthorised GMOs containing a pCAMBIA family vector, frequently present in transgenic plants. This integrated approach is performed in two successive steps on Bt rice grains. First, the potential presence of unauthorised GMOs is assessed by the qPCR SYBR®Green technology targeting the terminator 35S pCAMBIA element. Second, its presence is confirmed via the characterisation of the junction between the transgenic cassette and the rice genome. To this end, a DNA walking strategy is applied using a first reverse primer followed by two semi-nested PCR rounds using primers that are each time nested to the previous reverse primer. This approach allows to rapidly identify the transgene flanking region and can easily be implemented by the enforcement laboratories. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Genome-wide association study identifies genetic loci associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    Full Text Available The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS was performed using DNA collected from white men aged≥25 y and women≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF≤12 µg/L (cases and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women. Regression analysis was used to examine the association between case-control status (336 cases, 343 controls and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10(-7 for all. An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P=7.0×10(-9, corrected P=0.012 was replicated within the VA samples (observed P=0.012. Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification.

  5. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection.

    Directory of Open Access Journals (Sweden)

    Ari Yasunaga

    2014-02-01

    Full Text Available Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV, a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.

  6. Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution

    Science.gov (United States)

    Qi, Lu; Speliotes, Elizabeth K.; Thorleifsson, Gudmar; Willer, Cristen J.; Herrera, Blanca M.; Jackson, Anne U.; Lim, Noha; Scheet, Paul; Soranzo, Nicole; Amin, Najaf; Aulchenko, Yurii S.; Chambers, John C.; Drong, Alexander; Luan, Jian'an; Lyon, Helen N.; Rivadeneira, Fernando; Sanna, Serena; Timpson, Nicholas J.; Zillikens, M. Carola; Zhao, Jing Hua; Almgren, Peter; Bandinelli, Stefania; Bennett, Amanda J.; Bergman, Richard N.; Bonnycastle, Lori L.; Bumpstead, Suzannah J.; Chanock, Stephen J.; Cherkas, Lynn; Chines, Peter; Coin, Lachlan; Cooper, Cyrus; Crawford, Gabriel; Doering, Angela; Dominiczak, Anna; Doney, Alex S. F.; Ebrahim, Shah; Elliott, Paul; Erdos, Michael R.; Estrada, Karol; Ferrucci, Luigi; Fischer, Guido; Forouhi, Nita G.; Gieger, Christian; Grallert, Harald; Groves, Christopher J.; Grundy, Scott; Guiducci, Candace; Hadley, David; Hamsten, Anders; Havulinna, Aki S.; Hofman, Albert; Holle, Rolf; Holloway, John W.; Illig, Thomas; Isomaa, Bo; Jacobs, Leonie C.; Jameson, Karen; Jousilahti, Pekka; Karpe, Fredrik; Kuusisto, Johanna; Laitinen, Jaana; Lathrop, G. Mark; Lawlor, Debbie A.; Mangino, Massimo; McArdle, Wendy L.; Meitinger, Thomas; Morken, Mario A.; Morris, Andrew P.; Munroe, Patricia; Narisu, Narisu; Nordström, Anna; Nordström, Peter; Oostra, Ben A.; Palmer, Colin N. A.; Payne, Felicity; Peden, John F.; Prokopenko, Inga; Renström, Frida; Ruokonen, Aimo; Salomaa, Veikko; Sandhu, Manjinder S.; Scott, Laura J.; Scuteri, Angelo; Silander, Kaisa; Song, Kijoung; Yuan, Xin; Stringham, Heather M.; Swift, Amy J.; Tuomi, Tiinamaija; Uda, Manuela; Vollenweider, Peter; Waeber, Gerard; Wallace, Chris; Walters, G. Bragi; Weedon, Michael N.; Witteman, Jacqueline C. M.; Zhang, Cuilin; Zhang, Weihua; Caulfield, Mark J.; Collins, Francis S.; Davey Smith, George; Day, Ian N. M.; Franks, Paul W.; Hattersley, Andrew T.; Hu, Frank B.; Jarvelin, Marjo-Riitta; Kong, Augustine; Kooner, Jaspal S.; Laakso, Markku; Lakatta, Edward; Mooser, Vincent; Morris, Andrew D.; Peltonen, Leena; Samani, Nilesh J.; Spector, Timothy D.; Strachan, David P.; Tanaka, Toshiko; Tuomilehto, Jaakko; Uitterlinden, André G.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Watkins for the PROCARDIS consortia, Hugh; Waterworth, Dawn M.; Boehnke, Michael; Deloukas, Panos; Groop, Leif; Hunter, David J.; Thorsteinsdottir, Unnur; Schlessinger, David; Wichmann, H.-Erich; Frayling, Timothy M.; Abecasis, Gonçalo R.; Hirschhorn, Joel N.; Loos, Ruth J. F.; Stefansson, Kari; Mohlke, Karen L.; Barroso, Inês; McCarthy for the GIANT consortium, Mark I.

    2009-01-01

    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist–hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9×10−11) and MSRA (WC, P = 8.9×10−9). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6×10−8). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity. PMID:19557161

  7. Network properties of complex human disease genes identified through genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Fredrik Barrenas

    Full Text Available BACKGROUND: Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs, thereby eliminating discovery bias. PRINCIPAL FINDINGS: We derived a network of complex diseases (n = 54 and complex disease genes (n = 349 to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. CONCLUSIONS: This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  8. Network properties of complex human disease genes identified through genome-wide association studies.

    Science.gov (United States)

    Barrenas, Fredrik; Chavali, Sreenivas; Holme, Petter; Mobini, Reza; Benson, Mikael

    2009-11-30

    Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs), thereby eliminating discovery bias. We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  9. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy

    Science.gov (United States)

    Kouri, Naomi; Ross, Owen A.; Dombroski, Beth; Younkin, Curtis S.; Serie, Daniel J.; Soto-Ortolaza, Alexandra; Baker, Matthew; Finch, Ni Cole A.; Yoon, Hyejin; Kim, Jungsu; Fujioka, Shinsuke; McLean, Catriona A.; Ghetti, Bernardino; Spina, Salvatore; Cantwell, Laura B.; Farlow, Martin R.; Grafman, Jordan; Huey, Edward D.; Ryung Han, Mi; Beecher, Sherry; Geller, Evan T.; Kretzschmar, Hans A.; Roeber, Sigrun; Gearing, Marla; Juncos, Jorge L.; Vonsattel, Jean Paul G.; Van Deerlin, Vivianna M.; Grossman, Murray; Hurtig, Howard I.; Gross, Rachel G.; Arnold, Steven E.; Trojanowski, John Q.; Lee, Virginia M.; Wenning, Gregor K.; White, Charles L.; Höglinger, Günter U.; Müller, Ulrich; Devlin, Bernie; Golbe, Lawrence I.; Crook, Julia; Parisi, Joseph E.; Boeve, Bradley F.; Josephs, Keith A.; Wszolek, Zbigniew K.; Uitti, Ryan J.; Graff-Radford, Neill R.; Litvan, Irene; Younkin, Steven G.; Wang, Li-San; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hakonarsen, Hakon; Schellenberg, Gerard D.; Dickson, Dennis W.

    2015-01-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 × 10−12), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 × 10−8), and 2p22 at SOS1 (rs963731; P=1.76 × 10−7). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 × 10−7) and MAPT H1c (17q21; rs242557; P=7.91 × 10−6). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein). PMID:26077951

  10. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lindgren

    2009-06-01

    Full Text Available To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580 informative for adult waist circumference (WC and waist-hip ratio (WHR. We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11 and MSRA (WC, P = 8.9x10(-9. A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8. The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.

  11. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  12. Approaches for Comparative Genomics in Aspergillus and Penicillium

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Theobald, Sebastian; Brandl, Julian

    2016-01-01

    of comparative genomics, ranging from analysis of single genes, over gene clusters and CaZymes to genome-scale comparative genomics. Furthermore, we have examined published comparative genomics papers to summarize the preferred bioinformatic methods and parameters for a given type of analysis, highly useful...... for new fungal geneticists. Moreover, the chapter contains a detailed overview of comparative genomics studies of key fungal traits such as primary metabolism, secondary metabolism, and secretome analysis. Finally, we gaze into a possible future of the field by comparing the current state of fungal......The number of available genomes in the closely related fungal genera Aspergillus and Penicillium is rapidly increasing. At the time of writing, the genomes of 62 species are available, and an even higher number is being prepared. Fungal comparative genomics is thus becoming steadily more powerful...

  13. Joint Genome Institute's Automation Approach and History

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  14. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci

    Science.gov (United States)

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-01-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  15. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci.

    Science.gov (United States)

    Smith, D J; Escott-Price, V; Davies, G; Bailey, M E S; Colodro-Conde, L; Ward, J; Vedernikov, A; Marioni, R; Cullen, B; Lyall, D; Hagenaars, S P; Liewald, D C M; Luciano, M; Gale, C R; Ritchie, S J; Hayward, C; Nicholl, B; Bulik-Sullivan, B; Adams, M; Couvy-Duchesne, B; Graham, N; Mackay, D; Evans, J; Smith, B H; Porteous, D J; Medland, S E; Martin, N G; Holmans, P; McIntosh, A M; Pell, J P; Deary, I J; O'Donovan, M C

    2016-06-01

    Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form's Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ∼15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10(-15)) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured

  16. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  17. A novel approach for determining cancer genomic breakpoints in the presence of normal DNA.

    Directory of Open Access Journals (Sweden)

    Yu-Tsueng Liu

    Full Text Available CDKN2A (encodes p16(INK4A and p14(ARF deletion, which results in both Rb and p53 inactivation, is the most common chromosomal anomaly in human cancers. To precisely map the deletion breakpoints is important to understanding the molecular mechanism of genomic rearrangement and may also be useful for clinical applications. However, current methods for determining the breakpoint are either of low resolution or require the isolation of relatively pure cancer cells, which can be difficult for clinical samples that are typically contaminated with various amounts of normal host cells. To overcome this hurdle, we have developed a novel approach, designated Primer Approximation Multiplex PCR (PAMP, for enriching breakpoint sequences followed by genomic tiling array hybridization to locate the breakpoints. In a series of proof-of-concept experiments, we were able to identify cancer-derived CDKN2A genomic breakpoints when more than 99.9% of wild type genome was present in a model system. This design can be scaled up with bioinformatics support and can be applied to validate other candidate cancer-associated loci that are revealed by other more systemic but lower throughput assays.

  18. Precursor-centric genome-mining approach for lasso peptide discovery.

    Science.gov (United States)

    Maksimov, Mikhail O; Pelczer, István; Link, A James

    2012-09-18

    Lasso peptides are a class of ribosomally synthesized posttranslationally modified natural products found in bacteria. Currently known lasso peptides have a diverse set of pharmacologically relevant activities, including inhibition of bacterial growth, receptor antagonism, and enzyme inhibition. The biosynthesis of lasso peptides is specified by a cluster of three genes encoding a precursor protein and two enzymes. Here we develop a unique genome-mining algorithm to identify lasso peptide gene clusters in prokaryotes. Our approach involves pattern matching to a small number of conserved amino acids in precursor proteins, and thus allows for a more global survey of lasso peptide gene clusters than does homology-based genome mining. Of more than 3,000 currently sequenced prokaryotic genomes, we found 76 organisms that are putative lasso peptide producers. These organisms span nine bacterial phyla and an archaeal phylum. To provide validation of the genome-mining method, we focused on a single lasso peptide predicted to be produced by the freshwater bacterium Asticcacaulis excentricus. Heterologous expression of an engineered, minimal gene cluster in Escherichia coli led to the production of a unique lasso peptide, astexin-1. At 23 aa, astexin-1 is the largest lasso peptide isolated to date. It is also highly polar, in contrast to many lasso peptides that are primarily hydrophobic. Astexin-1 has modest antimicrobial activity against its phylogenetic relative Caulobacter crescentus. The solution structure of astexin-1 was determined revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide.

  19. Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach

    Science.gov (United States)

    Nasheri, Neda; Petronella, Nicholas; Ronholm, Jennifer; Bidawid, Sabah; Corneau, Nathalie

    2017-01-01

    Norovirus (NoV) is the leading cause of gastroenteritis worldwide. A robust cell culture system does not exist for NoV and therefore detailed characterization of outbreak and sporadic strains relies on molecular techniques. In this study, we employed a metagenomic approach that uses non-specific amplification followed by next-generation sequencing to whole genome sequence NoV genomes directly from clinical samples obtained from 8 linked patients. Enough sequencing depth was obtained for each sample to use a de novo assembly of near-complete genome sequences. The resultant consensus sequences were then used to identify inter-host nucleotide variations that occur after direct transmission, analyze amino acid variations in the major capsid protein, and provide evidence of recombination events. The analysis of intra-host quasispecies diversity was possible due to high coverage-depth. We also observed a linear relationship between NoV viral load in the clinical sample and the number of sequence reads that could be attributed to NoV. The method demonstrated here has the potential for future use in whole genome sequence analyses of other RNA viruses isolated from clinical, environmental, and food specimens. PMID:28197136

  20. An Approach for Identifying Benefit Segments among Prospective College Students.

    Science.gov (United States)

    Miller, Patrick; And Others

    1990-01-01

    A study investigated the importance to 578 applicants of various benefits offered by a moderately selective private university. Applicants rated the institution on 43 academic, social, financial, religious, and curricular attributes. The objective was to test the efficacy of one approach to college market segmentation. Results support the utility…

  1. A Community-Based Approach to Identifying Influential Spreaders

    Directory of Open Access Journals (Sweden)

    Zhiying Zhao

    2015-04-01

    Full Text Available Identifying influential spreaders in complex networks has a significant impact on understanding and control of spreading process in networks. In this paper, we introduce a new centrality index to identify influential spreaders in a network based on the community structure of the network. The community-based centrality (CbC considers both the number and sizes of communities that are directly linked by a node. We discuss correlations between CbC and other classical centrality indices. Based on simulations of the single source of infection with the Susceptible-Infected-Recovered (SIR model, we find that CbC can help to identify some critical influential nodes that other indices cannot find. We also investigate the stability of CbC.

  2. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families.

    Science.gov (United States)

    Gao, Hanxiang; Li, Lin; Rao, Shaoqi; Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G; Chen, Qiuyun; Topol, Eric J; Wang, Qing K

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for missing heritability". Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18-4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.

  3. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma.

    Directory of Open Access Journals (Sweden)

    Jason D Christie

    Full Text Available Acute Lung Injury (ALI is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1, we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs at p<0.01 to a replication phase (Phase 2 comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3 using expression quantitative trait loci (eQTL analyses in stimulated B-lymphoblastoid cell lines (B-LCL in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021. PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research.

  4. Genomic insights into ayurvedic and western approaches to personalized medicine

    Indian Academy of Sciences (India)

    Bhavana Prasher; Greg Gibson; Mitali Mukerji

    2016-03-01

    Ayurveda, an ancient Indian system of medicine documented and practised since 1500 B.C., follows a systems approach that has interesting parallels with contemporary personalized genomic medicine approaches to the understanding and management of health and disease. It is based on the trisutra, which are the three aspects of causes, features and therapeutics that are interconnected through a common organizing principle termed ‘tridosha’. Tridosha comprise three ascertainable physiological entities; vata (kinetic), pitta (metabolic) and kapha (potential) that are pervasive across systems, work in conjunction with each other, respond to the external environment and maintain homeostasis. Each individual is born with a specific proportion of tridosha that are not only genetically determined but also influenced by the environment during foetal development. Jointly they determine a person’s basic constitution, which is termed their ‘prakriti’. Development and progression of different diseases with their subtypes are thought to depend on the origin and mechanism of perturbation of the doshas, and the aim of therapeutic practice is to ensure that the doshas retain their homeostatic state. Similarly, western systems biology epitomized by translational P4 medicine envisages the integration of multiscalar genetic, cellular, physiological and environmental networks to predict phenotypic outcomes of perturbations. In this perspective article, we aim to outline the shape of a unifying scaffold that may allow the two intellectual traditions to enhance one another. Specifically, we illustrate how a unique integrative ‘Ayurgenomics’ approach can be used to integrate the trisutra concept of Ayurveda with genomics. We observe biochemical and molecular correlates of prakriti and show how these differ significantly in processes that are linked to intermediate patho-phenotypes, known to take different course in diseases. We also observe a significant enrichment of the highly

  5. Genomic insights into ayurvedic and western approaches to personalized medicine.

    Science.gov (United States)

    Prasher, Bhavana; Gibson, Greg; Mukerji, Mitali

    2016-03-01

    Ayurveda, an ancient Indian system of medicine documented and practised since 1500 B.C., follows a systems approach that has interesting parallels with contemporary personalized genomic medicine approaches to the understanding and management of health and disease. It is based on the trisutra, which are the three aspects of causes, features and therapeutics that are interconnected through a common organizing principle termed 'tridosha'. Tridosha comprise three ascertainable physiological entities; vata (kinetic), pitta (metabolic) and kapha (potential) that are pervasive across systems, work in conjunction with each other, respond to the external environment and maintain homeostasis. Each individual is born with a specific proportion of tridosha that are not only genetically determined but also influenced by the environment during foetal development. Jointly they determine a person's basic constitution, which is termed their 'prakriti'. Development and progressi on of different diseases with their subtypes are thought to depend on the origin and mechanism of perturbation of the doshas, and the aim of therapeutic practice is to ensure that the doshas retain their homeostatic state. Similarly, western systems biology epitomized by translational P4 medicine envisages the integration of multiscalar genetic, cellular, physiological and environmental networks to predict phenotypic outcomes of perturbations. In this perspective article, we aim to outline the shape of a unifying scaffold that may allow the two intellectual traditions to enhance one another. Specifically, we illustrate how a unique integrative 'Ayurgenomics' approach can be used to integrate the trisutra concept of Ayurveda with genomics. We observe biochemical and molecular correlates of prakriti and show how these differ significantly in processes that are linked to intermediate patho-phenotypes, known to take different course in diseases. We also observe a significant enr ichment of the highly connected

  6. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    Science.gov (United States)

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome.

  7. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.

    Science.gov (United States)

    Ismail, Abdelbagi M; Horie, Tomoaki

    2017-02-22

    Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are fairly well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. Identifying the "Truly Disadvantaged": A Comprehensive Biosocial Approach

    Science.gov (United States)

    Barnes, J. C.; Beaver, Kevin M.; Connolly, Eric J.; Schwartz, Joseph A.

    2016-01-01

    There has been significant interest in examining the developmental factors that predispose individuals to chronic criminal offending. This body of research has identified some social-environmental risk factors as potentially important. At the same time, the research producing these results has generally failed to employ genetically sensitive…

  9. Identifying Subgroups among Hardcore Smokers: a Latent Profile Approach

    NARCIS (Netherlands)

    Bommelé, J.; Kleinjan, M.; Schoenmakers, T.M.; Eijnden, R. van den; Mheen, D. van de

    2015-01-01

    Introduction: Hardcore smokers are smokers who have little to no intention to quit. Previous research suggests that there are distinct subgroups among hardcore smokers and that these subgroups vary in the perceived pros and cons of smoking and quitting. Identifying these subgroups could help to deve

  10. Genome-wide association study to identify the genetic determinants of otitis media susceptibility in childhood.

    Directory of Open Access Journals (Sweden)

    Marie S Rye

    Full Text Available BACKGROUND: Otitis media (OM is a common childhood disease characterised by middle ear inflammation and effusion. Susceptibility to recurrent acute OM (rAOM; ≥ 3 episodes of AOM in 6 months and chronic OM with effusion (COME; MEE ≥ 3 months is 40-70% heritable. Few underlying genes have been identified to date, and no genome-wide association study (GWAS of OM has been reported. METHODS AND FINDINGS: Data for 2,524,817 single nucleotide polymorphisms (SNPs; 535,544 quality-controlled SNPs genotyped by Illumina 660W-Quad; 1,989,273 by imputation were analysed for association with OM in 416 cases and 1,075 controls from the Western Australian Pregnancy Cohort (Raine Study. Logistic regression analyses under an additive model undertaken in GenABEL/ProbABEL adjusting for population substructure using principal components identified SNPs at CAPN14 (rs6755194: OR = 1.90; 95%CI 1.47-2.45; P(adj-PCA = 8.3 × 10(-7 on chromosome 2p23.1 as the top hit, with independent effects (rs1862981: OR = 1.60; 95%CI 1.29-1.99; P(adj-PCA = 2.2 × 10(-5 observed at the adjacent GALNT14 gene. In a gene-based analysis in VEGAS, BPIFA3 (P(Gene = 2 × 10(-5 and BPIFA1 (P(Gene = 1.07 × 10(-4 in the BPIFA gene cluster on chromosome 20q11.21 were the top hits. In all, 32 genomic regions show evidence of association (P(adj-PCA<10(-5 in this GWAS, with pathway analysis showing a connection between top candidates and the TGFβ pathway. However, top and tag-SNP analysis for seven selected candidate genes in this pathway did not replicate in 645 families (793 affected individuals from the Western Australian Family Study of Otitis Media (WAFSOM. Lack of replication may be explained by sample size, difference in OM disease severity between primary and replication cohorts or due to type I error in the primary GWAS. CONCLUSIONS: This first discovery GWAS for an OM phenotype has identified CAPN14 and GALNT14 on chromosome 2p23.1 and the BPIFA gene cluster on chromosome 20q11.21 as

  11. Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma.

    Science.gov (United States)

    Campbell, Catarina D; Mohajeri, Kiana; Malig, Maika; Hormozdiari, Fereydoun; Nelson, Benjamin; Du, Gaixin; Patterson, Kristen M; Eng, Celeste; Torgerson, Dara G; Hu, Donglei; Herman, Catherine; Chong, Jessica X; Ko, Arthur; O'Roak, Brian J; Krumm, Niklas; Vives, Laura; Lee, Choli; Roth, Lindsey A; Rodriguez-Cintron, William; Rodriguez-Santana, Jose; Brigino-Buenaventura, Emerita; Davis, Adam; Meade, Kelley; LeNoir, Michael A; Thyne, Shannon; Jackson, Daniel J; Gern, James E; Lemanske, Robert F; Shendure, Jay; Abney, Mark; Burchard, Esteban G; Ober, Carole; Eichler, Evan E

    2014-01-01

    Asthma is a complex genetic disease caused by a combination of genetic and environmental risk factors. We sought to test classes of genetic variants largely missed by genome-wide association studies (GWAS), including copy number variants (CNVs) and low-frequency variants, by performing whole-genome sequencing (WGS) on 16 individuals from asthma-enriched and asthma-depleted families. The samples were obtained from an extended 13-generation Hutterite pedigree with reduced genetic heterogeneity due to a small founding gene pool and reduced environmental heterogeneity as a result of a communal lifestyle. We sequenced each individual to an average depth of 13-fold, generated a comprehensive catalog of genetic variants, and tested the most severe mutations for association with asthma. We identified and validated 1960 CNVs, 19 nonsense or splice-site single nucleotide variants (SNVs), and 18 insertions or deletions that were out of frame. As follow-up, we performed targeted sequencing of 16 genes in 837 cases and 540 controls of Puerto Rican ancestry and found that controls carry a significantly higher burden of mutations in IL27RA (2.0% of controls; 0.23% of cases; nominal p = 0.004; Bonferroni p = 0.21). We also genotyped 593 CNVs in 1199 Hutterite individuals. We identified a nominally significant association (p = 0.03; Odds ratio (OR) = 3.13) between a 6 kbp deletion in an intron of NEDD4L and increased risk of asthma. We genotyped this deletion in an additional 4787 non-Hutterite individuals (nominal p = 0.056; OR = 1.69). NEDD4L is expressed in bronchial epithelial cells, and conditional knockout of this gene in the lung in mice leads to severe inflammation and mucus accumulation. Our study represents one of the early instances of applying WGS to complex disease with a large environmental component and demonstrates how WGS can identify risk variants, including CNVs and low-frequency variants, largely untested in GWAS.

  12. Bioinformatic approaches to identifying and classifying Rab proteins.

    Science.gov (United States)

    Diekmann, Yoan; Pereira-Leal, José B

    2015-01-01

    The bioinformatic annotation of Rab GTPases is important, for example, to understand the evolution of the endomembrane system. However, Rabs are particularly challenging for standard annotation pipelines because they are similar to other small GTPases and form a large family with many paralogous subfamilies. Here, we describe a bioinformatic annotation pipeline specifically tailored to Rab GTPases. It proceeds in two steps: first, Rabs are distinguished from other proteins based on GTPase-specific motifs, overall sequence similarity to other Rabs, and the occurrence of Rab-specific motifs. Second, Rabs are classified taking either a more accurate but slower phylogenetic approach or a slightly less accurate but much faster bioinformatic approach. All necessary steps can either be performed locally or using the referenced online tools. An implementation of a slightly more involved version of the pipeline presented here is available at RabDB.org.

  13. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    Science.gov (United States)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; Silva, Isabel dos Santos; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans BL; Fasching, Peter A.; Lux, Michael P.; Beckmann, Matthias W.; Ekici, Arif B.; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L.; Alonso, M. Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J.; Tollenaar, Rob A.E.M.; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; van den Ouweland, Ans M.W.; Cox, Angela; Reed, Malcolm WR; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A. J.; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Lathrop, Mark; Dunning, Alison M.; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth. PMID:22267197

  14. Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits.

    Science.gov (United States)

    Gobert, Rosanna Pescini; Joubert, Lara; Curchod, Marie-Laure; Salvat, Catherine; Foucault, Isabelle; Jorand-Lebrun, Catherine; Lamarine, Marc; Peixoto, Hélène; Vignaud, Chloé; Frémaux, Christèle; Jomotte, Thérèse; Françon, Bernard; Alliod, Chantal; Bernasconi, Lilia; Abderrahim, Hadi; Perrin, Dominique; Bombrun, Agnes; Zanoguera, Francisca; Rommel, Christian; Hooft van Huijsduijnen, Rob

    2009-03-01

    Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.

  15. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  16. A genome-wide scan identifies variants in NFIB associated with metastasis in patients with osteosarcoma

    Science.gov (United States)

    Mirabello, Lisa; Koster, Roelof; Moriarity, Branden S.; Spector, Logan G.; Meltzer, Paul S.; Gary, Joy; Machiela, Mitchell J.; Pankratz, Nathan; Panagiotou, Orestis A.; Largaespada, David; Wang, Zhaoming; Gastier-Foster, Julie M.; Gorlick, Richard; Khanna, Chand; de Toledo, Silvia Regina Caminada; Petrilli, Antonio S.; Patiño-Garcia, Ana; Sierrasesúmaga, Luis; Lecanda, Fernando; Andrulis, Irene L.; Wunder, Jay S.; Gokgoz, Nalan; Serra, Massimo; Hattinger, Claudia; Picci, Piero; Scotlandi, Katia; Flanagan, Adrienne M.; Tirabosco, Roberto; Amary, Maria Fernanda; Halai, Dina; Ballinger, Mandy L.; Thomas, David M.; Davis, Sean; Barkauskas, Donald A.; Marina, Neyssa; Helman, Lee; Otto, George M.; Becklin, Kelsie L.; Wolf, Natalie K.; Weg, Madison T.; Tucker, Margaret; Wacholder, Sholom; Fraumeni, Joseph F.; Caporaso, Neil E.; Boland, Joseph F.; Hicks, Belynda D.; Vogt, Aurelie; Burdett, Laurie; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Savage, Sharon A.

    2015-01-01

    Metastasis is the leading cause of death in osteosarcoma patients, the most common pediatric bone malignancy. We conducted a multi-stage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified a SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P=1.2×10−9, OR 2.43, 95% CI 1.83–3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. Additionally, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib, and had lowered Nfib expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis, and that NFIB is an osteosarcoma metastasis susceptibility gene. PMID:26084801

  17. Genome-wide association study of systemic sclerosis identifies CD247 as a novel susceptibility locus

    Science.gov (United States)

    Radstake, Timothy R.D.J.; Gorlova, Olga; Rueda, Blanca; Martin, Jose-Ezequiel; Alizadeh, Behrooz Z.; Palomino-Morales, Rogelio; Coenen, Marieke J.; Vonk, Madelon C.; Voskuyl, Alexandre E.; Scheurwegh, Annemie J.; Broen, Jasper C.; van Riel, Piet L.C.M.; van ‘t Slot, Ruben; Italiaander, Annet; Ophoff, Roel A.; Riemekasten, Gabriela; Hunzelmann, Nico; Simeon, Carmen P.; Ortego-Centeno, Norberto; González-Gay, Miguel A.; González-Escribano, María F.; Airo, Paolo; van Laar, Jaap; Herrick, Ariane; Worthington, Jane; Hesselstrand, Roger; Smith, Vanessa; de Keyser, Filip; Houssiau, Fredric; Chee, Meng May; Madhok, R; Shiels, Paul; Westhovens, Rene; Kreuter, Alexander; Kiener, Hans; de Baere, Elfride; Witte, Torsten; Padykov, Leonid; Klareskog, Lars; Beretta, Lorenzo; Scorza, Rafaella; Lie, Benedicte A.; Hoffman-Vold, Anna-Maria; Carreira, P; Varga, J.; Hinchcliff, M.; Gregersen, Peter; Lee, Annette T.; Ying, Jun; Han, Younghun; Weng, Shih-Feng; Amos, Christopher I.; Wigley, Fredrick M.; Hummers, Laura; Nelson, J. Lee; Agarwal, Sandeep K.; Assassi, Shervin; Gourh, Pravitt; Tan, Filemon K.; Koeleman, Bobby P.C.; Arnett, Frank C; Martin, Javier; Mayes, Maureen D.

    2010-01-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify novel SSc susceptibility loci we conducted the first genome wide association study (GWAS) in a population of Caucasian ancestry including a total of 2296 SSc patients and 5171 controls. Analysis of 279,621 autosomal single nucleotide polymorphisms (SNPs) followed by replication testing in an independent case-control set of European ancestry (2,753 SSc patients / 4,569 controls) identified a new susceptibility locus for systemic sclerosis at CD247 (1q22-23; rs2056626, P = 2.09 × 10−7 in the discovery samples, P = 3.39 × 10−9 in the combined analysis). Additionally, we confirm and firmly establish the role of MHC (2.31 × 10−18), IRF5 (P =1.86 × 10−13) and STAT4 (P =3.37 × 10−9) gene regions as SSc genetic risk factors. PMID:20383147

  18. Functional genomics identifies a requirement of pre-mRNA splicing factors for sister chromatid cohesion.

    Science.gov (United States)

    Sundaramoorthy, Sriramkumar; Vázquez-Novelle, María Dolores; Lekomtsev, Sergey; Howell, Michael; Petronczki, Mark

    2014-11-18

    Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation during cell division. Using functional genomic screening, we identify a set of 26 pre-mRNA splicing factors that are required for sister chromatid cohesion in human cells. Loss of spliceosome subunits increases the dissociation rate of cohesin from chromatin and abrogates cohesion after DNA replication, ultimately causing mitotic catastrophe. Depletion of splicing factors causes defective processing of the pre-mRNA encoding sororin, a factor required for the stable association of cohesin with chromatin, and an associated reduction of sororin protein level. Expression of an intronless version of sororin and depletion of the cohesin release protein WAPL suppress the cohesion defect in cells lacking splicing factors. We propose that spliceosome components contribute to sister chromatid cohesion and mitotic chromosome segregation through splicing of sororin pre-mRNA. Our results highlight the loss of cohesion as an early cellular consequence of compromised splicing. This may have clinical implications because SF3B1, a splicing factor that we identify to be essential for cohesion, is recurrently mutated in chronic lymphocytic leukaemia.

  19. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS

    Directory of Open Access Journals (Sweden)

    Yee-Chin Wong

    2016-08-01

    Full Text Available Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  20. Genome-wide association study identifies new prostate cancer susceptibility loci

    Science.gov (United States)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan; Jacobs, Kevin B.; Wang, Zhaoming; Lindstrom, Sara; Stevens, Victoria L.; Chen, Constance; Mondul, Alison M.; Travis, Ruth C.; Stram, Daniel O.; Eeles, Rosalind A.; Easton, Douglas F.; Giles, Graham; Hopper, John L.; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Kenneth; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Guy, Michelle; Severi, Gianluca; Grönberg, Henrik; Isaacs, William B.; Karlsson, Robert; Wiklund, Fredrik; Xu, Jianfeng; Allen, Naomi E.; Andriole, Gerald L.; Barricarte, Aurelio; Boeing, Heiner; Bas Bueno-de-Mesquita, H.; Crawford, E. David; Diver, W. Ryan; Gonzalez, Carlos A.; Gaziano, J. Michael; Giovannucci, Edward L.; Johansson, Mattias; Le Marchand, Loic; Ma, Jing; Sieri, Sabina; Stattin, Pär; Stampfer, Meir J.; Tjonneland, Anne; Vineis, Paolo; Virtamo, Jarmo; Vogel, Ulla; Weinstein, Stephanie J.; Yeager, Meredith; Thun, Michael J.; Kolonel, Laurence N.; Henderson, Brian E.; Albanes, Demetrius; Hayes, Richard B.; Spencer Feigelson, Heather; Riboli, Elio; Hunter, David J.; Chanock, Stephen J.; Haiman, Christopher A.; Kraft, Peter

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have identified at least 30 distinct loci associated with small differences in risk. We conducted a GWAS in 2782 advanced PrCa cases (Gleason grade ≥ 8 or tumor stage C/D) and 4458 controls with 571 243 single nucleotide polymorphisms (SNPs). Based on in silico replication of 4679 SNPs (Stage 1, P < 0.02) in two published GWAS with 7358 PrCa cases and 6732 controls, we identified a new susceptibility locus associated with overall PrCa risk at 2q37.3 (rs2292884, P= 4.3 × 10−8). We also confirmed a locus suggested by an earlier GWAS at 12q13 (rs902774, P= 8.6 × 10−9). The estimated per-allele odds ratios for these loci (1.14 for rs2292884 and 1.17 for rs902774) did not differ between advanced and non-advanced PrCa (case-only test for heterogeneity P= 0.72 and P= 0.61, respectively). Further studies will be needed to assess whether these or other loci are differentially associated with PrCa subtypes. PMID:21743057

  1. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin

    2016-08-22

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  2. Comparative Analysis of Genome and Epigenome in Closely Related Medaka Species Identifies Conserved Sequence Preferences for DNA Hypomethylated Domains.

    Science.gov (United States)

    Uno, Ayako; Nakamura, Ryohei; Tsukahara, Tatsuya; Qu, Wei; Sugano, Sumio; Suzuki, Yutaka; Morishita, Shinichi; Takeda, Hiroyuki

    2016-08-01

    The genomes of vertebrates are globally methylated, but a small portion of genomic regions are known to be hypomethylated. Although hypomethylated domains (HMDs) have been implicated in transcriptional regulation in various ways, how a HMD is determined in a particular genomic region remains elusive. To search for DNA motifs essential for the formation of HMDs, we performed the genome-wide comparative analysis of genome and DNA methylation patterns of the two medaka inbred lines, Hd-rRII1 and HNI-II, which are derived from northern and southern subpopulations of Japan and exhibit high levels of genetic variations (SNP, ∼ 3%). We successfully mapped > 70% of HMDs in both genomes and found that the majority of those mapped HMDs are conserved between the two lines (common HMDs). Unexpectedly, the average genetic variations are similar in the common HMD and other genome regions. However, we identified short well-conserved motifs that are specifically enriched in HMDs, suggesting that they may play roles in the establishment of HMDs in the medaka genome.

  3. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    Directory of Open Access Journals (Sweden)

    Pandey Sona

    2010-11-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases (P450s catalyze oxidation of various substrates using oxygen and NAD(PH. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an

  4. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    DEFF Research Database (Denmark)

    Cho, Michael H; Castaldi, Peter J; Wan, Emily S

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through...

  5. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  6. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine B.); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (G.); M.R. Alonso (M Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprisi

  7. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  8. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper

    2014-01-01

    years of age in a total of 1,173 cases and 2,522 controls. Cases were identified from national health registries of hospitalization, and DNA was obtained from the Danish Neonatal Screening Biobank. We identified five loci with genome-wide significant association. Four of these, GSDMB, IL33, RAD50 and IL...

  9. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections.

    Directory of Open Access Journals (Sweden)

    Pimlapas Leekitcharoenphon

    Full Text Available Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections.

  10. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Thorup Nielsen, Mette

    2016-01-01

    Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely...

  11. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J. Margriet Collée; W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe Grenaker); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias W.); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine B.); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (G.); M.R. Alonso (M Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  12. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  13. Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Deng, Min; Wei, Ling; Zuo, Xianbo; Tian, Yanghua; Xie, Fei; Hu, Panpan; Zhu, Chunyan; Yu, Fengqiong; Meng, Yu; Wang, Honghao; Zhang, Fangfang; Ma, Huijuan; Ye, Rong; Cheng, Huaidong; Du, Jing; Dong, Wenwen; Zhou, Shanshan; Wang, Changqing; Wang, Yu; Wang, Jingye; Chen, Xianwen; Sun, Zhongwu; Zhou, Nong; Jiang, Yubao; Liu, Xiuxiu; Li, Xiaogang; Zhang, Nan; Liu, Na; Guan, Yingjun; Han, Yongsheng; Han, Yongzhu; Lv, Xinyi; Fu, Yu; Yu, Hui; Xi, Chunhua; Xie, Dandan; Zhao, Qiyuan; Xie, Peng; Wang, Xin; Zhang, Zhijun; Shen, Lu; Cui, Yong; Yin, Xianyong; Cheng, Hui; Liang, Bo; Zheng, Xiaodong; Lee, Tatia M. C.; Chen, Gang; Zhou, Fusheng; Veldink, Hendrik; Robberecht, Wim; Landers, John E.; Andersen, Peter M.; Al-Chalabi, Ammar; Shaw, Chris; Liu, Chunfeng; Tang, Beisha; Xiao, Shangxi; Robertson, Janice; Zhang, Fengyu; van den Berg, Leonard H.; Sun, Liangdan; Liu, Jianjun; Yang, Sen; Ju, Xiaodong; Wang, Kai; Zhang, Xuejun

    2013-01-01

    To identify susceptibility genes for amyotrophic lateral sclerosis (ALS), we conducted a genome-wide association study (GWAS) in 506 individuals with sporadic ALS and 1,859 controls of Han Chinese ancestry. Ninety top SNPs suggested by the current GWAS and 6 SNPs identified by previous GWAS were ana

  14. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  15. A novel scan statistics approach for clustering identification and comparison in binary genomic data.

    Science.gov (United States)

    Pellin, Danilo; Di Serio, Clelia

    2016-09-22

    In biomedical research a relevant issue is to identify time intervals or portions of a n-dimensional support where a particular event of interest is more likely to occur than expected. Algorithms that require to specify a-priori number/dimension/length of clusters assumed for the data suffer from a high degree of arbitrariness whenever no precise information are available, and this may strongly affect final estimation on parameters. Within this framework, spatial scan-statistics have been proposed in the literature, representing a valid non-parametric alternative. We adapt the so called Bernoulli-model scan statistic to the genomic field and we propose a multivariate extension, named Relative Scan Statistics, for the comparison of two series of Bernoulli r.v. defined over a common support, with the final goal of highlighting unshared event rate variations. Using a probabilistic approach based on success probability estimates and comparison (likelihood based), we can exploit an hypothesis testing procedure to identify clusters and relative clusters. Both the univariate and the novel multivariate extension of the scan statistic confirm previously published findings. The method described in the paper represents a challenging application of scan statistics framework to problem related to genomic data. From a biological perspective, these tools offer the possibility to clinicians and researcher to improve their knowledge on viral vectors integrations process, allowing to focus their attention to restricted over-targeted portion of the genome.

  16. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer.

    Science.gov (United States)

    Shukla, Hem D; Mahmood, Javed; Vujaskovic, Zeljko

    2015-12-01

    treatment outcome and may enable adequate monitoring of the response to treatment and could be an important option for personalized medicine. The proteogenomic approach has the promise to identify new biomarkers for radiation therapy (RT) which could reliably predict the tumor radiation resistance and which could also accurately predict normal tissue toxicity, and at the same time radiotherapy effectiveness. In this review we have summarize the recent advances in proteogenomic approaches to develop more sensitive diagnostic and prognostic biomarkers which could be translated into improved clinical care and management of the disease.

  17. Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA to identify the minimum regions of maximum significance (MRMS across populations

    Directory of Open Access Journals (Sweden)

    Maher Brion S

    2005-12-01

    Full Text Available Abstract In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA. Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6–7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS. Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p p-value p-value p-value

  18. Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker.

    Science.gov (United States)

    Turner, Stephen T; Bailey, Kent R; Schwartz, Gary L; Chapman, Arlene B; Chai, High Seng; Boerwinkle, Eric

    2012-06-01

    To identify genes influencing blood pressure response to an angiotensin II receptor blocker, single nucleotide polymorphisms identified by genome-wide association analysis of the response to candesartan were validated by opposite direction associations with the response to a thiazide diuretic, hydrochlorothiazide. We sampled 198 white and 193 blacks with primary hypertension from opposite tertiles of the race-sex-specific distributions of age-adjusted diastolic blood pressure response to candesartan. There were 285 polymorphisms associated with the response to candesartan at P<10(-4) in whites. A total of 273 of the 285 polymorphisms, which were available for analysis in a separate sample of 196 whites, validated for opposite direction associations with the response to hydrochlorothiazide (Fisher χ(2) 1-sided P=0.02). Among the 273 polymorphisms, those in the chromosome 11q21 region were the most significantly associated with response to candesartan in whites (eg, rs11020821 near FUT4, P=8.98 × 10(-7)), had the strongest opposite direction associations with response to hydrochlorothiazide (eg, rs3758785 in GPR83, P=7.10 × 10(-3)), and had the same direction associations with response to candesartan in the 193 blacks (eg, rs16924603 near FUT4, P=1.52 × 10(-2)). Also notable among the 273 polymorphisms was rs11649420 on chromosome 16 in the amiloride-sensitive sodium channel subunit SCNN1G involved in mediating renal sodium reabsorption and maintaining blood pressure when the renin-angiotensin system is inhibited by candesartan. These results support the use of genomewide association analyses to identify novel genes predictive of opposite direction associations with blood pressure responses to inhibitors of the renin-angiotensin and renal sodium transport systems.

  19. Novel amplifications in pediatric medulloblastoma identified by genome-wide copy number profiling.

    Science.gov (United States)

    Nord, Helena; Pfeifer, Susan; Nilsson, Pelle; Sandgren, Johanna; Popova, Svetlana; Strömberg, Bo; Alafuzoff, Irina; Nistér, Monica; Díaz de Ståhl, Teresita

    2012-03-01

    Medulloblastoma (MB) is a WHO grade IV, invasive embryonal CNS tumor that mainly affects children. The aggressiveness and response to therapy can vary considerably between cases, and despite treatment, ~30% of patients die within 2 years from diagnosis. Furthermore, the majority of survivors suffer long-term side-effects due to severe management modalities. Several distinct morphological features have been associated with differences in biological behavior, but improved molecular-based criteria that better reflect the underlying tumor biology are in great demand. In this study, we profiled a series of 25 MB with a 32K BAC array covering 99% of the current assembly of the human genome for the identification of genetic copy number alterations possibly important in MB. Previously known aberrations as well as several novel focally amplified loci could be identified. As expected, the most frequently observed alteration was the combination of 17p loss and 17q gain, which was detected in both high- and standard-risk patients. We also defined minimal overlapping regions of aberrations, including 16 regions of gain and 18 regions of loss in various chromosomes. A few noteworthy narrow amplified loci were identified on autosomes 1 (38.89-41.97 and 84.89-90.76 Mb), 3 (27.64-28.20 and 35.80-43.50 Mb), and 8 (119.66-139.79 Mb), aberrations that were verified with an alternative platform (Illumina 610Q chips). Gene expression levels were also established for these samples using Affymetrix U133Plus2.0 arrays. Several interesting genes encompassed within the amplified regions and presenting with transcript upregulation were identified. These data contribute to the characterization of this malignant childhood brain tumor and confirm its genetic heterogeneity.

  20. Genome-wide association study identifies a novel canine glaucoma locus.

    Science.gov (United States)

    Ahonen, Saija J; Pietilä, Elina; Mellersh, Cathryn S; Tiira, Katriina; Hansen, Liz; Johnson, Gary S; Lohi, Hannes

    2013-01-01

    Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG), primary open-angle (POAG) and primary congenital glaucoma (PCG). Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT) in which it is a late-onset (>7 years) disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively) in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63 × 10(-10), OR = 32 for homozygosity). Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.

  1. Genome-wide association study identifies a novel canine glaucoma locus.

    Directory of Open Access Journals (Sweden)

    Saija J Ahonen

    Full Text Available Glaucoma is an optic neuropathy and one of the leading causes of blindness. Its hereditary forms are classified into primary closed-angle (PCAG, primary open-angle (POAG and primary congenital glaucoma (PCG. Although many loci have been mapped in human, only a few genes have been identified that are associated with the development of glaucoma and the genetic basis of the disease remains poorly understood. Glaucoma has also been described in many dog breeds, including Dandie Dinmont Terriers (DDT in which it is a late-onset (>7 years disease. We designed clinical and genetic studies to better define the clinical features of glaucoma in the DDT and to identify the genetic cause. Clinical diagnosis was based on ophthalmic examinations of the affected dogs and 18 additionally investigated unaffected DDTs. We collected DNA from over 400 DTTs and a genome wide association study was performed in a cohort of 23 affected and 23 controls, followed by a fine mapping, a replication study and candidate gene sequencing. The clinical study suggested that ocular abnormalities including abnormal iridocorneal angles and pectinate ligament dysplasia are common (50% and 72%, respectively in the breed and the disease resembles human PCAG. The genetic study identified a novel 9.5 Mb locus on canine chromosome 8 including the 1.6 Mb best associated region (p = 1.63 × 10(-10, OR = 32 for homozygosity. Mutation screening in five candidate genes did not reveal any causative variants. This study indicates that although ocular abnormalities are common in DDTs, the genetic risk for glaucoma is conferred by a novel locus on CFA8. The canine locus shares synteny to a region in human chromosome 14q, which harbors several loci associated with POAG and PCG. Our study reveals a new locus for canine glaucoma and ongoing molecular studies will likely help to understand the genetic etiology of the disease.

  2. First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats.

    Directory of Open Access Journals (Sweden)

    Barbara Gandolfi

    Full Text Available Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K(+], most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T, leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K⁺ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.

  3. First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats.

    Science.gov (United States)

    Gandolfi, Barbara; Gruffydd-Jones, Timothy J; Malik, Richard; Cortes, Alejandro; Jones, Boyd R; Helps, Chris R; Prinzenberg, Eva M; Erhardt, George; Lyons, Leslie A

    2012-01-01

    Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K(+)]), most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T), leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K⁺ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.

  4. A Maximum Entropy Approach to Identifying Sentence Boundaries

    CERN Document Server

    Reynar, J C; Reynar, Jeffrey C.; Ratnaparkhi, Adwait

    1997-01-01

    We present a trainable model for identifying sentence boundaries in raw text. Given a corpus annotated with sentence boundaries, our model learns to classify each occurrence of ., ?, and ! as either a valid or invalid sentence boundary. The training procedure requires no hand-crafted rules, lexica, part-of-speech tags, or domain-specific information. The model can therefore be trained easily on any genre of English, and should be trainable on any other Roman-alphabet language. Performance is comparable to or better than the performance of similar systems, but we emphasize the simplicity of retraining for new domains.

  5. (Far) Outside the box: genomic approach to acute porphyria.

    Science.gov (United States)

    Thunell, S

    2006-01-01

    If I were living in Caucasus I would be writing fairy tales there Chekov, 1888 The question of the reasons for the extreme variation in morbidity among the gene carriers of acute porphyria and the great diversity of the precipitating factors are approached by the aid of a model of interacting genomic circuits. It is based on the current paradigm of the acute porphyric attack as a result of a toxic proximal overload of the enzyme-deficient heme-biosynthetic patway. Porphyrogenic influx of precursors is seen as a consequence of uncontrolled induction of its gate-keeping enzyme, ubiquitous 5-aminolevulinate synthase (ALAS1), due to attenuated post-translational control of the enzyme combined with activated gene transcription. Focus is directed on the genomic control of the master-regulator of ALAS1-transcription, the nuclear receptor pair constitutively active receptor (CAR) and pregnane xenobiotic receptor (PXR). On activation by their ligands, i.e. lipophilic drugs, solvents, alcohols, hormonal steroids and biocides, these DNA-binding proteins transform xenobiotic or steroid stimuli to coordinated activations of gene transcription-programs for ALAS1 and apo-cytochromes P450 (apo-CYPs), thus effecting the formation of xenobiotic-metabolizing cytochrome P450 enzymes. The potency of the CAR/PXR-transduction axis is enhanced by co-activators generated in at least four other genomic circuits, each triggered by different external and internal stimuli clinically experienced to be porphyrogenic, and each controlled by co-activating and co-repressing modulators. The expressions of the genes for CAR and PXR are thus augmented by binding glucocorticoid receptor (GR) activated by a steroid hormone, e.g, cortisol generated in fasting, infection or different forms of stress. The promotor regions of ALAS1 and apoCYPs contain binding sites for at least three co-activating transcription factors enhancing CAR/PXR transduction: i.e. the ligand-independent growth hormone (GH

  6. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Directory of Open Access Journals (Sweden)

    Fry Rebecca C

    2011-04-01

    Full Text Available Abstract Background Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. Results In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. Conclusions This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.

  7. PROCESS OF IDENTIFYING COMPETENCIES BASED ON A FUNCTIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    NAOUFAL SEFIANI

    2012-01-01

    Full Text Available To cope with fast change of the technological and organizational context, managers need tools to help them to improve competence management. Our contribution aims at supporting the task of competence identification that is considered as the first step of the management process. The proposed identification involves tree stages.The first stage concerns the research of competences based on a functional approach. The second stage is to define a typology of the component of competence (characterization and the third stage to define the core competencies of competence (prioritization. The application of the method in an industrial case in the logisticsfield confirms the possibility of using the “principle of solution” to provide a dynamic process for the identification of requisite competencies.