WorldWideScience

Sample records for genomic expression dominance

  1. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  2. Genomic Model with Correlation Between Additive and Dominance Effects.

    Science.gov (United States)

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant

  3. Forming Facial Expressions Influences Assessment of Others' Dominance but Not Trustworthiness.

    Science.gov (United States)

    Ueda, Yoshiyuki; Nagoya, Kie; Yoshikawa, Sakiko; Nomura, Michio

    2017-01-01

    Forming specific facial expressions influences emotions and perception. Bearing this in mind, studies should be reconsidered in which observers expressing neutral emotions inferred personal traits from the facial expressions of others. In the present study, participants were asked to make happy, neutral, and disgusted facial expressions: for "happy," they held a wooden chopstick in their molars to form a smile; for "neutral," they clasped the chopstick between their lips, making no expression; for "disgusted," they put the chopstick between their upper lip and nose and knit their brows in a scowl. However, they were not asked to intentionally change their emotional state. Observers judged happy expression images as more trustworthy, competent, warm, friendly, and distinctive than disgusted expression images, regardless of the observers' own facial expression. Observers judged disgusted expression images as more dominant than happy expression images. However, observers expressing disgust overestimated dominance in observed disgusted expression images and underestimated dominance in happy expression images. In contrast, observers with happy facial forms attenuated dominance for disgusted expression images. These results suggest that dominance inferred from facial expressions is unstable and influenced by not only the observed facial expression, but also the observers' own physiological states.

  4. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China.

    Directory of Open Access Journals (Sweden)

    Qing-Ye Zhuang

    Full Text Available The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV, and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV. The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks.

  5. A note on mate allocation for dominance handling in genomic selection

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2010-08-01

    Full Text Available Abstract Estimation of non-additive genetic effects in animal breeding is important because it increases the accuracy of breeding value prediction and the value of mate allocation procedures. With the advent of genomic selection these ideas should be revisited. The objective of this study was to quantify the efficiency of including dominance effects and practising mating allocation under a whole-genome evaluation scenario. Four strategies of selection, carried out during five generations, were compared by simulation techniques. In the first scenario (MS, individuals were selected based on their own phenotypic information. In the second (GSA, they were selected based on the prediction generated by the Bayes A method of whole-genome evaluation under an additive model. In the third (GSD, the model was expanded to include dominance effects. These three scenarios used random mating to construct future generations, whereas in the fourth one (GSD + MA, matings were optimized by simulated annealing. The advantage of GSD over GSA ranges from 9 to 14% of the expected response and, in addition, using mate allocation (GSD + MA provides an additional response ranging from 6% to 22%. However, mate selection can improve the expected genetic response over random mating only in the first generation of selection. Furthermore, the efficiency of genomic selection is eroded after a few generations of selection, thus, a continued collection of phenotypic data and re-evaluation will be required.

  6. HD CAG-correlated gene expression changes support a simple dominant gain of function

    Science.gov (United States)

    Jacobsen, Jessie C.; Gregory, Gillian C.; Woda, Juliana M.; Thompson, Morgan N.; Coser, Kathryn R.; Murthy, Vidya; Kohane, Isaac S.; Gusella, James F.; Seong, Ihn Sik; MacDonald, Marcy E.; Shioda, Toshi; Lee, Jong-Min

    2011-01-01

    Huntington's disease is initiated by the expression of a CAG repeat-encoded polyglutamine region in full-length huntingtin, with dominant effects that vary continuously with CAG size. The mechanism could involve a simple gain of function or a more complex gain of function coupled to a loss of function (e.g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell lines (HdhQ20/7, HdhQ50/7, HdhQ91/7, HdhQ111/7), to genes differentially expressed between Hdhex4/5/ex4/5 huntingtin null and wild-type (HdhQ7/7) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct from, but related to, the effects of lack of huntingtin. These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels. PMID:21536587

  7. Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Vendramin, Veronica

    2014-01-01

    species after 30 days of incubation and made it possible to identify those species that are able to grow in that extreme environment. The genome sequence of Lactobacillus fabifermentans, one of the dominant species identified, was then analyzed using shotgun sequencing and comparative genomics....... The results revealed that it is one of the largest genomes among the Lactobacillus sequenced and is characterized by a large number of genes involved in carbohydrate utilization and in the regulation of gene expression. The genome was shaped through a large number of gene duplication events, while lateral...... gene transfer contributed to a lesser extent with respect to other Lactobacillus species. According to genomic analysis, its carbohydrate utilization pattern and ability to form biofilm are the main genetic traits linked to the adaptation the species underwent permitting it to grow in fermenting grape...

  8. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Objective A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results A total of 18 (0, 15 (3, 12 (8, 15 (18, 11 (7, and 21 (1 SNPs were detected at the 5% chromosome (genome - wise level for weaning weight (WWT, yearling weight (YWT, carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area (LMA and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29 were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA. Conclusion The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

  9. Visual Comparison of Multiple Gene Expression Datasets in a Genomic Context

    Directory of Open Access Journals (Sweden)

    Borowski Krzysztof

    2008-06-01

    Full Text Available The need for novel methods of visualizing microarray data is growing. New perspectives are beneficial to finding patterns in expression data. The Bluejay genome browser provides an integrative way of visualizing gene expression datasets in a genomic context. We have now developed the functionality to display multiple microarray datasets simultaneously in Bluejay, in order to provide researchers with a comprehensive view of their datasets linked to a graphical representation of gene function. This will enable biologists to obtain valuable insights on expression patterns, by allowing them to analyze the expression values in relation to the gene locations as well as to compare expression profiles of related genomes or of di erent experiments for the same genome.

  10. Genomic selection models for directional dominance: an example for litter size in pigs.

    Science.gov (United States)

    Varona, Luis; Legarra, Andrés; Herring, William; Vitezica, Zulma G

    2018-01-26

    The quantitative genetics theory argues that inbreeding depression and heterosis are founded on the existence of directional dominance. However, most procedures for genomic selection that have included dominance effects assumed prior symmetrical distributions. To address this, two alternatives can be considered: (1) assume the mean of dominance effects different from zero, and (2) use skewed distributions for the regularization of dominance effects. The aim of this study was to compare these approaches using two pig datasets and to confirm the presence of directional dominance. Four alternative models were implemented in two datasets of pig litter size that consisted of 13,449 and 11,581 records from 3631 and 2612 sows genotyped with the Illumina PorcineSNP60 BeadChip. The models evaluated included (1) a model that does not consider directional dominance (Model SN), (2) a model with a covariate b for the average individual homozygosity (Model SC), (3) a model with a parameter λ that reflects asymmetry in the context of skewed Gaussian distributions (Model AN), and (4) a model that includes both b and λ (Model Full). The results of the analysis showed that posterior probabilities of a negative b or a positive λ under Models SC and AN were higher than 0.99, which indicate positive directional dominance. This was confirmed with the predictions of inbreeding depression under Models Full, SC and AN, that were higher than in the SN Model. In spite of differences in posterior estimates of variance components between models, comparison of models based on LogCPO and DIC indicated that Model SC provided the best fit for the two datasets analyzed. Our results confirmed the presence of positive directional dominance for pig litter size and suggested that it should be taken into account when dominance effects are included in genomic evaluation procedures. The consequences of ignoring directional dominance may affect predictions of breeding values and can lead to biased

  11. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma.

    Science.gov (United States)

    Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A

    2017-01-03

    Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.

  12. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  13. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity.

    Science.gov (United States)

    Gendreau, Kerry L; Haney, Robert A; Schwager, Evelyn E; Wierschin, Torsten; Stanke, Mario; Richards, Stephen; Garb, Jessica E

    2017-02-16

    Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in

  14. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  15. Co-Expression of Neighboring Genes in the Zebrafish (Danio rerio Genome

    Directory of Open Access Journals (Sweden)

    Daryi Wang

    2009-08-01

    Full Text Available Neighboring genes in the eukaryotic genome have a tendency to express concurrently, and the proximity of two adjacent genes is often considered a possible explanation for their co-expression behavior. However, the actual contribution of the physical distance between two genes to their co-expression behavior has yet to be defined. To further investigate this issue, we studied the co-expression of neighboring genes in zebrafish, which has a compact genome and has experienced a whole genome duplication event. Our analysis shows that the proportion of highly co-expressed neighboring pairs (Pearson’s correlation coefficient R>0.7 is low (0.24% ~ 0.67%; however, it is still significantly higher than that of random pairs. In particular, the statistical result implies that the co-expression tendency of neighboring pairs is negatively correlated with their physical distance. Our findings therefore suggest that physical distance may play an important role in the co-expression of neighboring genes. Possible mechanisms related to the neighboring genes’ co-expression are also discussed.

  16. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma.

    Directory of Open Access Journals (Sweden)

    David Lindgren

    Full Text Available Similar to other malignancies, urothelial carcinoma (UC is characterized by specific recurrent chromosomal aberrations and gene mutations. However, the interconnection between specific genomic alterations, and how patterns of chromosomal alterations adhere to different molecular subgroups of UC, is less clear. We applied tiling resolution array CGH to 146 cases of UC and identified a number of regions harboring recurrent focal genomic amplifications and deletions. Several potential oncogenes were included in the amplified regions, including known oncogenes like E2F3, CCND1, and CCNE1, as well as new candidate genes, such as SETDB1 (1q21, and BCL2L1 (20q11. We next combined genome profiling with global gene expression, gene mutation, and protein expression data and identified two major genomic circuits operating in urothelial carcinoma. The first circuit was characterized by FGFR3 alterations, overexpression of CCND1, and 9q and CDKN2A deletions. The second circuit was defined by E3F3 amplifications and RB1 deletions, as well as gains of 5p, deletions at PTEN and 2q36, 16q, 20q, and elevated CDKN2A levels. TP53/MDM2 alterations were common for advanced tumors within the two circuits. Our data also suggest a possible RAS/RAF circuit. The tumors with worst prognosis showed a gene expression profile that indicated a keratinized phenotype. Taken together, our integrative approach revealed at least two separate networks of genomic alterations linked to the molecular diversity seen in UC, and that these circuits may reflect distinct pathways of tumor development.

  17. Genome-wide association analyses of expression phenotypes.

    Science.gov (United States)

    Chen, Gary K; Zheng, Tian; Witte, John S; Goode, Ellen L; Gao, Lei; Hu, Pingzhao; Suh, Young Ju; Suktitipat, Bhoom; Szymczak, Silke; Woo, Jung Hoon; Zhang, Wei

    2007-01-01

    A number of issues arise when analyzing the large amount of data from high-throughput genotype and expression microarray experiments, including design and interpretation of genome-wide association studies of expression phenotypes. These issues were considered by contributions submitted to Group 1 of the Genetic Analysis Workshop 15 (GAW15), which focused on the association of quantitative expression data. These contributions evaluated diverse hypotheses, including those relevant to cancer and obesity research, and used various analytic techniques, many of which were derived from information theory. Several observations from these reports stand out. First, one needs to consider the genetic model of the trait of interest and carefully select which single nucleotide polymorphisms and individuals are included early in the design stage of a study. Second, by targeting specific pathways when analyzing genome-wide data, one can generate more interpretable results than agnostic approaches. Finally, for datasets with small sample sizes but a large number of features like the Genetic Analysis Workshop 15 dataset, machine learning approaches may be more practical than traditional parametric approaches. (c) 2007 Wiley-Liss, Inc.

  18. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    Science.gov (United States)

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square

  19. Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells.

    Science.gov (United States)

    Shi, Ming-Zhu; Xie, De-Yu

    2011-04-01

    We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC-MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1-GL3/TT8-PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.

  20. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  1. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    KAUST Repository

    Otto, Thomas D

    2014-10-30

    Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilized it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the `Plasmodium interspersed repeat genes\\' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. Conclusions: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.

  2. The Genomic Pattern of tDNA Operon Expression in E. coli.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available In fast-growing microorganisms, a tRNA concentration profile enriched in major isoacceptors selects for the biased usage of cognate codons. This optimizes translational rate for the least mass invested in the translational apparatus. Such translational streamlining is thought to be growth-regulated, but its genetic basis is poorly understood. First, we found in reanalysis of the E. coli tRNA profile that the degree to which it is translationally streamlined is nearly invariant with growth rate. Then, using least squares multiple regression, we partitioned tRNA isoacceptor pools to predicted tDNA operons from the E. coli K12 genome. Co-expression of tDNAs in operons explains the tRNA profile significantly better than tDNA gene dosage alone. Also, operon expression increases significantly with proximity to the origin of replication, oriC, at all growth rates. Genome location explains about 15% of expression variation in a form, at a given growth rate, that is consistent with replication-dependent gene concentration effects. Yet the change in the tRNA profile with growth rate is less than would be expected from such effects. We estimated per-copy expression rates for all tDNA operons that were consistent with independent estimates for rDNA operons. We also found that tDNA operon location, and the location dependence of expression, were significantly different in the leading and lagging strands. The operonic organization and genomic location of tDNA operons are significant factors influencing their expression. Nonrandom patterns of location and strandedness shown by tDNA operons in E. coli suggest that their genomic architecture may be under selection to satisfy physiological demand for tRNA expression at high growth rates.

  3. Multi-targeted priming for genome-wide gene expression assays

    Directory of Open Access Journals (Sweden)

    Adomas Aleksandra B

    2010-08-01

    Full Text Available Abstract Background Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. Results We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Conclusions Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and

  4. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Directory of Open Access Journals (Sweden)

    Krogh Anders

    2006-05-01

    Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.

  5. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells

    Directory of Open Access Journals (Sweden)

    Gutmann Anja

    2010-01-01

    Full Text Available Abstract Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.

  6. Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma.

    Science.gov (United States)

    Borozan, Ivan; Zapatka, Marc; Frappier, Lori; Ferretti, Vincent

    2018-01-15

    Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis. IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the

  7. A dominant control region from the human β-globin locus conferring integration site-independent gene expression.

    NARCIS (Netherlands)

    D. Talbot; P. Collis; M. Antoniou (Michael); M. Vidal; F.G. Grosveld (Frank); D.R. Greaves (David)

    1989-01-01

    textabstractThe regulatory elements that determine the expression pattern of a number of eukaryotic genes expressed specifically in certain tissues have been defined and studied in detail. In general, however, the expression conferred by these elements on genes reintroduced into the genomes of cell

  8. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    Science.gov (United States)

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and pCRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  9. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  10. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  11. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam D Idoine

    Full Text Available Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

  12. Orthogonal control of expression mean and variance by epigenetic features at different genomic loci.

    Science.gov (United States)

    Dey, Siddharth S; Foley, Jonathan E; Limsirichai, Prajit; Schaffer, David V; Arkin, Adam P

    2015-05-05

    While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH and protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Olivia eMason

    2014-07-01

    Full Text Available During the Deepwater Horizon (DWH oil spill in the Gulf of Mexico a deep-sea hydrocarbon plume developed resulting in a rapid succession of bacteria. Colwellia eventually supplanted Oceanospirillales, which dominated the plume early in the spill. These successional changes may have resulted, in part, from the changing composition and abundance of hydrocarbons over time. Colwellia abundance peaked when gaseous and simple aromatic hydrocarbons increased, yet the metabolic pathway used by Colwellia in hydrocarbon disposition is unknown. Here we used single-cell genomics to gain insights into the genome properties of a Colwellia enriched during the DWH deep-sea plume. A single amplified genome (SAG of a Colwellia cell isolated from a DWH plume, closely related (avg. 98% 16S rRNA gene similarity to other plume Colwellia, was sequenced and annotated. The SAG was similar to the sequenced isolate Colwellia psychrerythraea 34H (84% avg. nucleotide identity. Both had genes for denitrification, chemotaxis and motility, adaptations to cold environments, and a suite of nutrient acquisition genes. The Colwellia SAG may be capable of gaseous and aromatic hydrocarbon degradation, which contrasts with a DWH plume Oceanospirillales SAG genome which encoded non-gaseous n-alkane and cycloalkane degradation. The disparate hydrocarbon degradation pathways are consistent with hydrocarbons that were abundant at different times in the deep-sea plume; first, non-gaseous n-alkanes and cycloalkanes that could be degraded by Oceanospirillales, followed by gaseous, and simple aromatic hydrocarbons that may have been degraded by Colwellia. These insights into the genomic properties of a Colwellia species, which were supported by existing metagenomic sequence data from the plume and DWH contaminated sediments, help further our understanding of the successional changes in the dominant microbial players in the plume over the course of the DWH spill.

  14. Atypical cortical language organization in epilepsy patients: evidence for divergent hemispheric dominance for receptive and expressive language function.

    Science.gov (United States)

    Eliashiv, Dawn S; Kurelowech, Lacey; Quint, Patti; Chung, Jeffrey M; Otis, Shirley M; Gage, Nicole M

    2014-06-01

    The central goal of presurgical language mapping is to identify brain regions that subserve cortical language function to minimize postsurgical language deficits. Presurgical language mapping in patients with epilepsy presents a key challenge because of the atypical pattern of hemispheric language dominance found in this population, with higher incidences of bilateral and right-biased language dominance than typical. In this prospective study, we combine magnetoencephalography with a panel of tasks designed to separately assess receptive and expressive function to provide a sensitive measure of language function in 15 candidates for resective surgery. We report the following: 4 of 15 patients (27%) showed left hemisphere dominance across all tasks, 4 of 15 patients (27%) showed right hemisphere dominance across all tasks, and 7 of 15 (46%) showed discordant language dominance, with right-dominant receptive and left-dominant expressive language. All patients with discordant language dominance showed this right-receptive and left-expressive pattern. Results provide further evidence supporting the importance of using a panel of tasks to assess separable aspects of language function. The clinical relevance of the findings is discussed, especially about current clinical operative measures for assessing language dominance, which use single hemisphere procedure (intracarotid amobarbital procedure and awake intraoperative stimulation) for determining language laterality.

  15. Genome-wide study of correlations between genomic features and their relationship with the regulation of gene expression.

    Science.gov (United States)

    Kravatsky, Yuri V; Chechetkin, Vladimir R; Tchurikov, Nikolai A; Kravatskaya, Galina I

    2015-02-01

    The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics. We developed the criteria for the assessment of genome track inhomogeneity and correlations between two genome tracks. We also developed a software package, Genome Track Analyzer, based on this theory. The theory and software were tested on simulated data and were applied to the study of correlations between CpG islands and transcription start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the H. sapiens genome. Significant correlations between transcription start sites on the forward and the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Central genomic regulation of the expression of oestrous behaviour in dairy cows: a review.

    Science.gov (United States)

    Woelders, H; van der Lende, T; Kommadath, A; te Pas, M F W; Smits, M A; Kaal, L M T E

    2014-05-01

    The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.

  17. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells

    Directory of Open Access Journals (Sweden)

    Lev Shapira

    2016-12-01

    Full Text Available Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1 fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s. Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA, Suberohydroxamic Acid (SBX, Valporic Acid (VPA and Suberoylanilide Hydoxamic Acid (SAHA. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero and U2OS, which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX, which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in

  18. Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    NARCIS (Netherlands)

    Li, Y.; Alda Alvarez, O.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.G.; Hazendonk, E.; Prins, J.C.P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  19. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    NARCIS (Netherlands)

    Li, Y.; Alvarez, O.A.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.; Hazendonk, M.G.A.; Prins, P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  20. Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Chuanju Dong

    Full Text Available Aquaporins (Aqps are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. Among vertebrate species, Aqps are highly conserved in both gene structure and amino acid sequence. These proteins are vital for maintaining water homeostasis in living organisms, especially for aquatic animals such as teleost fish. Studies on teleost Aqps are mainly limited to several model species with diploid genomes. Common carp, which has a tetraploidized genome, is one of the most common aquaculture species being adapted to a wide range of aquatic environments. The complete common carp genome has recently been released, providing us the possibility for gene evolution of aqp gene family after whole genome duplication.In this study, we identified a total of 37 aqp genes from common carp genome. Phylogenetic analysis revealed that most of aqps are highly conserved. Comparative analysis was performed across five typical vertebrate genomes. We found that almost all of the aqp genes in common carp were duplicated in the evolution of the gene family. We postulated that the expansion of the aqp gene family in common carp was the result of an additional whole genome duplication event and that the aqp gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Expression patterns were assessed in various tissues, including brain, heart, spleen, liver, intestine, gill, muscle, and skin, which demonstrated the comprehensive expression profiles of aqp genes in the tetraploidized genome. Significant gene expression divergences have been observed, revealing substantial expression divergences or functional divergences in those duplicated aqp genes post the latest WGD event.To some extent, the gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp aqp gene family provides an

  1. Inferring causal genomic alterations in breast cancer using gene expression data

    Science.gov (United States)

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  2. Genomic expression patterns of cardiac tissues from dogs with dilated cardiomyopathy.

    Science.gov (United States)

    Oyama, Mark A; Chittur, Sridar

    2005-07-01

    To evaluate global genome expression patterns of left ventricular tissues from dogs with dilated cardiomyopathy (DCM). Tissues obtained from the left ventricle of 2 Doberman Pinschers with end-stage DCM and 5 healthy control dogs. Transcriptional activities of 23,851 canine DNA sequences were determined by use of an oligonucleotide microarray. Genome expression patterns of DCM tissue were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with gene expression for tissues from 5 healthy control dogs. 478 transcripts were differentially expressed (> or = 2.5-fold change). In DCM tissue, expression of 173 transcripts was upregulated and expression of 305 transcripts was downregulated, compared with expression for control tissues. Of the 478 transcripts, 167 genes could be specifically identified. These genes were grouped into 1 of 8 categories on the basis of their primary physiologic function. Grouping revealed that pathways involving cellular energy production, signaling and communication, and cell structure were generally downregulated, whereas pathways involving cellular defense and stress responses were upregulated. Many previously unreported genes that may contribute to the pathophysiologic aspects of heart disease were identified. Evaluation of global expression patterns provides a molecular portrait of heart failure, yields insights into the pathophysiologic aspects of DCM, and identifies intriguing genes and pathways for further study.

  3. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    Visfatin was a newly identified adipocytokine, which was involved in various physiologic and pathologic processes of organisms. The cDNA structure, genomic organization and expression patterns of silver Prussian carp visfatin were described in this report. The silver Prussian carp visfatin cDNA cloned from the liver was ...

  4. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  5. Analysis of genomic imbalances and gene expression changes in transformed follicular lymphoma (FL)

    DEFF Research Database (Denmark)

    Obel, G.; Farinha, P.; Lam, W.

    2005-01-01

    American patients with transformed FL. Methods: High-resolution BAC-array comparative genomic hybridisation (CGH) was used to detect genomic imbalances. Gene expression profiling was performed using cDNA microarrays (Affymetrix). Results: Of 9 biopsy pairs identified so far, analysis results of the first 4...

  6. Rethinking clinical language mapping approaches: discordant receptive and expressive hemispheric language dominance in epilepsy surgery candidates.

    Science.gov (United States)

    Gage, Nicole M; Eliashiv, Dawn S; Isenberg, Anna L; Fillmore, Paul T; Kurelowech, Lacey; Quint, Patti J; Chung, Jeffrey M; Otis, Shirley M

    2011-06-01

    Neuroimaging studies have shed light on cortical language organization, with findings implicating the left and right temporal lobes in speech processing converging to a left-dominant pattern. Findings highlight the fact that the state of theoretical language knowledge is ahead of current clinical language mapping methods, motivating a rethinking of these approaches. The authors used magnetoencephalography and multiple tasks in seven candidates for resective epilepsy surgery to investigate language organization. The authors scanned 12 control subjects to investigate the time course of bilateral receptive speech processes. Laterality indices were calculated for left and right hemisphere late fields ∼150 to 400 milliseconds. The authors report that (1) in healthy adults, speech processes activated superior temporal regions bilaterally converging to a left-dominant pattern, (2) in four of six patients, this was reversed, with bilateral processing converging to a right-dominant pattern, and (3) in three of four of these patients, receptive and expressive language processes were laterally discordant. Results provide evidence that receptive and expressive language may have divergent hemispheric dominance. Right-sided receptive language dominance in epilepsy patients emphasizes the need to assess both receptive and expressive language. Findings indicate that it is critical to use multiple tasks tapping separable aspects of language function to provide sensitive and specific estimates of language localization in surgical patients.

  7. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Gardner, P. P.; Arctander, Peter

    2006-01-01

    Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptiv......Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, Express...

  8. Genomic DNA-based absolute quantification of gene expression in Vitis.

    Science.gov (United States)

    Gambetta, Gregory A; McElrone, Andrew J; Matthews, Mark A

    2013-07-01

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., and that reaction efficiencies of the GOI and RG are equal; assumptions which are often faulty. The true variability in RG expression and actual reaction efficiencies are seldom determined experimentally. Here we present a rapid and robust method for absolute quantification of expression in Vitis where varying concentrations of genomic DNA were used to construct GOI standard curves. This methodology was utilized to absolutely quantify and determine the variability of the previously validated RG ubiquitin (VvUbi) across three test studies in three different tissues (roots, leaves and berries). In addition, in each study a GOI was absolutely quantified. Data sets resulting from relative and absolute methods of quantification were compared and the differences were striking. VvUbi expression was significantly different in magnitude between test studies and variable among individual samples. Absolute quantification consistently reduced the coefficients of variation of the GOIs by more than half, often resulting in differences in statistical significance and in some cases even changing the fundamental nature of the result. Utilizing genomic DNA-based absolute quantification is fast and efficient. Through eliminating error introduced by assuming RG stability and equal reaction efficiencies between the RG and GOI this methodology produces less variation, increased accuracy and greater statistical power. © 2012 Scandinavian Plant Physiology Society.

  9. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    Science.gov (United States)

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  10. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  11. The RNAPII-CTD Maintains Genome Integrity through Inhibition of Retrotransposon Gene Expression and Transposition.

    Directory of Open Access Journals (Sweden)

    Maria J Aristizabal

    2015-10-01

    Full Text Available RNA polymerase II (RNAPII contains a unique C-terminal domain that is composed of heptapeptide repeats and which plays important regulatory roles during gene expression. RNAPII is responsible for the transcription of most protein-coding genes, a subset of non-coding genes, and retrotransposons. Retrotransposon transcription is the first step in their multiplication cycle, given that the RNA intermediate is required for the synthesis of cDNA, the material that is ultimately incorporated into a new genomic location. Retrotransposition can have grave consequences to genome integrity, as integration events can change the gene expression landscape or lead to alteration or loss of genetic information. Given that RNAPII transcribes retrotransposons, we sought to investigate if the RNAPII-CTD played a role in the regulation of retrotransposon gene expression. Importantly, we found that the RNAPII-CTD functioned to maintaining genome integrity through inhibition of retrotransposon gene expression, as reducing CTD length significantly increased expression and transposition rates of Ty1 elements. Mechanistically, the increased Ty1 mRNA levels in the rpb1-CTD11 mutant were partly due to Cdk8-dependent alterations to the RNAPII-CTD phosphorylation status. In addition, Cdk8 alone contributed to Ty1 gene expression regulation by altering the occupancy of the gene-specific transcription factor Ste12. Loss of STE12 and TEC1 suppressed growth phenotypes of the RNAPII-CTD truncation mutant. Collectively, our results implicate Ste12 and Tec1 as general and important contributors to the Cdk8, RNAPII-CTD regulatory circuitry as it relates to the maintenance of genome integrity.

  12. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    Science.gov (United States)

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including

  13. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  14. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Nulton, Tara J; Olex, Amy L; Dozmorov, Mikhail; Morgan, Iain M; Windle, Brad

    2017-03-14

    Human papillomavirus (HPV) DNA is detected in up to 80% of oropharyngeal carcinomas (OPC) and this HPV positive disease has reached epidemic proportions. To increase our understanding of the disease, we investigated the status of the HPV16 genome in HPV-positive head and neck cancers (HNC). Raw RNA-Seq and Whole Genome Sequence data from The Cancer Genome Atlas HNC samples were analyzed to gain a full understanding of the HPV genome status for these tumors. Several remarkable and novel observations were made following this analysis. Firstly, there are three main HPV genome states in these tumors that are split relatively evenly: An episomal only state, an integrated state, and a state in which the viral genome exists as a hybrid episome with human DNA. Secondly, none of the tumors expressed high levels of E6; E6*I is the dominant variant expressed in all tumors. The most striking conclusion from this study is that around three quarters of HPV16 positive HNC contain episomal versions of the viral genome that are likely replicating in an E1-E2 dependent manner. The clinical and therapeutic implications of these observations are discussed.

  15. A dominant control region from the human β-globin locus conferring integration site-independent gene expression.

    OpenAIRE

    Talbot, D.; Collis, P.; Antoniou, Michael; Vidal, M.; Grosveld, Frank; Greaves, David

    1989-01-01

    textabstractThe regulatory elements that determine the expression pattern of a number of eukaryotic genes expressed specifically in certain tissues have been defined and studied in detail. In general, however, the expression conferred by these elements on genes reintroduced into the genomes of cell lines and transgenic animals has turned out to be at a low level relative to that of endogenous genes, and influenced by the chromosomal site of insertion of the exogenous construct. We have previo...

  16. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  17. Cell size, genome size and the dominance of Angiosperms

    Science.gov (United States)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic

  18. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2006-12-01

    Full Text Available Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 degrees C and 24 degrees C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii and N2 (Bristol. No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 degrees C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.

  19. Development and validation of new SSR markers from expressed regions in the garlic genome

    Science.gov (United States)

    Limited number of simple sequence repeat (SSR) markers is available for the genome of garlic (Allium sativum L.) although SSR markers have become one of the most preferred marker systems because they are typically co-dominant, reproducible, cross species transferable and highly polymorphic. In this ...

  20. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    Science.gov (United States)

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  1. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  2. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory

  3. BarleyBase—an expression profiling database for plant genomics

    Science.gov (United States)

    Shen, Lishuang; Gong, Jian; Caldo, Rico A.; Nettleton, Dan; Cook, Dianne; Wise, Roger P.; Dickerson, Julie A.

    2005-01-01

    BarleyBase (BB) (www.barleybase.org) is an online database for plant microarrays with integrated tools for data visualization and statistical analysis. BB houses raw and normalized expression data from the two publicly available Affymetrix genome arrays, Barley1 and Arabidopsis ATH1 with plans to include the new Affymetrix 61K wheat, maize, soybean and rice arrays, as they become available. BB contains a broad set of query and display options at all data levels, ranging from experiments to individual hybridizations to probe sets down to individual probes. Users can perform cross-experiment queries on probe sets based on observed expression profiles and/or based on known biological information. Probe set queries are integrated with visualization and analysis tools such as the R statistical toolbox, data filters and a large variety of plot types. Controlled vocabularies for gene and plant ontologies, as well as interconnecting links to physical or genetic map and other genomic data in PlantGDB, Gramene and GrainGenes, allow users to perform EST alignments and gene function prediction using Barley1 exemplar sequences, thus, enhancing cross-species comparison. PMID:15608273

  4. Comparative Genome Analysis and Genome Evolution

    NARCIS (Netherlands)

    Snel, Berend

    2002-01-01

    This thesis described a collection of bioinformatic analyses on complete genome sequence data. We have studied the evolution of gene content and find that vertical inheritance dominates over horizontal gene trasnfer, even to the extent that we can use the gene content to make genome phylogenies.

  5. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv. Makino

    Directory of Open Access Journals (Sweden)

    Ri Gao

    2016-10-01

    Full Text Available Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs, which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid.

  6. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    Science.gov (United States)

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  7. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    Directory of Open Access Journals (Sweden)

    Joyce Xiuweu-Xu Gu

    2007-01-01

    Full Text Available With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator that matches the BAC clones from array-based comparative genomic hybridization (aCGH to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specifi c BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  8. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  9. SCREEN FOR DOMINANT BEHAVIORAL MUTATIONS CAUSED BY GENOMIC INSERTION OF P-ELEMENT TRANSPOSONS IN DROSOPHILA: AN EXAMINATION OF THE INTEGRATION OF VIRAL VECTOR SEQUENCES

    OpenAIRE

    FOX, LYLE E.; GREEN, DAVID; YAN, ZIYING; ENGELHARDT, JOHN F.; WU, CHUN-FANG

    2007-01-01

    Here we report the development of a high-throughput screen to assess dominant mutation rates caused by P-element transposition within the Drosophila genome that is suitable for assessing the undesirable effects of integrating foreign regulatory sequences (viral cargo) into a host genome. Three different behavioral paradigms were used: sensitivity to mechanical stress, response to heat stress, and ability to fly. The results, from our screen of 35,000 flies, indicate that mutations caused by t...

  10. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    OpenAIRE

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expresse...

  11. A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan Amazighs.

    Directory of Open Access Journals (Sweden)

    Youssef Idaghdour

    2008-04-01

    Full Text Available The different environments that humans experience are likely to impact physiology and disease susceptibility. In order to estimate the magnitude of the impact of environment on transcript abundance, we examined gene expression in peripheral blood leukocyte samples from 46 desert nomadic, mountain agrarian and coastal urban Moroccan Amazigh individuals. Despite great expression heterogeneity in humans, as much as one third of the leukocyte transcriptome was found to be associated with differences among regions. Genome-wide polymorphism analysis indicates that genetic differentiation in the total sample is limited and is unlikely to explain the expression divergence. Methylation profiling of 1,505 CpG sites suggests limited contribution of methylation to the observed differences in gene expression. Genetic network analysis further implies that specific aspects of immune function are strongly affected by regional factors and may influence susceptibility to respiratory and inflammatory disease. Our results show a strong genome-wide gene expression signature of regional population differences that presumably include lifestyle, geography, and biotic factors, implying that these can play at least as great a role as genetic divergence in modulating gene expression variation in humans.

  12. Rapid behavioral and genomic responses to social opportunity.

    Directory of Open Access Journals (Sweden)

    Sabrina S Burmeister

    2005-11-01

    Full Text Available From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1, a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance.

  13. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats

    Directory of Open Access Journals (Sweden)

    Bianca Genenncher

    2018-02-01

    Full Text Available The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5 RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.

  14. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  15. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  16. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.

    Directory of Open Access Journals (Sweden)

    Zhenli Zhao

    Full Text Available Paulownia tomentosa is a fast-growing tree species with multiple uses. It is grown worldwide, but is native to China, where it is widely cultivated in saline regions. We previously confirmed that autotetraploid P. tomentosa plants are more stress-tolerant than the diploid plants. However, the molecular mechanism underlying P. tomentosa salinity tolerance has not been fully characterized. Using the complete Paulownia fortunei genome as a reference, we applied next-generation RNA-sequencing technology to analyze the effects of salt stress on diploid and autotetraploid P. tomentosa plants. We generated 175 million clean reads and identified 15,873 differentially expressed genes (DEGs from four P. tomentosa libraries (two diploid and two autotetraploid. Functional annotations of the differentially expressed genes using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that plant hormone signal transduction and photosynthetic activities are vital for plant responses to high-salt conditions. We also identified several transcription factors, including members of the AP2/EREBP, bHLH, MYB, and NAC families. Quantitative real-time PCR analysis validated the expression patterns of eight differentially expressed genes. Our findings and the generated transcriptome data may help to accelerate the genetic improvement of cultivated P. tomentosa and other plant species for enhanced growth in saline soils.

  17. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Profiling of Benign and Malignant Nerve Sheath

    Science.gov (United States)

    2007-05-01

    Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis

  18. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  19. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum).

    Science.gov (United States)

    Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K

    2017-04-27

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.

  20. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2015-01-01

    Full Text Available Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6% showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.

  1. Whole-genome gene expression profiling of formalin-fixed, paraffin-embedded tissue samples.

    Directory of Open Access Journals (Sweden)

    Craig April

    2009-12-01

    Full Text Available We have developed a gene expression assay (Whole-Genome DASL, capable of generating whole-genome gene expression profiles from degraded samples such as formalin-fixed, paraffin-embedded (FFPE specimens.We demonstrated a similar level of sensitivity in gene detection between matched fresh-frozen (FF and FFPE samples, with the number and overlap of probes detected in the FFPE samples being approximately 88% and 95% of that in the corresponding FF samples, respectively; 74% of the differentially expressed probes overlapped between the FF and FFPE pairs. The WG-DASL assay is also able to detect 1.3-1.5 and 1.5-2 -fold changes in intact and FFPE samples, respectively. The dynamic range for the assay is approximately 3 logs. Comparing the WG-DASL assay with an in vitro transcription-based labeling method yielded fold-change correlations of R(2 approximately 0.83, while fold-change comparisons with quantitative RT-PCR assays yielded R(2 approximately 0.86 and R(2 approximately 0.55 for intact and FFPE samples, respectively. Additionally, the WG-DASL assay yielded high self-correlations (R(2>0.98 with low intact RNA inputs ranging from 1 ng to 100 ng; reproducible expression profiles were also obtained with 250 pg total RNA (R(2 approximately 0.92, with approximately 71% of the probes detected in 100 ng total RNA also detected at the 250 pg level. When FFPE samples were assayed, 1 ng total RNA yielded self-correlations of R(2 approximately 0.80, while still maintaining a correlation of R(2 approximately 0.75 with standard FFPE inputs (200 ng.Taken together, these results show that WG-DASL assay provides a reliable platform for genome-wide expression profiling in archived materials. It also possesses utility within clinical settings where only limited quantities of samples may be available (e.g. microdissected material or when minimally invasive procedures are performed (e.g. biopsied specimens.

  2. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    Directory of Open Access Journals (Sweden)

    Schnitzler Christine E

    2012-12-01

    Full Text Available Abstract Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria and comb jellies (Phylum Ctenophora. The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light

  3. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    International Nuclear Information System (INIS)

    Fröhlich, Eleonore; Meindl, Claudia; Wagner, Karin; Leitinger, Gerd; Roblegg, Eva

    2014-01-01

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay

  4. Use of whole genome expression analysis in the toxicity screening of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Meindl, Claudia; Wagner, Karin [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Leitinger, Gerd [Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz (Austria); Institute for Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz (Austria); Roblegg, Eva [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Universitätsplatz 1, 8010 Graz (Austria)

    2014-10-15

    The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays for NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.

  5. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    Science.gov (United States)

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  6. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  7. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P

  8. Expressed Peptide Tags: An additional layer of data for genome annotation

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller sub-databases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While ~77% of Phytophthora EPTs supported the current annotation, a portion of them (7.2% and 12.6% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

  9. Interplay of ribosomal DNA loci in nucleolar dominance: dominant NORs are up-regulated by chromatin dynamics in the wheat-rye system.

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    Full Text Available BACKGROUND: Chromatin organizational and topological plasticity, and its functions in gene expression regulation, have been strongly revealed by the analysis of nucleolar dominance in hybrids and polyploids where one parental set of ribosomal RNA (rDNA genes that are clustered in nucleolar organizing regions (NORs, is rendered silent by epigenetic pathways and heterochromatization. However, information on the behaviour of dominant NORs is very sparse and needed for an integrative knowledge of differential gene transcription levels and chromatin specific domain interactions. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular and cytological approaches in a wheat-rye addition line (wheat genome plus the rye nucleolar chromosome pair 1R, we investigated transcriptional activity and chromatin topology of the wheat dominant NORs in a nucleolar dominance situation. Herein we report dominant NORs up-regulation in the addition line through quantitative real-time PCR and silver-staining technique. Accompanying this modification in wheat rDNA trascription level, we also disclose that perinucleolar knobs of ribosomal chromatin are almost transcriptionally silent due to the residual detection of BrUTP incorporation in these domains, contrary to the marked labelling of intranucleolar condensed rDNA. Further, by comparative confocal analysis of nuclei probed to wheat and rye NORs, we found that in the wheat-rye addition line there is a significant decrease in the number of wheat-origin perinucleolar rDNA knobs, corresponding to a diminution of the rDNA heterochromatic fraction of the dominant (wheat NORs. CONCLUSIONS/SIGNIFICANCE: We demonstrate that inter-specific interactions leading to wheat-origin NOR dominance results not only on the silencing of rye origin NOR loci, but dominant NORs are also modified in their transcriptional activity and interphase organization. The results show a cross-talk between wheat and rye NORs, mediated by ribosomal chromatin

  10. Large clusters of co-expressed genes in the Drosophila genome.

    Science.gov (United States)

    Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2002-12-12

    Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.

  11. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    Science.gov (United States)

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  12. Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags

    Directory of Open Access Journals (Sweden)

    Christian M. Tobias

    2008-11-01

    Full Text Available The development of genomic resources for switchgrass ( L., a perennial NAD-malic enzyme type C grass, is required to enable molecular breeding and biotechnological approaches for improving its value as a forage and bioenergy crop. Expressed sequence tag (EST sequencing is one method that can quickly sample gene inventories and produce data suitable for marker development or analysis of tissue-specific patterns of expression. Toward this goal, three cDNA libraries from callus, crown, and seedling tissues of ‘Kanlow’ switchgrass were end-sequenced to generate a total of 61,585 high-quality ESTs from 36,565 separate clones. Seventy-three percent of the assembled consensus sequences could be aligned with the sorghum [ (L. Moench] genome at a -value of <1 × 10, indicating a high degree of similarity. Sixty-five percent of the ESTs matched with gene ontology molecular terms, and 3.3% of the sequences were matched with genes that play potential roles in cell-wall biogenesis. The representation in the three libraries of gene families known to be associated with C photosynthesis, cellulose and β-glucan synthesis, phenylpropanoid biosynthesis, and peroxidase activity indicated likely roles for individual family members. Pairwise comparisons of synonymous codon substitutions were used to assess genome sequence diversity and indicated an overall similarity between the two genome copies present in the tetraploid. Identification of EST–simple sequence repeat markers and amplification on two individual parents of a mapping population yielded an average of 2.18 amplicons per individual, and 35% of the markers produced fragment length polymorphisms.

  13. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression

    Directory of Open Access Journals (Sweden)

    Jia Yi Har

    2015-09-01

    Full Text Available We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing 99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e. Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P, polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins. We hypothesize that such activities may mediate acclimation and persistence of bacteria in N. vectensis.

  14. Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia.

    Science.gov (United States)

    Zheutlin, Amanda B; Viehman, Rachael W; Fortgang, Rebecca; Borg, Jacqueline; Smith, Desmond J; Suvisaari, Jaana; Therman, Sebastian; Hultman, Christina M; Cannon, Tyrone D

    2016-01-01

    We performed a whole-genome expression study to clarify the nature of the biological processes mediating between inherited genetic variations and cognitive dysfunction in schizophrenia. Gene expression was assayed from peripheral blood mononuclear cells using Illumina Human WG6 v3.0 chips in twins discordant for schizophrenia or bipolar disorder and control twins. After quality control, expression levels of 18,559 genes were screened for association with the California Verbal Learning Test (CVLT) performance, and any memory-related probes were then evaluated for variation by diagnostic status in the discovery sample (N = 190), and in an independent replication sample (N = 73). Heritability of gene expression using the twin design was also assessed. After Bonferroni correction (p schizophrenia patients, with comparable effect sizes in the same direction in the replication sample. For 41 of these 43 transcripts, expression levels were heritable. Nearly all identified genes contain common or de novo mutations associated with schizophrenia in prior studies. Genes increasing risk for schizophrenia appear to do so in part via effects on signaling cascades influencing memory. The genes implicated in these processes are enriched for those related to RNA processing and DNA replication and include genes influencing G-protein coupled signal transduction, cytokine signaling, and oligodendrocyte function. (c) 2015 APA, all rights reserved).

  15. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  16. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    Science.gov (United States)

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  17. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    OpenAIRE

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-01-01

    Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eu...

  18. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  19. Mutant human torsinA, responsible for early-onset dystonia, dominantly suppresses GTPCH expression, dopamine levels and locomotion in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Noriko Wakabayashi-Ito

    2015-07-01

    Full Text Available Dystonia represents the third most common movement disorder in humans with over 20 genetic loci identified. TOR1A (DYT1, the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. Most cases of DYT1 dystonia are caused by a 3 bp (ΔGAG deletion that results in the loss of a glutamic acid residue (ΔE302/303 in the carboxyl terminal region of torsinA. This torsinAΔE mutant protein has been speculated to act in a dominant-negative manner to decrease activity of wild type torsinA. Drosophila melanogaster has a single torsin-related gene, dtorsin. Null mutants of dtorsin exhibited locomotion defects in third instar larvae. Levels of dopamine and GTP cyclohydrolase (GTPCH proteins were severely reduced in dtorsin-null brains. Further, the locomotion defect was rescued by the expression of human torsinA or feeding with dopamine. Here, we demonstrate that human torsinAΔE dominantly inhibited locomotion in larvae and adults when expressed in neurons using a pan-neuronal promoter Elav. Dopamine and tetrahydrobiopterin (BH4 levels were significantly reduced in larval brains and the expression level of GTPCH protein was severely impaired in adult and larval brains. When human torsinA and torsinAΔE were co-expressed in neurons in dtorsin-null larvae and adults, the locomotion rates and the expression levels of GTPCH protein were severely reduced. These results support the hypothesis that torsinAΔE inhibits wild type torsinA activity. Similarly, neuronal expression of a Drosophila DtorsinΔE equivalent mutation dominantly inhibited larval locomotion and GTPCH protein expression. These results indicate that both torsinAΔE and DtorsinΔE act in a dominant-negative manner. We also demonstrate that Dtorsin regulates GTPCH expression at the post-transcriptional level. This Drosophila model of DYT1 dystonia provides an important tool for studying the differences in the molecular function between the

  20. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grötzinger, Stefan

    2017-12-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to

  1. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  2. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  3. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression.

    Science.gov (United States)

    Har, Jia Y; Helbig, Tim; Lim, Ju H; Fernando, Samodha C; Reitzel, Adam M; Penn, Kevin; Thompson, Janelle R

    2015-01-01

    We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing 99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N. vectensis holobiont defined by both internal and external gradients of chemicals and

  4. Genomic variation and its impact on gene expression in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Andreas Massouras

    Full Text Available Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels, and complex variants (1 to 6,000 bp. While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.

  5. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients

    Science.gov (United States)

    2008-05-01

    DAMD17-03-1-0297 Title: Genomic and Expression Pr ofiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients...have determined the gene expression signature for benign and malignant peripheral nerve sheath tumors and found that the major trend in transformation...However, EGFR data in soft tissue neoplasms is limited. Using a variety of benign and malignant spindle cell neoplasms, we assessed EGFR status by

  6. Impact of antenatal glucocorticosteroids on whole-genome expression in preterm babies.

    Science.gov (United States)

    Saugstad, Ola Didrik; Kwinta, Przemko; Wollen, Embjørg Julianne; Bik-Multanowski, Mirosław; Madetko-Talowska, Anna; Jagła, Mateusz; Tomasik, Tomasz; Pietrzyk, Jacek Józef

    2013-04-01

    To study the impact that using antenatal steroid to treat threatened preterm delivery has on whole-genome expression. A prospective whole-genome expression study was carried out on 50 newborn infants, delivered before 32 weeks gestation, who had been exposed to antenatal steroids, including 40 who had received a full antenatal steroid course. Seventy infants not exposed to antenatal steroids formed the control group. Microarray analyses were performed five and 28 days after delivery, and the results were validated by real-time PCR. The study was conducted between September 2008 and November 2010. Twenty thousand six hundred and ninety-three genes were studied in the infants' leucocytes. Thirteen were differentially expressed 5 days after delivery, but there were no differences at day 28. Four genes related to cancer or inflammation were up-regulated. Nine genes were down-regulated: six were Y-linked and associated with malignancies, graft-versus-host disease, male infertility and cell differentiation and three were associated with pre-eclampsia, oxidative stress and chloride/bicarbonate exchange. Seven gene pathways were up-regulated at day five and only one at day 28. These were associated with cell growth, cell cycle regulation, metabolism and apoptosis. Antenatal steroid therapy affects a limited number of genes and gene pathways in leucocytes in preterm babies at day five of life. The effect is short-lived, but long-term effects cannot be ruled out. ©2013 The Author(s)/Acta Paediatrica ©2013 Foundation Acta Paediatrica.

  7. Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Gallardo-Escárate, Cristian

    2013-03-01

    Despite the great relevance of mitochondrial genome analysis in evolutionary studies, there is scarce information on how the transcripts associated with the mitogenome are expressed and their role in the genetic structuring of populations. This work reports the complete mitochondrial genome of the marine gastropod Concholepas concholepas, obtained by 454 pryosequencing, and an analysis of mitochondrial transcripts of two populations 1000 km apart along the Chilean coast. The mitochondrion of C. concholepas is 15,495 base pairs (bp) in size and contains the 37 subunits characteristic of metazoans, as well as a non-coding region of 330 bp. In silico analysis of mitochondrial gene variability showed significant differences among populations. In terms of levels of relative abundance of transcripts associated with mitochondrion in the two populations (assessed by qPCR), the genes associated with complexes III and IV of the mitochondrial genome had the highest levels of expression in the northern population while transcripts associated with the ATP synthase complex had the highest levels of expression in the southern population. Moreover, fifteen polymorphic SNPs were identified in silico between the mitogenomes of the two populations. Four of these markers implied different amino acid substitutions (non-synonymous SNPs). This work contributes novel information regarding the mitochondrial genome structure and mRNA expression levels of C. concholepas. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Considering dominance in reduced single-step genomic evaluations.

    Science.gov (United States)

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  9. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    Science.gov (United States)

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  10. Regulation of gene expression in Mycoplasmas: contribution from Mycoplasma hyopneumoniae and Mycoplasma synoviae genome sequences

    Directory of Open Access Journals (Sweden)

    Humberto Maciel França Madeira

    2007-01-01

    Full Text Available This report describes the transcription apparatus of Mycoplasma hyopneumoniae (strains J and 7448 and Mycoplasma synoviae, using a comparative genomics approach to summarize the main features related to transcription and control of gene expression in mycoplasmas. Most of the transcription-related genes present in the three strains are well conserved among mycoplasmas. Some unique aspects of transcription in mycoplasmas and the scarcity of regulatory proteins in mycoplasma genomes are discussed.

  11. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Dey, Indranil; Rath, Pramod C.

    2005-01-01

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7 A (AG) 7 } dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [ 32 P]3.3 DNA. The d {(GA) 7 A (AG) 7 } mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [ 32 P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [ 32 P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  12. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Swati Puranik

    Full Text Available The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI, with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.

  13. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Puranik, Swati; Sahu, Pranav Pankaj; Mandal, Sambhu Nath; B, Venkata Suresh; Parida, Swarup Kumar; Prasad, Manoj

    2013-01-01

    The NAC proteins represent a major plant-specific transcription factor family that has established enormously diverse roles in various plant processes. Aided by the availability of complete genomes, several members of this family have been identified in Arabidopsis, rice, soybean and poplar. However, no comprehensive investigation has been presented for the recently sequenced, naturally stress tolerant crop, Setaria italica (foxtail millet) that is famed as a model crop for bioenergy research. In this study, we identified 147 putative NAC domain-encoding genes from foxtail millet by systematic sequence analysis and physically mapped them onto nine chromosomes. Genomic organization suggested that inter-chromosomal duplications may have been responsible for expansion of this gene family in foxtail millet. Phylogenetically, they were arranged into 11 distinct sub-families (I-XI), with duplicated genes fitting into one cluster and possessing conserved motif compositions. Comparative mapping with other grass species revealed some orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of genes. The evolutionary significance as duplication and divergence of NAC genes based on their amino acid substitution rates was understood. Expression profiling against various stresses and phytohormones provides novel insights into specific and/or overlapping expression patterns of SiNAC genes, which may be responsible for functional divergence among individual members in this crop. Further, we performed structure modeling and molecular simulation of a stress-responsive protein, SiNAC128, proffering an initial framework for understanding its molecular function. Taken together, this genome-wide identification and expression profiling unlocks new avenues for systematic functional analysis of novel NAC gene family candidates which may be applied for improvising stress adaption in plants.

  14. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  15. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae).

    Science.gov (United States)

    Qi, Xiangyu; Wang, Haibin; Song, Aiping; Jiang, Jiafu; Chen, Sumei; Chen, Fadi

    2018-01-01

    Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense × T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.

  16. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    International Nuclear Information System (INIS)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe

    2005-01-01

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, ∼2500 genes are upregulated >3-fold, of which ∼900 are also expressed in Jurkat cells. Concomitantly, ∼1500 genes are downregulated or repressed, of which ∼500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages (∼80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells

  17. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  18. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  19. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the

  20. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Titus, Tom A.; Yan Yilin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Bremiller, Ruth A.; Canestro, Cristian; Rodriguez-Mari, Adriana; He Xinjun [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States); Postlethwait, John H., E-mail: jpostle@uoneuro.uoregon.edu [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States)

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  1. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    Science.gov (United States)

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  2. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    International Nuclear Information System (INIS)

    Titus, Tom A.; Yan Yilin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Bremiller, Ruth A.; Canestro, Cristian; Rodriguez-Mari, Adriana; He Xinjun; Postlethwait, John H.

    2009-01-01

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  3. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci

    NARCIS (Netherlands)

    Keurentjes, Joost J.B.; Fu, Jingyuan; Terpstra, Inez R.; Garcia, Juan M.; Ackerveken, Guido van den; Snoek, L. Basten; Peeters, Anton J.M.; Vreugdenhil, Dick; Koornneef, Maarten; Jansen, Ritsert C.

    2007-01-01

    Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation

  4. Functional Associations by Response Overlap (FARO), a functional genomics approach matching gene expression phenotypes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Mundy, J.; Willenbrock, Hanni

    2007-01-01

    The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental facto...

  5. Dissecting inflammatory complications in critically injured patients by within-patient gene expression changes: a longitudinal clinical genomics study.

    Directory of Open Access Journals (Sweden)

    Keyur H Desai

    2011-09-01

    Full Text Available Trauma is the number one killer of individuals 1-44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition.We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40-80 h window post-injury.The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions.ClinicalTrials.gov NCT00257231

  6. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    Science.gov (United States)

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  7. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  8. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes.

    Science.gov (United States)

    Sun, Honghe; Wu, Shan; Zhang, Guoyu; Jiao, Chen; Guo, Shaogui; Ren, Yi; Zhang, Jie; Zhang, Haiying; Gong, Guoyi; Jia, Zhangcai; Zhang, Fan; Tian, Jiaxing; Lucas, William J; Doyle, Jeff J; Li, Haizhen; Fei, Zhangjun; Xu, Yong

    2017-10-09

    The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C. moschata and provide evidence supporting an allotetraploidization event in Cucurbita. We are able to partition the genome into two homoeologous subgenomes based on different genetic distances to melon, cucumber, and watermelon in the Benincaseae tribe. We estimate that the two diploid progenitors successively diverged from Benincaseae around 31 and 26 million years ago (Mya), respectively, and the allotetraploidization happened at some point between 26 Mya and 3 Mya, the estimated date when C. maxima and C. moschata diverged. The subgenomes have largely maintained the chromosome structures of their diploid progenitors. Such long-term karyotype stability after polyploidization has not been commonly observed in plant polyploids. The two subgenomes have retained similar numbers of genes, and neither subgenome is globally dominant in gene expression. Allele-specific expression analysis in the C. maxima × C. moschata interspecific F 1 hybrid and their two parents indicates the predominance of trans-regulatory effects underlying expression divergence of the parents, and detects transgressive gene expression changes in the hybrid correlated with heterosis in important agronomic traits. Our study provides insights into polyploid genome evolution and valuable resources for genetic improvement of cucurbit crops. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Science.gov (United States)

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  10. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    Directory of Open Access Journals (Sweden)

    Nina So

    Full Text Available Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing

  11. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti.

    Science.gov (United States)

    Li, Ming; Bui, Michelle; Yang, Ting; Bowman, Christian S; White, Bradley J; Akbari, Omar S

    2017-12-05

    The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti Here, we describe the generation of multiple stable, transgenic Ae. aegypti strains expressing Cas9 in the germline, resulting in dramatic improvements in both the consistency and efficiency of genome modifications using CRISPR. Using these strains, we disrupted numerous genes important for normal morphological development, and even generated triple mutants from a single injection. We have also managed to increase the rates of homology-directed repair by more than an order of magnitude. Given the exceptional mutagenic efficiency and specificity of the Cas9 strains we engineered, they can be used for high-throughput reverse genetic screens to help functionally annotate the Ae. aegypti genome. Additionally, these strains represent a step toward the development of novel population control technologies targeting Ae. aegypti that rely on Cas9-based gene drives. Copyright © 2017 the Author(s). Published by PNAS.

  12. Genome-Wide Analysis of the Expression of WRKY Family Genes in Different Developmental Stages of Wild Strawberry (Fragaria vesca Fruit.

    Directory of Open Access Journals (Sweden)

    Heying Zhou

    Full Text Available WRKY proteins play important regulatory roles in plant developmental processes such as senescence, trichome initiation and embryo morphogenesis. In strawberry, only FaWRKY1 (Fragaria × ananassa has been characterized, leaving numerous WRKY genes to be identified and their function characterized. The publication of the draft genome sequence of the strawberry genome allowed us to conduct a genome-wide search for WRKY proteins in Fragaria vesca, and to compare the identified proteins with their homologs in model plants. Fifty-nine FvWRKY genes were identified and annotated from the F. vesca genome. Detailed analysis, including gene classification, annotation, phylogenetic evaluation, conserved motif determination and expression profiling, based on RNA-seq data, were performed on all members of the family. Additionally, the expression patterns of the WRKY genes in different fruit developmental stages were further investigated using qRT-PCR, to provide a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in strawberry.

  13. Gene Expression Analysis of Escherichia Coli Grown in Miniaturized Bioreactor Platforms for High-Throughput Analysis of Growth and genomic Data

    DEFF Research Database (Denmark)

    Boccazzi, P.; Zanzotto, A.; Szita, Nicolas

    2005-01-01

    Combining high-throughput growth physiology and global gene expression data analysis is of significant value for integrating metabolism and genomics. We compared global gene expression using 500 ng of total RNA from Escherichia coli cultures grown in rich or defined minimal media in a miniaturize...... cultures using just 500 ng of total RNA indicate that high-throughput integration of growth physiology and genomics will be possible with novel biochemical platforms and improved detection technologies....

  14. Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples.

    Directory of Open Access Journals (Sweden)

    Elodie Caboux

    Full Text Available The quality of tissue samples and extracted mRNA is a major source of variability in tumor transcriptome analysis using genome-wide expression microarrays. During and immediately after surgical tumor resection, tissues are exposed to metabolic, biochemical and physical stresses characterized as "warm ischemia". Current practice advocates cryopreservation of biosamples within 30 minutes of resection, but this recommendation has not been systematically validated by measurements of mRNA decay over time. Using Illumina HumanHT-12 v3 Expression BeadChips, providing a genome-wide coverage of over 24,000 genes, we have analyzed gene expression variation in samples of 3 hepatocellular carcinomas (HCC and 3 lung carcinomas (LC cryopreserved at times up to 2 hours after resection. RNA Integrity Numbers (RIN revealed no significant deterioration of mRNA up to 2 hours after resection. Genome-wide transcriptome analysis detected non-significant gene expression variations of -3.5%/hr (95% CI: -7.0%/hr to 0.1%/hr; p = 0.054. In LC, no consistent gene expression pattern was detected in relation with warm ischemia. In HCC, a signature of 6 up-regulated genes (CYP2E1, IGLL1, CABYR, CLDN2, NQO1, SCL13A5 and 6 down-regulated genes (MT1G, MT1H, MT1E, MT1F, HABP2, SPINK1 was identified (FDR <0.05. Overall, our observations support current recommendation of time to cryopreservation of up to 30 minutes and emphasize the need for identifying tissue-specific genes deregulated following resection to avoid misinterpreting expression changes induced by warm ischemia as pathologically significant changes.

  15. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken

    Science.gov (United States)

    Jin, Sihua; Zhu, Feng; Wang, Yanyun; Yi, Guoqiang; Li, Junying; Lian, Ling; Zheng, Jiangxia; Xu, Guiyun; Jiao, Rengang; Gong, Yu; Hou, Zhuocheng; Yang, Ning

    2016-01-01

    The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders. PMID:27439785

  16. Further statistical analysis for genome-wide expression evolution in primate brain/liver/fibroblast tissue

    Directory of Open Access Journals (Sweden)

    Gu Jianying

    2004-05-01

    Full Text Available Abstract In spite of only a 1-2 per cent genomic DNA sequence difference, humans and chimpanzees differ considerably in behaviour and cognition. Affymetrix microarray technology provides a novel approach to addressing a long-term debate on whether the difference between humans and chimpanzees results from the alteration of gene expressions. Here, we used several statistical methods (distance method, two-sample t-tests, regularised t-tests, ANOVA and bootstrapping to detect the differential expression pattern between humans and great apes. Our analysis shows that the pattern we observed before is robust against various statistical methods; that is, the pronounced expression changes occurred on the human lineage after the split from chimpanzees, and that the dramatic brain expression alterations in humans may be mainly driven by a set of genes with increased expression (up-regulated rather than decreased expression (down-regulated.

  17. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Directory of Open Access Journals (Sweden)

    Kevin Anthony Meyer

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01 and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02, and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes and resistance to foreign genetic elements (such as CRISPR-Cas systems. Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  18. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction.

    Science.gov (United States)

    Wu, Chen; Twort, Victoria G; Crowhurst, Ross N; Newcomb, Richard D; Buckley, Thomas R

    2017-11-16

    Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the

  19. MicroRNA Expression Profile in Bovine Granulosa Cells of Preovulatory Dominant and Subordinate Follicles during the Late Follicular Phase of the Estrous Cycle.

    Directory of Open Access Journals (Sweden)

    Samuel Gebremedhn

    Full Text Available In bovine, ovarian follicles grow in a wave-like fashion with commonly 2 or 3 follicular waves emerging per estrous cycle. The dominant follicle of the follicular wave which coincides with the LH-surge becomes ovulatory, leaving the subordinate follicles to undergo atresia. These physiological processes are controlled by timely and spatially expressed genes and gene products, which in turn are regulated by post-transcriptional regulators. MicroRNAs, a class of short non-coding RNA molecules, are one of the important posttranscriptional regulators of genes associated with various cellular processes. Here we investigated the expression pattern of miRNAs in granulosa cells of bovine preovulatory dominant and subordinate follicles during the late follicular phase of bovine estrous cycle using Illumina miRNA deep sequencing. In addition to 11 putative novel miRNAs, a total of 315 and 323 known miRNAs were detected in preovulatory dominant and subordinate follicles, respectively. Moreover, in comparison with the subordinate follicles, a total of 64 miRNAs were found to be differentially expressed in preovulatory dominant follicles, of which 34 miRNAs including the miR-132 and miR-183 clusters were significantly enriched, and 30 miRNAs including the miR-17-92 cluster, bta-miR-409a and bta-miR-378 were significantly down regulated in preovulatory dominant follicles. In-silico pathway analysis revealed that canonical pathways related to oncogenesis, cell adhesion, cell proliferation, apoptosis and metabolism were significantly enriched by the predicted target genes of differentially expressed miRNAs. Furthermore, Luciferase reporter assay analysis showed that one of the differentially regulated miRNAs, the miR-183 cluster miRNAs, were validated to target the 3'-UTR of FOXO1 gene. Moreover FOXO1 was highly enriched in granulosa cells of subordinate follicles in comparison with the preovulatory dominant follicles demonstrating reciprocal expression pattern

  20. Natural variation of histone modification and its impact on gene expression in the rat genome

    NARCIS (Netherlands)

    Rintisch, Carola; Heinig, Matthias; Bauerfeind, Anja; Schafer, Sebastian; Mieth, Christin; Patone, Giannino; Hummel, Oliver; Chen, Wei; Cook, Stuart; Cuppen, Edwin; Colomé-Tatché, Maria; Johannes, Frank; Jansen, Ritsert C; Neil, Helen; Werner, Michel; Pravenec, Michal; Vingron, Martin; Hubner, Norbert

    Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they

  1. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  2. Genome-wide expression in veterans with schizophrenia further validates the immune hypothesis for schizophrenia.

    Science.gov (United States)

    Fries, Gabriel R; Dimitrov, Dimitre H; Lee, Shuko; Braida, Nicole; Yantis, Jesse; Honaker, Craig; Cuellar, Joe; Walss-Bass, Consuelo

    2018-02-01

    This study aimed to test whether a dysregulation of gene expression may be the underlying cause of previously reported elevated levels of inflammatory cytokines in veterans with schizophrenia. We performed a genome-wide expression analysis in peripheral blood mononuclear cells from veterans with schizophrenia and controls, and our results show that 167 genes and putative loci were differently expressed between groups. These genes were enriched primarily for pathways related to inflammatory mechanisms and formed networks related to cell death and survival, immune cell trafficking, among others, which is in line with previous reports and further validates the inflammatory hypothesis of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    Science.gov (United States)

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  4. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  5. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    Science.gov (United States)

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  6. [Dominating motivation in systemic memory mechanisms].

    Science.gov (United States)

    Sudakov, K V

    2005-01-01

    The materials provided in the article support the key role of dominating motivation in the systemic processes of fixation and opening of memory mechanisms. The activating mechanisms of dominating motivations in the systemic architectonics of behavioural acts provide the basis for development of a multicomponent acceptor apparatus of an action outcomes broadly represented in various analysing brain sections. As result of enhancement of action outcomes on acceptors structures, molecular behaviour engrammes form within the functional systems. It is these molecular engrammes that are opened by dominating motivations in the same spatial-temporal sequence in which training takes place, and determine deliberate actions of animals. It was demonstrated that dominating motivation opens genetic information with an approximating-exploratory reaction under strong activation of early genes expression, in particular, of c-fos gene protein. Inherent motivation reactions are not blocked by inhibitors of proteins synthesis, by cycloheximide, in particular. In the process of training animals, i.e., satisfaction of the demands which are the basis of dominating motivations, expression of early genes in reduced, while expression of late genes is initiated. In this case, blockators of protein synthesis begin to produce strong inhibiting impact on behaviour of animals.

  7. Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    Science.gov (United States)

    2010-01-01

    Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065

  8. Genomic analysis of expressed sequence tags in American black bear Ursus americanus.

    Science.gov (United States)

    Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun

    2010-03-26

    Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.

  9. Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System.

    Science.gov (United States)

    Ishigaki, Keisuke; Shinzawa, Naoaki; Nishikawa, Sayaka; Suzuki, Koichiro; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko

    2018-01-01

    We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica , which is required for O antigen biosynthesis, into the chromosome of B. pertussis , which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti- B. bronchiseptica antibody but not the anti- B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica . O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis , which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant

  10. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes.

    Science.gov (United States)

    Puigbò, Pere; Lobkovsky, Alexander E; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2014-08-21

    Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux, expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given microbial species. We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain. The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the group although some groups appear to have vast, 'open' supergenomes. Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust estimates of the supergenome size.

  11. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    Science.gov (United States)

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  12. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes.

    Directory of Open Access Journals (Sweden)

    Sophie Garnier

    Full Text Available In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ~2,1 × 10(9 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >10(4-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2 × 10(-4 (~0.05/412, 193 haplotypic signals replicated. 1000 G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000 G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.

  13. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  14. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  15. Divergent clonal selection dominates medulloblastoma at recurrence

    Science.gov (United States)

    Morrissy, A. Sorana; Garzia, Livia; Shih, David J. H.; Zuyderduyn, Scott; Huang, Xi; Skowron, Patryk; Remke, Marc; Cavalli, Florence M. G.; Ramaswamy, Vijay; Lindsay, Patricia E.; Jelveh, Salomeh; Donovan, Laura K.; Wang, Xin; Luu, Betty; Zayne, Kory; Li, Yisu; Mayoh, Chelsea; Thiessen, Nina; Mercier, Eloi; Mungall, Karen L.; Ma, Yusanne; Tse, Kane; Zeng, Thomas; Shumansky, Karey; Roth, Andrew J. L.; Shah, Sohrab; Farooq, Hamza; Kijima, Noriyuki; Holgado, Borja L.; Lee, John J. Y.; Matan-Lithwick, Stuart; Liu, Jessica; Mack, Stephen C.; Manno, Alex; Michealraj, K. A.; Nor, Carolina; Peacock, John; Qin, Lei; Reimand, Juri; Rolider, Adi; Thompson, Yuan Y.; Wu, Xiaochong; Pugh, Trevor; Ally, Adrian; Bilenky, Mikhail; Butterfield, Yaron S. N.; Carlsen, Rebecca; Cheng, Young; Chuah, Eric; Corbett, Richard D.; Dhalla, Noreen; He, An; Lee, Darlene; Li, Haiyan I.; Long, William; Mayo, Michael; Plettner, Patrick; Qian, Jenny Q.; Schein, Jacqueline E.; Tam, Angela; Wong, Tina; Birol, Inanc; Zhao, Yongjun; Faria, Claudia C.; Pimentel, José; Nunes, Sofia; Shalaby, Tarek; Grotzer, Michael; Pollack, Ian F.; Hamilton, Ronald L.; Li, Xiao-Nan; Bendel, Anne E.; Fults, Daniel W.; Walter, Andrew W.; Kumabe, Toshihiro; Tominaga, Teiji; Collins, V. Peter; Cho, Yoon-Jae; Hoffman, Caitlin; Lyden, David; Wisoff, Jeffrey H.; Garvin, James H.; Stearns, Duncan S.; Massimi, Luca; Schüller, Ulrich; Sterba, Jaroslav; Zitterbart, Karel; Puget, Stephanie; Ayrault, Olivier; Dunn, Sandra E.; Tirapelli, Daniela P. C.; Carlotti, Carlos G.; Wheeler, Helen; Hallahan, Andrew R.; Ingram, Wendy; MacDonald, Tobey J.; Olson, Jeffrey J.; Van Meir, Erwin G.; Lee, Ji-Yeoun; Wang, Kyu-Chang; Kim, Seung-Ki; Cho, Byung-Kyu; Pietsch, Torsten; Fleischhack, Gudrun; Tippelt, Stephan; Ra, Young Shin; Bailey, Simon; Lindsey, Janet C.; Clifford, Steven C.; Eberhart, Charles G.; Cooper, Michael K.; Packer, Roger J.; Massimino, Maura; Garre, Maria Luisa; Bartels, Ute; Tabori, Uri; Hawkins, Cynthia E.; Dirks, Peter; Bouffet, Eric; Rutka, James T.; Wechsler-Reya, Robert J.; Weiss, William A.; Collier, Lara S.; Dupuy, Adam J.; Korshunov, Andrey; Jones, David T. W.; Kool, Marcel; Northcott, Paul A.; Pfister, Stefan M.; Largaespada, David A.; Mungall, Andrew J.; Moore, Richard A.; Jabado, Nada; Bader, Gary D.; Jones, Steven J. M.; Malkin, David; Marra, Marco A.; Taylor, Michael D.

    2016-01-01

    The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon–driven, functional genomic mouse model of medulloblastoma with ‘humanized’ in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy. PMID:26760213

  16. Gene design, cloning and protein-expression methods for high-value targets at the Seattle Structural Genomics Center for Infectious Disease

    International Nuclear Information System (INIS)

    Raymond, Amy; Haffner, Taryn; Ng, Nathan; Lorimer, Don; Staker, Bart; Stewart, Lance

    2011-01-01

    An overview of one salvage strategy for high-value SSGCID targets is given. Any structural genomics endeavor, particularly ambitious ones such as the NIAID-funded Seattle Structural Genomics Center for Infectious Disease (SSGCID) and Center for Structural Genomics of Infectious Disease (CSGID), face technical challenges at all points of the production pipeline. One salvage strategy employed by SSGCID is combined gene engineering and structure-guided construct design to overcome challenges at the levels of protein expression and protein crystallization. Multiple constructs of each target are cloned in parallel using Polymerase Incomplete Primer Extension cloning and small-scale expressions of these are rapidly analyzed by capillary electrophoresis. Using the methods reported here, which have proven particularly useful for high-value targets, otherwise intractable targets can be resolved

  17. Evaluation of K-ras and p53 expression in pancreatic adenocarcinoma using the cancer genome atlas.

    Directory of Open Access Journals (Sweden)

    Liming Lu

    Full Text Available Genetic alterations in K-ras and p53 are thought to be critical in pancreatic cancer development and progression. However, K-ras and p53 expression in pancreatic adenocarcinoma have not been systematically examined in The Cancer Genome Atlas (TCGA Data Portal. Information regarding K-ras and p53 alterations, mRNA expression data, and protein/protein phosphorylation abundance was retrieved from The Cancer Genome Atlas (TCGA databases, and analyses were performed by the cBioPortal for Cancer Genomics. The mutual exclusivity analysis showed that events in K-ras and p53 were likely to co-occur in pancreatic adenocarcinoma (Log odds ratio = 1.599, P = 0.006. The graphical summary of the mutations showed that there were hotspots for protein activation. In the network analysis, no solid association between K-ras and p53 was observed in pancreatic adenocarcinoma. In the survival analysis, neither K-ras nor p53 were associated with both survival events. As in the data mining study in the TCGA databases, our study provides a new perspective to understand the genetic features of K-ras and p53 in pancreatic adenocarcinoma.

  18. Association of HLA-DR with susceptibility to and clinical expression of rheumatoid arthritis: re-evaluation by means of genomic tissue typing

    NARCIS (Netherlands)

    van Jaarsveld, C. H.; Otten, H. G.; Jacobs, J. W.; Kruize, A. A.; Brus, H. L.; Bijlsma, J. W.

    1998-01-01

    The clinical expression of rheumatoid arthritis (RA) varies considerably among individual patients. Genetic variations in human leucocyte antigen (HLA) may influence clinical expression. We re-examined the association of HLA-DR with susceptibility to and clinical expression of RA using genomic

  19. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  1. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    Science.gov (United States)

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  2. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  3. Genome - wide identification, molecular characterization and expression analysis of the rop gtpase family in pepper (capsicum annum)

    International Nuclear Information System (INIS)

    Huang, D.; Li, M.; He, S.

    2015-01-01

    ROP/RAC GTPases is a plant-specific subfamily of Rho GTPases that plays a versatile role in the regulation of plant growth, development, in hormone signal transduction and response to the environment. Prior to the present study, only one Rop gene in pepper has been described. However, with the recent release of the draft genome sequence of pepper allowes us to conduct a genome wide search to identify how many Rop family members existed in pepper genome. We carried out bioinformatics analysis to establish the conserved as well as divergent regions on the protein sequences, phylogenetically analysis and the corresponding result shows that, CaROPs could be distributed into four groups as described in the literature for their homologs in Arabidopsis. To understand the function of nine Rop genes in pepper, we accordingly studied the tissue, fruit development and ripening expression patterns of CaRop genes by obtained RNA-seq data from public database. From our analysis, we realized that the expression of CaRop genes shows no total tissue or developmental specific expression. Furthermore, gene expression profiles of CaRop in response to environment stresses and hormone treatment, such as inoculated with Ralstonia solanacearum, by heat stress as well as treated with four phytohormones respectively and evaluated with real time RT-PCR. The potential involvement of specific CaRop genes in growth, fruit development, ripening, environment stresses as well as hormone responses discussed and may lay the foundation for future functional analysis to unravel their biological roles. (author)

  4. Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera.

    Science.gov (United States)

    Zhang, Ningbo; Li, Ruimin; Shen, Wei; Jiao, Shuzhen; Zhang, Junxiang; Xu, Weirong

    2018-04-27

    The major latex protein/ripening-related protein (MLP/RRP) subfamily is known to be involved in a wide range of biological processes of plant development and various stress responses. However, the biological function of MLP/RRP proteins is still far from being clear and identification of them may provide important clues for understanding their roles. Here, we report a genome-wide evolutionary characterization and gene expression analysis of the MLP family in European Vitis species. A total of 14 members, was found in the grape genome, all of which are located on chromosome 1, where are predominantly arranged in tandem clusters. We have noticed, most surprisingly, promoter-sharing by several non-identical but highly similar gene members to a greater extent than expected by chance. Synteny analysis between the grape and Arabidopsis thaliana genomes suggested that 3 grape MLP genes arose before the divergence of the two species. Phylogenetic analysis provided further insights into the evolutionary relationship between the genes, as well as their putative functions, and tissue-specific expression analysis suggested distinct biological roles for different members. Our expression data suggested a couple of candidate genes involved in abiotic stresses and phytohormone responses. The present work provides new insight into the evolution and regulation of Vitis MLP genes, which represent targets for future studies and inclusion in tolerance-related molecular breeding programs.

  5. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  6. Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    R. Dey-Rao

    2017-08-01

    Full Text Available The microarray dataset attached to this report is related to the research article with the title: “A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia” (Dey-Rao and Sinha, 2017 [1]. Male-pattern hair loss that is induced by androgens (testosterone in genetically predisposed individuals is known as androgenetic alopecia (AGA. The raw dataset is being made publicly available to enable critical and/or extended analyses. Our related research paper utilizes the attached raw dataset, for genome-wide gene-expression associated investigations. Combined with several in silico bioinformatics-based analyses we were able to delineate five strategic molecular elements as potential novel targets towards future AGA-therapy.

  7. Genome-wide Anaplasma phagocytophilum AnkA-DNA interactions are enriched in intergenic regions and gene promoters and correlate with infection-induced differential gene expression.

    Directory of Open Access Journals (Sweden)

    J Stephen Dumler

    2016-09-01

    Full Text Available Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: i intergenic regions predicted to be matrix attachment regions (MARs; ii within predicted lamina-associated domains; and iii at promoters ≤3,000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome re-organizer. AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity.

  8. A Solution to the C-Value Paradox and the Function of Junk DNA: The Genome Balance Hypothesis.

    Science.gov (United States)

    Freeling, Michael; Xu, Jie; Woodhouse, Margaret; Lisch, Damon

    2015-06-01

    The Genome Balance Hypothesis originated from a recent study that provided a mechanism for the phenomenon of genome dominance in ancient polyploids: unique 24nt RNA coverage near genes is greater in genes on the recessive subgenome irrespective of differences in gene expression. 24nt RNAs target transposons. Transposon position effects are now hypothesized to balance the expression of networked genes and provide spring-like tension between pericentromeric heterochromatin and microtubules. The balance (coordination) of gene expression and centromere movement is under selection. Our hypothesis states that this balance can be maintained by many or few transposons about equally well. We explain known balanced distributions of junk DNA within genomes and between subgenomes in allopolyploids (and our hypothesis passes "the onion test" for any so-called solution to the C-value paradox). Importantly, when the allotetraploid maize chromosomes delete redundant genes, their nearby transposons are also lost; this result is explained if transposons near genes function. The Genome Balance Hypothesis is hypothetical because the position effect mechanisms implicated are not proved to apply to all junk DNA, and the continuous nature of the centromeric and gene position effects have not yet been studied as a single phenomenon. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  10. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome

    Directory of Open Access Journals (Sweden)

    Beleut Manfred

    2012-07-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach. Methods We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor groups by means of Single Nuclear Polymorphism (SNP technology. Finally, the achieved results were immunohistochemically analyzed using a tissue microarray (TMA composed of 254 RCC. Results We found robust, genome wide expression signatures, which split RCC into three distinct molecular subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis with group-specific markers showed a prognostic significance of the different groups. Conclusion We propose the existence of characteristic and histologically independent genome-wide expression outputs in RCC with potential biological and clinical relevance.

  11. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    Science.gov (United States)

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer.

    Science.gov (United States)

    Long, Mark D; Campbell, Moray J

    2017-10-01

    Recently, we undertook a pan-cancer analyses of the nuclear hormone receptor (NR) superfamily in The Cancer Genome Atlas (TCGA), and revealed that the vitamin D receptor (NR1I1/VDR) was commonly and significantly down-regulated specifically in colon adenocarcinoma cohort (COAD). To examine the consequence of down-regulated VDR expression we re-analyzed VDR chromatin immunoprecipitation sequencing (ChIP-Seq) data from LS180 colon cancer cells (GSE31939). This analysis identified 1809 loci that displayed significant (p.adjcolon tumor suppressor, Galactin 4) had significantly shorted disease free survival. These analyses suggest that reduced expression of VDR in colon cancer (but neither loss nor mutation) changes the actions of the VDR by both dampening the expression of tumor suppressors (e.g. LGALS4) whilst either stabilizing or not down-regulating expression of oncogenes (e.g. Carbonic Anhydrase 9 (CA9)). These integrative genomic approaches are relatively generic and applicable to the study of any transcription factor. Copyright © 2016. Published by Elsevier Ltd.

  13. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  14. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    Science.gov (United States)

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (Pcopy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic

  15. The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides

    Directory of Open Access Journals (Sweden)

    Alfonso Benítez-Páez

    2017-08-01

    Full Text Available Bacteroides spp. are dominant components of the phylum Bacteroidetes in the gut microbiota and prosper in glycan enriched environments. However, knowledge of the machinery of specific species isolated from humans (like Bacteroides uniformis contributing to the utilization of dietary and endogenous sources of glycans and their byproducts is limited. We have used the cutting-edge nanopore-based technology to sequence the genome of B. uniformis CECT 7771, a human symbiont with a proven pre-clinical efficacy on metabolic and immune dysfunctions in obesity animal models. We have also used massive sequencing approaches to distinguish the genome expression patterns in response to carbon sources of different complexity during growth. At genome-wide level, our analyses globally demonstrate that B. uniformis strains exhibit an expanded glycolytic capability when compared with other Bacteroides species. Moreover, by studying the growth and whole-genome expression of B. uniformis CECT 7771 in response to different carbon sources, we detected a differential growth fitness and expression patterns across the genome depending on the carbon source of the culture media. The dietary fibers used exerted different effects on B. uniformis CECT 7771 activating different molecular pathways and, therefore, allowing the production of different metabolite types with potential impact on gut health. The genome and transcriptome analysis of B. uniformis CECT 7771, in response to different carbon sources, shows its high versatility to utilize both dietary and endogenous glycans along with the production of potentially beneficial end products for both the bacterium and the host, pointing to a mechanistic basis of a mutualistic relationship.

  16. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds

    Directory of Open Access Journals (Sweden)

    Zuniga Aimée

    2012-08-01

    Full Text Available Abstract Background Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1 is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1 locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. Results Three highly conserved regions (HMCO1-3 were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1, is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1

  17. A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi.

    Science.gov (United States)

    Li, Qingtian; Liu, Jia; Tan, Dunxian; Allan, Andrew C; Jiang, Yuzhuang; Xu, Xuefeng; Han, Zhenhai; Kong, Jin

    2013-10-18

    In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.

  18. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  19. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B

    2011-01-01

    occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic......The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  20. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    Science.gov (United States)

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  1. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  2. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......-resolution array-based comparative genomic hybridization and 27k oligo gene expression arrays, and putative target genes were validated in an extended series. Adenocarcinomas in the distal esophagus and the gastroesophageal junction showed strong similarities with the most common gains at 20q13, 8q24, 1q21-23, 5p...

  3. A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection.

    Science.gov (United States)

    Siddle, Katherine J; Deschamps, Matthieu; Tailleux, Ludovic; Nédélec, Yohann; Pothlichet, Julien; Lugo-Villarino, Geanncarlo; Libri, Valentina; Gicquel, Brigitte; Neyrolles, Olivier; Laval, Guillaume; Patin, Etienne; Barreiro, Luis B; Quintana-Murci, Lluís

    2014-05-01

    MicroRNAs (miRNAs) are critical regulators of gene expression, and their role in a wide variety of biological processes, including host antimicrobial defense, is increasingly well described. Consistent with their diverse functional effects, miRNA expression is highly context dependent and shows marked changes upon cellular activation. However, the genetic control of miRNA expression in response to external stimuli and the impact of such perturbations on miRNA-mediated regulatory networks at the population level remain to be determined. Here we assessed changes in miRNA expression upon Mycobacterium tuberculosis infection and mapped expression quantitative trait loci (eQTL) in dendritic cells from a panel of healthy individuals. Genome-wide expression profiling revealed that ∼40% of miRNAs are differentially expressed upon infection. We find that the expression of 3% of miRNAs is controlled by proximate genetic factors, which are enriched in a promoter-specific histone modification associated with active transcription. Notably, we identify two infection-specific response eQTLs, for miR-326 and miR-1260, providing an initial assessment of the impact of genotype-environment interactions on miRNA molecular phenotypes. Furthermore, we show that infection coincides with a marked remodeling of the genome-wide relationships between miRNA and mRNA expression levels. This observation, supplemented by experimental data using the model of miR-29a, sheds light on the role of a set of miRNAs in cellular responses to infection. Collectively, this study increases our understanding of the genetic architecture of miRNA expression in response to infection, and highlights the wide-reaching impact of altering miRNA expression on the transcriptional landscape of a cell.

  4. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported......Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly...

  5. Identification of Orch3, a locus controlling dominant resistance to autoimmune orchitis, as kinesin family member 1C.

    Directory of Open Access Journals (Sweden)

    Roxana del Rio

    Full Text Available Experimental autoimmune orchitis (EAO, the principal model of non-infectious testicular inflammatory disease, can be induced in susceptible mouse strains by immunization with autologous testicular homogenate and appropriate adjuvants. As previously established, the genome of DBA/2J mice encodes genes that are capable of conferring dominant resistance to EAO, while the genome of BALB/cByJ mice does not and they are therefore susceptible to EAO. In a genome scan, we previously identified Orch3 as the major quantitative trait locus controlling dominant resistance to EAO and mapped it to chromosome 11. Here, by utilizing a forward genetic approach, we identified kinesin family member 1C (Kif1c as a positional candidate for Orch3 and, using a transgenic approach, demonstrated that Kif1c is Orch3. Mechanistically, we showed that the resistant Kif1c(D2 allele leads to a reduced antigen-specific T cell proliferative response as a consequence of decreased MHC class II expression by antigen presenting cells, and that the L(578 → P(578 and S(1027 → P(1027 polymorphisms distinguishing the BALB/cByJ and DBA/2J alleles, respectively, can play a role in transcriptional regulation. These findings may provide mechanistic insight into how polymorphism in other kinesins such as KIF21B and KIF5A influence susceptibility and resistance to human autoimmune diseases.

  6. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  7. Whole genome expression array profiling highlights differences in mucosal defense genes in Barrett's esophagus and esophageal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Derek J Nancarrow

    Full Text Available Esophageal adenocarcinoma (EAC has become a major concern in Western countries due to rapid rises in incidence coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of Barrett's esophagus (BE, which is believed to form in response to repeated gastro-esophageal reflux. In this study we performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarrays on total RNA extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC and those with normal squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2 designed to provide strong mucosal defenses aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7, PLAU effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with mucosal (MUC6, CA2, TFF1 and xenobiotic (AKR1C2, AKR1B10 defenses. When our results are compared to previous whole-genome expression profiling studies keratin, mucin, annexin and trefoil factor gene groups are the most frequently represented differentially expressed gene families. Eleven genes identified here are also represented in at least 3 other profiling studies. We used these genes to discriminate between squamous epithelium, BE and EAC within the two largest cohorts using a support vector machine leave one out cross validation (LOOCV analysis. While this method was satisfactory for discriminating squamous epithelium and BE, it demonstrates the need for more detailed investigations into profiling changes between BE and EAC.

  8. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for ...

  9. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes.

    Science.gov (United States)

    Sun, Jiangmei; Li, Leiting; Wang, Peng; Zhang, Shaoling; Wu, Juyou

    2017-10-10

    Leucine-rich repeat receptor-like protein kinase (LRR-RLK) is the largest gene family of receptor-like protein kinases (RLKs) and actively participates in regulating the growth, development, signal transduction, immunity, and stress responses of plants. However, the patterns of LRR-RLK gene family evolution in the five main Rosaceae species for which genome sequences are available have not yet been reported. In this study, we performed a comprehensive analysis of LRR-RLK genes for five Rosaceae species: Fragaria vesca (strawberry), Malus domestica (apple), Pyrus bretschneideri (Chinese white pear), Prunus mume (mei), and Prunus persica (peach), which contained 201, 244, 427, 267, and 258 LRR-RLK genes, respectively. All LRR-RLK genes were further grouped into 23 subfamilies based on the hidden Markov models approach. RLK-Pelle_LRR-XII-1, RLK-Pelle_LRR-XI-1, and RLK-Pelle_LRR-III were the three largest subfamilies. Synteny analysis indicated that there were 236 tandem duplicated genes in the five Rosaceae species, among which subfamilies XII-1 (82 genes) and XI-1 (80 genes) comprised 68.6%. Our results indicate that tandem duplication made a large contribution to the expansion of the subfamilies. The gene expression, tissue-specific expression, and subcellular localization data revealed that LRR-RLK genes were differentially expressed in various organs and tissues, and the largest subfamily XI-1 was highly expressed in all five Rosaceae species, suggesting that LRR-RLKs play important roles in each stage of plant growth and development. Taken together, our results provide an overview of the LRR-RLK family in Rosaceae genomes and the basis for further functional studies.

  10. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    2010-01-01

    Full Text Available We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis.We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis.Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.

  11. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  12. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects.

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    Full Text Available Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs. The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both

  13. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy.

    Science.gov (United States)

    Konersman, Chamindra G; Freyermuth, Fernande; Winder, Thomas L; Lawlor, Michael W; Lagier-Tourenne, Clotilde; Patel, Shailendra B

    2017-11-01

    Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  14. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M; Baxter, Simon W; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-05-06

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity.

  15. Genome-wide Identification and Expression Analysis of Half-size ABCG Genes in Malus × domestica

    Directory of Open Access Journals (Sweden)

    Juanjuan MA

    2018-03-01

    Full Text Available Half-size adenosine triphosphate-binding cassette transporter subgroup G (ABCG genes play crucial roles in regulating the movements of a variety of substrates and have been well studied in several plants. However, half-size ABCGs have not been characterized in detail in apple (Malus × domestica Borkh.. Here, we performed a genome-wide identification and expression analysis of the half-size ABCG gene family in apple. A total of 46 apple half-size ABCGs were identified and divided into six clusters according to the phylogenetic analysis. A gene structural analysis showed that most half-size ABCGs in the same cluster shared a similar exon–intron organization. A gene duplication analysis showed that segmental, tandem and whole-genome duplications could account for the expansion of half-size ABCG transporters in M. domestica. Moreover, a promoter scan, digital expression analysis and RNA-seq revealed that MdABCG21 may be involved in root's cytokinin transport and that ABCG17 may be involved in the lateral bud development of M. spectabilis ‘Bly114’ by mediating cytokinin transport. The data presented here lay the foundation for further investigations into the biological and physiological processes and functions of half-size ABCG genes in apple. Keywords: apple, ABCG gene, duplication, gene expression

  16. Neuropilin-2 genomic elements drive cre recombinase expression in primitive blood, vascular and neuronal lineages.

    Science.gov (United States)

    Wiszniak, Sophie; Scherer, Michaela; Ramshaw, Hayley; Schwarz, Quenten

    2015-11-01

    We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2-Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue-specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709-717, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus).

    Science.gov (United States)

    Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua

    2017-07-01

    The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.

  18. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    Science.gov (United States)

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  19. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong

    2012-01-01

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  20. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  1. Western environment/lifestyle is associated with increased genome methylation and decreased gene expression in Chinese immigrants living in Australia.

    Science.gov (United States)

    Zhang, Guicheng; Wang, Kui; Schultz, Ennee; Khoo, Siew-Kim; Zhang, Xiaopeng; Annamalay, Alicia; Laing, Ingrid A; Hales, Belinda J; Goldblatt, Jack; Le Souëf, Peter N

    2016-01-01

    Several human diseases and conditions are disproportionally distributed in the world with a significant "Western-developed" vs. "Eastern-developing" gradient. We compared genome-wide DNA methylation of peripheral blood mononuclear cells in 25 newly arrived Chinese immigrants living in a Western environment for less than 6 months ("Newly arrived") with 23 Chinese immigrants living in the Western environment for more than two years ("Long-term") with a mean of 8.7 years, using the Infinium HumanMethylation450 BeadChip. In a sub-group of both subject groups (n = 12 each) we also investigated genome-wide gene expression using a Human HT-12 v4 expression beadChip. There were 62.5% probes among the total number of 382,250 valid CpG sites with greater mean Beta (β) in "Long-term" than in "Newly arrived". In the regions of CpG islands and gene promoters, compared with the CpG sites in all other regions, lower percentages of CpG sites with mean methylation levels in "Long-term" greater than "Newly arrived" were observed, but still >50%. The increase of methylation was associated with a general decrease of gene expression in Chinese immigrants living in the Western environment for a longer period of time. After adjusting for age, gender and other confounding factors the findings remained. Chinese immigrants living in Australia for a longer period of time have increased overall genome methylation and decreased overall gene expression compared with newly arrived immigrants. © 2015 Wiley Periodicals, Inc.

  2. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    Science.gov (United States)

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  3. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  4. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape.

    Science.gov (United States)

    Gervais, Julie; Plissonneau, Clémence; Linglin, Juliette; Meyer, Michel; Labadie, Karine; Cruaud, Corinne; Fudal, Isabelle; Rouxel, Thierry; Balesdent, Marie-Hélène

    2017-10-01

    Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  5. Replication, gene expression and particle production by a consensus Merkel Cell Polyomavirus (MCPyV genome.

    Directory of Open Access Journals (Sweden)

    Friederike Neumann

    Full Text Available Merkel Cell Polyomavirus (MCPyV genomes are clonally integrated in tumor tissues of approximately 85% of all Merkel cell carcinoma (MCC cases, a highly aggressive tumor of the skin which predominantly afflicts elderly and immunosuppressed patients. All integrated viral genomes recovered from MCC tissue or MCC cell lines harbor signature mutations in the early gene transcript encoding for the large T-Antigen (LT-Ag. These mutations selectively abrogate the ability of LT-Ag to support viral replication while still maintaining its Rb-binding activity, suggesting a continuous requirement for LT-Ag mediated cell cycle deregulation during MCC pathogenesis. To gain a better understanding of MCPyV biology, in vitro MCPyV replication systems are required. We have generated a synthetic MCPyV genomic clone (MCVSyn based on the consensus sequence of MCC-derived sequences deposited in the NCBI database. Here, we demonstrate that transfection of recircularized MCVSyn DNA into some human cell lines recapitulates efficient replication of the viral genome, early and late gene expression together with virus particle formation. However, serial transmission of infectious virus was not observed. This in vitro culturing system allows the study of viral replication and will facilitate the molecular dissection of important aspects of the MCPyV lifecycle.

  6. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  7. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes

    Directory of Open Access Journals (Sweden)

    Mondal U

    2008-01-01

    Full Text Available Purpose: To anlyse codon usage patterns of five complete genomes of Salmonella , predict highly expressed genes, examine horizontally transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize the nature of highly expressed genes to infer upon their lifestyle. Methods: Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were analysed with Codon W and CAI (codon adaptation index Calculator. Results: Translational efficiency plays a role in codon usage variation in Salmonella genes. Low bias was noticed in most of the genes. GC3 (guanine cytosine at third position composition does not influence codon usage variation in the genes of these Salmonella strains. Among the cluster of orthologous groups (COGs, translation, ribosomal structure biogenesis [J], and energy production and conversion [C] contained the highest number of potentially highly expressed (PHX genes. Correspondence analysis reveals the conserved nature of the genes. Highly expressed genes were detected. Conclusions: Selection for translational efficiency is the major source of variation of codon usage in the genes of Salmonella . Evolution of pathogenicity-related genes as a unit suggests their ability to infect and exist as a pathogen. Presence of a lot of PHX genes in the information and storage-processing category of COGs indicated their lifestyle and revealed that they were not subjected to genome reduction.

  8. Molecular cloning and expression of full-length DNA copies of the genomic RNAs of cowpea mosaic virus

    NARCIS (Netherlands)

    Vos, P.

    1987-01-01

    The experiments described in this thesis were designed to unravel various aspects of the mechanism of gene expression of cowpea mosaic virus (CPMV). For this purpose full-length DNA copies of both genomic RNAs of CPMV were constructed. Using powerful invitro

  9. Long-Term Protective Immune Response Elicited by Vaccination with an Expression Genomic Library of Toxoplasma gondii

    OpenAIRE

    Fachado, Alberto; Rodriguez, Alexandro; Molina, Judith; Silvério, Jaline C.; Marino, Ana P. M. P.; Pinto, Luzia M. O.; Angel, Sergio O.; Infante, Juan F.; Traub-Cseko, Yara; Amendoeira, Regina R.; Lannes-Vieira, Joseli

    2003-01-01

    Immunization of BALB/c mice with an expression genomic library of Toxoplasma gondii induces a Th1-type immune response, with recognition of several T. gondii proteins (21 to 117 kDa) and long-term protective immunity against a lethal challenge. These results support further investigations to achieve a multicomponent anti-T. gondii DNA vaccine.

  10. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    Science.gov (United States)

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.

    2017-02-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.

  11. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    Science.gov (United States)

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-08-19

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

  12. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes.

    Science.gov (United States)

    Hobson, Neil; Deyholos, Michael K

    2013-05-23

    Several β-galactosidases of the Glycosyl Hydrolase 35 (GH35) family have been characterized, and many of these modify cell wall components, including pectins, xyloglucans, and arabinogalactan proteins. The phloem fibres of flax (Linum usitatissimum) have gelatinous-type cell walls that are rich in crystalline cellulose and depend on β-galactosidase activity for their normal development. In this study, we investigate the transcript expression patterns and inferred evolutionary relationships of the complete set of flax GH35 genes, to better understand the functions of these genes in flax and other species. Using the recently published flax genome assembly, we identified 43 β-galactosidase-like (BGAL) genes, based on the presence of a GH35 domain. Phylogenetic analyses of their protein sequences clustered them into eight sub-families. Sub-family B, whose members in other species were known to be expressed in developing flowers and pollen, was greatly under represented in flax (p-value < 0.01). Sub-family A5, whose sole member from arabidopsis has been described as its primary xyloglucan BGAL, was greatly expanded in flax (p-value < 0.01). A number of flax BGALs were also observed to contain non-consensus GH35 active sites. Expression patterns of the flax BGALs were investigated using qRT-PCR and publicly available microarray data. All predicted flax BGALs showed evidence of expression in at least one tissue. Flax has a large number of BGAL genes, which display a distinct distribution among the BGAL sub-families, in comparison to other closely related species with available whole genome assemblies. Almost every flax BGAL was expressed in fibres, the majority of which expressed predominately in fibres as compared to other tissues, suggesting an important role for the expansion of this gene family in the development of this species as a fibre crop. Variations displayed in the canonical GH35 active site suggest a variety of roles unique to flax, which will require

  13. A novel frameshift mutation in CX46 associated with hereditary dominant cataracts in a Chinese family

    Directory of Open Access Journals (Sweden)

    Xiu-Kun Cui

    2017-05-01

    Full Text Available AIM: To investigate the genetic mutations that are associated the hereditary autosomal dominant cataract in a Chinese family. METHODS: A Chinese family consisting of 20 cataract patients (including 9 male and 11 female and 2 unaffected individuals from 5 generations were diagnosed to be a typical autosomal dominant cataract pedigree. Genomic DNA samples were extracted from the peripheral blood cells of the participants in this pedigree. Exon sequence was used for genetic mutation screening. In silico analysis was used to study the structure characteristics of connexin 46 (CX46 mutant. Immunoblotting was conduceted for testing the expression of CX46. RESULTS: To determine the involved genetic mutations, 11 well-known cataract-associated genes (cryaa, cryab, crybb1, crybb2, crygc, crygd, Gja3, Gja8, Hsf4, Mip and Pitx3 were chosen for genetic mutation test by using exon sequencing. A novel cytosine insertion at position 1195 of CX46 cDNA (c.1194_1195ins C was found in the samples of 5 tested cataract patients but not in the unaffected 2 individuals nor in normal controls, which resulted in 30 amino acids more extension in CX46C-terminus (cx46fs400 compared with the wild-type CX46. In silico protein structure analysis indicated that the mutant showed distinctive hydrophobicity and protein secondary structure compared with the wild-type CX46. The immunoblot results revealed that CX46 protein, which expressed in the aging cataract lens tissues, was absence in the proband lens. In contrast, CX50, alpha A-crystallin and alphaB-crystallin expressed equally in both proband and aging cataract tissues. Those results revealed that the cx46fs400 mutation could impair CX46 protein expression. CONCLUSION: The insertion of cytosine at position 1195 of CX46 cDNA is a novel mutation site that is associated with the autosomal dominant cataracts in this Chinese family. The C-terminal frameshift mutation is involved in regulating CX46 protein expression.

  14. Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene

    Directory of Open Access Journals (Sweden)

    Abhijit Dandapat

    2014-09-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3′ genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.

  15. Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentation of cholangiocarcinoma

    International Nuclear Information System (INIS)

    Seol, Min-A; Kim, Dae-Ghon; Chu, In-Sun; Lee, Mi-Jin; Yu, Goung-Ran; Cui, Xiang-Dan; Cho, Baik-Hwan; Ahn, Eun-Kyung; Leem, Sun-Hee; Kim, In-Hee

    2011-01-01

    The molecular mechanisms of CC (cholangiocarcinoma) oncogenesis and progression are poorly understood. This study aimed to determine the genome-wide expression of genes related to CC oncogenesis and sarcomatous transdifferentiation. Genes that were differentially expressed between CC cell lines or tissues and cultured normal biliary epithelial (NBE) cells were identified using DNA microarray technology. Expressions were validated in human CC tissues and cells. Using unsupervised hierarchical clustering analysis of the cell line and tissue samples, we identified a set of 342 commonly regulated (>2-fold change) genes. Of these, 53, including tumor-related genes, were upregulated, and 289, including tumor suppressor genes, were downregulated (<0.5 fold change). Expression of SPP1, EFNB2, E2F2, IRX3, PTTG1, PPARγ, KRT17, UCHL1, IGFBP7 and SPARC proteins was immunohistochemically verified in human and hamster CC tissues. Additional unsupervised hierarchical clustering analysis of sarcomatoid CC cells compared to three adenocarcinomatous CC cell lines revealed 292 differentially upregulated genes (>4-fold change), and 267 differentially downregulated genes (<0.25 fold change). The expression of 12 proteins was validated in the CC cell lines by immunoblot analysis and immunohistochemical staining. Of the proteins analyzed, we found upregulation of the expression of the epithelial-mesenchymal transition (EMT)-related proteins VIM and TWIST1, and restoration of the methylation-silenced proteins LDHB, BNIP3, UCHL1, and NPTX2 during sarcomatoid transdifferentiation of CC. The deregulation of oncogenes, tumor suppressor genes, and methylation-related genes may be useful in identifying molecular targets for CC diagnosis and prognosis

  16. Genome-wide identification and expression analysis of the CIPK gene family in cassava

    Directory of Open Access Journals (Sweden)

    Wei eHu

    2015-10-01

    Full Text Available Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava.

  17. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L. under waterlogging stress.

    Directory of Open Access Journals (Sweden)

    Nepolean Thirunavukkarasu

    Full Text Available Waterlogging causes extensive damage to maize crops in tropical and subtropical regions. The identification of tolerance genes and their interactions at the molecular level will be helpful to engineer tolerant genotypes. A whole-genome transcriptome assay revealed the specific role of genes in response to waterlogging stress in susceptible and tolerant genotypes. Genes involved in the synthesis of ethylene and auxin, cell wall metabolism, activation of G-proteins and formation of aerenchyma and adventitious roots, were upregulated in the tolerant genotype. Many transcription factors, particularly ERFs, MYB, HSPs, MAPK, and LOB-domain protein were involved in regulation of these traits. Genes responsible for scavenging of ROS generated under stress were expressed along with those involved in carbohydrate metabolism. The physical locations of 21 genes expressed in the tolerant genotype were found to correspond with the marker intervals of known QTLs responsible for development of adaptive traits. Among the candidate genes, most showed synteny with genes of sorghum and foxtail millet. Co-expression analysis of 528 microarray samples including 16 samples from the present study generated seven functional modules each in the two genotypes, with differing characteristics. In the tolerant genotype, stress genes were co-expressed along with peroxidase and fermentation pathway genes.

  18. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abstract Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements

  19. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  20. On the expression strategy of the tospoviral genome

    NARCIS (Netherlands)

    Poelwijk, van F.

    1996-01-01


    The work described in this thesis was aimed at the unravelling of the molecular biology of tospoviruses, with special emphasis on the process of replication of the tripartite RNA genome.

    At the onset of the research the complete genome sequence of tomato spotted wilt virus (TSWV),

  1. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    Directory of Open Access Journals (Sweden)

    Khan Meraj A

    2012-09-01

    Full Text Available Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n = 18 suffering from moderate (stage 3; n = 8 or severe (stage 4; n = 10 ovarian endometriosis during proliferative (n = 13 and secretory (n = 5 phases of menstrual cycle was performed. Methods Individual pure RNA samples were subjected to Agilent’s Whole Human Genome 44K microarray experiments. Microarray data were validated (P  Results Higher clustering effect of pairing (cluster distance, cd = 0.1 in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd = 0.5 and phases of menstrual cycle (cd = 0.6. Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28 genes representing potential marker for ovarian endometriosis in fertile women was discovered. Conclusions Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were

  2. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

    Science.gov (United States)

    Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen

    2018-01-13

    Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons

  3. Genome-Wide Gene Expression Disturbance by Single A1/C1 Chromosome Substitution in Brassica rapa Restituted From Natural B. napus

    Directory of Open Access Journals (Sweden)

    Bin Zhu

    2018-03-01

    Full Text Available Alien chromosome substitution (CS lines are treated as vital germplasms for breeding and genetic mapping. Previously, a whole set of nine Brassica rapa-oleracea monosonic alien addition lines (MAALs, C1-C9 was established in the background of natural B. napus genotype “Oro,” after the restituted B. rapa (RBR for Oro was realized. Herein, a monosomic substitution line with one alien C1 chromosome (Cs1 in the RBR complement was selected in the progenies of MAAL C1 and RBR, by the PCR amplification of specific gene markers and fluorescence in situ hybridization. Cs1 exhibited the whole plant morphology similar to RBR except for the defective stamens without fertile pollen grains, but it produced some seeds and progeny plants carrying the C1 chromosome at high rate besides those without the alien chromosome after pollinated by RBR. The viability of the substitution and its progeny for the RBR diploid further elucidated the functional compensation between the chromosome pairs with high homoeology. To reveal the impact of such aneuploidy on genome-wide gene expression, the transcriptomes of MAAL C1, Cs1 and euploid RBR were analyzed. Compared to RBR, Cs1 had sharply reduced gene expression level across chromosome A1, demonstrating the loss of one copy of A1 chromosome. Both additional chromosome C1 in MAAL and substitutional chromosome C1 in Cs1 caused not only cis-effect but also prevalent trans-effect differentially expressed genes. A dominant gene dosage effects prevailed among low expressed genes across chromosome A1 in Cs1, and moreover, dosage effects for some genes potentially contributed to the phenotype deviations. Our results provided novel insights into the transcriptomic perturbation and gene dosage effects on phenotype in CS related to one naturally evolved allopolyploid.

  4. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  5. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  6. In silico method for modelling metabolism and gene product expression at genome scale

    Energy Technology Data Exchange (ETDEWEB)

    Lerman, Joshua A.; Hyduke, Daniel R.; Latif, Haythem; Portnoy, Vasiliy A.; Lewis, Nathan E.; Orth, Jeffrey D.; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Zengler, Karsten; Palsson, Bernard O.

    2012-07-03

    Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome and transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.

  7. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

    Directory of Open Access Journals (Sweden)

    Weibin eSong

    2016-01-01

    Full Text Available VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.

  8. Insights into Conifer Giga-Genomes1

    Science.gov (United States)

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  9. Enforcing Co-expression Within a Brain-Imaging Genomics Regression Framework.

    Science.gov (United States)

    Zille, Pascal; Calhoun, Vince D; Wang, Yu-Ping

    2017-06-28

    Among the challenges arising in brain imaging genetic studies, estimating the potential links between neurological and genetic variability within a population is key. In this work, we propose a multivariate, multimodal formulation for variable selection that leverages co-expression patterns across various data modalities. Our approach is based on an intuitive combination of two widely used statistical models: sparse regression and canonical correlation analysis (CCA). While the former seeks multivariate linear relationships between a given phenotype and associated observations, the latter searches to extract co-expression patterns between sets of variables belonging to different modalities. In the following, we propose to rely on a 'CCA-type' formulation in order to regularize the classical multimodal sparse regression problem (essentially incorporating both CCA and regression models within a unified formulation). The underlying motivation is to extract discriminative variables that are also co-expressed across modalities. We first show that the simplest formulation of such model can be expressed as a special case of collaborative learning methods. After discussing its limitation, we propose an extended, more flexible formulation, and introduce a simple and efficient alternating minimization algorithm to solve the associated optimization problem.We explore the parameter space and provide some guidelines regarding parameter selection. Both the original and extended versions are then compared on a simple toy dataset and a more advanced simulated imaging genomics dataset in order to illustrate the benefits of the latter. Finally, we validate the proposed formulation using single nucleotide polymorphisms (SNP) data and functional magnetic resonance imaging (fMRI) data from a population of adolescents (n = 362 subjects, age 16.9 ± 1.9 years from the Philadelphia Neurodevelopmental Cohort) for the study of learning ability. Furthermore, we carry out a significance

  10. Genomic composition factors affect codon usage in porcine genome ...

    African Journals Online (AJOL)

    ... be explored for designing degenerate primers, necessitate selecting appropriate hosts expression systems to manipulate the expression of target genes in vivo or in vitro and improve the accuracy of gene prediction from genomic sequences thus maximizing the effectiveness of genetic manipulations in synthetic biology.

  11. Molecular correlates of social dominance: a novel role for ependymin in aggression.

    Directory of Open Access Journals (Sweden)

    Lynne U Sneddon

    2011-04-01

    Full Text Available Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical

  12. G+C content dominates intrinsic nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Hughes Timothy R

    2009-12-01

    Full Text Available Abstract Background The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences. Results We find that a simple linear combination of only 14 simple DNA sequence attributes (G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp sequences explains nucleosome occupancy in vitro and in vivo in a manner comparable to the Kaplan model. G+C content and frequency of AAAA are the most important features. G+C content is dominant, alone explaining ~50% of the variation in nucleosome occupancy in vitro. Conclusions Our findings provide a dramatically simplified means to predict and understand intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C content is enriched or depleted at many types of features in diverse eukaryotic genomes, our results suggest that variation in nucleotide composition may have a widespread and direct influence on chromatin structure.

  13. Maximizing Crossbred Performance through Purebred Genomic Selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Pieter

    Genomic selection (GS) can be used to select purebreds for crossbred performance (CP). As dominance is the likely genetic basis of heterosis, explicitly including dominance in the GS model may be beneficial for selection of purebreds for CP, when estimating allelic effects from pure line data. Th...

  14. Dynamic association of NUP98 with the human genome.

    Directory of Open Access Journals (Sweden)

    Yun Liang

    Full Text Available Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  15. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  16. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  17. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    Science.gov (United States)

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  18. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation

    Directory of Open Access Journals (Sweden)

    Kamola Saydaminova

    Full Text Available Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35 vectors for zinc-finger nuclease (ZFN– or transcription activator-like effector nuclease (TALEN–mediated genome editing in human CD34+ hematopoietic stem cells (HSCs from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35.ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells. The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2 within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.

  19. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF and dominant follicle (DF during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291-318 were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.

  20. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  1. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    Science.gov (United States)

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  2. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags

    Directory of Open Access Journals (Sweden)

    Carl-Eric Wegner

    2017-06-01

    Full Text Available Acid mine drainage (AMD and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur, which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13], Actinobacteria (TM214, Alphaproteobacteria (DA111, and Chloroflexi (JG37-AG-4, which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18 by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan and the competence to metabolize C1 compounds (ribulose monophosphate pathway and lignin derivatives (dye-decolorizing peroxidases. Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.

  3. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    Science.gov (United States)

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not

  4. Parental genome dosage imbalance deregulates imprinting in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Pauline E Jullien

    2010-03-01

    Full Text Available In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2 and FLOWERING WAGENINGEN (FWA controlled by DNA methylation, and MEDEA (MEA and PHERES1 (PHE1 controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis.

  5. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  6. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  7. A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL

    Directory of Open Access Journals (Sweden)

    Bidanel Jean P

    2009-12-01

    Full Text Available Abstract Background Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA and total number of piglets born (TNB in a three generation Iberian by Meishan F2 intercross. Results The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P SSC17 (P P P P P Conclusions The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17, dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the genetic background where they segregate.

  8. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    Science.gov (United States)

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  9. Genomic Organization and Expression of Iron Metabolism Genes in the Emerging Pathogenic Mold Scedosporium apiospermum

    Directory of Open Access Journals (Sweden)

    Yohann Le Govic

    2018-04-01

    Full Text Available The ubiquitous mold Scedosporium apiospermum is increasingly recognized as an emerging pathogen, especially among patients with underlying disorders such as immunodeficiency or cystic fibrosis (CF. Indeed, it ranks the second among the filamentous fungi colonizing the respiratory tract of CF patients. However, our knowledge about virulence factors of this fungus is still limited. The role of iron-uptake systems may be critical for establishment of Scedosporium infections, notably in the iron-rich environment of the CF lung. Two main strategies are employed by fungi to efficiently acquire iron from their host or from their ecological niche: siderophore production and reductive iron assimilation (RIA systems. The aim of this study was to assess the existence of orthologous genes involved in iron metabolism in the recently sequenced genome of S. apiospermum. At first, a tBLASTn analysis using A. fumigatus iron-related proteins as query revealed orthologs of almost all relevant loci in the S. apiospermum genome. Whereas the genes putatively involved in RIA were randomly distributed, siderophore biosynthesis and transport genes were organized in two clusters, each containing a non-ribosomal peptide synthetase (NRPS whose orthologs in A. fumigatus have been described to catalyze hydroxamate siderophore synthesis. Nevertheless, comparative genomic analysis of siderophore-related clusters showed greater similarity between S. apiospermum and phylogenetically close molds than with Aspergillus species. The expression level of these genes was then evaluated by exposing conidia to iron starvation and iron excess. The expression of several orthologs of A. fumigatus genes involved in siderophore-based iron uptake or RIA was significantly induced during iron starvation, and conversely repressed in iron excess conditions. Altogether, these results indicate that S. apiospermum possesses the genetic information required for efficient and competitive iron uptake

  10. Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics.

    Science.gov (United States)

    Schunter, Celia; Vollmer, Steven V; Macpherson, Enrique; Pascual, Marta

    2014-02-28

    Social dominance is important for the reproductive success of males in many species. In the black-faced blenny (Tripterygion delaisi) during the reproductive season, some males change color and invest in nest making and defending a territory, whereas others do not change color and 'sneak' reproductions when females lay their eggs. Using RNAseq, we profiled differential gene expression between the brains of territorial males, sneaker males, and females to study the molecular signatures of male dimorphism. We found that more genes were differentially expressed between the two male phenotypes than between males and females, suggesting that during the reproductive period phenotypic plasticity is a more important factor in differential gene expression than sexual dimorphism. The territorial male overexpresses genes related to synaptic plasticity and the sneaker male overexpresses genes involved in differentiation and development. Previously suggested candidate genes for social dominance in the context of alternative mating strategies seem to be predominantly species-specific. We present a list of novel genes which are differentially expressed in Tripterygion delaisi. This is the first genome-wide study for a molecular non-model species in the context of alternative mating strategies and provides essential information for further studies investigating the molecular basis of social dominance.

  11. Structure and expression strategy of the genome of Culex pipiens densovirus, a mosquito densovirus with an ambisense organization.

    Science.gov (United States)

    Baquerizo-Audiot, Elizabeth; Abd-Alla, Adly; Jousset, Françoise-Xavière; Cousserans, François; Tijssen, Peter; Bergoin, Max

    2009-07-01

    The genome of all densoviruses (DNVs) so far isolated from mosquitoes or mosquito cell lines consists of a 4-kb single-stranded DNA molecule with a monosense organization (genus Brevidensovirus, subfamily Densovirinae). We previously reported the isolation of a Culex pipiens DNV (CpDNV) that differs significantly from brevidensoviruses by (i) having a approximately 6-kb genome, (ii) lacking sequence homology, and (iii) lacking antigenic cross-reactivity with Brevidensovirus capsid polypeptides. We report here the sequence organization and transcription map of this virus. The cloned genome of CpDNV is 5,759 nucleotides (nt) long, and it possesses an inverted terminal repeat (ITR) of 285 nt and an ambisense organization of its genes. The nonstructural (NS) proteins NS-1, NS-2, and NS-3 are located in the 5' half of one strand and are organized into five open reading frames (ORFs) due to the split of both NS-1 and NS-2 into two ORFs. The ORF encoding capsid polypeptides is located in the 5' half of the complementary strand. The expression of NS proteins is controlled by two promoters, P7 and P17, driving the transcription of a 2.4-kb mRNA encoding NS-3 and of a 1.8-kb mRNA encoding NS-1 and NS-2, respectively. The two NS mRNAs species are spliced off a 53-nt sequence. Capsid proteins are translated from an unspliced 2.3-kb mRNA driven by the P88 promoter. CpDNV thus appears as a new type of mosquito DNV, and based on the overall organization and expression modalities of its genome, it may represent the prototype of a new genus of DNV.

  12. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Benedict Yan

    Full Text Available ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones, ALK genomic status using single-color chromogenic in situ hybridization (CISH, and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM, in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.

  13. A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats.

    Science.gov (United States)

    Gandolfi, B; Alamri, S; Darby, W G; Adhikari, B; Lattimer, J C; Malik, R; Wade, C M; Lyons, L A; Cheng, J; Bateman, J F; McIntyre, P; Lamandé, S R; Haase, B

    2016-08-01

    Scottish fold cats, named for their unique ear shape, have a dominantly inherited osteochondrodysplasia involving malformation in the distal forelimbs, distal hindlimbs and tail, and progressive joint destruction. This study aimed to identify the gene and the underlying variant responsible for the osteochondrodysplasia. DNA samples from 44 Scottish fold and 54 control cats were genotyped using a feline DNA array and a case-control genome-wide association analysis conducted. The gene encoding a calcium permeable ion channel, transient receptor potential cation channel, subfamily V, member 4 (TRPV4) was identified as a candidate within the associated region and sequenced. Stably transfected HEK293 cells were used to compare wild-type and mutant TRPV4 expression, cell surface localisation and responses to activation with a synthetic agonist GSK1016709A, hypo-osmolarity, and protease-activated receptor 2 stimulation. The dominantly inherited folded ear and osteochondrodysplasia in Scottish fold cats is associated with a p.V342F substitution (c.1024G>T) in TRPV4. The change was not found in 648 unaffected cats. Functional analysis in HEK293 cells showed V342F mutant TRPV4 was poorly expressed at the cell surface compared to wild-type TRPV4 and as a consequence the maximum response to a synthetic agonist was reduced. Mutant TRPV4 channels had a higher basal activity and an increased response to hypotonic conditions. Access to a naturally-occurring TRPV4 mutation in the Scottish fold cat will allow further functional studies to identify how and why the mutations affect cartilage and bone development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  15. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Ling Wei

    2016-02-01

    Full Text Available The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus, and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  16. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome.

    Science.gov (United States)

    Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun

    2018-04-01

    The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.

  17. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    Science.gov (United States)

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Genome-wide identification and expression analysis of aquaporins in tomato.

    Science.gov (United States)

    Reuscher, Stefan; Akiyama, Masahito; Mori, Chiharu; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2013-01-01

    The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  19. Genome-wide identification and expression analysis of aquaporins in tomato.

    Directory of Open Access Journals (Sweden)

    Stefan Reuscher

    Full Text Available The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum, which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  20. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons.

    OpenAIRE

    Flavell, D M; Wells, T; Wells, S E; Carmignac, D F; Thomas, G B; Robinson, I C

    1996-01-01

    Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the...

  1. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications.

    Science.gov (United States)

    Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus

    2017-06-01

    Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. Dualism of gene GC content and CpG pattern in regard to expression in the human genome: magnitude versus breadth.

    Science.gov (United States)

    Vinogradov, Alexander E

    2005-12-01

    In this article, I show that, in the human genome, the GC content in genes (but not the CpG island in the promoter) is related to the maximum level of gene expression among tissues, whereas the promoter CpG island and gene CpG level are more strongly related to the breadth of expression among tissues. The relevance of gene GC content to expression cannot be a consequence (i.e. a byproduct) of transcription because it does not correlate with expression in the germline. The variation of GC content and CpG level can determine the characteristics of gene expression in a synergistic interplay with transcription-factor-binding sites (mediated by chromatin condensation).

  3. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Richard Freddie-Jeanne

    2012-10-01

    Full Text Available Abstract Background Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood and allo-grooming (where workers remove ectoparasites from nestmates. We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli. Results While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. Conclusions These results demonstrate that

  4. A complex dominance hierarchy is controlled by polymorphism of small RNAs and their targets.

    Science.gov (United States)

    Yasuda, Shinsuke; Wada, Yuko; Kakizaki, Tomohiro; Tarutani, Yoshiaki; Miura-Uno, Eiko; Murase, Kohji; Fujii, Sota; Hioki, Tomoya; Shimoda, Taiki; Takada, Yoshinobu; Shiba, Hiroshi; Takasaki-Yasuda, Takeshi; Suzuki, Go; Watanabe, Masao; Takayama, Seiji

    2016-12-22

    In diploid organisms, phenotypic traits are often biased by effects known as Mendelian dominant-recessive interactions between inherited alleles. Phenotypic expression of SP11 alleles, which encodes the male determinants of self-incompatibility in Brassica rapa, is governed by a complex dominance hierarchy 1-3 . Here, we show that a single polymorphic 24 nucleotide small RNA, named SP11 methylation inducer 2 (Smi2), controls the linear dominance hierarchy of the four SP11 alleles (S 44 > S 60 > S 40 > S 29 ). In all dominant-recessive interactions, small RNA variants derived from the linked region of dominant SP11 alleles exhibited high sequence similarity to the promoter regions of recessive SP11 alleles and acted in trans to epigenetically silence their expression. Together with our previous study 4 , we propose a new model: sequence similarity between polymorphic small RNAs and their target regulates mono-allelic gene expression, which explains the entire five-phased linear dominance hierarchy of the SP11 phenotypic expression in Brassica.

  5. Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation

    Science.gov (United States)

    Fédrigo, Olivier; Haygood, Ralph; Mukherjee, Sayan; Wray, Gregory A.

    2009-01-01

    Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although this variation often has a genetic component, identification of the genetic variants driving this relationship remains challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these results are consistent between the original data set and a second published data set in humans obtained using different technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary

  6. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  7. pcaGoPromoter--an R package for biological and regulatory interpretation of principal components in genome-wide gene expression data

    DEFF Research Database (Denmark)

    Hansen, Morten; Gerds, Thomas Alexander; Nielsen, Ole Haagen

    2012-01-01

    Analyzing data obtained from genome-wide gene expression experiments is challenging due to the quantity of variables, the need for multivariate analyses, and the demands of managing large amounts of data. Here we present the R package pcaGoPromoter, which facilitates the interpretation of genome.......g., cell cycle progression and the predicted involvement of expected transcription factors, including E2F. In addition, unexpected results, e.g., cholesterol synthesis in serum-depleted cells and NF-¿B activation in inhibitor treated cells, were noted. In summary, the pcaGoPromoter R package provides...

  8. Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L. Zinc Finger-Homeodomain Gene Family

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-04-01

    Full Text Available Plant zinc finger-homeodomain (ZHD genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity.

  9. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Verena Jabs

    Full Text Available Non-small cell lung cancer (NSCLC represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190 and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes, high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%, including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05. Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.

  10. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    KAUST Repository

    Khraiwesh, Basel

    2015-11-30

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

  11. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States.

    Directory of Open Access Journals (Sweden)

    Magdalena B Wozniak

    Full Text Available Gene expression microarray and next generation sequencing efforts on conventional, clear cell renal cell carcinoma (ccRCC have been mostly performed in North American and Western European populations, while the highest incidence rates are found in Central/Eastern Europe. We conducted whole-genome expression profiling on 101 pairs of ccRCC tumours and adjacent non-tumour renal tissue from Czech patients recruited within the "K2 Study", using the Illumina HumanHT-12 v4 Expression BeadChips to explore the molecular variations underlying the biological and clinical heterogeneity of this cancer. Differential expression analysis identified 1650 significant probes (fold change ≥2 and false discovery rate <0.05 mapping to 630 up- and 720 down-regulated unique genes. We performed similar statistical analysis on the RNA sequencing data of 65 ccRCC cases from the Cancer Genome Atlas (TCGA project and identified 60% (402 of the downregulated and 74% (469 of the upregulated genes found in the K2 series. The biological characterization of the significantly deregulated genes demonstrated involvement of downregulated genes in metabolic and catabolic processes, excretion, oxidation reduction, ion transport and response to chemical stimulus, while simultaneously upregulated genes were associated with immune and inflammatory responses, response to hypoxia, stress, wounding, vasculature development and cell activation. Furthermore, genome-wide DNA methylation analysis of 317 TCGA ccRCC/adjacent non-tumour renal tissue pairs indicated that deregulation of approximately 7% of genes could be explained by epigenetic changes. Finally, survival analysis conducted on 89 K2 and 464 TCGA cases identified 8 genes associated with differential prognostic outcomes. In conclusion, a large proportion of ccRCC molecular characteristics were common to the two populations and several may have clinical implications when validated further through large clinical cohorts.

  12. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles

    Directory of Open Access Journals (Sweden)

    Takahashi Toru

    2010-02-01

    Full Text Available Abstract Background Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1 and second-largest follicles (F2, and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. Methods Global gene expression profiles of F1 (10.7 +/- 0.7 mm and F2 (7.8 +/- 0.2 mm were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. Results Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. Conclusion We demonstrated that global gene expression profiling of F

  13. The eastern oyster genome: A resource for comparative genomics in shellfish aquaculture species

    Science.gov (United States)

    Oyster aquaculture is an important sector of world food production. As such, it is imperative to develop a high quality reference genome for the eastern oyster, Crassostrea virginica, to assist in the elucidation of the genomic basis of commercially important traits. All genetic, gene expression and...

  14. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    Science.gov (United States)

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  15. Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and stress

    Directory of Open Access Journals (Sweden)

    Ridhi eGoel

    2016-03-01

    Full Text Available The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/ development including fruit ripening process respectively.

  16. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  17. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  18. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  19. The evolution of gene expression in primates

    OpenAIRE

    Tashakkori Ghanbarian, Avazeh

    2015-01-01

    The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their e...

  20. Transfer of Genomics Information to Flow Cytometry: Expression of CD27 and CD44 Discriminates Subtypes of Acute Lymphoblastic Leukemia

    Czech Academy of Sciences Publication Activity Database

    Vášková, M.; Mejstříková, E.; Kalina, T.; Martinková, Patrícia; Omelka, M.; Trka, J.; Starý, J.; Hrušák, O.

    2005-01-01

    Roč. 19, č. 5 (2005), s. 876-878 ISSN 0887-6924 Source of funding: V - iné verejné zdroje Keywords : transfer * genomics * information * cytometry * expression * discriminates * subtypesacute * lymphoblastic * leukemia Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 6.612, year: 2005

  1. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    Science.gov (United States)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  2. Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns

    Directory of Open Access Journals (Sweden)

    Fortunato Sofia

    2012-07-01

    Full Text Available Abstract Background Sox genes are HMG-domain containing transcription factors with important roles in developmental processes in animals; many of them appear to have conserved functions among eumetazoans. Demosponges have fewer Sox genes than eumetazoans, but their roles remain unclear. The aim of this study is to gain insight into the early evolutionary history of the Sox gene family by identification and expression analysis of Sox genes in the calcareous sponge Sycon ciliatum. Methods Calcaronean Sox related sequences were retrieved by searching recently generated genomic and transcriptome sequence resources and analyzed using variety of phylogenetic methods and identification of conserved motifs. Expression was studied by whole mount in situ hybridization. Results We have identified seven Sox genes and four Sox-related genes in the complete genome of Sycon ciliatum. Phylogenetic and conserved motif analyses showed that five of Sycon Sox genes represent groups B, C, E, and F present in cnidarians and bilaterians. Two additional genes are classified as Sox genes but cannot be assigned to specific subfamilies, and four genes are more similar to Sox genes than to other HMG-containing genes. Thus, the repertoire of Sox genes is larger in this representative of calcareous sponges than in the demosponge Amphimedon queenslandica. It remains unclear whether this is due to the expansion of the gene family in Sycon or a secondary reduction in the Amphimedon genome. In situ hybridization of Sycon Sox genes revealed a variety of expression patterns during embryogenesis and in specific cell types of adult sponges. Conclusions In this study, we describe a large family of Sox genes in Sycon ciliatum with dynamic expression patterns, indicating that Sox genes are regulators in development and cell type determination in sponges, as observed in higher animals. The revealed differences between demosponge and calcisponge Sox genes repertoire highlight the need to

  3. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    Science.gov (United States)

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast

  4. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  5. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Expression and genomic organization of zonadhesin-like genes in three species of fish give insight into the evolutionary history of a mosaic protein

    Directory of Open Access Journals (Sweden)

    Davidson William S

    2005-11-01

    Full Text Available Abstract Background The mosaic sperm protein zonadhesin (ZAN has been characterized in mammals and is implicated in species-specific egg-sperm binding interactions. The genomic structure and testes-specific expression of zonadhesin is known for many mammalian species. All zonadhesin genes characterized to date consist of meprin A5 antigen receptor tyrosine phosphatase mu (MAM domains, mucin tandem repeats, and von Willebrand (VWD adhesion domains. Here we investigate the genomic structure and expression of zonadhesin-like genes in three species of fish. Results The cDNA and corresponding genomic locus of a zonadhesin-like gene (zlg in Atlantic salmon (Salmo salar were sequenced. Zlg is similar in adhesion domain content to mammalian zonadhesin; however, the domain order is altered. Analysis of puffer fish (Takifugu rubripes and zebrafish (Danio rerio sequence data identified zonadhesin (zan genes that share the same domain order, content, and a conserved syntenic relationship with mammalian zonadhesin. A zonadhesin-like gene in D. rerio was also identified. Unlike mammalian zonadhesin, D. rerio zan and S. salar zlg were expressed in the gut and not in the testes. Conclusion We characterized likely orthologs of zonadhesin in both T. rubripes and D. rerio and uncovered zonadhesin-like genes in S. salar and D. rerio. Each of these genes contains MAM, mucin, and VWD domains. While these domains are associated with several proteins that show prominent gut expression, their combination is unique to zonadhesin and zonadhesin-like genes in vertebrates. The expression patterns of fish zonadhesin and zonadhesin-like genes suggest that the reproductive role of zonadhesin evolved later in the mammalian lineage.

  7. Differential expression of social dominance as a function of age and maltreatment experience.

    Science.gov (United States)

    Teisl, Michael; Rogosch, Fred A; Oshri, Assaf; Cicchetti, Dante

    2012-03-01

    Recent perspectives on social dominance in normative populations have suggested a developmental progression from using primarily coercive strategies to incorporation of more socially competent strategies to attain material and social resources. Parental influences on the resource control strategies children use have been proposed but not investigated empirically. The present study examined age- and gender-related differences in dominance strategies in 470 children from high-risk neighborhoods who were between 6 and 13 years of age, approximately half of whom had experienced maltreatment. A Q-sort measure of social dominance was developed and received preliminary support. Consistent with predictions from resource control theory, age-related differences in dominance-related behavior were demonstrated in both nonmaltreated and maltreated children. Maltreated children were more likely than nonmaltreated children to be identified as dominant bullies at any age. Dominance and bullying were not more likely to be associated for children who had experienced physical and sexual abuse relative to those who were neglected or emotionally maltreated. Results are discussed in terms of the influence of maltreatment on the social development of children, and intervention approaches for limiting these deleterious effects are recommended. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  8. A Danish family with dominant deafness-onychodystrophy syndrome.

    Science.gov (United States)

    Vind-Kezunovic, Dina; Torring, Pernille M

    2013-01-01

    The rare hereditary disorder "dominant deafness and onychodystrophy (DDOD) syndrome" (OMIM 124480) has been described in a few case reports. No putative DDOD gene or locus has been mapped and the cause of the disorder remains unknown. We present here three male family members in three generations with sensori-neural deafness, onychodystrophy and brachydactyly inherited via autosomal dominant transmission. The family members presented with absent fingernails on the first and fifth digits. As to the feet, there were absent nails on second to fifth toes in two family members, whereas the third family member only had absent nails on the fifth toe. The proband had late dentition and his father a history of late dentition, but otherwise the teeth appeared normal. Comparative genomic hybridization array analysis (Agilent 400k oligoarray) of the proband did not detect any copy number variation. This Danish family fits within the spectrum of dominant deafness and onychodystrophy syndrome and further characterises this rare disorder.

  9. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    Science.gov (United States)

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  11. Genome-wide survey of flavonoid biosynthesis genes and gene expression analysis between black- and yellow-seeded Brassica napus

    Directory of Open Access Journals (Sweden)

    Cunmin Qu

    2016-12-01

    Full Text Available Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in A. thaliana, 53 were identified in B. rapa, 50 in B. oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of eighteen flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, fourteen of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1 had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18 and BnBAN, regulatory genes (BnTTG2 and BnTT16 and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10 might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species.

  12. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  13. Datasets in Gene Expression Omnibus used in the study ORD-020969: Genomic effects of androstenedione and sex-specific liver cancer susceptibility in mice

    Data.gov (United States)

    U.S. Environmental Protection Agency — Datasets in Gene Expression Omnibus used in the study ORD-020969: Genomic effects of androstenedione and sex-specific liver cancer susceptibility in mice. This...

  14. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  15. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  16. Effects of a diet high in monounsaturated fat and a full Mediterranean diet on PBMC whole genome gene expression and plasma proteins

    OpenAIRE

    Dijk, van, Susan; Feskens, Edith; Bos, M.B.; Groot, de, Lisette; Vries, de, Jeanne; Muller, Michael; Afman, Lydia

    2012-01-01

    This study aimed to identify the effects of replacement of saturated fat (SFA) by monunsaturated fat (MUFA) in a western-type diet and the effects of a full Mediterranean (MED) diet on whole genome PBMC gene expression and plasma protein profiles. Abdominally overweight subjects were randomized to a 8 wk completely controlled SFA-rich diet, a SFA-by-MUFA-replaced diet (MUFA diet) or a MED diet. Concentrations of 124 plasma proteins and PBMCs whole genome transcriptional profiles were assessed...

  17. [Evolution of genomic imprinting in mammals: what a zoo!].

    Science.gov (United States)

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  18. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  19. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    DEFF Research Database (Denmark)

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  20. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome.

    Directory of Open Access Journals (Sweden)

    Maninder Kaur

    Full Text Available Pallister Killian syndrome (OMIM: # 601803 is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p. The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2.

  1. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    Science.gov (United States)

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  2. Genome-wide characterization and expression profiling of the AUXIN RESPONSE FACTOR (ARF gene family in Eucalyptus grandis.

    Directory of Open Access Journals (Sweden)

    Hong Yu

    Full Text Available Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation.

  3. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    Science.gov (United States)

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  4. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    Directory of Open Access Journals (Sweden)

    Jibin Liu

    2016-08-01

    Full Text Available Riemerella anatipestifer (RA belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05. Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA.

  5. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  6. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  7. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    Science.gov (United States)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  8. Genomic and Transcriptomic Evidence for Carbohydrate Consumption Among Microorganisms in a Cold Seep Brine Pool

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    2016-11-01

    Full Text Available The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC, and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT. Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs is a dominant process performed by microorganisms from various phyla within this ecosystem.

  9. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool

    KAUST Repository

    Zhang, Weipeng

    2016-11-15

    The detailed lifestyle of microorganisms in deep-sea brine environments remains largely unexplored. Using a carefully calibrated genome binning approach, we reconstructed partial to nearly-complete genomes of 51 microorganisms in biofilms from the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs) belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota, and Thaumarchaeota. By comparison with close relatives of these microorganisms, we identified a number of unique genes associated with organic carbon metabolism and energy generation. These genes included various glycoside hydrolases, nitrate and sulfate reductases, putative bacterial microcompartment biosynthetic clusters (BMC), and F420H2 dehydrogenases. Phylogenetic analysis suggested that the acquisition of these genes probably occurred through horizontal gene transfer (HGT). Metatranscriptomics illustrated that glycoside hydrolases are among the most highly expressed genes. Our results suggest that the microbial inhabitants are well adapted to this brine environment, and anaerobic carbohydrate consumption mediated by glycoside hydrolases and electron transport systems (ETSs) is a dominant process performed by microorganisms from various phyla within this ecosystem.

  10. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The research progress of genomic selection in livestock.

    Science.gov (United States)

    Li, Hong-wei; Wang, Rui-jun; Wang, Zhi-ying; Li, Xue-wu; Wang, Zhen-yu; Yanjun, Zhang; Rui, Su; Zhihong, Liu; Jinquan, Li

    2017-05-20

    With the development of gene chip and breeding technology, genomic selection in plants and animals has become research hotspots in recent years. Genomic selection has been extensively applied to all kinds of economic livestock, due to its high accuracy, short generation intervals and low breeding costs. In this review, we summarize genotyping technology and the methods for genomic breeding value estimation, the latter including the least square method, RR-BLUP, GBLUP, ssGBLUP, BayesA and BayesB. We also cover basic principles of genomic selection and compare their genetic marker ranges, genomic selection accuracy and operational speed. In addition, we list common indicators, methods and influencing factors that are related to genomic selection accuracy. Lastly, we discuss latest applications and the current problems of genomic selection at home and abroad. Importantly, we envision future status of genomic selection research, including multi-trait and multi-population genomic selection, as well as impact of whole genome sequencing and dominant effects on genomic selection. This review will provide some venues for other breeders to further understand genome selection.

  12. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    KAUST Repository

    Abdallah, Abdallah

    2015-10-21

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  13. Differential expression of genome in the progeny doubling 40 generations of normal human liver cells irradiated by 60Co γ rays

    International Nuclear Information System (INIS)

    Zuo Yahui; Wang Fang; Geng Xiaohua; Wang Xiaoli; Li Jianguo; Wang Zhongwen; Tong Jian

    2008-01-01

    In order to investigate the differential expression of genome in nomal human liver cell irradiated by 60 Co γ rays, cDNA chip was applied to assay the alterations of transcriptional profile of nomal human liver cell'rogeny exposed to 4 Gy and 8 Gy of γ ray from 60 Co. Then Quantitative real-time PCR was used to confirm the commonly changed genes including VTN and INSIG1. The results demonstrated that the transcription level of 58 genes changed in the progeny of survival cells irradiated by 4 Gy γ rays, while 882 genes changed in the progeny of survival cells irradiated by 8 Gy γ rays. 16 genes changed in these cells irradiated by both 4 and 8 Gy γ rays. The transcription level was correlated to the original irradiation dose. Most of the genes were associated with transduction, cell cycle regulation, cellular immunity, cytoskeleton and movement, cell replication and repair mechanism, etc. The changed transcriptional level was further confirmed by RT-PCR assay for some of these genes. The results showed that differential expression of genome irradiated by different doses of γ rays. These results offer the fundamental materials for the research of genomic instability induced by radiation on the molecular level. (authors)

  14. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    KAUST Repository

    Abdallah, Abdallah; Hill-Cawthorne, Grant A.; Otto, Thomas D.; Coll, Francesc; Guerra-Assunç ã o, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur Rahman; Malas, Tareq Majed Yasin; Adroub, Sabir; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G.; Behr, Marcel A.; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  15. Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast

    DEFF Research Database (Denmark)

    Hviid, T V; Møller, C; Sørensen, S

    1998-01-01

    imprinting of the HLA-G locus could have implications for the interaction in the feto-maternal relationship. Restriction Fragment Length Polymorphism (RFLP), allele-specific amplification and Single Strand Conformation Polymorphism (SSCP) analysis followed by DNA sequencing were performed on Reverse...... Transcription (RT) Polymerase Chain Reaction (PCR) products of HLA-G mRNA to examine the expression of maternal and paternal alleles. Our results demonstrate that HLA-G is co-dominantly expressed in first trimester trophoblast cells. A "new" non-synonymous base substitution in exon 4 was detected. We also...

  16. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  17. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  18. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  19. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    Science.gov (United States)

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  20. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L. genome

    Directory of Open Access Journals (Sweden)

    Łucja ePrzysiecka

    2015-04-01

    Full Text Available Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI, a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL, and fatty acid-binding (FAP proteins. Here, two Lupinus angustifolius (narrow-leafed lupin CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1 main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis

  1. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  2. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    International Nuclear Information System (INIS)

    Nugoli, Mélanie; Theillet, Charles; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale

    2003-01-01

    Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved

  3. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

    Science.gov (United States)

    Mo, Qianxing; Lu, Shifang; Garippa, Carrie; Brownstein, Michael J; Simon, Neal G

    2009-04-01

    Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder

  4. Domination, Eternal Domination, and Clique Covering

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.

    2015-05-01

    Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

  5. Digital Genome-Wide ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral Amplification

    Science.gov (United States)

    Castle, John C.; Armour, Christopher D.; Löwer, Martin; Haynor, David; Biery, Matthew; Bouzek, Heather; Chen, Ronghua; Jackson, Stuart; Johnson, Jason M.; Rohl, Carol A.; Raymond, Christopher K.

    2010-01-01

    Non-coding RNAs (ncRNAs) are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6) is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I) cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available. PMID:20668672

  6. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification.

    Directory of Open Access Journals (Sweden)

    John C Castle

    Full Text Available Non-coding RNAs (ncRNAs are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6 is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available.

  7. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling.

    Science.gov (United States)

    Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M

    2013-07-01

    Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Identification of genome-specific transcripts in wheat–rye translocation lines

    Directory of Open Access Journals (Sweden)

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  9. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  10. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    Science.gov (United States)

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  12. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  13. The Switchgrass Genome: Tools and Strategies

    Directory of Open Access Journals (Sweden)

    Michael D. Casler

    2011-11-01

    Full Text Available Switchgrass ( L. is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST database, a set of single nucleotide polymorphism (SNP markers that are distributed across the 18 linkage groups, 4x sampling of the AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [ (L. Moench], rice ( L., and (L. P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group ( [verified 28 Oct. 2011].

  14. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  15. Human Colon Tumors Express a Dominant-Negative Form of SIGIRR That Promotes Inflammation and Colitis-Associated Colon Cancer in Mice.

    Science.gov (United States)

    Zhao, Junjie; Bulek, Katarzyna; Gulen, Muhammet F; Zepp, Jarod A; Karagkounis, Georgio; Martin, Bradley N; Zhou, Hao; Yu, Minjia; Liu, Xiuli; Huang, Emina; Fox, Paul L; Kalady, Matthew F; Markowitz, Sanford D; Li, Xiaoxia

    2015-12-01

    Single immunoglobulin and toll-interleukin 1 receptor (SIGIRR), a negative regulator of the Toll-like and interleukin-1 receptor (IL-1R) signaling pathways, controls intestinal inflammation and suppresses colon tumorigenesis in mice. However, the importance of SIGIRR in human colorectal cancer development has not been determined. We investigated the role of SIGIRR in development of human colorectal cancer. We performed RNA sequence analyses of pairs of colon tumor and nontumor tissues, each collected from 68 patients. Immunoblot and immunofluorescence analyses were used to determine levels of SIGIRR protein in primary human colonic epithelial cells, tumor tissues, and colon cancer cell lines. We expressed SIGIRR and mutant forms of the protein in Vaco cell lines. We created and analyzed mice that expressed full-length (control) or a mutant form of Sigirr (encoding SIGIRR(N86/102S), which is not glycosylated) specifically in the intestinal epithelium. Some mice were given azoxymethane (AOM) and dextran sulfate sodium to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by immunohistochemical and gene expression profile analyses. RNA sequence analyses revealed increased expression of a SIGIRR mRNA isoform, SIGIRR(ΔE8), in colorectal cancer tissues compared to paired nontumor tissues. SIGIRR(ΔE8) is not modified by complex glycans and is therefore retained in the cytoplasm-it cannot localize to the cell membrane or reduce IL1R signaling. SIGIRR(ΔE8) interacts with and has a dominant-negative effect on SIGIRR, reducing its glycosylation, localization to the cell surface, and function. Most SIGIRR detected in human colon cancer tissues was cytoplasmic, whereas in nontumor tissues it was found at the cell membrane. Mice that expressed SIGIRR(N86/102S) developed more inflammation and formed larger tumors after administration of azoxymethane and dextran sulfate sodium than control mice; colon tissues from these mutant mice expressed

  16. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  17. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.

    Directory of Open Access Journals (Sweden)

    Yingyao Zhou

    2008-02-01

    Full Text Available A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.

  18. Non-Mendelian Dominant Maternal Effects Caused by CRISPR/Cas9 Transgenic Components in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Lin

    2016-11-01

    Full Text Available The CRISPR/Cas9 system has revolutionized genomic editing. The Cas9 endonuclease targets DNA via an experimentally determined guide RNA (gRNA. This results in a double-strand break at the target site . We generated transgenic Drosophila melanogaster in which the CRISPR/Cas9 system was used to target a GAL4 transgene in vivo. To our surprise, progeny whose genomes did not contain CRISPR/Cas9 components were still capable of mutating GAL4 sequences. We demonstrate this effect was caused by maternal deposition of Cas9 and gRNAs into the embryo, leading to extensive GAL4 mutations in both somatic and germline tissues. This serves as a cautionary observation on the effects of maternal contributions when conducting experiments using genomically encoded CRISPR/Cas9 components. These results also highlight a mode of artificial inheritance in which maternal contributions of DNA editing components lead to transmissible mutant defects even in animals whose genomes lack the editing components. We suggest calling this a dominant maternal effect to reflect it is caused by the gain of maternally contributed products. Models of CRISPR-mediated gene drive will need to incorporate dominant maternal effects in order to accurately predict the efficiency and dynamics of gene drive in a population.

  19. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  20. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  1. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  2. Right Hemispheric Dominance in Processing of Unconscious Negative Emotion

    Science.gov (United States)

    Sato, Wataru; Aoki, Satoshi

    2006-01-01

    Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or…

  3. On the Dominance of Attitude Emotionality.

    Science.gov (United States)

    Rocklage, Matthew D; Fazio, Russell H

    2016-02-01

    Many situations in our lives require us to make relatively quick decisions as whether to approach or avoid a person or object, buy or pass on a product, or accept or reject an offer. These decisions are particularly difficult when there are both positive and negative aspects to the object. How do people go about navigating this conflict to come to a summary judgment? Using the Evaluative Lexicon (EL), we demonstrate across three studies, 7,700 attitude expressions, and nearly 50 different attitude objects that when positivity and negativity conflict, the valence that is based more on emotion is more likely to dominate. Furthermore, individuals are also more consistent in the expression of their univalent summary judgments when they involve greater emotionality. In sum, valence that is based on emotion tends to dominate when resolving ambivalence and also helps individuals to remain consistent when offering quick judgments. © 2015 by the Society for Personality and Social Psychology, Inc.

  4. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    Science.gov (United States)

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison

    Directory of Open Access Journals (Sweden)

    Saville Barry J

    2007-09-01

    Full Text Available Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521 and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs; among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database, while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping. Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1 substantial sequence information has been provided for U. maydis genome annotation; 2 new genes were identified through the discovery of 619

  6. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape

    Science.gov (United States)

    2013-01-01

    Background Aspartic proteases (APs) are a large family of proteolytic enzymes found in almost all organisms. In plants, they are involved in many biological processes, such as senescence, stress responses, programmed cell death, and reproduction. Prior to the present study, no grape AP gene(s) had been reported, and their research on woody species was very limited. Results In this study, a total of 50 AP genes (VvAP) were identified in the grape genome, among which 30 contained the complete ASP domain. Synteny analysis within grape indicated that segmental and tandem duplication events contributed to the expansion of the grape AP family. Additional analysis between grape and Arabidopsis demonstrated that several grape AP genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grape and Arabidopsis. Phylogenetic relationships of the 30 VvAPs with the complete ASP domain and their Arabidopsis orthologs, as well as their gene and protein features were analyzed and their cellular localization was predicted. Moreover, expression profiles of VvAP genes in six different tissues were determined, and their transcript abundance under various stresses and hormone treatments were measured. Twenty-seven VvAP genes were expressed in at least one of the six tissues examined; nineteen VvAPs responded to at least one abiotic stress, 12 VvAPs responded to powdery mildew infection, and most of the VvAPs responded to SA and ABA treatments. Furthermore, integrated synteny and phylogenetic analysis identified orthologous AP genes between grape and Arabidopsis, providing a unique starting point for investigating the function of grape AP genes. Conclusions The genome-wide identification, evolutionary and expression analyses of grape AP genes provide a framework for future analysis of AP genes in defining their roles during stress response. Integrated synteny and phylogenetic analyses provide novel insight into the

  7. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Functional Associations by Response Overlap (FARO, a functional genomics approach matching gene expression phenotypes.

    Directory of Open Access Journals (Sweden)

    Henrik Bjørn Nielsen

    2007-08-01

    Full Text Available The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental factors including treatments, mutations and pathogen infections. Similarly, drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and by the target disease. The integration of such data enables systems biology to predict the interplay between experimental factors affecting a biological system. Unfortunately, direct comparisons of gene expression profiles obtained in independent, publicly available microarray experiments are typically compromised by substantial, experiment-specific biases. Here we suggest a novel yet conceptually simple approach for deriving 'Functional Association(s by Response Overlap' (FARO between microarray gene expression studies. The transcriptional response is defined by the set of differentially expressed genes independent from the magnitude or direction of the change. This approach overcomes the limited comparability between studies that is typical for methods that rely on correlation in gene expression. We apply FARO to a compendium of 242 diverse Arabidopsis microarray experimental factors, including phyto-hormones, stresses and pathogens, growth conditions/stages, tissue types and mutants. We also use FARO to confirm and further delineate the functions of Arabidopsis MAP kinase 4 in disease and stress responses. Furthermore, we find that a large, well-defined set of genes responds in opposing directions to different stress conditions and predict the effects of different stress combinations. This demonstrates the usefulness of our approach for exploiting public microarray data to derive biologically meaningful associations between experimental factors. Finally, our

  9. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera

    Science.gov (United States)

    Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.

    2015-01-01

    Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173

  10. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  11. A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Profiling Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Marianthi Logotheti

    2013-01-01

    Full Text Available Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets.

  12. High Genomic Instability Predicts Survival in Metastatic High-Risk Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Sara Stigliani

    2012-09-01

    Full Text Available We aimed to identify novel molecular prognostic markers to better predict relapse risk estimate for children with high-risk (HR metastatic neuroblastoma (NB. We performed genome- and/or transcriptome-wide analyses of 129 stage 4 HR NBs. Children older than 1 year of age were categorized as “short survivors” (dead of disease within 5 years from diagnosis and “long survivors” (alive with an overall survival time ≥ 5 years. We reported that patients with less than three segmental copy number aberrations in their tumor represent a molecularly defined subgroup with a high survival probability within the current HR group of patients. The complex genomic pattern is a prognostic marker independent of NB-associated chromosomal aberrations, i.e., MYCN amplification, 1p and 11q losses, and 17q gain. Integrative analysis of genomic and expression signatures demonstrated that fatal outcome is mainly associated with loss of cell cycle control and deregulation of Rho guanosine triphosphates (GTPases functioning in neuritogenesis. Tumors with MYCN amplification show a lower chromosome instability compared to MYCN single-copy NBs (P = .0008, dominated by 17q gain and 1p loss. Moreover, our results suggest that the MYCN amplification mainly drives disruption of neuronal differentiation and reduction of cell adhesion process involved in tumor invasion and metastasis. Further validation studies are warranted to establish this as a risk stratification for patients.

  13. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  14. Development and validation of new SSR markers from expressed regions in the garlic genome

    Directory of Open Access Journals (Sweden)

    Meryem Ipek

    2015-02-01

    Full Text Available Only a limited number of simple sequence repeat (SSR markers is available for the genome of garlic (Allium sativum L. despite the fact that SSR markers have become one of the most preferred DNA marker systems. To develop new SSR markers for the garlic genome, garlic expressed sequence tags (ESTs at the publicly available GarlicEST database were screened for SSR motifs and a total of 132 SSR motifs were identified. Primer pairs were designed for 50 SSR motifs and 24 of these primer pairs were selected as SSR markers based on their consistent amplification patterns and polymorphisms. In addition, two SSR markers were developed from the sequences of garlic cDNA-AFLP fragments. The use of 26 EST-SSR markers for the assessment of genetic relationship was tested using 31 garlic genotypes. Twenty six EST-SSR markers amplified 130 polymorphic DNA fragments and the number of polymorphic alleles per SSR marker ranged from 2 to 13 with an average of 5 alleles. Observed heterozygosity and polymorphism information content (PIC of the SSR markers were between 0.23 and 0.88, and 0.20 and 0.87, respectively. Twenty one out of the 31 garlic genotypes were analyzed in a previous study using AFLP markers and the garlic genotypes clustered together with AFLP markers were also grouped together with EST-SSR markers demonstrating high concordance between AFLP and EST-SSR marker systems and possible immediate application of EST-SSR markers for fingerprinting of garlic clones. EST-SSR markers could be used in genetic studies such as genetic mapping, association mapping, genetic diversity and comparison of the genomes of Allium species.

  15. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score.

    Science.gov (United States)

    Lee, Hayan; Schatz, Michael C

    2012-08-15

    Genome resequencing and short read mapping are two of the primary tools of genomics and are used for many important applications. The current state-of-the-art in mapping uses the quality values and mapping quality scores to evaluate the reliability of the mapping. These attributes, however, are assigned to individual reads and do not directly measure the problematic repeats across the genome. Here, we present the Genome Mappability Score (GMS) as a novel measure of the complexity of resequencing a genome. The GMS is a weighted probability that any read could be unambiguously mapped to a given position and thus measures the overall composition of the genome itself. We have developed the Genome Mappability Analyzer to compute the GMS of every position in a genome. It leverages the parallelism of cloud computing to analyze large genomes, and enabled us to identify the 5-14% of the human, mouse, fly and yeast genomes that are difficult to analyze with short reads. We examined the accuracy of the widely used BWA/SAMtools polymorphism discovery pipeline in the context of the GMS, and found discovery errors are dominated by false negatives, especially in regions with poor GMS. These errors are fundamental to the mapping process and cannot be overcome by increasing coverage. As such, the GMS should be considered in every resequencing project to pinpoint the 'dark matter' of the genome, including of known clinically relevant variations in these regions. The source code and profiles of several model organisms are available at http://gma-bio.sourceforge.net

  16. Genomic regions associated with the sex-linked inhibitor of dermal melanin in Silkie chicken

    Directory of Open Access Journals (Sweden)

    Ming TIAN,Rui HAO,Suyun FANG,Yanqiang WANG,Xiaorong GU,Chungang FENG,Xiaoxiang HU,Ning LI

    2014-09-01

    Full Text Available A unique characteristic of the Silkie chicken is its fibromelanosis phenotype. The dermal layer of its skin, its connective tissue and shank dermis are hyperpigmented. This dermal hyperpigmentation phenotype is controlled by the sex-linked inhibitor of dermal melanin gene (ID and the dominant fibromelanosis allele. This study attempted to confirm the genomic region associated with ID. By genotyping, ID was found to be closely linked to the region between GGA_rs16127903 and GGA_rs14685542 (8406919 bp on chromosome Z, which contains ten functional genes. The expression of these genes was characterized in the embryo and 4 days after hatching and it was concluded that MTAP, encoding methylthioadenosinephosphorylase, would be the most likely candidate gene. Finally, target DNA capture and sequence analysis was performed, but no specific SNP(s was found in the targeted region of the Silkie genome. Further work is necessary to identify the causal ID mutation located on chromosome Z.

  17. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    Science.gov (United States)

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  18. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    Science.gov (United States)

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  19. Incidental copy-number variants identified by routine genome testing in a clinical population

    Science.gov (United States)

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  20. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    Science.gov (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  1. Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan

    OpenAIRE

    Sonuga-Barke, E.; Lasky-Su, J.; Neale, B.; Oades, R.D.; Chen, W.; Franke, B.; Buitelaar, J.K.; Banaschewski, T.; Ebstein, R.; Gill, M.; Anney, R.J.; Miranda, A.; Mulas, F.; Roeyers, H.; Rothenberger, A.

    2008-01-01

    Studies of gene x environment (G x E) interaction in ADHD have previously focused on known risk genes for ADHD and environmentally mediated biological risk. Here we use G x E analysis in the context of a genome-wide association scan to identify novel genes whose effects on ADHD symptoms and comorbid conduct disorder are moderated by high maternal expressed emotion (EE). SNPs (600,000) were genotyped in 958 ADHD proband-parent trios. After applying data cleaning procedures we examined 429,981 ...

  2. Expression of homing endonuclease gene and insertion-like element in sea anemone mitochondrial genomes: Lesson learned from Anemonia viridis.

    Science.gov (United States)

    Chi, Sylvia Ighem; Urbarova, Ilona; Johansen, Steinar D

    2018-04-30

    The mitochondrial genomes of sea anemones are dynamic in structure. Invasion by genetic elements, such as self-catalytic group I introns or insertion-like sequences, contribute to sea anemone mitochondrial genome expansion and complexity. By using next generation sequencing we investigated the complete mtDNAs and corresponding transcriptomes of the temperate sea anemone Anemonia viridis and its closer tropical relative Anemonia majano. Two versions of fused homing endonuclease gene (HEG) organization were observed among the Actiniidae sea anemones; in-frame gene fusion and pseudo-gene fusion. We provided support for the pseudo-gene fusion organization in Anemonia species, resulting in a repressed HEG from the COI-884 group I intron. orfA, a putative protein-coding gene with insertion-like features, was present in both Anemonia species. Interestingly, orfA and COI expression were significantly up-regulated upon long-term environmental stress corresponding to low seawater pH conditions. This study provides new insights to the dynamics of sea anemone mitochondrial genome structure and function. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fueyo, Elena; Ruiz-Duenas, Francisco J.; Ferreira, Patrica; Floudas, Dimitrios; HIbbett, David S.; Canessa, Paulo; Larrondo, Luis F.; James, Tim Y.; Seelenfreund, Daniela; Lobos, Sergio; Polanco, Ruben; Tello, Mario; Honda, Yoichi; Watanabe, Takahito; Watanabe, Takashi; Ryu, Jae San; Kubicek, Christian P.; Schmoll, Monika; Gaskell, Jill; Hammel, Kenneth E.; John, Franz J.; Vanden Wymelenberg, Amber; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit S.; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Lavin, Jose L.; Oguiza, Jose A.; Perez, Gumer; Pisabarro, Antonio G.; Ramirez, Lucia; Santoyo, Francisco; Master, Emma; Coutinho, Pedro M.; Henrissat, Bernard; Lombard, Vincent; Magnuson, Jon Karl; Kues, Ursula; Hori, Chiaki; Igarashi, Kiyohiko; Samejima, Masahiro; Held, Benjamin W.; Barry, Kerrie W.; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Riley, Robert; Salamov, Asaf A.; Hoffmeister, Dirk; Schwenk, Daniel; Hadar, Yitzhak; Yarden, Oded; de Vries, Ronald P.; Wiebenga, Ad; Stenlid, Jan; Eastwood, Daniel; Grigoriev, Igor V.; Berka, Randy M.; Blanchette, Robert A.; Kersten, Phil; Martinez, Angel T.; Vicuna, Rafael; Cullen, Dan

    2011-12-06

    Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.

  4. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  5. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  6. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    Science.gov (United States)

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  7. Mobile Genome Express (MGE: A comprehensive automatic genetic analyses pipeline with a mobile device.

    Directory of Open Access Journals (Sweden)

    Jun-Hee Yoon

    Full Text Available The development of next-generation sequencing (NGS technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  8. Mobile Genome Express (MGE): A comprehensive automatic genetic analyses pipeline with a mobile device.

    Science.gov (United States)

    Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin

    2017-01-01

    The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  9. Bradyrhizobium elkanii nod regulon: insights through genomic analysis

    Directory of Open Access Journals (Sweden)

    Luciane M. P. Passaglia

    2017-07-01

    Full Text Available Abstract A successful symbiotic relationship between soybean [Glycine max (L. Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs. Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.

  10. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME......Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...... models have 70,000 constraints and variables and will grow larger). We have developed a quadrupleprecision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging...

  11. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  12. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    Science.gov (United States)

    Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087

  13. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  14. INTERACTION ASPECTS OF DOMINANT STYLES: OF TEACHING AND OF AUTHORITY

    Directory of Open Access Journals (Sweden)

    Cristian PETRE

    2014-04-01

    Full Text Available Problem Statement. Teaching style is the expression (form of expression of preferred behavioral modalities who return with some regularity in the work of teacher (E.Geissler, Purpose of Study. The intention of this paper is to identify a pattern of expression interact between two dimensions-professional of primary school teachers: the dominant teaching style and the dominant authority type of each teacher. I opted for a classification according to the particular act of communication: emotional-improvising style, emotional-methodical style, rational-improvising style and rational-methodical style. Methods. To identify the dominant teaching style was built a questionnaire consisting of 16 questions. The second questionnaire was proposed for a self-evaluative kind of authority expressed in the daily professional work. To identify the dominant type of authority were updated two classifications: traditional axis authoritarian - democratic - laissez-faire and a classification inspired by John RP French and B. Raven expert authority, rewards, position and personal. In this investigation were involved 30 teachers for primary education. Findings and Results. Exists a moderate correlation between rational-improvising style and authoritarian and position styles of authority. Also, indicates significant statistical connection between rational-improviser teaching style and authoritarian, democratic and expert teacher’s authority. The indexes indicate statistical connections moderate correlation between rational-methodical style and personal authority. The indexes of correlation indicates significant statistical link between emotional-improvisational style teaching styles and reward and expert authority. The indexes indicate statistical connections moderate correlation between emotional-style improvisation and styles of authority laissez-faire, and his model.

  15. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    Science.gov (United States)

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Renzoni Adriana

    2005-06-01

    Full Text Available Abstract Background DNA microarray technology is widely used to determine the expression levels of thousands of genes in a single experiment, for a broad range of organisms. Optimal design of immobilized nucleic acids has a direct impact on the reliability of microarray results. However, despite small genome size and complexity, prokaryotic organisms are not frequently studied to validate selected bioinformatics approaches. Relying on parameters shown to affect the hybridization of nucleic acids, we designed freely available software and validated experimentally its performance on the bacterial pathogen Staphylococcus aureus. Results We describe an efficient procedure for selecting 40–60 mer oligonucleotide probes combining optimal thermodynamic properties with high target specificity, suitable for genomic studies of microbial species. The algorithm for filtering probes from extensive oligonucleotides libraries fitting standard thermodynamic criteria includes positional information of predicted target-probe binding regions. This algorithm efficiently selected probes recognizing homologous gene targets across three different sequenced genomes of Staphylococcus aureus. BLAST analysis of the final selection of 5,427 probes yielded >97%, 93%, and 81% of Staphylococcus aureus genome coverage in strains N315, Mu50, and COL, respectively. A manufactured oligoarray including a subset of control Escherichia coli probes was validated for applications in the fields of comparative genomics and molecular epidemiology, mapping of deletion mutations and transcription profiling. Conclusion This generic chip-design process merging sequence information from several related genomes improves genome coverage even in conserved regions.

  17. Reference genome sequence of the model plant Setaria.

    Science.gov (United States)

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-05-13

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  18. Reference genome sequence of the model plant Setaria

    Energy Technology Data Exchange (ETDEWEB)

    Bennetzen, Jeffrey L [ORNL; Schmutz, Jeremy [Hudson Alpha Institute of Biotechnology; Wang, Hao [University of Georgia, Athens, GA; Percifield, Ryan [University of Georgia, Athens, GA; Hawkins, Jennifer [University of Georgia, Athens, GA; Pontaroli, Ana C. [University of Georgia, Athens, GA; Estep, Matt [University of Georgia, Athens, GA; Feng, Liang [University of Georgia, Athens, GA; Vaughn, Justin N [ORNL; Grimwood, Jane [Hudson Alpha Institute of Biotechnology; Jenkins, Jerry [Hudson Alpha Institute of Biotechnology; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Lindquist, Erika [U.S. Department of Energy, Joint Genome Institute; Hellsten, Uffe [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Wang, Xuewen [University of Georgia, Athens, GA; Wu, Xiaomei [University of Georgia, Athens, GA; Mitros, Therese [University of California, Berkeley; Triplett, Jimmy [University of Missouri, St. Louis; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Mauro-Herrera, Margarita [Oklahoma State University; Wang, Lin [Cornell University; Li, Pinghua [Cornell University; Sharma, Manoj [University of California, Davis; Sharma, Rita [University of California, Davis; Ronald, Pamela [University of California, Davis; Panaud, Olivier [Universite de Perpignan, Perpignan, France; Kellogg, Elizabeth A. [University of Missouri, St. Louis; Brutnell, Thomas P. [Cornell University; Doust, Andrew N. [Oklahoma State University; Tuskan, Gerald A [ORNL; Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Devos, Katrien M [ORNL

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  19. Reference genome sequence of the model plant Setaria

    Energy Technology Data Exchange (ETDEWEB)

    Bennetzen, Jeffrey L [ORNL; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tuskan, Gerald A [ORNL

    2012-01-01

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  20. Maximizing crossbred performance through purebred genomic selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter

    2015-01-01

    Background In livestock production, many animals are crossbred, with two distinct advantages: heterosis and breed complementarity. Genomic selection (GS) can be used to select purebred parental lines for crossbred performance (CP). Dominance being the likely genetic basis of heterosis, explicitly...

  1. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains....../losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can...

  2. Effects of a diet high in monounsaturated fat and a full Mediterranean diet on PBMC whole genome gene expression and plasma proteins

    NARCIS (Netherlands)

    Dijk, van Susan; Feskens, Edith; Bos, M.B.; Groot, de Lisette; Vries, de Jeanne; Muller, Michael; Afman, Lydia

    2012-01-01

    This study aimed to identify the effects of replacement of saturated fat (SFA) by monunsaturated fat (MUFA) in a western-type diet and the effects of a full Mediterranean (MED) diet on whole genome PBMC gene expression and plasma protein profiles. Abdominally overweight subjects were randomized to a

  3. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    Science.gov (United States)

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  4. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    Directory of Open Access Journals (Sweden)

    Xiaoyu eWei

    2014-11-01

    Full Text Available In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of ‘Gala’ apple. Genes for sugar alcohol (including 17 sorbitol transporters, sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs. Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  5. The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis.

    Science.gov (United States)

    Shao, Weijuan; Xiong, Xiaoquan; Ip, Wilfred; Xu, Fenghao; Song, Zhuolun; Zeng, Kejing; Hernandez, Marcela; Liang, Tao; Weng, Jianping; Gaisano, Herbert; Nostro, M Cristina; Jin, Tianru

    2015-04-01

    Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach. Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells. The fusion gene in which TCF7L2DN expression is driven by P TRE3G was utilized to generate the transgenic mouse line TCF7L2DN Tet . The double transgenic line was created by mating TCF7L2DN Tet with Ins2-rtTA, designated as βTCFDN. β-cell specific TCF7L2DN expression was induced in βTCFDN by doxycycline feeding. TCF7L2DN expression in Ins-1 cells reduced GSIS, cell proliferation and expression of a battery of genes including incretin receptors and β-cell transcription factors. Inducing TCF7L2DN expression in βTCFDN during adulthood or immediately after weaning generated no or very modest metabolic defect, while its expression during embryonic development by doxycycline feeding in pregnant mothers resulted in significant glucose intolerance associated with altered β-cell gene expression and reduced β-cell mass. Our observations support a cell autonomous role for TCF7L2 in pancreatic β-cells suggested by most, though not all, investigations. βTCFDN is a novel model for further exploring the role of TCF7L2 in β-cell genesis and metabolic homeostasis.

  6. Domination versus disjunctive domination in graphs | Henning ...

    African Journals Online (AJOL)

    Domination versus disjunctive domination in graphs. Michael A Henning, Sinclair A Marcon. Abstract. A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, ...

  7. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  8. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  9. Expression of the hepatitis B virus genome in chronic hepatitis B carriers and patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Bowyer, S.M.; Dusheiko, G.M.; Schoub, B.D.; Kew, M.C.

    1987-01-01

    The authors examined the methylation status of CCGG sites in hepatitis B virus (HBV) DNA to determine whether methylation could be responsible for the selective expression of the HBV surface gene in chronic hepatitis B infection and hepatocellular carcinoma. Infected liver tissue from patients with low levels of viral replication was analyzed for HBV DNA copy number per haploid cell genome. Total cellular DNA, with sufficient HBV DNA, was digested with the restriction endonucleases Msp I and Hpa II, to determine whether the HBV DNA was methylated, or HindIII, to determine whether the HBV DNA was integrated or episomal. The cleavage fragments were analyzed by Southern blotting and hybridization to 32 P-labeled HBV DNA. In replicative chronic hepatitis B, hypomethylation of the HBV genome correlated with HBV expression in both virions and infected tissue. In carriers with nonreplicative infection, it was difficult to ascertain the role of methylation as copy number was low. HBV DNA copy number was also low in 17 out of 29 of the rumor tissues tested and as many as 14 out of 16 of the adjacent non-neoplastic tissues tested. Integrated sequences were hypermethylated in the PLC/PRF/5 cell line and in six of the tumor tissues suggesting that methylation plays a role in HBV gene repression. However, since DNA from five other tumors was hypomethylated, the belief that methylation per se is an absolute determinant of HBV core gene repression does not hold for human hepatocellular carcinoma tissue

  10. Genome interrogation for novel salinity tolerant Arabidopsis mutants.

    Science.gov (United States)

    van Tol, Niels; Pinas, Johan; Schat, Henk; Hooykaas, Paul J J; van der Zaal, Bert J

    2016-12-01

    Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs. © 2016 John Wiley & Sons Ltd.

  11. Genome-wide gene expression profiling of low-dose, long-term exposure of human osteosarcoma cells to bisphenol A and its analogs bisphenols AF and S.

    Science.gov (United States)

    Fic, A; Mlakar, S Jurković; Juvan, P; Mlakar, V; Marc, J; Dolenc, M Sollner; Broberg, K; Mašič, L Peterlin

    2015-08-01

    The bisphenols AF (BPAF) and S (BPS) are structural analogs of the endocrine disruptor bisphenol A (BPA), and are used in common products as a replacement for BPA. To elucidate genome-wide gene expression responses, estrogen-dependent osteosarcoma cells were cultured with 10 nM BPA, BPAF, or BPS, for 8 h and 3 months. Genome-wide gene expression was analyzed using the Illumina Expression BeadChip. Three months exposure had significant effects on gene expression, particularly for BPS, followed by BPAF and BPA, according to the number of differentially expressed genes (1980, 778, 60, respectively), the magnitude of changes in gene expression, and the number of enriched biological processes (800, 415, 33, respectively) and pathways (77, 52, 6, respectively). 'Embryonic skeletal system development' was the most enriched bone-related process, which was affected only by BPAF and BPS. Interestingly, all three bisphenols showed highest down-regulation of genes related to the cardiovascular system (e.g., NPPB, NPR3, TXNIP). BPA only and BPA/BPAF/BPS also affected genes related to the immune system and fetal development, respectively. For BPAF and BPS, the 'isoprenoid biosynthetic process' was enriched (up-regulated genes: HMGCS1, PDSS1, ACAT2, RCE1, DHDDS). Compared to BPA, BPAF and BPS had more effects on gene expression after long-term exposure. These findings stress the need for careful toxicological characterization of BPA analogs in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi

    Directory of Open Access Journals (Sweden)

    Jianguo Li

    2017-04-01

    Full Text Available Modifications to histones, including acetylation and methylation processes, play crucial roles in the regulation of gene expression in plant development as well as in stress responses. However, limited information on the enzymes catalyzing histone acetylation and methylation in non-model plants is currently available. In this study, several histone modifier (HM types, including six histone acetyltransferases (HATs, 11 histone deacetylases (HDACs, 48 histone methyltransferases (HMTs, and 22 histone demethylases (HDMs, are identified in litchi (Litchi chinensis Sonn. cv. Feizixiao based on similarities in their sequences to homologs in Arabidopsis (A. thaliana, tomato (Solanum lycopersicum, and rice (Oryza sativa. Phylogenetic analyses reveal that HM enzymes can be grouped into four HAT, two HDAC, two HMT, and two HDM subfamilies, respectively, while further expression profile analyses demonstrate that 17 HMs were significantly altered during fruit abscission in two field treatments. Analyses reveal that these genes exhibit four distinct patterns of expression in response to fruit abscission, while an in vitro assay was used to confirm the HDAC activity of LcHDA2, LcHDA6, and LcSRT2. Our findings are the first in-depth analysis of HMs in the litchi genome, and imply that some are likely to play important roles in fruit abscission in this commercially important plant.

  13. Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes.

    Science.gov (United States)

    Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan

    2018-03-28

    Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.

  14. Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

    Science.gov (United States)

    Taylor, Alison M; Shih, Juliann; Ha, Gavin; Gao, Galen F; Zhang, Xiaoyang; Berger, Ashton C; Schumacher, Steven E; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J; Cherniack, Andrew D; Beroukhim, Rameen; Meyerson, Matthew

    2018-04-09

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  16. Differential Expression of Social Dominance as a Function of Age and Maltreatment Experience

    OpenAIRE

    Teisl, Michael; Rogosch, Fred A.; Oshri, Assaf; Cicchetti, Dante

    2011-01-01

    Recent perspectives on social dominance in normative populations suggest a developmental progression from using primarily coercive strategies to incorporation of more socially competent strategies to attain material and social resources. Parental influences on the resource control strategies children use have been proposed, but not investigated empirically. The present study examined age- and gender-related differences in dominance strategies in 470 children from high-risk neighborhoods who w...

  17. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  18. Dominant-lethal mutations and heritable translocations in mice

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed

  19. Software for computing and annotating genomic ranges.

    Science.gov (United States)

    Lawrence, Michael; Huber, Wolfgang; Pagès, Hervé; Aboyoun, Patrick; Carlson, Marc; Gentleman, Robert; Morgan, Martin T; Carey, Vincent J

    2013-01-01

    We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  20. Differential gene expression from genome-wide microarray analyses distinguishes Lohmann Selected Leghorn and Lohmann Brown layers.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The Lohmann Selected Leghorn (LSL and Lohmann Brown (LB layer lines have been selected for high egg production since more than 50 years and belong to the worldwide leading commercial layer lines. The objectives of the present study were to characterize the molecular processes that are different among these two layer lines using whole genome RNA expression profiles. The hens were kept in the newly developed small group housing system Eurovent German with two different group sizes. Differential expression was observed for 6,276 microarray probes (FDR adjusted P-value <0.05 among the two layer lines LSL and LB. A 2-fold or greater change in gene expression was identified on 151 probe sets. In LSL, 72 of the 151 probe sets were up- and 79 of them were down-regulated. Gene ontology (GO enrichment analysis accounting for biological processes evinced 18 GO-terms for the 72 probe sets with higher expression in LSL, especially those taking part in immune system processes and membrane organization. A total of 32 enriched GO-terms were determined among the 79 down-regulated probe sets of LSL. Particularly, these terms included phosphorus metabolic processes and signaling pathways. In conclusion, the phenotypic differences among the two layer lines LSL and LB are clearly reflected in their gene expression profiles of the cerebrum. These novel findings provide clues for genes involved in economically important line characteristics of commercial laying hens.

  1. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R., E-mail: tzachare@msu.edu

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  2. A functional genomics approach using radiation-induced changes in gene expression to study low dose radiation effects in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, Jr, A J

    2007-03-03

    Abstract for final report for project entitled A functional genomics approach using radiation-induced changes in gene expression to study low dose radiation effects in vitro and in vivo which has been supported by the DOE Low Dose Radiation Research Program for approximately 7 years. This project has encompassed two sequential awards, ER62683 and then ER63308, in the Gene Response Section in the Center for Cancer Research at the National Cancer Institute. The project was temporarily suspended during the relocation of the Principal Investigators laboratory to the Dept. of Genetics and Complex Diseases at Harvard School of Public Health at the end of 2004. Remaining support for the final year was transferred to this new site later in 2005 and was assigned the DOE Award Number ER64065. The major aims of this project have been 1) to characterize changes in gene expression in response to low-dose radiation responses; this includes responses in human cells lines, peripheral blood lymphocytes (PBL), and in vivo after human or murine exposures, as well as the effect of dose-rate on gene responses; 2) to characterize changes in gene expression that may be involved in bystander effects, such as may be mediated by cytokines and other intercellular signaling proteins; and 3) to characterize responses in transgenic mouse models with relevance to genomic stability. A variety of approaches have been used to study transcriptional events including microarray hybridization, quantitative single-probe hybridization which was developed in this laboratory, quantitative RT-PCR, and promoter microarray analysis using genomic regulatory motifs. Considering the frequent responsiveness of genes encoding cytokines and related signaling proteins that can affect cellular metabolism, initial efforts were initiated to study radiation responses at the metabolomic level and to correlate with radiation-responsive gene expression. Productivity includes twenty-four published and in press manuscripts

  3. Plum pox virus (PPV) genome expression in genetically engineered RNAi plants

    Science.gov (United States)

    An important approach to controlling sharka disease caused by Plum pox virus (PPV) is the development of PPV resistant plants using small interfering RNAs (siRNA) technology. In order to evaluate siRNA induced gene silencing, we studied, based on knowledge of the PPV genome sequence, virus genome t...

  4. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    2011-12-01

    Full Text Available Dermal hyperpigmentation or Fibromelanosis (FM is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3, a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals.

  5. Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces

    DEFF Research Database (Denmark)

    Stiehler, C.; Bunger, C.; Overall, R. W.

    2013-01-01

    to titanium (Ti) surface. The aim of this study was to extend the previous investigation of biocompatibility by monitoring temporal gene expression of MSCs on topographically comparable smooth Ta and Ti surfaces using whole-genome gene expression analysis. Total RNA samples from telomerase-immortalized human...... MSCs cultivated on plain sputter-coated surfaces of Ta or Ti for 1, 2, 4, and 8 days were hybridized to n = 16 U133 Plus 2.0 arrays (Affymetrix(A (R))). Functional annotation, cluster and pathway analyses were performed. The vast majority of genes were differentially regulated after 4 days...... of cultivation and genes upregulated by MSCs exposed to Ta and Ti were predominantly related to the processes of differentiation and transcription, respectively. Functional annotation analysis of the 1,000 temporally most significantly regulated genes suggests earlier cellular differentiation on Ta compared...

  6. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  7. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    OpenAIRE

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies?CYP93A?K, with t...

  8. Snake Genome Sequencing: Results and Future Prospects.

    Science.gov (United States)

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  9. Snake Genome Sequencing: Results and Future Prospects

    Directory of Open Access Journals (Sweden)

    Harald M. I. Kerkkamp

    2016-12-01

    Full Text Available Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  10. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides.

    Science.gov (United States)

    Egan, Jan B; Shi, Chang-Xin; Tembe, Waibhav; Christoforides, Alexis; Kurdoglu, Ahmet; Sinari, Shripad; Middha, Sumit; Asmann, Yan; Schmidt, Jessica; Braggio, Esteban; Keats, Jonathan J; Fonseca, Rafael; Bergsagel, P Leif; Craig, David W; Carpten, John D; Stewart, A Keith

    2012-08-02

    The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.

  11. Cadherins in the retinal pigment epithelium (RPE revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo.

    Directory of Open Access Journals (Sweden)

    Xue Yang

    Full Text Available The retinal pigment epithelium (RPE supports the health and function of retinal photoreceptors and is essential for normal vision. RPE cells are post-mitotic, terminally differentiated, and polarized epithelial cells. In pathological conditions, however, they lose their epithelial integrity, become dysfunctional, even dedifferentiate, and ultimately die. The integrity of epithelial cells is maintained, in part, by adherens junctions, which are composed of cadherin homodimers and p120-, β-, and α-catenins linking to actin filaments. While E-cadherin is the major cadherin for forming the epithelial phenotype in most epithelial cell types, it has been reported that cadherin expression in RPE cells is different from other epithelial cells based on results with cultured RPE cells. In this study, we revisited the expression of cadherins in the RPE to clarify their relative contribution by measuring the absolute quantity of cDNAs produced from mRNAs of three classical cadherins (E-, N-, and P-cadherins in the RPE in vivo. We found that P-cadherin (CDH3 is highly dominant in both mouse and human RPE in situ. The degree of dominance of P-cadherin is surprisingly large, with mouse Cdh3 and human CDH3 accounting for 82-85% and 92-93% of the total of the three cadherin mRNAs, respectively. We confirmed the expression of P-cadherin protein at the cell-cell border of mouse RPE in situ by immunofluorescence. Furthermore, we found that oxidative stress induces dissociation of P-cadherin and β-catenin from the cell membrane and subsequent translocation of β-catenin into the nucleus, resulting in activation of the canonical Wnt/β-catenin pathway. This is the first report of absolute comparison of the expression of three cadherins in the RPE, and the results suggest that the physiological role of P-cadherin in the RPE needs to be reevaluated.

  12. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae.

    Directory of Open Access Journals (Sweden)

    Blake T Hovde

    Full Text Available Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales, is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales, and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb, compact (∼ 40% of the genome is protein coding and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.

  13. Social dominance theory: Its agenda and method

    OpenAIRE

    Sidanius, Jim; Pratto, Felicia; van Laar, Colette; Levin, Shana

    2004-01-01

    The theory has been misconstrued in four primary ways, which are often expressed as the claims of psychological reductionism, conceptual redundancy, biological reductionism, and hierarchy justification. This paper addresses these claims and suggests how social dominance theory builds on and moves beyond social identity theory and system justification theor.

  14. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    Science.gov (United States)

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the

  16. Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2009-06-01

    Full Text Available Abstract Background Pichia pastoris is widely used as a production platform for heterologous proteins and model organism for organelle proliferation. Without a published genome sequence available, strain and process development relied mainly on analogies to other, well studied yeasts like Saccharomyces cerevisiae. Results To investigate specific features of growth and protein secretion, we have sequenced the 9.4 Mb genome of the type strain DSMZ 70382 and analyzed the secretome and the sugar transporters. The computationally predicted secretome consists of 88 ORFs. When grown on glucose, only 20 proteins were actually secreted at detectable levels. These data highlight one major feature of P. pastoris, namely the low contamination of heterologous proteins with host cell protein, when applying glucose based expression systems. Putative sugar transporters were identified and compared to those of related yeast species. The genome comprises 2 homologs to S. cerevisiae low affinity transporters and 2 to high affinity transporters of other Crabtree negative yeasts. Contrary to other yeasts, P. pastoris possesses 4 H+/glycerol transporters. Conclusion This work highlights significant advantages of using the P. pastoris system with glucose based expression and fermentation strategies. As only few proteins and no proteases are actually secreted on glucose, it becomes evident that cell lysis is the relevant cause of proteolytic degradation of secreted proteins. The endowment with hexose transporters, dominantly of the high affinity type, limits glucose uptake rates and thus overflow metabolism as observed in S. cerevisiae. The presence of 4 genes for glycerol transporters explains the high specific growth rates on this substrate and underlines the suitability of a glycerol/glucose based fermentation strategy. Furthermore, we present an open access web based genome browser http://www.pichiagenome.org.

  17. Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.

    Science.gov (United States)

    Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G

    2015-01-01

    Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. © 2014 WILEY PERIODICALS, INC.

  18. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    Science.gov (United States)

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  19. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng

    2018-04-25

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth\\'s oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  20. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point

    KAUST Repository

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J.; Bajic, Vladimir B.; Drazen, Jeffrey C.; Bartlett, Douglas; Qian, Pei-Yuan

    2018-01-01

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth's oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas, of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N-oxide (TMAO) reducing gene cluster in CDP1, suggesting that the

  1. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    Directory of Open Access Journals (Sweden)

    Athma A Pai

    2011-02-01

    Full Text Available The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  2. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases.

    Science.gov (United States)

    Gan, Xiao-Ning; Luo, Jie; Tang, Rui-Xue; Wang, Han-Lin; Zhou, Hong; Qin, Hui; Gan, Ting-Qing; Chen, Gang

    2017-05-01

    The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.

  3. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.: Genome-Wide Identification, Classification and Expression Profiling during Fruit Development

    Directory of Open Access Journals (Sweden)

    Yun Peng eCao

    2016-04-01

    Full Text Available The MYB family is one of the largest families of transcription factors in plants. Although some MYBs have been reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd. has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes. The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the twenty genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.

  4. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  5. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    DEFF Research Database (Denmark)

    Volkov, Petr; Olsson, Anders H; Gillberg, Linn

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, w...... and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes.......Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men......, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5...

  6. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  7. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    Science.gov (United States)

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have

  8. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    Science.gov (United States)

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  9. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models

    Directory of Open Access Journals (Sweden)

    Surovcik Katharina

    2006-03-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired

  11. Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation

    Science.gov (United States)

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model. PMID:24714189

  12. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    Science.gov (United States)

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  13. Genome Defense Mechanisms in Neurospora and Associated Specialized Proteins

    Directory of Open Access Journals (Sweden)

    Ranjan Tamuli

    2010-06-01

    Full Text Available Neurospora crassa, the filamentous fungus possesses widest array of genome defense mechanisms known to any eukaryotic organism, including a process called repeat-induced point mutation (RIP. RIP is a genome defense mechanism that hypermutates repetitive DNA sequences; analogous to genomic imprinting in mammals. As an impact of RIP, Neurospora possesses many fewer genes in multigene families than expected. A DNA methyltransferase homologue, RID was shown to be essential for RIP. Recently, a variant catalytic subunit of translesion DNA polymerase zeta (Pol zeta has been found to be essential for dominant RIP suppressor phenotype. Meiotic silencing and quelling are two other genome defense mechanisms in Neurospora, and proteins required for these two processes have been identified through genetic screens.

  14. Contribution of transposable elements in the plant's genome.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad

    2018-07-30

    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    Science.gov (United States)

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand.

    Directory of Open Access Journals (Sweden)

    Marian Morales

    Full Text Available The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX may be accelerated by inoculation of specific biodegraders (bioaugmentation. Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction of multiple gene clusters, such as toluene degradation pathway(s, chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis, osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.

  17. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1.

    Science.gov (United States)

    Hu, H M; Chuang, C K; Lee, M J; Tseng, T C; Tang, T K

    2000-11-01

    We previously reported two novel testis-specific serine/threonine kinases, Aie1 (mouse) and AIE2 (human), that share high amino acid identities with the kinase domains of fly aurora and yeast Ipl1. Here, we report the entire intron-exon organization of the Aie1 gene and analyze the expression patterns of Aie1 mRNA during testis development. The mouse Aie1 gene spans approximately 14 kb and contains seven exons. The sequences of the exon-intron boundaries of the Aie1 gene conform to the consensus sequences (GT/AG) of the splicing donor and acceptor sites of most eukaryotic genes. Comparative genomic sequencing revealed that the gene structure is highly conserved between mouse Aie1 and human AIE2. However, much less homology was found in the sequence outside the kinase-coding domains. The Aie1 locus was mapped to mouse chromosome 7A2-A3 by fluorescent in situ hybridization. Northern blot analysis indicates that Aie1 mRNA likely is expressed at a low level on day 14 and reaches its plateau on day 21 in the developing postnatal testis. RNA in situ hybridization indicated that the expression of the Aie1 transcript was restricted to meiotically active germ cells, with the highest levels detected in spermatocytes at the late pachytene stage. These findings suggest that Aie1 plays a role in spermatogenesis.

  18. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  19. Pichia stipitis genomics, transcriptomics, and gene clusters

    Science.gov (United States)

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  20. Genomic and Functional Approaches to Understanding Cancer Aneuploidy

    NARCIS (Netherlands)

    Taylor, Alison M.; Shih, Juliann; Ha, Gavin; Gao, Galen F.; Zhang, Xiaoyang; Berger, Ashton C.; Schumacher, Steven E.; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Cherniack, Andrew D.; Beroukhim, Rameen; Meyerson, Matthew

    2018-01-01

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was

  1. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  2. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2013-03-01

    Full Text Available Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures. Most of the putative stage-specific transcription factor binding sites (TFBSs thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.

  3. An Inhibitory Motif on the 5’UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies

    Science.gov (United States)

    Papa, Guido; Eichwald, Catherine; Burrone, Oscar R.

    2016-01-01

    Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5’UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5’UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3’UTR sequences. Analysis of several mutants of the 21-nucleotide long 5’UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5’ terminal 6-nucleotide long pyrimidine-rich tract 5’-GGY(U/A)UY-3’. The 5’ terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5’UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies. PMID:27846320

  4. Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Kwon

    2013-09-01

    Full Text Available SINE-VNTR-Alu (SVA elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5' untranslated region (UTR of HGSNAT (SVA-B, MRGPRX3 (SVA-D, HYAL1 (SVA-F, TCHH (SVA-F, and ATXN2L (SVA-F genes, while some elements are observed in the 3'UTR of SPICE1 (SVA-B, TDRKH (SVA-C, GOSR1 (SVA-D, BBS5 (SVA-D, NEK5 (SVA-D, ABHD2 (SVA-F, C1QTNF7 (SVA-F, ORC6L (SVA-F, TMEM69 (SVA-F, and CCDC137 (SVA-F genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C, ALOX5 (SVA-D, PDS5B (SVA-D, and ABCA10 (SVA-F genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

  5. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive,

  6. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Ozge Cebeci

    2009-01-01

    Full Text Available Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate.

  7. Participation of gibberellin in the control of apical dominance in soybean and redwood

    Energy Technology Data Exchange (ETDEWEB)

    Ruddat, M.; Pharis, R.P.

    1966-01-01

    Loss of apical dominance in soybeans and redwood was increased when the plants were treated with the growth retardant AMO-1618. Simultaneous application of gibberellin reduced the number of elongating buds and promoted growth of the first or second uppermost auxillary bud, thus restoring apical dominance. It is concluded that gibberellin participates in the expression of apical dominance. 30 references, 2 tables.

  8. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

    Science.gov (United States)

    Jayakodi, Murukarthick; Choi, Beom-Soon; Lee, Sang-Choon; Kim, Nam-Hoon; Park, Jee Young; Jang, Woojong; Lakshmanan, Meiyappan; Mohan, Shobhana V G; Lee, Dong-Yup; Yang, Tae-Jin

    2018-04-12

    The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.

  9. Surface expression and limited proteolysis of ADAM10 are increased by a dominant negative inhibitor of dynamin

    Directory of Open Access Journals (Sweden)

    Slack Barbara E

    2011-05-01

    Full Text Available Abstract Background The amyloid precursor protein (APP is cleaved by β- and γ-secretases to generate toxic amyloid β (Aβ peptides. Alternatively, α-secretases cleave APP within the Aβ domain, precluding Aβ formation and releasing the soluble ectodomain, sAPPα. We previously showed that inhibition of the GTPase dynamin reduced APP internalization and increased release of sAPPα, apparently by prolonging the interaction between APP and α-secretases at the plasma membrane. This was accompanied by a reduction in Aβ generation. In the present study, we investigated whether surface expression of the α-secretase ADAM (a disintegrin and metalloprotease10 is also regulated by dynamin-dependent endocytosis. Results Transfection of human embryonic kidney (HEK cells stably expressing M3 muscarinic receptors with a dominant negative dynamin I mutant (dyn I K44A, increased surface expression of both immature, and mature, catalytically active forms of co-expressed ADAM10. Surface levels of ADAM10 were unaffected by activation of protein kinase C (PKC or M3 receptors, indicating that receptor-coupled shedding of the ADAM substrate APP is unlikely to be mediated by inhibition of ADAM10 endocytosis in this cell line. Dyn I K44A strongly increased the formation of a C-terminal fragment of ADAM10, consistent with earlier reports that the ADAM10 ectodomain is itself a target for sheddases. The abundance of this fragment was increased in the presence of a γ-secretase inhibitor, but was not affected by M3 receptor activation. The dynamin mutant did not affect the distribution of ADAM10 and its C-terminal fragment between raft and non-raft membrane compartments. Conclusions Surface expression and limited proteolysis of ADAM10 are regulated by dynamin-dependent endocytosis, but are unaffected by activation of signaling pathways that upregulate shedding of ADAM substrates such as APP. Modulation of ADAM10 internalization could affect cellular behavior in two

  10. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  11. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  12. Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.).

    Science.gov (United States)

    Liu, Pu; Zhang, Chao; Ma, Jin-Qi; Zhang, Li-Yuan; Yang, Bo; Tang, Xin-Yu; Huang, Ling; Zhou, Xin-Tong; Lu, Kun; Li, Jia-Na

    2018-03-16

    Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus , genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1 , 5-2 , 6-1 , and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

  13. Using nanopore sequencing to get complete genomes from complex samples

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Karst, Søren Michael; Nielsen, Per Halkjær

    The advantages of “next generation sequencing” has come at the cost of genome finishing. The dominant sequencing technology provides short reads of 150-300 bp, which has made genome assembly very difficult as the reads do not span important repeat regions. Genomes have thus been added...... to the databases as fragmented assemblies and not as finished contigs that resemble the chromosomes in which the DNA is organised within the cells. This is especially troublesome for genomes derived from complex metagenome sequencing. Databases with incomplete genomes can lead to false conclusions about...... the absence of genes and functional predictions of the organisms. Furthermore, it is common that repetitive elements and marker genes such as the 16S rRNA gene are missing completely from these genome bins. Using nanopore long reads, we demonstrate that it is possible to span these regions and make complete...

  14. Ecological Genomics of Marine Picocyanobacteria†

    Science.gov (United States)

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  15. Epigenetic control of mobile DNA as an interface between experience and genome change

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2014-04-01

    Full Text Available Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

  16. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  17. Data Mining Supercomputing with SAS JMP® Genomics

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2011-02-01

    Full Text Available JMP® Genomics is statistical discovery software that can uncover meaningful patterns in high-throughput genomics and proteomics data. JMP® Genomics is designed for biologists, biostatisticians, statistical geneticists, and those engaged in analyzing the vast stores of data that are common in genomic research (SAS, 2009. Data mining was performed using JMP® Genomics on the two collections of microarray databases available from National Center for Biotechnology Information (NCBI for lung cancer and breast cancer. The Gene Expression Omnibus (GEO of NCBI serves as a public repository for a wide range of highthroughput experimental data, including the two collections of lung cancer and breast cancer that were used for this research. The results for applying data mining using software JMP® Genomics are shown in this paper with numerous screen shots.

  18. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  19. Universal pacemaker of genome evolution.

    Science.gov (United States)

    Snir, Sagi; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.

  20. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...

  1. ENCODE whole-genome data in the UCSC genome browser (2011 update).

    Science.gov (United States)

    Raney, Brian J; Cline, Melissa S; Rosenbloom, Kate R; Dreszer, Timothy R; Learned, Katrina; Barber, Galt P; Meyer, Laurence R; Sloan, Cricket A; Malladi, Venkat S; Roskin, Krishna M; Suh, Bernard B; Hinrichs, Angie S; Clawson, Hiram; Zweig, Ann S; Kirkup, Vanessa; Fujita, Pauline A; Rhead, Brooke; Smith, Kayla E; Pohl, Andy; Kuhn, Robert M; Karolchik, Donna; Haussler, David; Kent, W James

    2011-01-01

    The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.

  2. Global genetic response in a cancer cell: self-organized coherent expression dynamics.

    Directory of Open Access Journals (Sweden)

    Masa Tsuchiya

    Full Text Available Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF and heregulin (HRG, which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf. These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics at around 10-20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES. In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome.

  3. Right Hemisphere Dominance for Emotion Processing in Baboons

    Science.gov (United States)

    Wallez, Catherine; Vauclair, Jacques

    2011-01-01

    Asymmetries of emotional facial expressions in humans offer reliable indexes to infer brain lateralization and mostly revealed right hemisphere dominance. Studies concerned with oro-facial asymmetries in nonhuman primates largely showed a left-sided asymmetry in chimpanzees, marmosets and macaques. The presence of asymmetrical oro-facial…

  4. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  5. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...... property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production....

  6. An expanding universe of the non-coding genome in cancer biology.

    Science.gov (United States)

    Xue, Bin; He, Lin

    2014-06-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Expression of porcine myostatin prodomain genomic sequence leads to a decrease in muscle growth, but significant intramuscular fat accretion in transgenic pigs.

    Science.gov (United States)

    Myostatin, a member of TGF-beta superfamily, is a dominant inhibitor of skeletal muscle development and growth. Previously, skeletal muscle-specific over-expression of myostatin prodomain cDNA (5’-region 886 nucleotide) dramatically increased growth performance and muscle mass in transgenic mice. I...

  8. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  9. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  10. Total Domination Versus Paired-Domination in Regular Graphs

    Directory of Open Access Journals (Sweden)

    Cyman Joanna

    2018-05-01

    Full Text Available A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G, is the minimum cardinality of a dominating set of G, while the minimum cardinalities of a total dominating set and paired-dominating set are the total domination number, γt(G, and the paired-domination number, γpr(G, respectively. For k ≥ 2, let G be a connected k-regular graph. It is known [Schaudt, Total domination versus paired domination, Discuss. Math. Graph Theory 32 (2012 435–447] that γpr(G/γt(G ≤ (2k/(k+1. In the special case when k = 2, we observe that γpr(G/γt(G ≤ 4/3, with equality if and only if G ≅ C5. When k = 3, we show that γpr(G/γt(G ≤ 3/2, with equality if and only if G is the Petersen graph. More generally for k ≥ 2, if G has girth at least 5 and satisfies γpr(G/γt(G = (2k/(k + 1, then we show that G is a diameter-2 Moore graph. As a consequence of this result, we prove that for k ≥ 2 and k ≠ 57, if G has girth at least 5, then γpr(G/γt(G ≤ (2k/(k +1, with equality if and only if k = 2 and G ≅ C5 or k = 3 and G is the Petersen graph.

  11. [Research progress in neuropsychopharmacology updated for the post-genomic era].

    Science.gov (United States)

    Nakanishi, Toru

    2009-11-01

    Neuropsychopharmacological research in the post genomic (genomic sequence) era has been developing rapidly through the use of novel techniques including DNA chips. We have applied these techniques to investigate the anti-tumor effect of NSAIDs, isolate novel genes specifically expressed in rheumatoid arthritis, and analyze gene expression profiles in mesenchymal stem cells. Recently, we have developed a novel system of quantitative PCR for detection of BDNF mRNA isoforms. By using this system, we identified the exon-specific mode of expression in acute and chronic pain. In addition, we have made gene expression profiles of KO mice of beta2 subunits in acetylcholine receptors.

  12. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC Lineages

    Directory of Open Access Journals (Sweden)

    Sabiha Shaik

    2017-10-01

    Full Text Available Escherichia coli sequence type 131 (ST131, a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12, ST405 (n = 10, and ST648 (n = 18, and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.

  13. Analysis of Genome-Scale Data

    OpenAIRE

    Kemmeren, P.P.C.W.

    2005-01-01

    The genetic material of every cell in an organism is stored inside DNA in the form of genes, which together form the genome. The information stored in the DNA is translated to RNA and subsequently to proteins, which form complex biological systems. The availability of whole genome sequences has given rise to the parallel development of other high-throughput approaches such as determining mRNA expression level changes, gene-deletion phenotypes, chromosomal location of DNA binding proteins, cel...

  14. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  15. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.

    Science.gov (United States)

    Francis, Warren R; Wörheide, Gert

    2017-06-01

    One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Fungal genomics: forensic evidence of sexual activity.

    Science.gov (United States)

    Gow, Neil A R

    2005-07-12

    The genome sequence of the 'asexual' human pathogenic fungus Aspergillus fumigatus suggests it has the capability to undergo mating and meiosis. That this organism engages in clandestine sexual activity is also suggested by observations of two equally distributed complementary mating types in nature, the expression of mating type genes and evidence of recent genome recombination events.

  17. Toxicogenomics: Applications of new functional genomics technologies in toxicology

    NARCIS (Netherlands)

    Heijne, W.H.M.

    2004-01-01

    Toxicogenomics studies toxic effects of substances on organisms in relation to the composition of the genome. It applies the functional genomics technologies transcriptomics, proteomics and metabolomics that determine expression of the genes, proteins and metabolites in a sample. These methods could

  18. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  19. Are there laws of genome evolution?

    Directory of Open Access Journals (Sweden)

    Eugene V Koonin

    2011-08-01

    Full Text Available Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.

  20. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    Science.gov (United States)

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of EOperon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Combining genetical genomics and bulked segregant analysis differential expression: an approach to gene localization

    NARCIS (Netherlands)

    Chen, Xinwei; Hedley, P.E.; Morris, J.; Liu, Hui; Niks, R.E.; Waugh, R.

    2011-01-01

    Positional gene isolation in unsequenced species generally requires either a reference genome sequence or an inference of gene content based on conservation of synteny with a genomic model. In the large unsequenced genomes of the Triticeae cereals the latter, i.e. conservation of synteny with the

  2. PTEN genomic deletion predicts prostate cancer recurrence and is associated with low AR expression and transcriptional activity

    Directory of Open Access Journals (Sweden)

    Choucair Khalil

    2012-11-01

    Full Text Available Abstract Background Prostate cancer (PCa, a leading cause of cancer death in North American men, displays a broad range of clinical outcome from relatively indolent to lethal metastatic disease. Several genomic alterations have been identified in PCa which may serve as predictors of progression. PTEN, (10q23.3, is a negative regulator of the phosphatidylinositol 3-kinase (PIK3/AKT survival pathway and a tumor suppressor frequently deleted in PCa. The androgen receptor (AR signalling pathway is known to play an important role in PCa and its blockade constitutes a commonly used treatment modality. In this study, we assessed the deletion status of PTEN along with AR expression levels in 43 primary PCa specimens with clinical follow-up. Methods Fluorescence In Situ Hybridization (FISH was done on formalin fixed paraffin embedded (FFPE PCa samples to examine the deletion status of PTEN. AR expression levels were determined using immunohistochemistry (IHC. Results Using FISH, we found 18 cases of PTEN deletion. Kaplan-Meier analysis showed an association with disease recurrence (P=0.03. Concurrently, IHC staining for AR found significantly lower levels of AR expression within those tumors deleted for PTEN (PPTEN deleted. We confirmed the predictive value of PTEN deletion in disease recurrence (P=0.03. PTEN deletion was also linked to diminished expression of PTEN (PP=0.02. Furthermore, gene set enrichment analysis revealed a diminished expression of genes downstream of AR signalling in PTEN deleted tumors. Conclusions Altogether, our data suggest that PTEN deleted tumors expressing low levels of AR may represent a worse prognostic subset of PCa establishing a challenge for therapeutic management.

  3. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Directory of Open Access Journals (Sweden)

    Vining Kelly J

    2012-01-01

    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  4. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean's Deepest Point.

    Science.gov (United States)

    Zhang, Weipeng; Tian, Ren-Mao; Sun, Jin; Bougouffa, Salim; Ding, Wei; Cai, Lin; Lan, Yi; Tong, Haoya; Li, Yongxin; Jamieson, Alan J; Bajic, Vladimir B; Drazen, Jeffrey C; Bartlett, Douglas; Qian, Pei-Yuan

    2018-01-01

    Amphipods are the dominant scavenging metazoan species in the Mariana Trench, the deepest known point in Earth's oceans. Here the gut microbiota of the amphipod Hirondellea gigas collected from the Challenger and Sirena Deeps of the Mariana Trench were investigated. The 11 amphipod individuals included for analyses were dominated by Psychromonas , of which a nearly complete genome was successfully recovered (designated CDP1). Compared with previously reported free-living Psychromonas strains, CDP1 has a highly reduced genome. Genome alignment showed deletion of the trimethylamine N -oxide (TMAO) reducing gene cluster in CDP1, suggesting that the "piezolyte" function of TMAO is more important than its function in respiration, which may lead to TMAO accumulation. In terms of nutrient utilization, the bacterium retains its central carbohydrate metabolism but lacks most of the extended carbohydrate utilization pathways, suggesting the confinement of Psychromonas to the host gut and sequestration from more variable environmental conditions. Moreover, CDP1 contains a complete formate hydrogenlyase complex, which might be involved in energy production. The genomic analyses imply that CDP1 may have developed adaptive strategies for a lifestyle within the gut of the hadal amphipod H. gigas. IMPORTANCE As a unique but poorly investigated habitat within marine ecosystems, hadal trenches have received interest in recent years. This study explores the gut microbial composition and function in hadal amphipods, which are among the dominant carrion feeders in hadal habitats. Further analyses of a dominant strain revealed genomic features that may contribute to its adaptation to the amphipod gut environment. Our findings provide new insights into animal-associated bacteria in the hadal biosphere.

  5. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Marco Ventura

    2009-12-01

    Full Text Available Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria. However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from

  6. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  7. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    Full Text Available Abstract Background Coding sequence (CDS length, gene size, and intron length vary within a genome and among genomes. Previous studies in diverse organisms, including human, D. Melanogaster, C. elegans, S. cerevisiae, and Arabidopsis thaliana, indicated that there are negative relationships between expression level and gene size, CDS length as well as intron length. Different models such as selection for economy model, genomic design model, and mutational bias hypotheses have been proposed to explain such observation. The debate of which model is a superior one to explain the observation has not been settled down. The chicken (Gallus gallus is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. As D. Melanogaster, chicken has a larger effective population size, selection for chicken genome is expected to be more effective in increasing protein synthesis efficiency. Therefore, in this study the chicken was used as a model organism to elucidate the interaction between gene features and expression pattern upon selection pressure. Results Based on different technologies, we gathered expression data for nuclear protein coding, single-splicing genes from Gallus gallus genome and compared them with gene parameters. We found that gene size, CDS length, first intron length, average intron length, and total intron length are negatively correlated with expression level and expression breadth significantly. The tissue specificity is positively correlated with the first intron length but negatively correlated with the average intron length, and not correlated with the CDS length and protein domain numbers. Comparison analyses showed that ubiquitously expressed genes and narrowly expressed genes with the similar expression levels do not differ in compactness. Our data provided evidence that the genomic design model can not, at least in part, explain our observations. We grouped all somatic-tissue-specific genes

  8. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  9. The Medicago truncatula gene expression atlas web server

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  10. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.

    Directory of Open Access Journals (Sweden)

    Guosheng Su

    Full Text Available Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1 a simple additive genetic model (MA, 2 a model including both additive and additive by additive epistatic genetic effects (MAE, 3 a model including both additive and dominance genetic effects (MAD, and 4 a full model including all three genetic components (MAED. Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.

  11. Delayed changes in gene expression in human fibroblasts after alpha irradiation

    International Nuclear Information System (INIS)

    Salo, A.; Peraelae, M.; Mustonen, R.; Kadhim, M.; Marsden, S.; Sabatier, L.; Martins, L.

    2003-01-01

    It has been commonly accepted that the biological consequences following radiation exposure are attributable to DNA damage and expressed within one or two cell generations. Recent evidence, however, has now been emerged to challenge this classical paradigm. Changes in non-irradiated bystander cells may lead to transmissible genomic instability. This phenomenon has been termed 'non-targeted' and in addition to genomic instability, includes also radiation-induced bystander effects. Various types of genomic damage can be observed in affected cells for many generations after irradiation. After alphaparticle irradiation, delayed non-clonal chromosomal aberrations were seen in surviving cells of cultured haematopoietic stem cells from CBA/H mice. These aberrations were mostly of non-identical chromatid type, showing that they had arisen for many generations after the irradiation. Although radiation-induced genomic instability has been observed in several in vitro and in vivo experiments, the mechanisms involved in the induction and transmission of genomic instability remain unknown. The purpose of this work was to provide new information about the delayed or persistent effects of radiation on expression of genes associated with chromosomal instability phenotype. It has been assumed that this phenotype is linked to sustained alterations in gene expression rather than to specific gene mutations. The delayed gene expression changes in cells after irradiation have not been extensively studied. Human syndromes expressing chromosomal instability have been demonstrated to have a role in the evolution of malignancy. Thus, the role of radiation-induced genomic instability in radiation oncogenesis is of importance. The work is part of the joint EU-funded project called 'Genomic instability and radiation-induced cancer' (RADINSTAB). The aim of the RADINSTAB project was to investigate health effects of genomic damage, predisposition to cancer and correlation of genomic instability

  12. Does genomic imprinting play a role in autoimmunity?

    Science.gov (United States)

    Camprubí, Cristina; Monk, David

    2011-01-01

    In the 19th century Gregor Mendel defined the laws of genetic inheritance by crossing different types of peas. From these results arose his principle of equivalence: the gene will have the same behaviour whether it is inherited from the mother or the father. Today, several key exceptions to this principle are known, for example sex-linked traits and genes in the mitochondrial genome, whose inheritance patterns are referred to as 'non mendelian'. A third, important exception in mammals is that of genomic imprinting, where transcripts are expressed in a monoallelic fashion from only the maternal or the paternal chromosome. In this chapter, we discuss how parent-of-origin effects and genomic imprinting may play a role in autoimmunity and speculate how imprinted miRNAs may influence the expression of many target autoimmune associated genes.

  13. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    Science.gov (United States)

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  14. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    Science.gov (United States)

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Dominant inheritance of cerebral gigantism.

    Science.gov (United States)

    Zonana, J; Sotos, J F; Romshe, C A; Fisher, D A; Elders, M J; Rimoin, D L

    1977-08-01

    Cerebral gigantism is a syndrome consisting of characteristic dysmorphic features, accelerated growth in early childhood, and variable degrees of mental retardation. Its etiology and pathogenesis have not been defined. Three families are presented with multiple affected members. The vertical transmission of the trait and equal expression in both sexes in these families indicates a genetic etiology with a dominant pattern of inheritance, probably autosomal. As in previously reported cases, extensive endocrine evaluation failed to define the pathogenesis of the accelerated growth present in this disorder.

  16. The mediator complex in genomic and non-genomic signaling in cancer.

    Science.gov (United States)

    Weber, Hannah; Garabedian, Michael J

    2018-05-01

    Mediator is a conserved, multi-subunit macromolecular machine divided structurally into head, middle, and tail modules, along with a transiently associating kinase module. Mediator functions as an integrator of transcriptional regulatory activity by interacting with DNA-bound transcription factors and with RNA polymerase II (Pol II) to both activate and repress gene expression. Mediator has been shown to affect multiple steps in transcription, including chromatin looping between enhancers and promoters, pre-initiation complex formation, transcriptional elongation, and mRNA splicing. Individual Mediator subunits participate in regulation of gene expression by the estrogen and androgen receptors and are altered in a number of endocrine cancers, including breast and prostate cancer. In addition to its role in genomic signaling, MED12 has been implicated in non-genomic signaling by interacting with and activating TGF-beta receptor 2 in the cytoplasm. Recent structural studies have revealed extensive inter-domain interactions and complex architecture of the Mediator-Pol II complex, suggesting that Mediator is capable of reorganizing its conformation and composition to fit cellular needs. We propose that alterations in Mediator subunit expression that occur in various cancers could impact the organization and function of Mediator, resulting in changes in gene expression that promote malignancy. A better understanding of the role of Mediator in cancer could reveal new approaches to the diagnosis and treatment of Mediator-dependent endocrine cancers, especially in settings of therapy resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Zhang, Na; Huang, Xing; Bao, Yaning; Wang, Bo; Zeng, Hongxia; Cheng, Weishun; Tang, Mi; Li, Yuhua; Ren, Jian; Sun, Yuhong

    2017-07-01

    The early auxin responsive SAUR family is an important gene family in auxin signal transduction. We here present the first report of a genome-wide identification of SAUR genes in watermelon genome. We successfully identified 65 ClaSAURs and provide a genomic framework for future study on these genes. Phylogenetic result revealed a Cucurbitaceae-specific SAUR subfamily and contribute to understanding of the evolutionary pattern of SAUR genes in plants. Quantitative RT-PCR analysis demonstrates the existed expression of 11 randomly selected SAUR genes in watermelon tissues. ClaSAUR36 was highly expressed in fruit, for which further study might bring a new prospective for watermelon fruit development. Moreover, correlation analysis revealed the similar expression profiles of SAUR genes between watermelon and Arabidopsis during shoot organogenesis. This work gives us a new support for the conserved auxin machinery in plants.

  18. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    Science.gov (United States)

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic

  19. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  20. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406