WorldWideScience

Sample records for genomic dna extraction

  1. High quality genomic DNA extraction from postmortem fetal tissue.

    Science.gov (United States)

    Addison, S; Sebire, N J; Taylor, A M; Abrams, D; Peebles, D; Mein, C; Munroe, P B; Thayyil, S

    2012-11-01

    We examined the yield and quality of genomic deoxyribonucleic acid (DNA) extracted from various postmortem fetal tissues. Fetal tissues were collected at the time of autopsy, and DNA was subsequently extracted. The yield and DNA quality was assessed using ultraviolet spectrometry and agarose gel electrophoresis. We used polymerase chain reaction (PCR) to assess the DNA extracted for genomic testing. The median (range) gestation of the fetuses was 22 (16-41) weeks and the postmortem interval was 5.5 (2-10) days. Non-degraded genomic DNA was successfully extracted from all fetal tissues. Liver tissue had the lowest quality and muscle the highest quality. DNA yield or purity was not influenced by the postmortem interval. High quality genomic DNA can be extracted from fetal muscle, despite postmortem intervals of several days.

  2. Genomic DNA extraction protocols from ovine hair

    Directory of Open Access Journals (Sweden)

    Jennifer Nonato da Silva Prate

    2013-12-01

    Full Text Available Genomic DNA extracted from animal cells can be used for several purposes, for example, to know genetic variability and genetic relationships between individuals, breeds and/or species, paternity tests, to describe the genetic profile for registration of the animal at association of breeders, detect genetic polymorphisms (SNP related to characteristics of commercial interest, disease diagnose, assess resistance or susceptibility to pathogens, etc. For such evaluations, in general, DNA is amplified by PCR (polymerase chain reaction, and then subjected to various techniques as RFLP (restriction fragments length polymorphism, SSCP (single strand conformation polymorphism, and sequencing. The DNA may be obtained from blood, buccal swabs, meat, cartilage or hair bulb. Among all, the last biological material has been preferred by farmers for its ease acquisition. Several methods for extracting DNA from hair bulb were reported without any consensus for its implementation. This study aimed to optimize a protocol for efficient DNA extraction for use in PCR-RFLP analysis of the Prion gene. For this study, were collected hair samples containing hair bulb from 131 Santa Inês sheep belonging to the Institute of Zootechny, Nova Odessa - SP. Two DNA extraction protocols were evaluated. The first, called phenol-chloroform-isoamyl alcohol (PCIA has long been used by Animal Genetic Laboratories, whose procedures are described below: in each microtube (1.5 mL containing 500 µL of TE-Tween solution (Tris-HCl 50 mM, EDTA 1 mM and 0.5% Tween 20 were added to approximately 30 hair bulb per animal which was incubated at 65°C with shaking at 170 rpm for 2 hours. Then was added 15 µL of proteinase K [10 mg mL-1] and incubated at 55°C at 170 rpm for 6-12 hours. At the end of digestion was added 1 volume of solution phenol-chloroform-isoamyl alcohol (25:24:1 followed by vigorous shaking for 10 seconds and centrifuged at 8000 rpm and 4°C for 10 minutes. The upper phase

  3. Rapid extraction and preservation of genomic DNA from human samples.

    Science.gov (United States)

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  4. Protocol for extraction of genomic DNA from swine solid tissues

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Biase

    2002-01-01

    Full Text Available Molecular diagnostics are performed by using DNA from different body tissues. However, it is necessary to obtain genomic DNA of good quality. Due to the impossibility of collecting blood from slaughtered animals, DNA extraction from solid tissues is necessary. The objective of this study was to describe a protocol of DNA extraction from swine skin, adipose, brain, liver, kidney and muscle tissues. We obtained high molecular weight DNA of good quality, shown by agarose gel and amplification of two DNA fragments, 605bp and 891pb, by PCR. Spectrophotometric analysis of DNA concentration showed variation among the DNA from different tissues, with the liver and adipose tissues presenting the greatest and the smallest concentration, respectively. The described protocol has proven to be advantageous due to its simplicity, quickness, affordable reagents and absence of phenol, resulting in a high molecular weight DNA of good quality from several tissues.

  5. [Application of the QIAamp DNA Investigator Kit and Prepfiler Forensic DNA Extraction Kit in genomic DNA extraction from skeletal remains].

    Science.gov (United States)

    Ludwikowska-Pawłowska, Małgorzata; Jacewicz, Renata; Jedrzejczyk, Maciej; Prośniak, Adam; Berent, Jarosław

    2009-01-01

    The report presents an application of the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit in genomic DNA extraction from post-mortem highly degraded skeletal remains. The analysis included 25 bone samples collected on autopsy. DNA extraction was performed in accordance with the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit manufacturer's isolation protocols. Amplification was performed on a Biometra termocycler using the AmpFISTR Identifiler PCR Amplification Kit according to the manufacturer's protocol. Typing of PCR products was carried out on an ABI Prism 377 DNA sequencer. The recommended parameters for GeneScan analysis and Genotyper software were followed. The authors demonstrated that the QIAamp DNA Investigator Kit was more effective, convenient and statistically significantly better method which may be employed in DNA extraction from bone specimens.

  6. A simplified universal genomic DNA extraction protocol suitable for PCR.

    Science.gov (United States)

    Wang, T Y; Wang, L; Zhang, J H; Dong, W H

    2011-03-29

    Conventional genomic DNA extraction protocols need expensive and hazardous reagents for decontamination of phenolic compounds from the extracts and are only suited for certain types of tissue. We developed a simple, time-saving and cost-efficient method for genomic DNA extraction from various types of organisms, using relatively innocuous reagents. The protocol employs a single purification step to remove contaminating compounds, using a silica column and a non-hazardous buffer, and a chaotropic-detergent lysing solution that hydrolyzes RNA and allows the selective precipitation of DNA from cell lysates. We used this system to extract genomic DNA from different tissues of various organisms, including algae (Dunaliella salina), human peripheral blood, mouse liver, Escherichia coli, and Chinese hamster ovary cells. Mean DNA yields were 20-30 μg/cm(3) from fresh tissues (comparable to yields given by commercial extraction kits), and the 260/280 nm absorbance ratio was 1.8-2.0, demonstrating a good degree of purity. The extracted DNA was successfully used in PCR, restriction enzyme digestion and for recombinant selection studies.

  7. A Novel Method of Genomic DNA Extraction for Cactaceae

    Directory of Open Access Journals (Sweden)

    Shannon D. Fehlberg

    2013-03-01

    Full Text Available Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies.

  8. A novel method of genomic DNA extraction for Cactaceae1

    Science.gov (United States)

    Fehlberg, Shannon D.; Allen, Jessica M.; Church, Kathleen

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and complete avoidance of mucilage as compared to typical tissue extractions. Sequences from one nuclear and three plastid regions were obtained across eight genera and 20 species of cacti using DNA extracted from spines. • Conclusions: Genomic DNA useful for amplification and sequencing can be obtained from cactus spines. The protocols described here are valuable for any cactus species, but are particularly useful for investigators interested in sampling living collections, extensive field sampling, and/or conservation genetic studies. PMID:25202521

  9. Automated genomic DNA extraction from saliva using the QIAxtractor.

    Science.gov (United States)

    Keijzer, Henry; Endenburg, Silvia C; Smits, Marcel G; Koopmann, Miriam

    2010-05-01

    Venipuncture is an invasive procedure to obtain whole blood in order to obtain high quality and sufficient amounts of genomic DNA. Obtaining DNA from non-invasive sources is preferred by patients, medical doctors and researchers. Saliva collected with cotton swabs (Salivette) is increasingly being used to study chemical compounds, and it can also be a source of DNA. However, extracting DNA from Salivettes is very laborious and time consuming. Therefore, we developed a protocol for automated genomic DNA extraction from saliva collected in Salivette using the QIAxtractor. Saliva (0.1-2.0 mL) was collected by chewing on a Salivette for 1-2 min. A total of 70 samples, collected from healthy volunteers, were extracted with the QIAxtractor robot and a Qiagen DX reagent pack. Quantity and quality was assessed using UV spectrometry and real-time polymerase chain reaction (PCR) (substitution at position -729 in the CYP1A2 gene). The average DNA concentration from the saliva samples was 6.0 microg/mL (95% CI 5.4-6.6 microg/mL). In 100% of the saliva samples, PCR products were detected with an average cycle threshold of 23.1 (95% CI 22.6-23.6). DNA can be extracted in sufficient amounts from Salivette with a fully automated system with a short turnaround time. Real-time PCR can be performed with these samples.

  10. An efficient genomic DNA extraction from whole blood using Nextractor.

    Science.gov (United States)

    Jeong, Tae-Dong; Cho, Young-Uk; Lee, Woochang; Chun, Sail; Min, Won-Ki

    2014-08-05

    We evaluated the performance of the Nextractor NX-48 nucleic acid extractor system for the extraction of genomic DNA from whole blood samples. We compared the performance of the Nextractor to that of the QIAamp DNA Blood Mini Kit and the Maxwell system, using five whole blood samples. Extraction efficiencies were compared based on the total amount of extracted DNA adjusted by input blood volume, and the purity was compared. Polymerase chain reaction analyses were performed using ACTB as a target. The real-time PCR assay was carried out for housekeeping gene GAPDH. Total elapsed time for DNA extraction was compared. Extraction efficiencies for the QIAamp, Maxwell, and Nextractor were 25.4±3.8ng/μL, 9.2±0.6ng/μL, and 31.0±5.6ng/μL, respectively. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in Ct values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50min for the QIAamp, 40min for the Maxwell, and 20min for the Nextractor. As the Nextractor is faster and requires less hands-on time than manual procedures, it may be useful for molecular diagnostic testing in clinical laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Efficient genomic DNA extraction from low target concentration bacterial cultures using SCODA DNA extraction technology.

    Science.gov (United States)

    So, Austin; Pel, Joel; Rajan, Sweta; Marziali, Andre

    2010-10-01

    Methods for the extraction of nucleic acids are straightforward in instances where there is ample nucleic acid mass in the sample and contamination is minimal. However, applications in areas such as metagenomics, life science research, clinical research, and forensics, that are limited by smaller amounts of starting materials or more dilute samples, require sample preparation methods that are more efficient at extracting nucleic acids. Synchronous coefficient of drag alteration (SCODA) is a novel electrophoretic nucleic acid purification technology that has been tested successfully with both highly contaminated and dilute samples and is a promising candidate for new sample preparation challenges. In this article, as an example of SCODA's performance with limited sample material, we outline a genomic DNA (gDNA) extraction protocol from low abundance cultures of Escherichia coli DH10B. This method is equally well suited to high biomass samples.

  12. [Genomic DNA extraction from hair sacs of pigs using modified phenol-chloroform method].

    Science.gov (United States)

    Wang, Ji-Ying; Yu, Ying; Feng, Li-Xia; Wang, Huai-Zhong; Zhang, Qin

    2010-07-01

    In referring to various methods for genomic DNA extraction from different tissues, we modified the classical phenol-chloroform procedure and reaction system for use in genomic DNA extraction from pig hair sacs. With the modified the phenol-chloroform method we successfully obtained high quality genomic DNA from pig hair sacs. Genomic DNA can be extracted from sacs of one to six pig hairs with satisfied quantity and quality for the need of PCR-based molecular ex-periment.

  13. Optimized Protocol for Simple Extraction of High-Quality Genomic DNA from Clostridium difficile for Whole-Genome Sequencing.

    Science.gov (United States)

    Sim, James Heng Chiak; Anikst, Victoria; Lohith, Akshar; Pourmand, Nader; Banaei, Niaz

    2015-07-01

    Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize.

    Science.gov (United States)

    Abdel-Latif, Amani; Osman, Gamal

    2017-01-01

    The world's top three cereals, based on their monetary value, are rice, wheat, and corn. In cereal crops, DNA extraction is difficult owing to rigid non-cellulose components in the cell wall of leaves and high starch and protein content in grains. The advanced techniques in molecular biology require pure and quick extraction of DNA. The majority of existing DNA extraction methods rely on long incubation and multiple precipitations or commercially available kits to produce contaminant-free high molecular weight DNA. In this study, we compared three different methods used for the isolation of high-quality genomic DNA from the grains of cereal crop, Zea mays, with minor modifications. The DNA from the grains of two maize hybrids, M10 and M321, was extracted using extraction methods DNeasy Qiagen Plant Mini Kit, CTAB-method (with/without 1% PVP) and modified Mericon extraction. Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain codes for 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS regions show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this study, the genomic DNA was then amplified with PCR using primers specific for ITS gene. PCR products were then visualized on agarose gel. The modified Mericon extraction method was found to be the most efficient DNA extraction method, capable to provide high DNA yields with better quality, affordable cost and less time.

  15. An efficient method for genomic DNA extraction from different molluscs species.

    Science.gov (United States)

    Pereira, Jorge C; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique

    2011-01-01

    The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  16. An Efficient Method for Genomic DNA Extraction from Different Molluscs Species

    Directory of Open Access Journals (Sweden)

    Henrique Guedes-Pinto

    2011-11-01

    Full Text Available The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills or quantity of tissue, can explain the lack of efficiency (quality and yield in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia and Muricidae (Gastropoda, with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others.

  17. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Science.gov (United States)

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  18. Extraction of high-quality genomic DNA from Ectocarpus.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-03-01

    For some applications, such as genome sequencing and high-throughput genotyping with multiple markers, it is necessary to use high-quality genomic DNA. This article describes how to obtain several micrograms of high-quality, cesium chloride-purified DNA from 1 g of Ectocarpus filaments. We also recommend using DNA of this quality for quantitative RT-PCR control reactions. However, simpler, more rapid, kit-based methods are preferable for experiments that involve the treatment of large numbers of individuals, such as genotyping large populations with a small number of markers or PCR screening of large populations.

  19. Innovative Graphite Oxide-Cellulose Based Material Specific for Genomic DNA Extraction

    Science.gov (United States)

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro

    2015-11-01

    Extraction of genomic DNA from various types of samples is often challenging for commercial silica spin column. In this study, we proposed graphite oxide (GO)/cellulose composite as an alternative material for genomic DNA extraction. The purity of DNA and extraction efficiency were compared to that of commercial silica product. In this study, the total weight % of GO was fixed at 4.15% in GO/Cellulose composite. Chewed gum, nail clip, cigarette bud paper, animal tissue and hair sample were used as various genomic DNA sources for extraction experiments. Among all types of samples, the extraction efficiencies were 4 to 12 times higher than that of commercial silica spin column. The absorbance ratio of 260 nm to 280 nm (A260/A280) of all samples ranged between 1.6 and 2.0. The results demonstrated that GO/Cellulose composites might serve as an innovative solid support material for genomic DNA extraction.

  20. Extraction of human genomic DNA from whole blood using a magnetic microsphere method.

    Science.gov (United States)

    Gong, Rui; Li, Shengying

    2014-01-01

    With the rapid development of molecular biology and the life sciences, magnetic extraction is a simple, automatic, and highly efficient method for separating biological molecules, performing immunoassays, and other applications. Human blood is an ideal source of human genomic DNA. Extracting genomic DNA by traditional methods is time-consuming, and phenol and chloroform are toxic reagents that endanger health. Therefore, it is necessary to find a more convenient and efficient method for obtaining human genomic DNA. In this study, we developed urea-formaldehyde resin magnetic microspheres and magnetic silica microspheres for extraction of human genomic DNA. First, a magnetic microsphere suspension was prepared and used to extract genomic DNA from fresh whole blood, frozen blood, dried blood, and trace blood. Second, DNA content and purity were measured by agarose electrophoresis and ultraviolet spectrophotometry. The human genomic DNA extracted from whole blood was then subjected to polymerase chain reaction analysis to further confirm its quality. The results of this study lay a good foundation for future research and development of a high-throughput and rapid extraction method for extracting genomic DNA from various types of blood samples.

  1. A Novel Method of Genomic DNA Extraction for Cactaceae

    OpenAIRE

    Fehlberg, Shannon D.; Jessica M. Allen; Kathleen Church

    2013-01-01

    • Premise of the study: Genetic studies of Cactaceae can at times be impeded by difficult sampling logistics and/or high mucilage content in tissues. Simplifying sampling and DNA isolation through the use of cactus spines has not previously been investigated. • Methods and Results: Several protocols for extracting DNA from spines were tested and modified to maximize yield, amplification, and sequencing. Sampling of and extraction from spines resulted in a simplified protocol overall and compl...

  2. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  3. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants.

    Science.gov (United States)

    Kang, Tae-Jin; Yang, Moon-Sik

    2004-09-02

    DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1). After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  4. Simplified extraction of good quality genomic DNA from a variety of plant materials: 1

    National Research Council Canada - National Science Library

    Vijay Kumari; Anshu Bansal; Raghavendra Aminedi; Dhakshi Taneja; Niranjan Das

    2012-01-01

      Depending on the nature and complexity of plant material, proper method needs to be employed for extraction of genomic DNA, along with its performance evaluation by different molecular techniques...

  5. A protocol for high-quality genomic DNA extraction from legumes

    National Research Council Canada - National Science Library

    Agbagwa, I O; Datta, S; Patil, P G; Singh, P; Nadarajan, N

    2012-01-01

    ... in less researched crops in laboratories in developing countries. We modified and optimized the existing CTAB method for plant genomic DNA extraction by avoiding liquid nitrogen usage and lyophilization...

  6. Comparison of eight methods of genomic DNA extraction from babassu.

    Science.gov (United States)

    Viana, J P G; Borges, A N C; Lopes, A C A; Gomes, R L F; Britto, F B; Lima, P S C; Valente, S E S

    2015-12-22

    Babassu (Orbignya phalerata Martius) is one of the most important palms in Brazil because of the largest morphological variation, wide geographic distribution, and high socio-economic importance. The diversity present in babassu germplasm should be protected against loss to ensure their use with high productivity. Study of the available variability in populations of babassu is necessary to develop conservation strategies. The study of genetic variability can be conducted using molecular markers and many of these studies require significant quantity of high-quality DNA. The present study aimed to effect comparison among eight DNA extraction methods in case of O. phalerata. The quality and concentration of nucleic acids were analyzed by spectrophotometry and integrity of DNA was ascertained by agarose gel electrophoresis. The spectrophotometry revealed that some methods resulted in high levels of concentration of nucleic acids, in which values of the ratio A260/280 and A260/230 were outside the range of purity. The agarose gel electrophoresis established the concentration and integrity of DNA. The methods of Murray and Thompson (1980) and Ferreira and Grattapaglia (1998) did not result in satisfactory quantities of DNA. Conversely, the method proposed by Khanuja et al. (1999) resulted in DNA of adequate quality and quantity that could be satisfactorily used for amplification reactions performed with two ISSR primers.

  7. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules.

    Science.gov (United States)

    Mayjonade, Baptiste; Gouzy, Jérôme; Donnadieu, Cécile; Pouilly, Nicolas; Marande, William; Callot, Caroline; Langlade, Nicolas; Muños, Stéphane

    2016-10-01

    De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.

  8. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Science.gov (United States)

    Shi, Chao; Hu, Na; Huang, Hui; Gao, Ju; Zhao, You-Jie; Gao, Li-Zhi

    2012-01-01

    Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA) extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa) sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  9. [Comparing and evaluating six methods of extracting human genomic DNA from whole blood].

    Science.gov (United States)

    Chang, Jing-Jing; Zhang, Su-Hua; Li, Li

    2009-04-01

    Comparing the differences in purity and yield among six methods of extracting human genomic DNA from whole blood, which included Classic Phenol-chloroform extraction, modified combined technique composed of improved Phenol-chloroform extraction and Chelex-100 extraction, Chelex-100 extraction, IQ, Qiagen and SP. Ten samples of intravenous whole blood (5 mL/sample) were collected and human genomic DNA was extracted with these six methods. The purity and concentration of the DNA products were detected by ultraviolet spectrophotometry and fluorescent quantitation technique, the yield was calculated and tested with statistical software. The Chelex-100 extraction was inferior in DNA purity to other methods while the other five methods showed no statistical difference. Modified combined technique was the poorest and IQ was the best in yield among the six methods of extraction. Statistical result showed that the extraction with high quality kits was better than that with classic Phenol-chloroform extraction, Chelex-100 extraction and modified combined technique composed of improved Phenol-chloroform. There was statistical difference between them. Comparing to Phenol-chloroform extraction and Chelex-100 extraction, high quality kits are more useful in DNA extraction from forensic materials.

  10. Extraction of high molecular weight genomic DNA from soils and sediments.

    Science.gov (United States)

    Lee, Sangwon; Hallam, Steven J

    2009-11-10

    The soil microbiome is a vast and relatively unexplored reservoir of genomic diversity and metabolic innovation that is intimately associated with nutrient and energy flow within terrestrial ecosystems. Cultivation-independent environmental genomic, also known as metagenomic, approaches promise unprecedented access to this genetic information with respect to pathway reconstruction and functional screening for high value therapeutic and biomass conversion processes. However, the soil microbiome still remains a challenge largely due to the difficulty in obtaining high molecular weight of sufficient quality for large insert library production. Here we introduce a protocol for extracting high molecular weight, microbial community genomic DNA from soils and sediments. The quality of isolated genomic DNA is ideal for constructing large insert environmental genomic libraries for downstream sequencing and screening applications. The procedure starts with cell lysis. Cell walls and membranes of microbes are lysed by both mechanical (grinding) and chemical forces (beta-mercaptoethanol). Genomic DNA is then isolated using extraction buffer, chloroform-isoamyl alcohol and isopropyl alcohol. The buffers employed for the lysis and extraction steps include guanidine isothiocyanate and hexadecyltrimethylammonium bromide (CTAB) to preserve the integrity of the high molecular weight genomic DNA. Depending on your downstream application, the isolated genomic DNA can be further purified using cesium chloride (CsCl) gradient ultracentrifugation, which reduces impurities including humic acids. The first procedure, extraction, takes approximately 8 hours, excluding DNA quantification step. The CsCl gradient ultracentrifugation, is a two days process. During the entire procedure, genomic DNA should be treated gently to prevent shearing, avoid severe vortexing, and repetitive harsh pipetting.

  11. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.

    Science.gov (United States)

    Zhou, Zhongwu; Kadam, Ulhas S; Irudayaraj, Joseph

    2013-11-15

    Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Genomic DNA extraction and barcoding of endophytic fungi.

    Science.gov (United States)

    Diaz, Patricia L; Hennell, James R; Sucher, Nikolaus J

    2012-01-01

    Endophytes live inter- and/or intracellularly inside healthy aboveground tissues of plants without causing disease. Endophytic fungi are found in virtually every vascular plant species examined. The origins of this symbiotic relationship between endophytes go back to the emergence of vascular plants. Endophytic fungi receive nutrition and protection from their hosts while the plants benefit from the production of fungal secondary metabolites, which enhance the host plants' resistance to herbivores, pathogens, and various abiotic stresses. Endophytic fungi have attracted increased interest as potential sources of secondary metabolites with agricultural, industrial, and medicinal use. This chapter provides detailed protocols for isolation of genomic DNA from fungal endophytes and its use in polymerase chain reaction-based amplification of the internal transcribed spacer region between the conserved flanking regions of the small and large subunit of ribosomal RNA for barcoding purposes.

  13. Efficiency of genomic DNA extraction dependent on the size of magnetic nanoclusters

    Science.gov (United States)

    Cho, Hyun Ah; Hyun Min, Ji; Hua Wu, Jun; Woo Jang, Jin; Lim, Chae-Seung; Keun Kim, Young

    2014-05-01

    We report the efficiency of genomic DNA extraction as a function of particle size and quantity. For DNA extraction, we synthesized magnetic nanoclusters of various sizes and coated the surface of these magnetic nanoclusters with meso-2,3-dimercaptosuccinic acid. We showed that the nanoclusters had a tight particle size distribution and high crystallinity. Furthermore, we observed that the three types of magnetic nanoclusters studied exhibited ferrimagnetic behavior and that larger nanoclusters showed larger saturation magnetization values. The resultant efficiency of DNA extraction is inversely proportional to particle size in the range of nanoclusters tested, due to the fact that the surface-to-volume ratio decreases as particle size increases.

  14. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  15. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  16. A high-throughput, high-quality plant genomic DNA extraction protocol.

    Science.gov (United States)

    Li, H; Li, J; Cong, X H; Duan, Y B; Li, L; Wei, P C; Lu, X Z; Yang, J B

    2013-10-15

    The isolation of high-quality genomic DNA (gDNA) is a crucial technique in plant molecular biology. The quality of gDNA determines the reliability of real-time polymerase chain reaction (PCR) analysis. In this paper, we reported a high-quality gDNA extraction protocol optimized for real-time PCR in a variety of plant species. Performed in a 96-well block, our protocol provides high throughput. Without the need for phenol-chloroform and liquid nitrogen or dry ice, our protocol is safer and more cost-efficient than traditional DNA extraction methods. The method takes 10 mg leaf tissue to yield 5-10 µg high-quality gDNA. Spectral measurement and electrophoresis were used to demonstrate gDNA purity. The extracted DNA was qualified in a restriction enzyme digestion assay and conventional PCR. The real-time PCR amplification was sufficiently sensitive to detect gDNA at very low concentrations (3 pg/µL). The standard curve of gDNA dilutions from our phenol-chloroform-free protocol showed better linearity (R(2) = 0.9967) than the phenol-chloroform protocol (R(2) = 0.9876). The results indicate that the gDNA was of high quality and fit for real-time PCR. This safe, high-throughput plant gDNA extraction protocol could be used to isolate high-quality gDNA for real-time PCR and other downstream molecular applications.

  17. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    Science.gov (United States)

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  18. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available BACKGROUND: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. METHODOLOGY/PRINCIPAL FINDINGS: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. CONCLUSION: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  19. A robust universal method for extraction of genomic DNA from bacterial species.

    Science.gov (United States)

    Atashpaz, Sina; Khani, Sajjad; Barzegari, Abolfazl; Barar, Jaleh; Vahed, Sepideh Zununi; Azarbaijani, Reza; Omidi, Yadollah

    2010-01-01

    The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCI. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method f r large-scale DNA isolation fromvarious bacterial species.

  20. PCR-fingerprint profiles of mitochondrial and genomic DNA extracted from Fetus cervi using different extraction methods.

    Science.gov (United States)

    Ai, Jinxia; Wang, Xuesong; Gao, Lijun; Xia, Wei; Li, Mingcheng; Yuan, Guangxin; Niu, Jiamu; Zhang, Lihua

    2016-06-01

    The use of Fetus cervi, which is derived from the embryo and placenta of Cervus Nippon Temminck or Cervs elaphus Linnaeus, has been documented for a long time in China. There are abundant species of deer worldwide. Those recorded by China Pharmacopeia (2010 edition) from all the species were either authentic or adulterants/counterfeits. Identification of their origins or authenticity became a key in the preparation of the authentic products. The traditional SDS alkaline lysis and salt-outing methods were modified to extract mt DNA and genomic DNA from fresh and dry Fetus cervi in addition to Fetus from false animals, respectively. A set of primers were designed by bioinformatics to target the intra-and inter-variation. The mt DNA and genomic DNA extracted from Fetus cervi using the two methods meet the requirement for authenticity. Extraction of mt DNA by SDS alkaline lysis is more practical and accurate than extraction of genomic DNA by salt-outing method. There were differences in length and number of segments amplified by PCR between mt DNA from authentic Fetus cervi and false animals Fetus. The distinctive PCR-fingerprint patterns can distinguish the Fetus cervi from adulterants and counterfeit animal Fetus.

  1. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    Science.gov (United States)

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  2. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform.

    Science.gov (United States)

    Geng, Tao; Bao, Ning; Sriranganathanw, Nammalwar; Li, Liwu; Lu, Chang

    2012-11-06

    The vast majority of genetic analysis of cells involves chemical lysis for release of DNA molecules. However, chemical reagents required in the lysis interfere with downstream molecular biology and often require removal after the step. Electrical lysis based on irreversible electroporation is a promising technique to prepare samples for genetic analysis due to its purely physical nature, fast speed, and simple operation. However, there has been no experimental confirmation on whether electrical lysis extracts genomic DNA from cells in a reproducible and efficient fashion in comparison to chemical lysis, especially for eukaryotic cells that have most of the DNA enclosed in the nucleus. In this work, we construct an integrated microfluidic chip that physically traps a low number of cells, lyses the cells using electrical pulses rapidly, then purifies and concentrates genomic DNA. We demonstrate that electrical lysis offers high efficiency for DNA extraction from both eukaryotic cells (up to ∼36% for Chinese hamster ovary cells) and bacterial cells (up to ∼45% for Salmonella typhimurium) that is comparable to the widely used chemical lysis. The DNA extraction efficiency has dependence on both the electric parameters and relative amount of beads used for DNA adsorption. We envision that electroporation-based DNA extraction will find use in ultrasensitive assays that benefit from minimal dilution and simple procedures.

  3. Efficiency comparison of three methods for extracting genomic DNA of the pathogenic oomycete Pythium insidiosum.

    Science.gov (United States)

    Lohnoo, Tassanee; Jongruja, Nujarin; Rujirawat, Thidarat; Yingyon, Wanta; Lerksuthirat, Tassanee; Nampoon, Umporn; Kumsang, Yothin; Onpaew, Pornpit; Chongtrakool, Piriyaporn; Keeratijarut, Angsana; Brandhorst, Tristan T; Krajaejun, Theerapong

    2014-03-01

    The fungus-like organism Pythium insidiosum is the causative agent of a life-threatening tropical infectious disease, pythiosis, which has high rates of morbidity and mortality. A lack of reliable diagnostic tools and effective treatments for pythiosis presents a major challenge to healthcare professionals. Unfortunately, surgical removal of infected organs remains the default treatment for pythiosis. P. insidiosum is an understudied organism. In-depth study of the pathogen at the molecular level could lead to better means of infection control High quality genomic DNA (gDNA) is needed for molecular biology-based research and application development, such as: PCR-assisted diagnosis, population studies, phylogenetic analysis, and molecular genetics assays. To evaluate quality and quantity of the P. insidiosum gDNA extracted by three separate protocols intended for fungal gDNA preparation. Seven P. insidiosum isolates were subjected to gDNA extraction by using conventional-extraction, rapid-extraction, and salt-extraction protocols. The conventional protocol offered the best gDNA in terms of quality and quantity, and could be scaled up. The rapid-extraction protocol had a short turnaround time, but the quality and quantity of the gDNA obtained were limited. The salt-extraction protocol was simple, rapid, and efficient, making it appealing for high throughput preparation of small-scale gDNA samples. Compared to rapid-extraction protocol, both conventional-extraction and salt-extraction protocols provided a better quality and quantity of gDNA, suitable for molecular studies of P. insidiosum. In contrast to the other two methods, the salt-extraction protocol does not require the use of hazardous and expensive materials such as phenol, chloroform, or liquid nitrogen.

  4. Qualification study of two genomic DNA extraction methods in different clinical samples.

    Science.gov (United States)

    Javadi, Alireza; Shamaei, Masoud; Mohammadi Ziazi, Leila; Pourabdollah, Mihan; Dorudinia, Atosa; Seyedmehdi, Seyed Mohammad; Karimi, Shirin

    2014-01-01

    The purity of genomic DNA (gDNA) extracted from different clinical specimens optimizes sensitivity of polymerase chain reaction (PCR) assays. This study attempted to compare two different DNA extraction techniques namely salting-out and classic phenol-chloroform. Qualification of two different DNA extraction techniques for 634 clinical specimens highly suspected of having mycobacterial infection was performed. Genomic DNA was extracted from 330 clinical samples using phenol-chloroform and 304 by non-toxic salting-out. Qualification of obtained gDNA was done through amplification of internal controls, β-actin and β-globin. β-actin-positive was detected in 279/330 (84%) and 272/304 (89%) samples by phenol-chloroform technique and salting-out, respectively. PCR inhibitor was found for the gDNA of 13/304 (4%) patient samples were negative by β-actin and β-globin tests via salting-out technique in comparison with gDNAs from 27/330 (8.5%) samples extracted by phenol-chloroform procedure. No statistically significant difference was found between phenol-chloroform technique and salting-out for 385 sputum, 29 bronchoalveolar lavage (BAL), 105 gastric washing, and 38 body fluid (P=0.04) samples. This illustrates that both techniques have the same quality for extracting gDNA. This study discloses salting-out as a non-toxic DNA extraction procedure with a superior time-efficiency and cost-effectiveness in comparison with phenol-chloroform and it can be routinely used in resource-limited laboratory settings.

  5. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    Science.gov (United States)

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters.

  6. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis.

    Science.gov (United States)

    Ghatak, Souvik; Muthukumaran, Rajendra Bose; Nachimuthu, Senthil Kumar

    2013-12-01

    Isolation of DNA from blood and buccal swabs in adequate quantities is an integral part of forensic research and analysis. The present study was performed to determine the quality and the quantity of DNA extracted from four commonly available samples and to estimate the time duration of the ensuing PCR amplification. Here, we demonstrate that hair and urine samples can also become an alternate source for reliably obtaining a small quantity of PCR-ready DNA. We developed a rapid, cost-effective, and noninvasive method of sample collection and simple DNA extraction from buccal swabs, urine, and hair using the phenol-chloroform method. Buccal samples were subjected to DNA extraction, immediately or after refrigeration (4-6°C) for 3 days. The purity and the concentration of the extracted DNA were determined spectrophotometerically, and the adequacy of DNA extracts for the PCR-based assay was assessed by amplifying a 1030-bp region of the mitochondrial D-loop. Although DNA from all the samples was suitable for PCR, the blood and hair samples provided a good quality DNA for restriction analysis of the PCR product compared with the buccal swab and urine samples. In the present study, hair samples proved to be a good source of genomic DNA for PCR-based methods. Hence, DNA of hair samples can also be used for the genomic disorder analysis in addition to the forensic analysis as a result of the ease of sample collection in a noninvasive manner, lower sample volume requirements, and good storage capability.

  7. Extraction of high quality genomic DNA from microsamples of human blood.

    Science.gov (United States)

    Ma, H W; Cheng, J; Caddy, B

    1994-01-01

    A simple and efficient method for extracting human genomic DNA from microsamples of blood has been developed. This method used sodium perchlorate, chloroform, polymerised silica gel and a dumbbell-shape tube, instead of proteinase K and phenol. The entire process took less than two hours, and high molecular weight DNA, in high yield and purity, was obtained from a few microlitres of human blood. DNA prepared in this way can be easily digested with restriction endonucleases and has been employed for DNA profiling and the polymerase chain reaction.

  8. Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk.

    Science.gov (United States)

    Usman, T; Yu, Y; Liu, C; Fan, Z; Wang, Y

    2014-04-29

    Isolation of sufficient quantities of high quality DNA is a prerequisite for molecular studies. Milk somatic cells can be used; however, inhibitors such as fats and proteins make milk a difficult medium for extracting large amounts of quality DNA. We optimized, evaluated and compared three methods, Modified Nucleospin Blood Kit method, Modified TianGen Kit method and Phenol-Chloroform method for genomic DNA extraction from bovine milk. Individual cows' milk and bulk milk samples were collected from a China agricultural university dairy farm. Genomic DNA extracted from each milk sample by the three methods was evaluated for quantity and purity by spectrophotometry and gel electrophoresis, as well as PCR and sequencing. All the three methods were found suitable for genomic DNA isolation from bovine milk, PCR applications, and sequencing. Comparing the three methods, we found that the Modified Nucleospin Blood Kit method was significantly better than the Phenol-Chloroform method in terms of quantity as well as quality (amount, concentration, 260/280 nm and 260/230 nm absorbance ratio), whereas, the Modified TianGen Kit method was more efficient than the Phenol-Chloroform method and cheaper than the Modified Nucleospine Blood Kit method; it yielded reasonably good quantities of good quality DNA and would be suitable for large-scale genotyping of lactating cows.

  9. Evaluation protocols for the extraction of genomic DNA from Bovine blood

    Directory of Open Access Journals (Sweden)

    Crispim Bruno do Amaral

    2016-08-01

    Full Text Available Basic studies on DNA extraction techniques are very important for the success of scientific papers in the field of molecular biology. The extraction and purification of nucleic acids are critical steps for establishing further genetic analysis. The objective of this study was to evaluate the efficacy of different protocols for DNA extraction by determining the quantity and quality of extracted genetic material and the possibility of amplification by PCR. We did DNA extraction and PCR of ten bovine blood samples. The test results obtained by spectrophotometry indicated that the quantity and quality of genomic DNA were considered satisfactory in all protocols for PCR. However, there was a statistically significant difference between the parameters measured, both in quantity and in quality (p <0.01. The extraction protocol using whole blood was more efficient in terms of time and quality; there was no degradation in all processes of extraction. It was also demonstrated that the possibility of amplification of the region of exon 2 of the leptin gene in extracted DNA exists.

  10. Genomic DNA extraction method from Annona senegalensis Pers ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-02-05

    Feb 5, 2014 ... Technology, Federal Polytechnic Bali, Taraba State, Nigeria. Accepted ... (CTAB) method is used to isolate DNA from tissues containing high levels of polysaccharides. The ... Isolation of plant nucleic acids for use in Southern.

  11. A rapid and inexpensive one-tube genomic DNA extraction method from Agrobacterium tumefaciens.

    Science.gov (United States)

    Kamble, Suresh P; Fawade, Madhukar M

    2014-04-01

    Many methods have been used to isolate genomic DNA, but some of them are time-consuming and costly, especially when extracting a large number of samples. Here we described an easy protocol using two simple solutions for DNA extraction from A. tumefaciens cells. Compared with the standard protocol, this protocol allows rapid DNA isolation with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) gDNA extraction was achieved within 15 min; (2) this method was cost-effective, since it only used calcium chloride and lysozyme; SDS, phenol, chloroform and proteinase K were not necessary; (3) the method gave high yield of gDNA (130 ng/loopful culture) compared with standard protocol that was suitable for restriction analysis; (4) the protocol can be carried out in a single test tube and the cells directly from solid media can be used. Thus, this protocol offers an easy, efficient and economical way to extract genomic DNA from A. tumefaciens.

  12. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains.

    Science.gov (United States)

    Zhang, Y J; Zhang, S; Liu, X Z; Wen, H A; Wang, M

    2010-07-01

    A simple and rapid method (designated thermolysis) for extracting genomic DNA from bulk fungal strains was described. In the thermolysis method, a few mycelia or yeast cells were first rinsed with pure water to remove potential PCR inhibitors and then incubated in a lysis buffer at 85 degrees C to break down cell walls and membranes. This method was used to extract genomic DNA from large numbers of fungal strains (more than 92 species, 35 genera of three phyla) isolated from different sections of natural Ophiocordyceps sinensis specimens. Regions of interest from high as well as single-copy number genes were successfully amplified from the extracted DNA samples. The DNA samples obtained by this method can be stored at -20 degrees C for over 1 year. The method was effective, easy and fast and allowed batch DNA extraction from multiple fungal isolates. Use of the thermolysis method will allow researchers to obtain DNA from fungi quickly for use in molecular assays. This method requires only minute quantities of starting material and is suitable for diverse fungal species.

  13. A protocol for high-quality genomic DNA extraction from legumes.

    Science.gov (United States)

    Agbagwa, I O; Datta, S; Patil, P G; Singh, P; Nadarajan, N

    2012-12-19

    Current DNA extraction protocols, which require liquid nitrogen, lyophilization and considerable infrastructure in terms of instrumentation, often impede the application of biotechnological tools in less researched crops in laboratories in developing countries. We modified and optimized the existing CTAB method for plant genomic DNA extraction by avoiding liquid nitrogen usage and lyophilization. DNA was extracted directly from freshly harvested leaves ground in pre-heated CTAB buffer. Chloroform:isoamyl alcohol (24:1) and RNase treatments followed by single-purification step decontaminated the samples thereby paving way for selective extraction of DNA. High molecular weight DNA yield in the range of 328 to 4776 ng/μL with an average of 1459 ng/μL was obtained from 45 samples of cultivated and wild Cajanus species. With an absorbance ratio at 260 to 280 nm, a range of 1.66 to 2.20, and a mean of 1.85, very low levels of protein and polysaccharide contamination were recorded. Forty samples can be extracted daily at a cost between 1.8 and US$2.0 per plant sample. This modified method is suitable for most plants especially members of the Leguminosae. Apart from Cajanus, it has been extensively applied in DNA extraction from Cicer and Vigna species.

  14. A rapid, non enzymatic method for genomic DNA extraction from whole blood and mammalian tissues

    Directory of Open Access Journals (Sweden)

    Adnan F. N Al-azawy

    2011-05-01

    Full Text Available Although several methods have been exist for DNA extraction from blood or animal tissues samples, traditionally most of these methods consume long time and using expensive chemicals such as proteinase K or toxic organic solvent such as phenol. On the other hand, there is no rapid, simple one method for the extraction of genomic DNA from blood and animal tissues samples in the same time. Since the objective of this study was to development easy modified method for DNA extraction from difference mammalian tissues such as fresh or frozen whole blood, kidney, liver, heart, muscles. The description method have many advantages, reducing the time, using inexpensive materials, no phenol, in addition to small amount of mammalian tissue is required (100-200 mg and 2 ml from whole blood. Genomic DNA was obtained having high molecular weight and good quality, shown by agarose gel electrophoresis and spectrophtometric analysis. These results shown that the modified method is simple, fast, safe, most economical, resulting in a high molecular genomic DNA of good quality from several mammalian tissues and can be used in medical laboratories and research centers.

  15. [Optimization of genomic DNA extraction with magnetic bead- based semi-automatic system].

    Science.gov (United States)

    Ling, Jie; Wang, Hao; Zhang, Shuai; Zhang, Dan-dan; Lai, Mao-de; Zhu, Yi-min

    2012-05-01

    To develop a rapid and effective method for genomic DNA extraction with magnetic bead-based semi-automatic system. DNA was extracted from whole blood samples semi-automatically with nucleic acid automatic extraction system.The concentration and purity of samples was determined by UV-spectrophotometer. Orthogonal design was used to analyze the main effect of lysis time, blood volume, magnetic bead quantity and ethanol concentration on the DNA yield; also the 2-way interaction of these factors. Lysis time, blood volume, magnetic bead quantity and ethanol concentration were associated with DNA yield (PDNA yield was higher under the condition with 15 min of lysis time, 100 μl of blood volume, 80 μl of magnetic beads and 80 % of ethanol. A significant association was found between the magnetic bead quantity and DNA purity OD260/OD280 (P=0.008). Interaction of blood volume and lysis time also existed (P=0.013). DNA purity was better when the extracting condition was 40 μl of magnetic beads, 15 min of lysis time and 100 μl of blood volume. Magnetic beads and ethanol concentration were associated with DNA purity OD260/OD230 (P=0.017 and Pgenomic DNA from the whole blood samples.

  16. Rapid extraction of genomic DNA from saliva for HLA typing on microarray based on magnetic nanobeads

    Science.gov (United States)

    Xie, Xin; Zhang, Xu; Yu, Bingbin; Gao, Huafang; Zhang, Huan; Fei, Weiyang

    2004-09-01

    A series of simplified protocols are developed for extracting genomic DNA from saliva by using the magnetic nanobeads as absorbents. In these protocols, both the enrichment of the target cells and the adsorption of DNA can be achieved simultaneously by our functionally modified magnetic beads in one step, and the DNA-nanobeads complex can be used as PCR templates. HLA typing based on an oligonucleotide array was conducted by hybridization with the PCR products. The result shows that the protocols are robust and sensitive.

  17. Extraction of PCR-amplifiable genomic DNA from Bacillus anthracisspores

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2003-05-19

    Bacterial endospore disruption and nucleic acid extractionresulting in DNA of PCR-amplifiable quality and quantity are not trivial.Responding to the needs of the Hazardous Materials Response Unit (HMRU),Laboratory Division, Federal Bureau of Investigation, protocols weredeveloped to close these gaps. Effectiveness and reproducibility of thetechniques were validated with laboratory grown pure spores of Bacillusanthracis and its close phylogenetic neighbors, and with spiked soils anddamaged samples.

  18. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations.

    Science.gov (United States)

    Bonaïti, Catherine; Parayre, Sandrine; Irlinger, Françoise

    2006-03-15

    Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.

  19. Extraction of genomic DNA using a new amino silica monolithic column.

    Science.gov (United States)

    Liu, Lijia; Yu, Shengbing; Yang, Shuixian; Zhou, Ping; Hu, Jiming; Zhang, Yibing

    2009-08-01

    A new amino silica monolithic column was developed for DNA extraction in a miniaturized format. The monolithic column was prepared in situ by polymerization of tetraethoxysilane (TEOS) and N-(beta-aminoethyl)-gamma-aminopropylmethyldimethoxysilane (AEAPMDMS). DNA was loaded in 50 mM tris(hydroxylmethyl)aminomethane-EDTA buffer at pH 7.0 and eluted with 300 mM potassium phosphate solution at pH 10.0. Under optimal condition, a 6.0-cm monolithic column provided a capacity of 56 ng DNA with an extraction efficiency of 71 +/- 5.2% (X +/- RSD). When the amino silica monolithic column was applied to extract genomic DNA from the whole blood of crucian carp, an extraction efficiency of 52 +/- 5.6% (X +/- RSD) was obtained by three extractions. Since the chaotropic-based sample loading and organic solvent wash steps were avoided in this procedure, the purified DNA was suitable for downstream processes such as PCR. This amino silica monolithic column was demonstrated to allow rapid and efficient DNA purification in microscale.

  20. A simplified genomic DNA extraction protocol for pre-germination genotyping in rice.

    Science.gov (United States)

    Duan, Y B; Zhao, F L; Chen, H D; Li, H; Ni, D H; Wei, P C; Sheng, W; Teng, J T; Zhang, A M; Xue, J P

    2015-06-11

    Genotyping is a critical step for molecular marker-assisted selection in rice. Rice genomic DNA samples for genotyping are typically isolated from living tissues such as seedlings. This requires the germination of all candidate seeds and extraction of DNA from the seedlings. Currently, an ideal individual is selected from a very large number of plants, which is time- and labor-consuming, requiring several transplantations of materials and sampling processes. In this study, we developed a simplified genomic DNA extraction protocol in rice by using amylase to treat half-seeds. The yields of genomic DNA from a half-seed of Indica and Japonica rice were greater than 203.8 ± 32.5 and 143.2 ± 25.5 ng, respectively, and the 260/280 nm absorbance ratio was 1.75-2.10. The DNA was confirmed to be sufficient for polymerase chain reaction amplification and can be used in a marker-assisted selection program.

  1. DNA Everywhere. A Guide for Simplified Environmental Genomic DNA Extraction Suitable for Use in Remote Areas

    Energy Technology Data Exchange (ETDEWEB)

    Pecora, Gabrielle N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reid, Francine C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tom, Lauren M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    Collecting field samples from remote or geographically distant areas can be a financially and logistically challenging. With participation of a local organization where the samples are originated from, gDNA samples can be extracted from the field and shipped to a research institution for further processing and analysis. The ability to set up gDNA extraction capabilities in the field can drastically reduce cost and time when running long-term microbial studies with a large sample set. The method outlined here has developed a compact and affordable method for setting up a “laboratory” and extracting and shipping gDNA samples from anywhere in the world. This white paper explains the process of setting up the “laboratory”, choosing and training individuals with no prior scientific experience how to perform gDNA extractions and safe methods for shipping extracts to any research institution. All methods have been validated by the Andersen group at Lawrence Berkeley National Laboratory using the Berkeley Lab PhyloChip.

  2. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples

    OpenAIRE

    Psifidi, Androniki; Dovas, Chrysostomos I.; Banos, Georgios

    2010-01-01

    Isolation of amplifiable genomic DNA is a prerequisite for the genetic assessment of diseases and disease susceptibility in farm animals. Milk somatic cells are a practical, animal friendly and cost-effective source of genomic DNA in milking ruminants. In this study, six different DNA extraction methods were optimized, evaluated and compared for the isolation of DNA from ovine milk samples. Methods I and 2 were direct applications of two commercial kits, Nucleospin (R) Blood and Nucleospin (R...

  3. An efficient protocol for genomic DNA extraction from formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Santos, Sara; Sá, Daniela; Bastos, Estela; Guedes-Pinto, Henrique; Gut, Ivo; Gärtner, Fátima; Chaves, Raquel

    2009-06-01

    Formalin-fixed paraffin-embedded tissues (FFPET) represent the largest source of archival biological material available for genomic studies. In this work we present an advanced protocol for extraction of high quality DNA from FFPET that can be applied in several molecular studies. Although cat mammary tumours (CMT) are the third most frequent tumour in cats the recovery of significant number of samples for molecular studies are in some way restricted to FFPET samples. We were able to obtain high quality DNA from FFPET of thirty six CMT that were subjected to pre-fixation and fixation processes routinely used in the veterinary hospitals. The quality of DNA obtained was tested by PCR amplification using six sets of primers that amplify single-copy fragments. The DNA fragments obtained were further sequenced. This protocol was able to provide FFPET gDNA that can be amplified and sequenced for larger fragments up to 1182bp.

  4. Near-quantitative extraction of genomic DNA from various food-borne eubacteria

    Science.gov (United States)

    In this work we have tested a dozen commercial bacterial genomic DNA extraction methodologies on an average of 7.70E6 (± 9.05%), 4.77E8 (± 31.0%), and 5.93E8 (± 4.69%) colony forming units (CFU) associated with 3 cultures (n = 3) each of Brochothrix thermosphacta (Bt), Shigella sonnei (Ss), and Esch...

  5. Genomic DNA extraction from medicinal plants available in Malaysia using a TriOmic(TM) improved extraction kit.

    Science.gov (United States)

    Mohd-Hairul, A R; Sade, A B; Yiap, B C; Raha, A R

    2011-11-08

    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.

  6. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk.

    Science.gov (United States)

    Liu, Y F; Gao, J L; Yang, Y F; Ku, T; Zan, L S

    2014-11-01

    Isolation of genomic DNA is a prerequisite for assessment of milk quality. As a source of genomic DNA, milk somatic cells from milking ruminants are practical, animal friendly, and cost-effective sources. Extracting DNA from milk can avoid the stress response caused by blood and tissue sampling of cows. In this study, we optimized a novel DNA extraction method for amplifying long (>1,000 bp) DNA fragments and used it to evaluate the isolation of DNA from small amounts of milk. The techniques used for the separation of milk somatic cell were explored and combined with a sodium dodecyl sulfate (SDS)-phenol method for optimizing DNA extraction from milk. Spectrophotometry was used to determine the concentration and purity of the extracted DNA. Gel electrophoresis and DNA amplification technologies were used for to determine DNA size and quality. The DNA of 112 cows was obtained from milk (samples of 13 ± 1 mL) and the corresponding optical density ratios at 260:280 nm were between 1.65 and 1.75. Concentrations were between 12 and 45 μg/μL and DNA size and quality were acceptable. The specific PCR amplification of 1,019- and 729-bp bovine DNA fragments was successfully carried out. This novel method can be used as a practical, fast, and economical mean for long genomic DNA extraction from a small amount of milk. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. A streamlined protocol for extracting RNA and genomic DNA from archived human blood and muscle.

    Science.gov (United States)

    Majumdar, Gipsy; Vera, Santiago; Elam, Marshall B; Raghow, Rajendra

    2015-04-01

    We combined the TRIzol method of nucleic acid extraction with QIAamp columns to achieve coextraction of RNA and genomic DNA from peripheral blood mononuclear cells (PBMCs) and biopsied skeletal muscle, both stored at -80 °C for many months. Total RNA was recovered from the upper aqueous phase of TRIzol. The interphase and organic phases were precipitated with ethanol, digested with proteinase K, and filtered through QIAamp MinElute columns to recover DNA. The combined protocol yielded excellent quality and quantity of nucleic acids from archived human PBMCs and muscle and may be easily adapted for other tissues.

  8. Genomic DNA extraction methods using formalin-fixed paraffin-embedded tissue.

    Science.gov (United States)

    Potluri, Keerti; Mahas, Ahmed; Kent, Michael N; Naik, Sameep; Markey, Michael

    2015-10-01

    As new technologies come within reach for the average cytogenetic laboratory, the study of chromosome structure has become increasingly more sophisticated. Resolution has improved from karyotyping (in which whole chromosomes are discernible) to fluorescence in situ hybridization and comparative genomic hybridization (CGH, with which specific megabase regions are visualized), array-based CGH (aCGH, examining hundreds of base pairs), and next-generation sequencing (providing single base pair resolution). Whole genome next-generation sequencing remains a cost-prohibitive method for many investigators. Meanwhile, the cost of aCGH has been reduced during recent years, even as resolution has increased and protocols have simplified. However, aCGH presents its own set of unique challenges. DNA of sufficient quantity and quality to hybridize to arrays and provide meaningful results is required. This is especially difficult for DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Here, we compare three different methods for acquiring DNA of sufficient length, purity, and "amplifiability" for aCGH and other downstream applications. Phenol-chloroform extraction and column-based commercial kits were compared with adaptive focused acoustics (AFA). Of the three extraction methods, AFA samples showed increased amplicon length and decreased polymerase chain reaction (PCR) failure rate. These findings support AFA as an improvement over previous DNA extraction methods for FFPE tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Assessment of the quality and quantity of genomic DNA recovered from canine blood samples by three different extraction methods.

    Science.gov (United States)

    Clements, Dylan N; Wood, Shona; Carter, Stuart D; Ollier, William E R

    2008-08-01

    The ideal method for genomic DNA (gDNA) extraction should recover high quantities of pure, integral gDNA from the original sample source with minimal co-extraction of inhibitors of downstream processes. Canine ethylenediamine tetra-acetic acid (EDTA) treated and clotted blood samples were extracted by three different methods (a silica column method, a phenol-chloroform method and a modified salt precipitation method). Phenol-chloroform and modified salt precipitation based extractions demonstrated similar relative recovery of gDNA with EDTA preserved blood, but were less efficient at recovering gDNA from clotted blood. Spectrophotometer measurement of phenol-chloroform based extractions tended to overestimate the quantity of gDNA recovered from extractions, and was associated with the greater co-extraction of PCR inhibitors. The silica column method recovered gDNA with equal efficiency, purity and integrity irrespective of the sample type or method of quantification.

  10. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures.

    Science.gov (United States)

    Votintseva, Antonina A; Pankhurst, Louise J; Anson, Luke W; Morgan, Marcus R; Gascoyne-Binzi, Deborah; Walker, Timothy M; Quan, T Phuong; Wyllie, David H; Del Ojo Elias, Carlos; Wilcox, Mark; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W

    2015-04-01

    We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with 90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools. Copyright © 2015, Votintseva et al.

  11. Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos I.; Bramis, Georgios; Lazou, Thomai; Russel, Claire L.; Arsenos, Georgios; Banos, Georgios

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals. PMID:25635817

  12. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples.

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos I; Bramis, Georgios; Lazou, Thomai; Russel, Claire L; Arsenos, Georgios; Banos, Georgios

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits) and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.

  13. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples.

    Directory of Open Access Journals (Sweden)

    Androniki Psifidi

    Full Text Available Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven different DNA extraction procedures, including phenol-chloroform, silica and magnetic beads based extractions, were examined to ascertain their relative effectiveness for extracting DNA from ovine blood samples. The quality and quantity of the differentially extracted DNA was subsequently assessed by spectrophotometric measurements, Qubit measurements, real-time PCR amplifications and gel electrophoresis. Processing time, intensity of labor and cost for each method were also evaluated. Results revealed significant differences among the eleven procedures and only four of the methods yielded satisfactory outputs. These four methods, comprising three modified silica based commercial kits (Modified Blood, Modified Tissue, Modified Dx kits and an in-house developed magnetic beads based protocol, were most appropriate for extracting high quality and quantity DNA suitable for large-scale microarray genotyping and also for long-term DNA storage as demonstrated by their successful application to 600 individuals.

  14. Direct DNA Extraction from Mycobacterium tuberculosis Frozen Stocks as a Reculture-Independent Approach to Whole-Genome Sequencing.

    Science.gov (United States)

    Bjorn-Mortensen, K; Zallet, J; Lillebaek, T; Andersen, A B; Niemann, S; Rasmussen, E M; Kohl, T A

    2015-08-01

    Culturing before DNA extraction represents a major time-consuming step in whole-genome sequencing of slow-growing bacteria, such as Mycobacterium tuberculosis. We report a workflow to extract DNA from frozen isolates without reculturing. Prepared libraries and sequence data were comparable with results from recultured aliquots of the same stocks. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Direct DNA Extraction from Mycobacterium tuberculosis Frozen Stocks as a Reculture-Independent Approach to Whole-Genome Sequencing

    DEFF Research Database (Denmark)

    Bjorn-Mortensen, K; Zallet, J; Lillebaek, T

    2015-01-01

    Culturing before DNA extraction represents a major time-consuming step in whole-genome sequencing of slow-growing bacteria, such as Mycobacterium tuberculosis. We report a workflow to extract DNA from frozen isolates without reculturing. Prepared libraries and sequence data were comparable...

  16. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk

    National Research Council Canada - National Science Library

    Jose Carlos Ribeiro Junior; Ronaldo Tamanini; Bruna Fritegoto Soares; Aline Marangon de Oliveira; Fernando de Godoi Silva; Francine Fernandes da Silva; Nayara Assis Augusto; Vanerli Beloti

    2016-01-01

    .... The aim of this study was to compare the efficiency of boiling in conjunction with four other methods for the genomic DNA extraction of sporulated bacteria with proteolytic and lipolytic potential...

  17. AutoMate Express™ forensic DNA extraction system for the extraction of genomic DNA from biological samples.

    Science.gov (United States)

    Liu, Jason Y; Zhong, Chang; Holt, Allison; Lagace, Robert; Harrold, Michael; Dixon, Alan B; Brevnov, Maxim G; Shewale, Jaiprakash G; Hennessy, Lori K

    2012-07-01

    The AutoMate Express™ Forensic DNA Extraction System was developed for automatic isolation of DNA from a variety of forensic biological samples. The performance of the system was investigated using a wide range of biological samples. Depending on the sample type, either PrepFiler™ lysis buffer or PrepFiler BTA™ lysis buffer was used to lyse the samples. After lysis and removal of the substrate using LySep™ column, the lysate in the sample tubes were loaded onto AutoMate Express™ instrument and DNA was extracted using one of the two instrument extraction protocols. Our study showed that DNA was recovered from as little as 0.025 μL of blood. DNA extracted from casework-type samples was free of detectable PCR inhibitors and the short tandem repeat profiles were complete, conclusive, and devoid of any PCR artifacts. The system also showed consistent performance from day-to-day operation. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  18. A simplified arthropod genomic-DNA extraction protocol for polymerase chain reaction (PCR)-based specimen identification through barcoding.

    Science.gov (United States)

    Margam, Venu M; Gachomo, Emma W; Shukle, John H; Ariyo, Oluwole O; Seufferheld, Manfredo J; Kotchoni, Simeon O

    2010-10-01

    Genomic DNA extraction protocols generally require the use of expensive and hazardous reagents necessary for decontamination of phenolic compounds from the extracts. In addition, they are lengthy, hindering large-scale sample extractions necessary for high-throughput analyses. Here we describe a simple, time and cost-efficient method for genomic DNA extraction from insects. The extracted DNA was successfully used in a Polymerase Chain Reaction (PCR), making it suitable for automation for large-scale genetic analysis and barcoding studies. The protocol employs a single purification step to remove polysaccharides and other contaminating compounds using a non-hazardous reagent buffer. In addition, we conducted a bioinformatics database analysis as proof of concept for the efficiency of the DNA extraction protocol by using universal barcoding primers specific for cytochrome c oxidase I gene to identify different arthropod specimens through Barcode of Life Database (BOLD) database search. The usefulness of this protocol in various molecular biology and biodiversity studies is further discussed.

  19. Single Lysis-Salting Out Method of Genomic DNA Extraction From Dried Blood Spots.

    Science.gov (United States)

    Shaik, Muntaj; Shivanna, Devaraju Kuramkote; Kamate, Mahesh; Ab, Vedamurthy; Tp, Kruthika-Vinod

    2016-11-01

    Dried blood spots (DBS) are an important form of bio-sampling and valuable approach for storing blood samples for genetic studies. This has necessitated in developing an effective protocol to isolate genomic DNA (gDNA) from DBS samples.In this study, we have elucidated a dependable and non-hazardous "single lysis-salting out" (SLSO) protocol of gDNA extraction from DBS and compared against the available commercial kits. For the purpose of this study, blood spots were collected on S&S 903 filter cards from 10 healthy volunteers and 30 patients with glutaric aciduria type I (GA-I). The gDNA was extracted from theseDBS samples by SLSO, QIAamp® gDNA Micro kit and innuPREP forensic kit methods. The quantity and quality of gDNA obtained from these methods were determined by measuring the absorbance using a Nanodrop spectrophotometer. The SLSO method showed four-fold and eight-fold increased yield of gDNA in healthy volunteers and patient samples, respectively, compared to commercial kits (p<0.0001). The protocol was also found to be cost efficient, reducing the per sample cost to almost half. The suitability of this method for genetic studies was confirmed by performing R402W genotyping by RFLP in GA-I patients. The genotyping results showed the presence of R402W mutation in 20% (6/30) of patients. The SLSO method was found to be inexpensive, non-hazardous and a suitable technique for isolating gDNA from DBS samples for genetic studies. © 2016 Wiley Periodicals, Inc.

  20. In situ genomic DNA extraction for PCR analysis of regions of interest in four plant species and one filamentous fungi

    Directory of Open Access Journals (Sweden)

    Luis E. Rojas

    2014-07-01

    Full Text Available The extraction methods of genomic DNA are usually laborious and hazardous to human health and the environment by the use of organic solvents (chloroform and phenol. In this work a protocol for in situ extraction of genomic DNA by alkaline lysis is validated. It was used in order to amplify regions of DNA in four species of plants and fungi by polymerase chain reaction (PCR. From plant material of Saccharum officinarum L., Carica papaya L. and Digitalis purpurea L. it was possible to extend different regions of the genome through PCR. Furthermore, it was possible to amplify a fragment of avr-4 gene DNA purified from lyophilized mycelium of Mycosphaerella fijiensis. Additionally, it was possible to amplify the region ap24 transgene inserted into the genome of banana cv. `Grande naine' (Musa AAA. Key words: alkaline lysis, Carica papaya L., Digitalis purpurea L., Musa, Saccharum officinarum L.

  1. A simple and efficient total genomic DNA extraction method for individual zooplankton.

    Science.gov (United States)

    Fazhan, Hanafiah; Waiho, Khor; Shahreza, Md Sheriff

    2016-01-01

    Molecular approaches are widely applied in species identification and taxonomic studies of minute zooplankton. One of the most focused zooplankton nowadays is from Subclass Copepoda. Accurate species identification of all life stages of the generally small sized copepods through molecular analysis is important, especially in taxonomic and systematic assessment of harpacticoid copepod populations and to understand their dynamics within the marine community. However, total genomic DNA (TGDNA) extraction from individual harpacticoid copepods can be problematic due to their small size and epibenthic behavior. In this research, six TGDNA extraction methods done on individual harpacticoid copepods were compared. The first new simple, feasible, efficient and consistent TGDNA extraction method was designed and compared with the commercial kit and modified available TGDNA extraction methods. The newly described TGDNA extraction method, "Incubation in PCR buffer" method, yielded good and consistent results based on the high success rate of PCR amplification (82%) compared to other methods. Coupled with its relatively consistent and economical method the "Incubation in PCR buffer" method is highly recommended in the TGDNA extraction of other minute zooplankton species.

  2. An optimized chloroplast DNA extraction protocol for grasses (Poaceae proves suitable for whole plastid genome sequencing and SNP detection.

    Directory of Open Access Journals (Sweden)

    Kerstin Diekmann

    Full Text Available BACKGROUND: Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. CONCLUSIONS/SIGNIFICANCE: The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus x giganteus, Panicoideae. The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.

  3. Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays.

    Science.gov (United States)

    Koshy, Linda; Anju, A L; Harikrishnan, S; Kutty, V R; Jissa, V T; Kurikesu, Irin; Jayachandran, Parvathy; Jayakumaran Nair, A; Gangaprasad, A; Nair, G M; Sudhakaran, P R

    2017-02-01

    The extraction of genomic DNA is the crucial first step in large-scale epidemiological studies. Though there are many popular DNA isolation methods from human whole blood, only a few reports have compared their efficiencies using both end-point and real-time PCR assays. Genomic DNA was extracted from coronary artery disease patients using solution-based conventional protocols such as the phenol-chloroform/proteinase-K method and a non-phenolic non-enzymatic Rapid-Method, which were evaluated and compared vis-a-vis a commercially available silica column-based Blood DNA isolation kit. The appropriate method for efficiently extracting relatively pure DNA was assessed based on the total DNA yield, concentration, purity ratios (A260/A280 and A260/A230), spectral profile and agarose gel electrophoresis analysis. The quality of the isolated DNA was further analysed for PCR inhibition using a murine specific ATP1A3 qPCR assay and mtDNA/Y-chromosome ratio determination assay. The suitability of the extracted DNA for downstream applications such as end-point SNP genotyping, was tested using PCR-RFLP analysis of the AGTR1-1166A>C variant, a mirSNP having pharmacogenetic relevance in cardiovascular diseases. Compared to the traditional phenol-chloroform/proteinase-K method, our results indicated the Rapid-Method to be a more suitable protocol for genomic DNA extraction from human whole blood in terms of DNA quantity, quality, safety, processing time and cost. The Rapid-Method, which is based on a simple salting-out procedure, is not only safe and cost-effective, but also has the added advantage of being scaled up to process variable sample volumes, thus enabling it to be applied in large-scale epidemiological studies.

  4. Evaluation and optimisation of bacterial genomic DNA extraction for no-culture techniques applied to vinegars.

    Science.gov (United States)

    Mamlouk, Dhouha; Hidalgo, Claudio; Torija, María-Jesús; Gullo, Maria

    2011-10-01

    Direct genomic DNA extraction from vinegars was set up and suitability for PCR assays performed by PCR/DGGE and sequencing of 16S rRNA gene. The method was tested on 12 intermediary products of special vinegars, fruit vinegars and condiments produced from different raw materials and procedures. DNAs extraction was performed on pellets by chemical, enzymatic, resin mediated methods and their modifications. Suitable yield and DNA purity were obtained by modification of a method based on the use of PVP/CTAB to remove polyphenolic components and esopolysaccharides. By sequencing of bands from DGGE gel, Gluconacetobacter europaeus, Acetobacter malorum/cerevisiae and Acetobacter orleanensis were detected as main species in samples having more than 4% of acetic acid content. From samples having no acetic acid content, sequences retrieved from excised bands revealed high similarity with prokaryotes with no function on vinegar fermentation: Burkholderia spp., Cupriavidus spp., Lactococcus lactis and Leuconostoc mesenteroides. The method was suitable to be applied for no-culture study of vinegars containing polyphenols and esopolysaccharides allowing a more complete assessment of vinegar bacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. An improved protocol and a new grinding device for extraction of genomic DNA from microorganisms by a two-step extraction procedure.

    Science.gov (United States)

    Zhang, S S; Chen, D; Lu, Q

    2012-05-21

    Current protocols to extract genomic DNA from microorganisms are still laborious, tedious and costly, especially for the species with thick cell walls. In order to improve the effectiveness of extracting DNA from microbial samples, a novel protocol, defined as two-step extraction method, along with an improved tissue-grinding device, was developed. The protocol included two steps, disruption of microbial cells or spores by grinding the sample together with silica sand in a new device and extraction of DNA with an effective buffer containing cell lysis chemicals. The device was prepared by using a commercial electric mini-grinder, adapted with a grinding stone, and a sample cup processed by lathing from a polytetrafluoroethylene rod. We tested the method with vegetative cells of four microbial species and two microbial spores that have thick cell walls and are therefore hard to process; these included Escherichia coli JM109, Bacillus subtilis WB600, Sacchromyces cerevisiae INVSc1, Trichoderma viride AS3.3711, and the spores of S. cerevisiae and T. viride, respectively, representing Gram-positive bacteria, Gram-negative bacteria, yeast, filamentous fungi. We found that this new method and device extracted usable quantities of genomic DNA from the samples. The DNA fragments that were extracted exceeded 23 kb. The target sequences up to about 5 kb were successfully and exclusively amplified by PCR using extracted DNA as the template. In addition, the DNA extraction was finalized within 1.5 h. Thus, we conclude that this two-step extraction method is an effective and improved protocol for extraction of genomic DNA from microbial samples.

  6. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    Science.gov (United States)

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  7. Simplified extraction of good quality genomic DNA from a variety of ...

    African Journals Online (AJOL)

    enoh

    2012-03-22

    Mar 22, 2012 ... Unlike other methods, no detergent was included in the isolation steps. ... from cationic and/or anionic detergents, different chemicals and .... Table 1. Spectrophotometric analysis of different plant genomic DNA preparations.

  8. Evaluation of three methods of DNA extraction from paraffin-embedded material for the amplification of genomic DNA by means of the PCR technique

    Directory of Open Access Journals (Sweden)

    MESQUITA Ricardo Alves

    2001-01-01

    Full Text Available There are several protocols reported in the literature for the extraction of genomic DNA from formalin-fixed paraffin-embedded samples. Genomic DNA is utilized in molecular analyses, including PCR. This study compares three different methods for the extraction of genomic DNA from formalin-fixed paraffin-embedded (inflammatory fibrous hyperplasia and non-formalin-fixed (normal oral mucosa samples: phenol with enzymatic digestion, and silica with and without enzymatic digestion. The amplification of DNA by means of the PCR technique was carried out with primers for the exon 7 of human keratin type 14. Amplicons were analyzed by means of electrophoresis in an 8% polyacrylamide gel with 5% glycerol, followed by silver-staining visualization. The phenol/enzymatic digestion and the silica/enzymatic digestion methods provided amplicons from both tissue samples. The method described is a potential aid in the establishment of the histopathologic diagnosis and in retrospective studies with archival paraffin-embedded samples.

  9. Effective DNA/RNA Co-Extraction for Analysis of MicroRNAs, mRNAs, and Genomic DNA from Formalin-Fixed Paraffin-Embedded Specimens

    Science.gov (United States)

    Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Background Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. Principal Findings For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. Significance We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which

  10. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    Science.gov (United States)

    Kotorashvili, Adam; Ramnauth, Andrew; Liu, Christina; Lin, Juan; Ye, Kenny; Kim, Ryung; Hazan, Rachel; Rohan, Thomas; Fineberg, Susan; Loudig, Olivier

    2012-01-01

    Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded

  11. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens.

    Directory of Open Access Journals (Sweden)

    Adam Kotorashvili

    Full Text Available BACKGROUND: Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens. PRINCIPAL FINDINGS: For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and -RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses. SIGNIFICANCE: We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of

  12. Genomic DNA from rat blood: A comparison of two extraction methods

    Directory of Open Access Journals (Sweden)

    Takić Miladinov, D.

    2016-09-01

    Full Text Available In this study, two methods for DNA extraction from fresh rat blood were compared. One is based on the use of cetyltrimethylammonium bromide (CTAB method, while the other one is well-known salting out method. Spectrophotometric analysis was employed to assess yield and purity of isolated DNA, while agarose gel electrophoresis was carried out to evaluate DNA integrity. The results have clearly demonstrated that the extraction method has significantly influenced the quantity and purity of isolated DNA. By using the CTAB method, a larger quantity of high-molecular weight DNA with good purity is obtained which, along with timeand cost-efficiency of the procedure, makes this method more suitable for the extraction of DNA from rat whole blood.

  13. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    Science.gov (United States)

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.

  14. A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples.

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos I; Banos, Georgios

    2010-04-01

    Isolation of amplifiable genomic DNA is a prerequisite for the genetic assessment of diseases and disease susceptibility in farm animals. Milk somatic cells are a practical, animal friendly and cost-effective source of genomic DNA in milking ruminants. In this study, six different DNA extraction methods were optimized, evaluated and compared for the isolation of DNA from ovine milk samples. Methods 1 and 2 were direct applications of two commercial kits, Nucleospin((R)) Blood and Nucleospin((R)) Tissue, respectively. Methods 3 and 4 were based on modified protocols of methods 1 and 2, respectively, aiming at increasing DNA recovery and integrity, and eliminating PCR inhibitors. Method 5 was a standard Phenol-Chloroform protocol application and method 6 was based on an in-house developed protocol using silica as the affinity matrix. Spectrophotometer, gel electrophoresis and real-time PCR measurements were used as criteria for evaluating quantity and quality of the extracted DNA. Processing time, intensity of labor and cost for each method were also evaluated. Results suggested that methods 1-4 were considered suitable for molecular downstream applications and performed better than methods 5 and 6. Modifications of protocols 3 and 4 increased the quantity and quality of the extracted DNA from ovine milk samples. Method 3 was proved to be highly efficient and robust for large scale use as demonstrated by its successful application to 1000 individual ovine milk and 50 bulk milk samples.

  15. Potential application of superparamagnetic nanoparticles for extraction of bacterial genomic DNA from contaminated food and environmental samples.

    Science.gov (United States)

    Basu, Semanti; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Sarkar, Keka

    2013-03-15

    Isolation of high-molecular-weight DNA is essential for many molecular biology applications. Owing to the presence of polymerase chain reaction (PCR) inhibitors, there is a scarcity of suitable protocols for PCR-ready DNA extraction from food and natural environments. The conventional chemical methods of DNA extraction are time consuming and laborious and the yield is very low. Thus the aim of this research was to develop a simple, rapid, cost-effective method of genomic DNA extraction from food (milk and fruit juice) and environmental (pond water) samples and to detect bacterial contaminants present in those samples. This approach is efficient for both Gram-positive and Gram-negative bacteria from all the studied samples. Herein super paramagnetic bare iron oxide nanoparticles were implemented for bacterial genomic DNA isolation. The method was also compared to the conventional phenol-chloroform method in the context of quality, quantity and timing process. This method took only half an hour or less to obtain high-molecular-weight purified DNA from minimum bacterial contamination. Additionally, the method was directly compatible to PCR amplification. The problem of availability of suitable generalized methods for DNA isolation from various samples including food and environmental has been solved by a nanobiotechnological approach that may prove to be extremely useful in biotechnological applications. © 2012 Society of Chemical Industry.

  16. Extraction of Genomic DNA Using Magnetic Nanoparticles (Fe3O4 as a Solid-Phase Support

    Directory of Open Access Journals (Sweden)

    Z. M. Saiyed

    2007-01-01

    Full Text Available Magnetic separation technology, using magnetic particles, is quick and easy method for sensitive and reliable captures of specific proteins, genetic material and other biomolecules. The current paper describes a universal genomic DNA extraction method optimized in our laboratory using magnetic nanoparticles as a solid phase adsorbent. The yields of the isolated DNA with magnetic method were higher or equivalent to the conventional procedures in all the samples tested. Additionally, the magnetic method takes less than 15 minutes to extract DNA as against several hours taken by conventional protocols. Furthermore, the isolated DNA was found to function satisfactorily in PCR amplification and restriction endonuclease digestion. The developed procedure is simple, quick, cheap, robust and does not require the use of organic solvents or sophisticated equipments; thereby making it more amenable to automation.

  17. Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study.

    Science.gov (United States)

    Chacon-Cortes, Diego; Haupt, Larisa M; Lea, Rod A; Griffiths, Lyn R

    2012-05-01

    Genomic DNA obtained from patient whole blood samples is a key element for genomic research. Advantages and disadvantages, in terms of time-efficiency, cost-effectiveness and laboratory requirements, of procedures available to isolate nucleic acids need to be considered before choosing any particular method. These characteristics have not been fully evaluated for some laboratory techniques, such as the salting out method for DNA extraction, which has been excluded from comparison in different studies published to date. We compared three different protocols (a traditional salting out method, a modified salting out method and a commercially available kit method) to determine the most cost-effective and time-efficient method to extract DNA. We extracted genomic DNA from whole blood samples obtained from breast cancer patient volunteers and compared the results of the product obtained in terms of quantity (concentration of DNA extracted and DNA obtained per ml of blood used) and quality (260/280 ratio and polymerase chain reaction product amplification) of the obtained yield. On average, all three methods showed no statistically significant differences between the final result, but when we accounted for time and cost derived for each method, they showed very significant differences. The modified salting out method resulted in a seven- and twofold reduction in cost compared to the commercial kit and traditional salting out method, respectively and reduced time from 3 days to 1 hour compared to the traditional salting out method. This highlights a modified salting out method as a suitable choice to be used in laboratories and research centres, particularly when dealing with a large number of samples.

  18. A method for the extraction of genomic DNA from human brain tissue fixed and stored in formalin for many years.

    Science.gov (United States)

    Savioz, A; Blouin, J L; Guidi, S; Antonarakis, S E; Bouras, C

    1997-04-01

    We report a method providing access to high molecular weight, polymerase chain reaction (PCR)-amplifiable genomic DNA from brains stored in formalin for many years. It consists mainly of an intensive proteinase K treatment of ground tissue previously embedded in agarose plugs, followed by a washing and an elution step. The method was tested on brains fixed and stored in formalin for up to 46 years. All extracted DNA show an identical pattern of degradation ranging from well-preserved (more than 20 kb) to 400-bp-long fragments. This was demonstrated for DNA extracted from the cerebellums of elderly psychiatric and geriatric patients (of more than 60 years of age), male and female, demented or not, with postmortem delays longer than 1 h and shorter than 1 day. In all these cases PCR amplification of a 838-bp-long beta-actin product was successfully performed when proteinase K treatment was sufficiently effective to generate pure DNA. Thus, high molecular weight, PCR-amplifiable genomic DNA can be extracted from brains stored in formalin for almost half a century.

  19. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk

    Directory of Open Access Journals (Sweden)

    Jose Carlos Ribeiro Junior

    2016-10-01

    Full Text Available The spore-forming microbiota is mainly responsible for the deterioration of pasteurized milk with long shelf life in the United States. The identification of these microorganisms, using molecular tools, is of particular importance for the maintenance of the quality of milk. However, these molecular techniques are not only costly but also labor-intensive and time-consuming. The aim of this study was to compare the efficiency of boiling in conjunction with four other methods for the genomic DNA extraction of sporulated bacteria with proteolytic and lipolytic potential isolated from raw milk in the states of Paraná and Maranhão, Brazil. Protocols based on cellular lysis by enzymatic digestion, phenolic extraction, microwave-heating, as well as the use of guanidine isothiocyanate were used. This study proposes a method involving simple boiling for the extraction of genomic DNA from these microorganisms. Variations in the quality and yield of the extracted DNA among these methods were observed. However, both the cell lysis protocol by enzymatic digestion (commercial kit and the simple boiling method proposed in this study yielded sufficient DNA for successfully carrying out the Polymerase Chain Reaction (PCR of the rpoB and 16S rRNA genes for all 11 strains of microorganisms tested. Other protocols failed to yield sufficient quantity and quality of DNA from all microorganisms tested, since only a few strains have showed positive results by PCR, thereby hindering the search for new microorganisms. Thus, the simple boiling method for DNA extraction from sporulated bacteria in spoiled milk showed the same efficacy as that of the commercial kit. Moreover, the method is inexpensive, easy to perform, and much less time-consuming.

  20. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs.

  1. Qualitative and quantitative evaluation of the genomic DNA extracted from GMO and non-GMO foodstuffs with four different extraction methods.

    Science.gov (United States)

    Peano, Clelia; Samson, Maria Cristina; Palmieri, Luisa; Gulli, Mariolina; Marmiroli, Nelson

    2004-11-17

    The presence of DNA in foodstuffs derived from or containing genetically modified organisms (GMO) is the basic requirement for labeling of GMO foods in Council Directive 2001/18/CE (Off. J. Eur. Communities 2001, L1 06/2). In this work, four different methods for DNA extraction were evaluated and compared. To rank the different methods, the quality and quantity of DNA extracted from standards, containing known percentages of GMO material and from different food products, were considered. The food products analyzed derived from both soybean and maize and were chosen on the basis of the mechanical, technological, and chemical treatment they had been subjected to during processing. Degree of DNA degradation at various stages of food production was evaluated through the amplification of different DNA fragments belonging to the endogenous genes of both maize and soybean. Genomic DNA was extracted from Roundup Ready soybean and maize MON810 standard flours, according to four different methods, and quantified by real-time Polymerase Chain Reaction (PCR), with the aim of determining the influence of the extraction methods on the DNA quantification through real-time PCR.

  2. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples

    OpenAIRE

    Androniki Psifidi; Dovas, Chrysostomos I.; Georgios Bramis; Thomai Lazou; Russel, Claire L; Georgios Arsenos; Georgios Banos

    2015-01-01

    Over the recent years, next generation sequencing and microarray technologies have revolutionized scientific research with their applications to high-throughput analysis of biological systems. Isolation of high quantities of pure, intact, double stranded, highly concentrated, not contaminated genomic DNA is prerequisite for successful and reliable large scale genotyping analysis. High quantities of pure DNA are also required for the creation of DNA-banks. In the present study, eleven differen...

  3. 改良CTAB法提取连钱草基因组DNA%A Modified CTAB Method for Extraction of Genome DNA from Glechoma Longituba

    Institute of Scientific and Technical Information of China (English)

    鄢嘉; 罗娟; 王小刚

    2011-01-01

    Objective: To improve the method of extraction high-quality genomic DNA from Glechoma longituba. Methods: The different concentrations of CTAB extraction buffer were adopted for the genomic DNA extraction. The total DNA was detected by UV scanning, electrophoresis and PCR amplification. Results: The genomic DNA extracted with 2% concentration of CTAB is in high-purity and good integrity. DNA was not degraded significantly and RNA was completely digested. PCR fragments show clear and good polymorphism. Conclusion- The modified CTAB method is suitable for the PCR amplification and other molecular biology researches.%目的:建立高质量的连钱草基因组DNA的提取方法.方法:在传统十六烷基三甲基溴化铵(CTAB)法的基础上加以改良,比较不同浓度CTAB对提取的连钱草基因组DNA质量的影响,并对所得的DNA采用紫外分光光度计、电泳和PCR扩增等方法进行检测.结果:用2%浓度的CTAB处理所获得的基因组DNA质量较好,蛋白质残留少,RNA消化彻底,DNA无明显降解,进行PCR扩增得到的条带清晰,多态性好.结论:改良CTAB法提取的连钱草基因组DNA适合进行以PCR为基础的分子生物学研究.

  4. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR.

    Science.gov (United States)

    Küchler, Erika Calvano; Tannure, Patricia Nivoloni; Falagan-Lotsch, Priscila; Lopes, Taliria Silva; Granjeiro, Jose Mauro; Amorim, Lidia Maria Fonte

    2012-01-01

    The aim of this study was to evaluate, by PCR-RFLP and real-time PCR, the yield and quality of genomic DNA collected from buccal cells by mouthwash after different storage times at room temperature. A group of volunteers was recruited to collect buccal cells using a mouthwash solution. The collected solution was divided into 3 tubes, one tube were used for immediate extraction and the remaining received ethanol and were kept at room temperature for 4 and 8 days followed by dna extraction. The concentration, purity and integrity of the dna were determined using spectrophotometry and electrophoresis. DNA quality differences among the three incubation times were also evaluated for genotyping EGF +61 a/g (rs 4444903) polymorphism by PCR-RFLP and for IRF6 polymorphism (rs 17015215) using real-time PCR. There was no significant difference of dna yield (p=0.75) and purity (p=0.86) among the three different incubation times. DNA obtained from different incubation times presented high-molecular weight. The PCR-RFLP and real time pcr reactions were successfully performed for all DNA samples, even those extracted after 8 days of incubation. All samples genotyped by real-time pcr presented c allele for irf6 gene polymorphism (homozygous: cc; heterozygous: Ct) and the C allele was used as a reference for Ct values. The samples presented the same genotype for the different times in both techniques. We demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and pcr amplified after storage in mouthwash solution at room temperature.

  5. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Erika Calvano Küchler

    2012-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate, by PCR-RFLP and real-time PCR, the yield and quality of genomic DNA collected from buccal cells by mouthwash after different storage times at room temperature. MATERIAL AND METHODS: A group of volunteers was recruited to collect buccal cells using a mouthwash solution. The collected solution was divided into 3 tubes, one tube were used for immediate extraction and the remaining received ethanol and were kept at room temperature for 4 and 8 days followed by dna extraction. The concentration, purity and integrity of the dna were determined using spectrophotometry and electrophoresis. DNA quality differences among the three incubation times were also evaluated for genotyping EGF +61 a/g (rs 4444903 polymorphism by PCR-RFLP and for IRF6 polymorphism (rs 17015215 using real-time PCR. RESULTS: There was no significant difference of dna yield (p=0.75 and purity (p=0.86 among the three different incubation times. DNA obtained from different incubation times presented high-molecular weight. The PCR-RFLP and real time pcr reactions were successfully performed for all DNA samples, even those extracted after 8 days of incubation. All samples genotyped by real-time pcr presented c allele for irf6 gene polymorphism (homozygous: cc; heterozygous: Ct and the C allele was used as a reference for Ct values. The samples presented the same genotype for the different times in both techniques. CONCLUSION: We demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and pcr amplified after storage in mouthwash solution at room temperature.

  6. Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs.

    Science.gov (United States)

    Shi, Ruobing; Wang, Yucong; Hu, Yunli; Chen, Lei; Wan, Qian-Hong

    2009-09-04

    Solid-phase extraction has been widely employed for the preparation of DNA templates for polymerase chain reaction (PCR)-based analytical methods. Among the variety of adsorbents studied, magnetically responsive silica particles are particularly attractive due to their potential to simplify, expedite, and automate the extraction process. Here we report a facile method for the preparation of such magnetic particles, which entails impregnation of porous silica microspheres with iron salts, followed by calcination and reduction treatments. The samples were characterized using powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry (VSM). XRD data show that magnetite nanocrystals of about 27.2 nm are produced within the pore channels of the silica support after reduction. SEM images show that the as-synthesized particles exhibit spherical shape and uniform particle size of about 3 microm as determined by the silica support. Nitrogen sorption data confirm that the magnetite-loaded silica particles possess typical mesopore structure with BET surface area of about 183 m(2)/g. VSM data show that the particles display paramagnetic behavior with saturation magnetization of 11.37 emu/g. The magnetic silica microspheres coated with silica shells were tested as adsorbents for rapid extraction of genomic DNA from soybean-derived products. The purified DNA templates were amplified by PCR for screening of genetically modified organisms (GMOs). The preliminary results confirm that the DNA extraction protocols using magnetite-loaded silica microspheres are capable of producing DNA templates which are inhibitor-free and ready for downstream analysis.

  7. Comparison of Genomic DNA Extraction Methods in Chieh-qua (Benincasa hispida )%节瓜基因组DNA提取方法比较研究

    Institute of Scientific and Technical Information of China (English)

    安重莹; 谢大森; 彭庆务; 何晓明

    2011-01-01

    Four DNA extraction methods,urea,high salt with low pH,SDS and CTAB,were compared for seed,cotyledon and different stage true leaf tissue of Chieh-qua. The results showed that quality genomic DNA can be extracted from all materials tested;however,the first true leave and cotyledon were preferable materials. High yield of DNA was observed in urea method and SDS method. The urea method was considered as an effective DNA extraction method for dry seeds and high quality DNA was obtained by CTAB method. The genomic DNA extracted from different materials by four methods was all amplified in PCR test.%以节瓜的成熟干种子、子叶和不同发育阶段的真叶为材料,选用尿素提取法、高盐低pH值法、SDS法和CTAB法等4种DNA提取方法进行比较.结果表明:不同节瓜材料均可以提取到基因组DNA,其中子叶和第1片真叶的提取效果最好;尿素提取法提取种子DNA最为简便快捷,CTAB法提取叶片能得到纯度较高的基因组DNA.经PCR检验,干种子和子叶提取的基因组DNA都可用于PCR扩增.

  8. A simple and cost-effective protocol for extraction of genomic DNA from ethanol preserved black lfies (Simuliidae:Diptera)

    Institute of Scientific and Technical Information of China (English)

    Neelamegam Rameshkumar; Sankarappan Anbalagan; Nagarajan Kayalvizhi; Vimalanathan Arun Prasanna; Muthukalingan Krishnan

    2016-01-01

    Objective:To investigate the efficacy of extraction methodology forthe proposedDNA from the ethanol preserved black flies (Simuliidae: Diptera). Methods: This study addressed a simple and effectiveprotocol forextraction ofDNA from black flies stored in the ethanol. The sizes of larval and adult black flies ranged from 1.5 to 2.5 mm and 3 to 7 mm, respectively. To demonstrate the efficacy of the proposed methodology, the DNA was extracted from the ethanol preserved sample of black flies using the commercial kids. The extractedDNA was further validated in thePCR amplification using internal transcribed spacer-1rDNA and cytochrome oxidase subunit II rDNA target primers. Results: Interestingly, a minor modification in the proposed methodology yielded a goodDNA concentration in comparison with the commercial kids. The extractedDNA sample using the proposed methodology was successfully validated in thePCR amplification using internal transcribed spacer-1 rDNA and cytochrome oxidase subunit II rDNA genes. Conclusions: The proposedDNA extraction procedure yielded good concentration ofDNA from the ethanol preserved black flies. The added advantage is that the procedure is suitable for a range of insect species preserved in the ethanol obtained from the various field conditions.

  9. CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue

    Science.gov (United States)

    Corbisier, P.; Vincent, S.; Schimmel, H.; Kortekaas, A.-M.; Trapmann, S.; Burns, M.; Bushell, C.; Akgoz, M.; Akyürek, S.; Dong, L.; Fu, B.; Zhang, L.; Wang, J.; Pérez Urquiza, M.; Bautista, J. L.; Garibay, A.; Fuller, B.; Baoutina, A.; Partis, L.; Emslie, K.; Holden, M.; Chum, W. Y.; Kim, H.-H.; Phunbua, N.; Milavec, M.; Zel, J.; Vonsky, M.; Konopelko, L. A.; Lau, T. L. T.; Yang, B.; Hui, M. H. K.; Yu, A. C. H.; Viroonudomphol, D.; Prawettongsopon, C.; Wiangnon, K.; Takabatake, R.; Kitta, K.; Kawaharasaki, M.; Parkes, H.

    2012-01-01

    Key comparison CCQM-K86 was performed to demonstrate and document the capacity of interested national metrology institutes (NMIs) and designated institutes (DIs) in the determination of the relative quantity of two specific genomic DNA fragments present in a biological tissue. The study provides the support for the following measurement claim: "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length in the range of 70 to 100 nucleotides in a single genomic DNA extract from ground maize seed materials". The study was carried out under the auspices of the Bioanalysis Working Group (BAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) and was piloted by the Institute for Reference Materials and Methods (IRMM) in Geel (Belgium). The following laboratories (in alphabetical order) participated in this key comparison: AIST (Japan), CENAM (Mexico), DMSc (Thailand), GLHK (Hong Kong), IRMM (European Union), KRISS (Republic of Korea), LGC (United Kingdom), MIRS/NIB (Slovenia), NIM (PR China), NIST (USA), NMIA (Australia), TÜBITAK UME (Turkey) and VNIIM (Russian Federation). The following laboratories (in alphabetical order) participated in a pilot study that was organized in parallel: LGC (United Kingdom), PKU (PR China), NFRI (Japan) and NIMT (Thailand). Good agreement was observed between the reported results of eleven participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  10. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  11. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  12. Efficient and cost-effective extraction of genomic DNA from formalin-fixed and paraffin-embedded tissues.

    Science.gov (United States)

    Weiss, A Th A; Delcour, N M; Meyer, A; Klopfleisch, R

    2011-07-01

    Diagnostic and investigative molecular pathology frequently has to resort to extraction of DNA from formalin-fixed and paraffin-embedded tissue samples. Although many different protocols are reported for this type of material, extraction of sufficient amounts of intact DNA is still challenging. Here, the authors report a reproducible, simple, cost-effective, and efficient protocol that yields up to 140 μg of DNA from approximately 10 to 15 mg of formalin-fixed and paraffin-embedded tissue samples and compare it to available protocols. The protocol allows stable amplification of DNA fragments up to 600 bp in length in a wide variety of tissues. © The Authors 2011

  13. 麦芽糊精基因组DNA不同提取方法的比较%Comparison of different extraction methods of genomic DNA from malt dextrin

    Institute of Scientific and Technical Information of China (English)

    徐伟丽; 李启明; 汪家琦; 马莺

    2011-01-01

    To find out a better one from three malt dextrin DNA extraction methods for the molecular marker analysis of high quality and sufficient samples.With malt dextrin purchased from the market as the tested material,the genomic DNA was extracted from malt dextrin using three different methods,such as CTAB method,SDS method and GuSCN method.The extraction effects of different methods were compared.The results of optical density detection showed that extraction amount and purity with GuSCN method were better than SDS method and CTAB method.The results of agarose gel electrophoresis determination showed that genome DNA band extracted by SDS method was clear and stable and genome DNA extracted by SDS method and CTAB method were not banded.The genomic DNA extracted with these methods all could be used in PCR reaction.The results showed that DNA could be obtained with three of all methods from malt dextrin,but the GuSCN method was the best extraction method.%采用不同方法对麦芽糊精基因组DNA进行提取,从中选取满足麦芽糊精材料进行分子标记检测的最好的DNA提取方法。以市售麦芽糊精为材料,分别采用CTAB、SDS和异硫氰酸胍3种方法提取基因组DNA,比较不同方法的提取效果。光密度检测结果显示,异硫氰酸胍法的提取量和纯度均优于SDS法和CTAB法;琼脂糖凝胶电泳检测结果显示异硫氰酸胍法提取的基因组DNA谱带清晰、重复性好,SDS法和CTAB法提取的基因DNA观察不到谱带;3种方法提取的麦芽糊精基因组DNA都能够满足PCR分析的需要。结果表明,3种方法均能有效地从麦芽糊精中获得DNA,然而异硫氰酸胍法优于SDS法和CTAB法。

  14. 藜麦基因组DNA提取方法的比较%Comparison of Genomic DNA Extraction Methods for Chenopodium quinoa Willd

    Institute of Scientific and Technical Information of China (English)

    陆敏佳; 莫秀芳; 王勤; 陆国权; 蒋玉蓉

    2015-01-01

    To rapidly obtain high-quality genomic DNA from Chenopodium quinoa Wil d, the genomic DAN in different tissues (leaves, stems and roots) of Chenopodi-um quinoa Wil d was extracted by modified CTAB method, SDS method and high-salt low-pH method, respectively. The quality and yield of extracted DNA was deter-mined using agarose gel electrophoresis and UV spectrophotometry. At the same time, the PCR-SSR and SSCP molecular detection was also performed. The results showed that the gel test strips, without obvious decomposition, of al the extraction methods were relatively obvious; the genomic DNA yield extracted by modified CTAB method was highest, fol owed by that by SDS method, and the genomic DNA extracted by high-salt low-pH method was lowest; the genomic DNA yields extracted by different methods from Chenopodium quinoa Wil d leaves were al high-er than those from roots and stems; the quality of Chenopodium quinoa Wil d ge-nomic DNA extracted by modified CTAB method and high-salt low-pH method was better, and polyphenols, polysaccharides and other impurities were removed more completely. The PCR-SSR and SSCP detection results showed that the genomic DNA extracted by different methods from different tissues of Chenopodium quinoa Wil d al could be better amplified, and high-quality strips could be obtained. So the Chenopodium quinoa Wil d genomic DNA extracted by the three methods al can be used for subsequent molecular biology research.%为了快速获取高质量的藜麦基因组DNA,采用改良的 CTAB法、SDS法和高盐低pH值法等3种方法分别提取藜麦不同组织(叶、茎、根部)的基因组 DNA。通过琼脂糖凝胶电泳和紫外分光光度法测定比较所提 DNA的质量和产量,同时进行了 PCR-SSR、SSCP等分子检测。用不同方法提取藜麦不同组织部位DNA的结果表明:不同提取方法的凝胶检测条带均比较清晰,且无明显降解;改良的CTAB法所提取的 DNA产率最高, SDS

  15. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: A comparison of recovery methods

    Directory of Open Access Journals (Sweden)

    Huda H. Al-Griw

    2017-08-01

    Full Text Available Efficient extraction of genomic DNA (gDNA from biological materials found in harsh environments is the first step for successful forensic DNA profiling. This study aimed to evaluate two methods for DNA recovery from animal tissues (livers, muscles, focusing on the best storage temperature for DNA yield in term of quality, quantity, and integrity for use in several downstream molecular techniques. Six male Swiss albino mice were sacrificed, liver and muscle tissues (n=32 were then harvested and stored for one week in different temperatures, -20C, 4C, 25C and 40C. The conditioned animal tissues were used for DNA extraction by Chelex-100 method or NucleoSpin Blood and Tissue kit. The extracted gDNA was visualized on 1.5% agarose gel electrophoresis to determine the quality of gDNA and analysed spectrophotometrically to determine the DNA concentration and the purity. Both methods, Chelex-100 and NucleoSpin Blood and Tissue kit found to be appropriate for yielding high quantity of gDNA, with the Chelex100 method yielding a greater quantity (P < 0.045 than the kit. At -20C, 4C, and 25C temperatures, the concentration of DNA yield was numerically lower than at 40C. The NucleoSpin Blood and Tissue kit produced a higher (P=0.031 purity product than the Chelex-100 method, particularly for muscle tissues. The Chelex-100 method is cheap, fast, effective, and is a crucial tool for yielding DNA from animal tissues (livers, muscles exposed to harsh environment with little limitations.

  16. Optimization on the Extraction Method of Genomic DNA from Anthurium andraeanum%红掌基因组DNA提取方法的优化

    Institute of Scientific and Technical Information of China (English)

    张弢

    2009-01-01

    [Objective] Genomic DNA of Anthurium andraeanum was extracted with modified SDS method.[Method] With 4 different color varieties of A.andraeanum as materials, genomic DNA of A.andraeanum was extracted with modified SDS and CTAB method.The absorbance value was measured by ultraviolet spectrophotometer at A260 nm and A280 nm and the ratio of A260 nm/A280 nm was used to determine the DNA purity and the mass concentration.[Result] Genomic DNA extracted with modified SDS method was transparent and non-impurities and the ratio of A260 nm/A280 nm was between 1.6-2.0.The DNA purity was so higher as to meet the requirements of molecular biology research.Genomic DNA extracted with CTAB method was brown or light yellow and the ratio of A260 nm/A280 nm was less than 1.6.The DNA was lower in the purity as well as the concn.and had a large number of proteins.CTAB was not suitable for extracting genomic DNA from A.andraeanum.[Conclusion] Genomic DNA of A.andraeanum with high quality could be extracted by modified SDS method and its purity and concn.could meet the requirements of molecular biology research on A.andraeanum.%[目的] 采用改良的SDS法提取红掌基因组DNA.[方法] 以4种不同花色的红掌品种为材料,分别采用改良SDS法和CTAB法提取红掌基因组DNA,用紫外分光光度计测定其DNA在A260 nm和A280 nm下的吸光值,根据A260 nm/A280 nm的比值检测DNA的纯度和浓度.[结果] 用改良SDS方法提取的DNA透明且无杂质,A260 nm/A280 nm比值在1.6~2.0,DNA纯度较高,可满足红掌分子生物学试验的要求;用CTAB法提取的DNA呈褐色或淡黄色,A260 nm/A280 nm比值小于1.6,DNA纯度较低并且浓度低,含有大量蛋白,此方法不适于提取红掌基因组DNA.[结论] 采用改良SDS法可以提取到高质量的红掌基因组DNA,所提取的DNA的纯度和浓度可以满足红掌分子生物学研究的要求.

  17. 春兰基因组DNA提取方法的比较%Comparative Studies on Extracting Genome DNA of Cymbidium goeringii

    Institute of Scientific and Technical Information of China (English)

    李小玲; 华智锐

    2014-01-01

    To explore the optimal genomic DNA extraction method of Cymbidium goeringii,with wild Cymbidium goeringii in Shangluo as experimental material, genomic DNA of wild Cymbidium goeringii has been extracted by the method of SDS, CTAB and high salt CTAB. The results showed that high salt CTAB was the best of three methods, followed by CTAB and SDS.%为研究了春兰(Cymbidium goeringii)基因组DNA的最佳提取方法,以商洛野生春兰为试验材料,分别采用SDS法、CTAB法、高盐CTAB法提取了春兰基因组DNA。结果表明,高盐CTAB法提取效果较好,其次是CTAB法,SDS法提取效果最差。

  18. Comparison of different methods to extract Vibrio cholerae Genomic DNA%霍乱弧菌基因组DNA提取方法的比较研究

    Institute of Scientific and Technical Information of China (English)

    赵伟; 白晓潇; 刘小雨; 苏领彦

    2012-01-01

    Objective DNA molecular diagnosis represents the development trend of the Vibrio cholerae detection. Effective extraction of the genomic DNA is a key step in the detection of V. cholerae by molecular biological methods. At present, various bacterial DNA extraction methods are used, however, the concentration and purity of DNA varied due to the different principle and procedure. Methods In this study, four different DNA extraction methods (phenol-chloroform extraction, CTAB, commercial kit test and liquid nitrogen grinding) were used to extract V. cholerae genomic DNA and the results were compared. Results The results showed that the efficiencies of phenol-chloroform extraction and CTAB were not high, but their costs were low. Compared with liquid nitrogen grinding by which the efficiency was improved, the commercial kit test still had the advantage of higher efficiency besides the easy operability. Conclusion Phenol-chloroform extraction, CTAB and liquid nitrogen grinding are only suitable for the PCR detection of V. cholerae, but the commercial kit test is suitable for the PCR detection, molecular typing and genomic sequencing of V. cholerae.%目的 目前细菌DNA提取方法众多,但由于提取原理和步骤的差别,获得DNA的浓度及纯度各不相同,本文通过霍乱弧菌基因组DNA提取方法的比较研究,为不同需求提供不同的DNA提取方法建议.方法 本文采用4种不同DNA提取方法(酚-氯仿抽提法、CTAB法、试剂盒法和液氮研磨法)提取霍乱弧菌基因组DNA,并比较各种方法提取DNA的效果.结果 酚-氯仿抽提法和CTAB法提取的基因组DNA效果相对较差,但成本低;液氮研磨法提取的基因组DNA效果大大改进;试剂盒法不仅操作简便,而且提取的基因组DNA效果最好.结论 4种方法均适合霍乱弧菌的聚合酶链反应(PCR)检测,试剂盒法还适用于分子分型和基因组测序分析.

  19. 多种方法提取苎麻组织基因组 DNA 的质量比较%Comparison of the Genomic DNA Extraction Methods From Different Ramie Tissues

    Institute of Scientific and Technical Information of China (English)

    张平; 夏东升; 蔡亚君; 曾庆福; 王军

    2014-01-01

    Extraction of high quality genomic DNA from Ramie tissue is the foundation for the study of molecular biology of ramie. In order to study ramie genome by some molecular test, such as PCR , In this study, CTAB, SDS and urea methods were used to extract the ramie genomic DNA from the phloem tissue of ramie fiber mature phase, seed and root tissue respectively. The DNA extraction effect of three different tissues and methods were compared by ultraviolet spectrophotometry and agarose electroforesis. The results showed that the extraction effect of CTAB method is best than the other two method;the extraction effect of the phloem tissue of ramie fiber mature phase is best in three different tissues, follow by the seed and root tissue. The seed is able to extract high quantity genomic DNA in three extraction methods. In addition we study different milling time of the phloem tissue and seeds to total DNA quality effect by used CTAB and SDS methods. The results showed that the phloem tissue grinding for 4min, seed tissue grinding for 6 minutes can get high quality DNA.%以苎麻[Boehmeria nivea (L.) Gaudich.]的纤维成熟期韧皮组织、种子和根组织为试验材料,采用CTAB 法、SDS 法和尿素法提取苎麻基因组 DNA。3种 DNA 提取方法比较,CTAB 法提取的 DNA 质量优于其他两种方法;3种试验材料比较,韧皮组织提取的 DNA 质量最好,其次是种子和根组织。种子提取的DNA 浓度最高。设计梯度试验分析不同研磨时间对韧皮组织和种子总 DNA 提取质量的影响,结果显示韧皮组织研磨4 min、种子研磨6 min 提取的总 DNA 质量较好。

  20. 一种适合于PCR扩增的真菌基因组DNA提取方法%RAPID EXTRACTION OF FUNGAL GENOMIC DNA FOR PCR AMPLIFICATION

    Institute of Scientific and Technical Information of China (English)

    李晓倩

    2011-01-01

    以药用真菌灰树花和蛹虫草以及4种植物内生担子菌为材料,优化一种适用于PCR扩增的高质量基因组DNA提取方法.结果表明,采用改良SDS法提取药用真菌和植物内生担子菌基因组DNA的数量和质量都较为理想,A260/A280为1.8~1.9,DNA产量在110-170μg·g-1湿菌体.将提取的DNA作为模板PCR扩增rDNA ITS片段,扩增条带清晰,结果稳定、准确.该方法简便易行,成本低廉,适合富含蛋白质和多糖的真菌基因组DNA的提取.%An efficient method for extracting high quality genome DNA from two medicinal fungi and four endophytic fungi which had plenty of proteins, polysaccharides and many other chemical substances was optimized for PCR amplification. The results showed that quality and quantity of genomic DNA extraction from medicinal fungi and endophytic fungi with improved SDS method were perfect. The DNA purity was checked by analyzing the ratio of A260/A280 and 110 ~ 170μg · g - 1 DNA were obtained from every gram mycelia( wet weight)of different strains. They were used as the templates of PCR and the amplified bands were clear, stable and reliable. This technique was simple, convenient and inexpensive, which was especially adapted to extraction of fungal genomic DNA with abundant proteins and polysaccharides.

  1. DNA extraction from crayfish exoskeleton

    National Research Council Canada - National Science Library

    Li, Yanhe; Wang, Weimin; Liu, Xiaolian; Luo, Wei; Zhang, Jie; Gul, Yasmeen

    2011-01-01

    .... However, it is difficult to extract DNA from them. This study was intended to investigate CE as a DNA source and design an easy and efficient DNA extraction protocol for polymerase chain reactions...

  2. Comparison of Different Extraction Methods of Genomic DNA from Soybean Powder%豆粉基因组DNA不同提取方法的比较

    Institute of Scientific and Technical Information of China (English)

    徐伟丽; 马莺; 杜明; 汪家琦; 李启明

    2011-01-01

    In the present study, to find out the better methods of soybean powder genomic DNA extraction for the molecular marker analysis of high quality and sufficient samples, the extraction method of genomic DNA from soybean powder purchased from market was optimized. There are 12 methods used in the extraction of DNA, in which pyrolysis, high-salt low-pH, isopropyl alcohol, CTAB, SDS or GuSCN, and their modified methods were involved. The effects of different methods were compared by detecting the DNA by optical density, agarosegel electrophoresis and polymerase chain reaction (PCR). Results showed that the genomic DNA extracted by all methods except for modified High-salt low-pH method could be used in PCR reaction. Meanwhile, the better DNA concentration and purity will be gained by different methods in the order of modified pyrolysis method, modified isopropyl alcohol method, pyrolysis method, isopropyl alcohol method, High-salt low-pH method, modified CTAB method, CTAB method and modified SDS method. These methods are simply to operate, fast to gain results, and suitable for the extraction of total DNA from soybean powder.%以市售豆粉为材料,分别采用热解法、异丙醇沉淀法、CTAB法、SDS法、高盐低pH法等以及它们的改良方法提取基因组DNA,并对提取的DNA进行光密度、琼脂糖凝胶电泳和PCR检测.结果表明除改进高盐低pH法外,其他所有方法提取的基因组DNA均可满足PCR检测要求.同时,综合考虑基因组DNA的纯度和浓度,此研究认为豆粉基因组DNA提取方法的优劣依次为:改进热解法、改进异丙醇沉淀法、热解法、异丙醇沉淀法、高盐低pH法、改进CTAB法、CTAB法和改进SDS法.这几种豆粉基因组DNA提取方法都具有操作简单、耗时短、利于快速检测的优点.

  3. The extraction method of mosquito mitochondrial genome DNA%蚊虫线粒体基因组DNA提取方法

    Institute of Scientific and Technical Information of China (English)

    邹依霖; 丁奕然; 罗钱春; 陈斌

    2015-01-01

    Objective To optimize the method for the extraction of mosquito mitochondrial genome DNA. Methods The optimized method was improved from the protocol for the extraction of animal mitochondrial genomes, and was based on the modification for high⁃concentration⁃salt precipitation and nuclear DNA removing. The mtDNA samples were tested using spectrophotometry, agarose gel electrophoresis and amplification products of COⅠ. Results The method was showed to be rapid and efficient for single mosquito in our studies. The gel electrophoresis demonstrated that the mtDNA samples extracted were essentially free of nuclear DNA and protein. A number of applications with different mosquito species indicated that the method was highly suitable to extract the mitochondrial genome DNA of individual mosquitoes. Conclusion The optimized method is easy and efficient for mosquito samples, and the extracted mtDNA is high quality and suitable to studies on mitochondrial DNA.%目的:优化和改进一套适用于蚊虫线粒体基因组DNA的提取方法。方法从动物线粒体基因组DNA提取的一般方法、步骤和原理出发,主要采用改进的高盐沉淀法,并注意去除核DNA的污染。用紫外分光光度计、琼脂糖凝胶电泳和线粒体COⅠ基因PCR扩增产物鉴定所提的线粒体基因组DNA。结果改进后的方法适用于单只蚊虫,用凝胶电泳检测后发现无核DNA与蛋白质污染。改进后的方法简便易行,经过多种蚊虫线粒体基因组提取的实验表明,提取的蚊虫线粒体基因组DNA质量高,能满足PCR、克隆、测序分析等要求。结论优化和改进的提取方法简便易行,得到的蚊虫线粒体基因组DNA质量高,能满足相关分析要求。

  4. 提取陈旧血液标本中DNA的三种方法比较%Comparison of three methods for human genomic DNA extraction for long-term stored whole blood

    Institute of Scientific and Technical Information of China (English)

    刘正旺; 云美玲; 钟江华; 史金铃; 郑磊; 张云霞; 蔡望伟

    2012-01-01

    目的 寻找适合从陈旧全血中提取基因组DNA建立基因组库的方法.方法 分别用改良的酚-氯仿法、SDS法、试剂盒法从陈旧全血中提取基因组DNA,采用聚合酶链反应(PCR)对提取的基因组DNA进行评估.结果 提取的基因组DNA经统计学分析,3种提取基因组DNA的方法之间差异有统计学意义(P<0.01),以改良的酚-氯仿法提取的基因组DNA效率最高,试剂盒法次之,SDS法较差.结论 建基因组库推荐改良的酚-氯仿法.%Objective To choose a proper methods for genomic DNA extraction in order to build a genomic DNA library. Method The efficiency of three genomic DNA extraction methods including modified phenol-chloroform method, SDS method and Kit method were compared. Genomic DNA was extracted using each genomic DNA extraction method and detected by PCR. Result The extraction efficiency of three DNA extraction methods had significant statistical difference (P<0.0l).The extraction efficiency of modified phenol-chloroform method was the highest, however, SDS and Kit method extraction methods were low. Conclusion is Modified phenol-chloroform method was recommended for human genomic DNA extraction in order to build a genomic DNA library.

  5. Study on the Extraction Methods of Genomic DNA from Caulis spatholobi%鸡血藤DNA提取方法的研究

    Institute of Scientific and Technical Information of China (English)

    姜建萍; 田辉; 崔健; 封毅

    2012-01-01

    [目的]筛选一种适合鸡血藤DNA的提取方法.[方法]以鸡血藤嫩叶为材料,分别采用液氮-CTAB法、石英砂-CTAB法以及石英砂-SDS法提取基因组DNA,利用琼脂糖凝胶电泳和紫外分光光度计检测提取的DNA样品,对提取方法进行比较筛选[结果]电泳检测中,石英砂-CTAB法所提DNA条带亮度最高,质量较好.紫外检测中,石英砂-CTAB法提取的DNA A260/A280值大于1.8,比其他两种方法提取的DNA蛋白质污染小,其提取的DNA纯度和得率均最高,液氮-CTAB法提取DNA得率居中,石英砂-SDS法提取DNA得率较低.[结论]该研究结果表明石英砂比液氮更能简便快速地将叶片研碎,CTAB提取缓冲液比SDS提取缓冲液可更有效地去除杂质,使细胞裂解、DNA析出.因此,石英砂-CTAB法更适合鸡血藤DNA的提取.%[Objective] To find out a suitable method for extracting genome DNA from Caulis spatholobi. [ Method ] Genome DNA was extracted from the young leaves of C. spatholobi by the method of liquid nitrogen-CTAB, quartz sand-CTAB and quartz sand-SDS. The extracted genome DNA was then determined through UV spectrophotometer and agarose gel electrophoresis. And the best extraction method was selected. [Result] According to the electrophoresis detection, the brightness of DNA strap extracted by the method of quartz sand-CTAB was the highest, and the quality was much better. According to the UV detection, with the quartz sand-CTAB method, A260/A280 of DNA was greater than 1.8, the protein' s contamination was less than other two methods, and the purity and yield were the highest. The yield of DNA extracted by liquid nitrogen-CTAB method was medium and the yield of DNA extracted by quartz sand-SDS method was lower. [ Conclusion ] The results indicated that the leaf blade was levigated more conveniently and fleetly by quartz sand than liquid nitrogen. The cell was spitted and the DNA was separated out more efficiently by CTAB buffer than SDS buffer

  6. Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs

    DEFF Research Database (Denmark)

    Montero-Pau, Javier; Gómez, Africa; Muñoz, Joaquin

    2008-01-01

    We describe the application of a simple, low-cost, and effective method of DNA extraction (hot sodium hydroxide and Tris, HotSHOT) to the diapausing propagules of continental aquatic invertebrates for its use in PCR amplification. We illustrate the use of the technique in cladocerans, rotifers...

  7. Genomic DNA Extraction from Chrysanthemum Using High Salt CTAB Method%高盐沉淀CTAB法提取温室菊花基因组DNA

    Institute of Scientific and Technical Information of China (English)

    马月萍; 戴思兰

    2009-01-01

    Based on CTAB method,some protocal was modified according to the physiological characteristics of high containing contents of polyphenolics and polysaeeharides in Chrysanthemum.Adding 50% volume of 5 mol·L-1 NaCI into the solution which precipitating.High quality genomic DNA can be extracted from Chrysanthemum using the improved method.The DNA WaS preferable enough to be used as PCR template and digested by restriction enzyme completely and other studies of molecular biology.%根据温室菊花植物组织富含多酚、多糖的具体特性,对CTAB法加以改进:在待沉淀液中加入1/2体积5 mol·L~NaCI.改进后的方法获得的DNA质量良好,电泳条带清晰,提取过程无明显的DNA降解,基本上排除了多酚物质的干扰.以提取的DNA为模板,用一对引物扩增菊花中18S基因,得到条带单一,大小与已知一致,说明获得的DNA可以进行PCR扩增,EcoR I 酶切基因组DNA图谱表明,提取的DNA能被限制性内切酶完全酶切,可以满足相关的分子生物学研究.

  8. The NucleoSpin® DNA Clean-up XS kit for the concentration and purification of genomic DNA extracts: an alternative to microdialysis filtration.

    Science.gov (United States)

    Hudlow, William R; Krieger, Robert; Meusel, Markus; Sehhat, Joshua C; Timken, Mark D; Buoncristiani, Martin R

    2011-06-01

    Traditionally, DNA extracts from biological evidence items have been concentrated and rinsed using microdialysis filtration units, including the Centricon(®) and Microcon(®) centrifugal filter devices. As an alternative to microdialysis filtration, we present an optimized method for using NucleoSpin(®) XS silica columns to concentrate and clean-up aqueous extracts from the organic extraction of DNA from biological samples. The method can be used with standard organic extraction and dithiothreitol (DTT)-based differential extraction methods with no modifications to these methods prior to the concentration and clean-up step. Extracts from laboratory-prepared bloodstains, saliva and semen stains have been successfully amplified with both qPCR and STR assays. Finally, the total time to process a set of samples with the NucleoSpin(®) XS column is approximately 30 min vs. approximately 1.5h with the Centricon(®) YM-100 filter device.

  9. Rapid 96-well plates DNA extraction and sequencing procedures to identify genome-wide transposon insertion sites in a difficult to lyse bacterium: Lactobacillus casei.

    Science.gov (United States)

    Scornec, Hélène; Tichit, Magali; Bouchier, Christiane; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J; Licandro-Seraut, Hélène

    2014-11-01

    Random transposon mutagenesis followed by adequate screening methods is an unavoidable procedure to characterize genetics of bacterial adaptation to environmental changes. We have recently constructed a mutant library of Lactobacillus casei and we aimed to fully annotate it. However, we have observed that, for L. casei which is a difficult to lyse bacterium, methods used to identify the transposon insertion site in a few mutants (transposon rescue by restriction and recircularization or PCR-based methods) were not transposable for a larger number because they are too time-consuming and sometimes not reliable. Here, we describe a method for large-scale and reliable identification of transposon insertion sites in a L. casei mutant library of 9250 mutants. DNA extraction procedure based on silica membranes in 96-column format was optimized to obtain genomic DNA from a large number of mutants. Then reliable direct genomic sequencing was improved to fit the obtained genomic DNA extracts. Using this procedure, readable and identifiable sequences were obtained for 87% of the L. casei mutants. This method extends the applications of a library of this type, reduces the number of insertions needed to be screened, and allows selection of specific mutants from an arrayed and stored mutant library. This method is applicable to any already existing mutant library (obtained by transposon or insertional mutagenesis) and could be useful for other bacterial species, especially for highly lysis-resistant bacteria species such as lactic acid bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparison of different extraction methods of genomic DNA from milk powder%奶粉基因组DNA不同提取方法的比较

    Institute of Scientific and Technical Information of China (English)

    徐伟丽; 马莺

    2012-01-01

    There are 6 methods,pyrolysis,high-salt low-pH,isopropyl alcohol,CTAB,SDS or GuSCN,used in the extraction of milk powder genomic DNA for the molecular marker analysis of high quality and sufficient samples.To find out the better method of them,the effects of different methods were compared by detecting the DNA by optical density,agarosegel electrophoresis and polymerase chain reaction(PCR).The results showed that the genomic DNA extracted by all methods except for isopropyl alcohol and SDS method could be used in PCR reaction.Meanwhile,the better DNA concentration and purity could be gained by different methods in the order of pyrolysis,GuSCN,High-salt low-pH,CTAB.These methods are simply to operate,fast to gain results,and suitable for the extraction of total DNA from milk powder.%为选择适合奶粉材料进行分子标记检测的DNA提取方法,以市售奶粉为材料,采用6种不同的方法提取基因组DNA,并比较这6种方法的提取效果.结果表明,除异丙醇沉淀法和十二烷基硫酸钠法(SDS法)外,其他4种方法提取的基因组DNA均适用于聚合酶链式反应(PCR)检测.同时,结合基因组DNA的纯度和质量浓度,明确奶粉基因组DNA提取方法的优劣依次为:热解法、异硫氰酸胍法、高盐低pH法和十六烷基三甲基溴化铵法(CTAB法).

  11. Method improvement for extraction genomic DNA from thrips%蓟马基因组DNA提取方法的改进

    Institute of Scientific and Technical Information of China (English)

    张利娟; 沈登荣; 张宏瑞; 张宏伟; 李正跃

    2011-01-01

    在昆虫分子生物学的研究中,从昆虫样品中有效地获得总DNA是分子实验成功的前提.但是,常规提取方法由于不能保留昆虫所有的形态特征,这对于体形较小的珍稀标本是不适用的.文中通过对改进的盐析法和STE法与KAc法的对比,发现盐析法和STE法提取的DNA质量明显优于KAc法,并且能够通过针刺从单头蓟马中成功提取DNA而不影响形态鉴定.2种提取方法的优点是单头蓟马在提取过DNA以后,虫体仍然可用以做成永久玻片进行形态鉴定.提取的DNA经实验证明,可以顺利的进行mtDNA-COI和rDNA-ITS2基因序列引物的扩增.%To isolate total DNA from insect samples is a crucial prerequisite for successful PCR reactions. However,regular methods for isolating insect DNA can't resolve all the morphological characters of insects. Because these methods destroy insects' morphological characteristics they are obviously not suitable for scarce and small insects such as thrips. In this article, two methods of salting-out and the STE method of extracting genome DNA from individual thrips are compared to KAc. The results suggest that,the quality of DNA samples extracted by the salting-out and STE methods was obviously better and more suitable for PCR than those obtained by the KAc method. Genome DNA was extracted from individual thfips by piercing one side of the specimen' s abdomen with a minute, sterilized pin, thereby avoiding destroying their morphological features. Experiments demonstrated that the extracted DNA was suitable for PCR amplification using the sequencing primers Mitochondrial Cytochreme Oxidase Ⅰ and the ITS2 region of ribosomal DNA.

  12. Comparison of Genomic DNA Extraction Methods From Hyacinth%风信子DNA不同提取方法的效果比较

    Institute of Scientific and Technical Information of China (English)

    胡凤荣; 任翠; 鲍仁蕾; 罗凤霞

    2011-01-01

    采用简易CTAB法、改良CTAB法、SDS-CTAB法、高盐法和CTAB-硅珠法等5种方法对风信子花蕾、叶片和鳞片基因组DNA进行提取.比较DNA纯度、电泳、得率等指标,结果表明:CTAB-硅珠法没有获得DNA,其他方法均可提出DNA;在纯度方面,简易CTAB法>SDS-CTAB法>改良CTAB法>高盐法;在得率方面,简易CTAB法>改良CTAB法>高盐法>SDS-CTAB法.简易CTAB法提取的DNA纯度较高,OD260/OD280为2.01,OD260/OD230为2.33,浓度为406.8ng·μL-1,得率为175.95ng· μL-1.花蕾、叶片适合风信子基因组DNA的提取.%Five methods including simple CTAB, CTAB improved method, SDS-CTAB method, high salt precipitation method and silica-purification method were used to extract genomic DNA from different parts of Hyacinth such as bud, leaves, scale. The results were compared by three parts, purity, the electrophoreses results and yield of the extracted DNA. The results showed that all of these DNA extraction methods except for CTAB-silica-purification method could obtain DNA. The purity of extracted DNA was as following : simple CTAB method >SDS-CTAB method >CTAB improved method>high salt precipitation method, and yield as following : simple CTAB method >CTAB improved method >high salt precipitation method >SDS-CTAB method. Simple CTAB method could obtain more purity DNA than the other methods and OD260/OD280 was 2.01,OD260/OD230 was 2.33. The concentration was 406.8ng-L~1 and the yield was 175.95ng·g-1.The extraction results from different parts showed that flower buds and leaves were both suit for Hyacinth obtain DNA.

  13. 中药蒲公英基因组总DNA提取方法研究%Extraction of genomic DNA from Taraxacum Officinale

    Institute of Scientific and Technical Information of China (English)

    杜向红; 杜云锋; 李喜凤

    2012-01-01

    目的 寻找一种快速简便的蒲公英干品总DNA的提取方法.方法 用改良CTAB、SDS、高盐低pH 3种提取方法及液氮、玻璃砂2种研磨方法提取蒲公英总DNA,采用蛋白核酸测定及电泳检测所得DNA的纯度和浓度.结果 3种提取方法所得到的DNA纯度和浓度不同,改良CTAB法提取总DNA纯度和浓度较高,电泳显示主条带较清晰,降解较少;2种研磨方法蛋白核酸测定及电泳结果相近.结论 改良CTAB法适用于蒲公英药材基因组DNA的提取.%Objective To develop a quick and convenient method for the extraction of total DNA of Taraxacum Officinale. Methods Three isolation methods including modified CTAB method. SDS method and low pH medium with high salt method and the two grinding methods of nitrogen and glass-sand were used for DNA extraction. The purity and concentration of DNA were analyzed with UV absorption and electrophoresis method. Results The DNA purity and concentration were different. The result of modified CTAB method was the best. The strips were clear and less decomposed in agarose electrophoresis. The results of the two grinding methods were similar. Conclusion The modified CTAB method is suitable for the extraction of genomic DNA from Taraxacum Officinale.

  14. Method for Extracting Genomic DNA from Leaves of Sweet-potato%甘薯叶片基因组DNA提取方法

    Institute of Scientific and Technical Information of China (English)

    黄艳岚; 张超凡

    2011-01-01

    针对甘薯叶片富含多糖、多酚、色素等物质的特点,以新鲜幼嫩甘薯叶片为材料,采用改良CTAB法提取基因组DNA,并对DNA进行电泳检测和AFLP分析.结果表明:使用改良CTAB法从32份甘薯叶片中提取基因组DNA,其纯度高、质量好、相对分子量大,多糖和多酚类等杂质去除比较完全,且OD/OD值>2.0,OD/OD值在1.8~2.0之间.无降解现象,能被限制性内切酶完全消化;用E-ACA和M-CTG引物组合进行AFLP分析,条带清晰,多态性好,此方法提取的甘薯叶片基因组DNA完全适于AFLP分析.%The leaf of sweet-potato is rich in polysaccharides, polyphenols and pigments. etc.. The genomic DNA samples of young fresh leaves of sweet-potato were isolated by improved CTAB method. and then the agarose gel electrophoresis and the AFLP analysis were conducted to it. The results showed that each sample of the genomic DNA extracted from 32 leaf samples of sweet-potato by improved CTAB method has some good characters as follows: high purity, good quality, relatively high molecular weight, comparatively clean in removing polysaccharides and polyphenols;the value of OD260/OD230 was higher than 2.0, the value of OD26O/OD28O was between 1.8 to 2.0; non-degradation, and it suitahle for digestion by restriction enzyme. Using primer comhination of E-ACA and M-CTG to do AFLP analysis, and the results showed the genomic DNA has clear bands and good polymorphism. Therefore, the genomic DNA. which is extracted from sweet-potato leaf by this improved CTAB method, is entirely suitahle for the AFLP analysis.

  15. A Simple and Effective Method for High Quality Co-Extraction of Genomic DNA and Total RNA from Low Biomass Ectocarpus siliculosus, the Model Brown Alga

    Science.gov (United States)

    Greco, Maria; Sáez, Claudio A.; Brown, Murray T.; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10–11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg−1 fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this

  16. A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga.

    Science.gov (United States)

    Greco, Maria; Sáez, Claudio A; Brown, Murray T; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10-11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg(-1) fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this method

  17. Comparison on Four Extraction Methods of Genomic DNA from Clematis fasciculiflora Franch%4种滑叶铁线莲基因组DNA提取方法比较

    Institute of Scientific and Technical Information of China (English)

    胡祎晨; 孙正海; 王锦; 李世峰; 辛培尧; 范萱

    2011-01-01

    [Objective ] This study aimed at comparing the four extraction methods of genomic UNA from Clematis fasciculiflora Franch and determining the optimal extraction method for extracting the genomic DNA from Clematis fasciculiflora Franch. [ Method] Leavies of Clematis fas-cicidiflora Franch were used as materials for comparing the purity and concentration of extracted DNA and extracting time among the four extraction methods of genomic DNA including improved CTAB method Ⅰ , improved CTAB method Ⅱ , improved CTAB method Ⅲ and improved SDS method. [Result] The four extraction methods could all successfully used for extracting the genomic DNA from Clematis fasciculiflora Franch. The purity of genomic DNA was the highest using improved CTAB method I , with the longest extracting time; while the concentration of genomic DNA was the maximum using the improved SDS method, with the shortest extracting time and relatively low purity; the extracting time of improved CTAB method Ⅲ was the shortest. [ Conclusion ] This study had established the optimal extraction method for extracting the genomic DNA from Clematis fasciculiflora Franch and supported for the further research using molecular biological methods.%[目的]对4种滑叶铁线莲基因组DNA提取方法进行比较研究,建立滑叶铁线莲最适DNA提取方法.[方法]以滑叶铁线莲叶片为材料,比较改良CTAB法Ⅰ、改良CTAB法Ⅱ、改良CTAB法Ⅲ、改良SDS法这4种基因组DNA提取法在提取DNA纯度、浓度和提取时间等方面的不同.[结果]4种方法都可提取滑叶铁线莲基因组DNA.改良CTAB法Ⅰ提取DNA纯度最高,但浓度最低且提取时间最长;改良SDS法提取DNA浓度最高,所需时间较短,但纯度较低;改良CTAB法Ⅲ提取所需时间最短.[结论]建立了铁线莲最适DNA提取方法,为运用分子生物学手段对其研究提供支持.

  18. Comparison on Four Extraction Methods of Genomic DNA from Clematis fasciculiflora Franch%4种滑叶铁线莲基因组DNA提取方法比较

    Institute of Scientific and Technical Information of China (English)

    胡祎晨; 孙正海; 王锦; 李世峰; 辛培尧; 范萱

    2011-01-01

    [目的]对4种滑叶铁线莲基因组DNA提取方法进行比较研究,建立滑叶铁线莲最适的DNA提取方法。[方法]以滑叶铁线莲叶片为材料,比较改良CTAB法Ⅰ、改良CTAB法Ⅱ、改良CTAB法Ⅲ、改良SDS法这4种基因组DNA提取法在提取的DNA纯度、浓度和提取时间等方面的不同。[结果]4种方法都可提取滑叶铁线莲基因组DNA。改良CTAB法Ⅰ提取DNA纯度最高,但浓度最低且提取时间最长;改良SDS法提取DNA浓度最高,所需时间较短,但纯度较低;改良CTAB法Ⅲ提取所需时间最短。[结论]建立了铁线莲最适DNA提取方法,为运用分子生物学手段对其研究提供支持。%[Objective] This study aimed at comparing the four extraction methods of genomic DNA from Clematis fasciculiflora Franch and determining the optimal extraction method for extracting the genomic DNA from Clematis fasciculiflora Franch.[Method] Leavies of Clematis fasciculiflora Franch were used as materials for comparing the purity and concentration of extracted DNA and extracting time among the four extraction methods of genomic DNA including improved CTAB method Ⅰ,improved CTAB method Ⅱ,improved CTAB method Ⅲ and improved SDS method.[Result] The four extraction methods could all be successfully used for extracting the genomic DNA from Clematis fasciculiflora Franch.The purity of genomic DNA was the highest using improved CTAB method Ⅰ,with the longest extracting time;while the concentration of genomic DNA was the maximum using the improved SDS method,with the shortest extracting time and relatively low purity;the extracting time of improved CTAB method Ⅲ was the shortest.[Conclusion] This study had established the optimal extraction method for extracting the genomic DNA from Clematis fasciculiflora Franch and supported for the further research using molecular biological methods.

  19. 板蓝根基因组DNA提取方法的比较%Method Comparison of Radix Isatidis Extraction from Genomic DNA

    Institute of Scientific and Technical Information of China (English)

    于英君; 杨欣; 于水澜

    2012-01-01

    目的:建立并优化板蓝根基因组DNA的提取方法.方法:以板蓝根为实验材料,分别采用CTAB法、改进的CTAB法和试剂盒法(硅胶膜技术)对其基因组DNA进行提取和纯化,然后对其提取产物做光密度、琼脂糖凝胶电泳检测.结果:紫外光谱检测表明,常规的CTAB法的A260/A280比较低,不在理想值之间,而改进的CTAB法和试剂盒法均在理想值之间.琼脂糖电泳检测证实,常规的CTAB法提取的DNA条带最弱,其它两种方法的DNA条带很清晰,DNA没有降解,无拖尾现象.%Objective: To establish and optimize a method for genomic DNA extracting of Radix Isatidis. Methods:CTAB method, improved CTAB method and reagent kit method (silicon membrane technology) were applied to extract and purify the genomic DNA of Isatidis Radix, then the products were detected by the optical density and agarose gel electro-phoresis. Results: The ultraviolet spectrum showed that the A 260/A 280 of conventional CTAB method was low and was not at the ideal value, both the improved CTAB method and reagent kit method were within the ideal value. The agarose gel electrophoresis confirmed that the DNA fragments of conventional CTAB method was the weakest among them. The DNA fragments of the others were clear, and there were no degradation or tailing phenomena.

  20. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... Breve guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is ... genetic basis for health and disease. Implications of Genomics for Medical Science Virtually every human ailment has ...

  1. 小麦不同部位DNA提取的比较研究%Comparative Study on Extraction of Genomic DNA from Different Parts of Wheat

    Institute of Scientific and Technical Information of China (English)

    杨培浩; 姚大年; 张文明; 周立人

    2009-01-01

    [目的] 探讨小麦不同取材部位对DNA提取质量和产率的影响.[方法] 分别以小麦的种子、根尖和幼嫩叶片为材料,采用改良CTAB法分别提取小麦3个部位的基因组DNA,用0.8%的琼脂糖凝胶电泳检测DNA质量,用紫外分光光度计分别测定3个部位的DNA在A260和A280下的吸光值,根据A260/A280的值检测DNA的浓度和纯度,并以3个部位提取的DNA为模版进行RAPD扩增.[结果] 采用小麦叶片提取DNA的产率最高,种子次之,根尖最低.3个部位提取的DNA纯度均相近, 提取叶片获得的DNA浓度最大,为 756 μg/ml;其次是种子,为233 μg/ml;根尖获得的DNA浓度最低,为90 μg/ml.小麦不同部位提取的DNA模板对RAPD扩增没有明显影响,DNA浓度都能达到扩增的要求.[结论] 小麦3个部位提取的DNA质量均较好,可以进行后续的酶切和PCR扩增等实验.%[Objective] The aim was to discuss the effect of different sampling positions of wheat on the DNA quality and yield. [Method] With seeds, root tips and young leaves of wheat as tested materials, the genome DNA from 3 parts of wheat were extracted with modified CTAB method and examined with 0.8% agarose gel electrophoresis. The absorbance value of DNA from 3 parts was measured by ultraviolet spectrophotometer at A260 and A280 and the ratio of A260/A280 was used to determine the DNA purity and the mass concn. DNA isolated from 3 parts of wheat was used as the template for RAPD amplification. [Result] The yield of DNA extracted from wheat leaves was highest, that from the seeds was second, and that from the root tips was lowest. The DNA purity extracted from 3 parts of wheat was similar. The DNA concn. isolated from wheat leaves was the largest, being 756 μg/ml, followed by that from seeds, being 233 μg/ml that from the root was the lowest, being 90 μg/ml. The DNA template extracted from different parts of wheat had no significant effect on RAPD amplification and DNA concn. could achieve the

  2. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    National Research Council Canada - National Science Library

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2017-01-01

    Background: Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction...

  3. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    National Research Council Canada - National Science Library

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background: Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction...

  4. Preparation of genomic DNA from bacteria.

    Science.gov (United States)

    Andreou, Lefkothea-Vasiliki

    2013-01-01

    The purpose of this protocol is the isolation of bulk cellular DNA from bacteria (alternatively see Preparation of genomic DNA from Saccharomyces cerevisiae or Isolation of Genomic DNA from Mammalian Cells protocols). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effects of Extraction Method and Tissues on the Quality of Genomic DNA in Fritillaria thunbergii%提取方法与部位对浙贝母基因组DNA提取质量的影响

    Institute of Scientific and Technical Information of China (English)

    周洁; 王晓飞; 金晓霞; 王忠华

    2011-01-01

    探讨了改良CTAB法、SDS法、高盐低pH法和试剂盒法对浙贝母(Fritillaria thunbergii Miq.)基因组DNA的提取效果.综合比较了各方法提取的DNA浓度、纯度、完整性,结果表明高盐低pH法是比较适合浙贝母新鲜叶片基因组DNA提取的方法.比较了分别以叶片和鳞茎为材料提取的DNA质量,发现以新鲜叶片为材料提取的DNA浓度和纯度较高,更适合用于提取浙贝母基因组DNA.%Modified CTAB method, high salt low pH method, SDS method and DNA Mini-prep kit method were used to extract genomic DNA from Fritlllaria thunbergii Miq. Comprehensive comparison of the concentration, purity and integrity of ge-nomic DNA extracted by various methods showed that high salt low pH method was the suitable method for extracting DNA from F. Thunbergii. Comparison between the DNA extracted from fresh leaves and bulb revealed that DNA obtained from fresh leaves was with higher concentration and purity, thus fresh leaves were better materials for DNA extraction of F. Thunbergii.

  6. 高质量加工番茄基因组DNA提取方法的改进%The Improvement of Extraction Method for High-quality Genomic DNA from Processing Tomato

    Institute of Scientific and Technical Information of China (English)

    张楠; 谢放

    2011-01-01

    加工番茄在生长过程中会富积大量的多糖、蛋白质和其他次生代谢物质,采用文献报道的方法不易提取(高质量的)DNA或提取的DNA溶液容易降解.采用改进的CTAB法,提取加工番茄幼嫩叶片和老叶片的基因组DNA,经紫外分光光度计和凝胶电泳检验,提取到的DNA纯度高、完整性好,PCR扩增能得到明显的多态性谱带,可直接用于后续相关试验.%The processing tomato will accumulate large quantities of polysaccharides, protein and other secondary metabolites during it grow process, and it is difficult to extract high-quality DNA or the extracted DNA can be broken down easily with the reported DNA extraction method. In this paper an improved CTAB method was used to extract genomic DNA from young leaves and old leaves of processing tomato. The extracted DNA was detected by UV spectrophotometer and gel electrophoresis, the results showed that the extracted DNA had high purity and good integrity. The PCR amplification can get obvious polymorphic fragments of extracted DNA, so it can be directly used for subsequent experiments.

  7. Comparison of Six Methods for the Extraction of Genomic DNA from Boehmeria tricuspis (Hance)Makino%悬铃叶苎麻基因组 DNA 的六种提取方法比较

    Institute of Scientific and Technical Information of China (English)

    董志雪; 唐蜻; 程超华; 信鹏飞; 高春生; 李育君; 臧巩固; 赵立宁

    2015-01-01

    悬铃叶苎麻(Boehmeria tricuspis (Hance)Makino)是一种多年生草本植物,含有较多的多酚、多糖等次生代谢物质,这些次生代谢物质能够与基因组 DNA 结合从而影响其 DNA 的提取。本文以悬铃叶苎麻幼嫩叶片为试材,采用6种方法提取基因组 DNA,并比较其提取效果,以期寻找到正确的、快速的、能够得到高质量的基因组 DNA 的方法。琼脂糖凝胶电泳、紫外分光光度仪、SSR -PCR 扩增和限制性内切酶酶切等方法检测不同方法提取的全基因组 DNA 的质量和纯度。结果显示:采用方法1(TianGen 试剂盒)提取的溶液中含有杂质,DNA 含量较少;方法2(常规CTAB 法)提取的 DNA 含有较多杂质;方法3(硅胶-CTAB 法)和方法4(酚抽提-CTAB 法)没有提取到 DNA;方法5(高盐预先去杂-CTAB 法)得到的基因组 DNA 溶液含有较多的蛋白质或盐;方法6(葡萄糖预先去杂-CTAB 法)是唯一能获得高质量的基因组 DNA,能够满足 PCR、限制性内切酶酶切等分子实验对 DNA 的要求。本研究找到了一种通用、简单易行,成本低且安全的去除植物 DNA 提取过程中多糖等杂质的方法,为悬铃叶苎麻后续的其他分子生物学的研究奠定了基础。%Boehmeria tricuspis (Hance)Makino is a perennial herbaceous plant which contains ex-ceptionally high amounts of polyphenols,polysaccharides,and other secondary metabolites that interfere with DNA isolation.Six methods were compared for the extraction of genomic DNA from young leaves of Boehmeria tricuspis,and we expected to find a correct method which can make us quickly obtained high quality genomic DNA.The total DNAs extracted by different methods were detected by agarose gel elec-trophoresis,the ultraviolet absorbency,the amplification of DNAs with SSR primer and restriction endo-nuclease reaction.The results indicate the solution of genomic DNA extracted by

  8. A Method Suitable for Extracting Genomic DNA from Animal and Plant——Modified CTAB Method%一种适用于动物与植物总DNA提取的方法——改良CTAB法

    Institute of Scientific and Technical Information of China (English)

    闫苗苗; 魏光成; 潘效红; 马怀雷; 李伟振

    2008-01-01

    [Objective] The study aimed to introduea a rapid and effective method that is suitable for extracting genomic DNA from animal and plant. [Method] The genomic DNAs were extracted from tender leaves of 24 peanut cuhivars and from the liver, lung and kidney of white mouse through the spe-cifically modified CTAB method. The DNAs were run on agarose gel, next detected by DNA/Protein analyzer. Finally PCR amplification was conducted to detect the quality of DNAs extracted using the modified CTAB method. [Result] The clear and orderly bands were observed in gel detection, and the val-ues of OD260/OD280 for DNAs extracted via modified CTAB method were between 1.77 - I. 83. The DNAs performed well in PCR amplification. [Conclu-sion] The DNAs extracted by modified CTAB method could satisfy the requirement of PCR amplification.

  9. An improved method for genomic DNA extraction from strawberry leaves Otimização de um método para extração de DNA genômico a partir de folhas de morangueiro

    Directory of Open Access Journals (Sweden)

    Claudinéia Ferreira Nunes

    2011-08-01

    Full Text Available Several extraction methods of genomic DNA for identification and characterization of genetic diversity in different plant species are routinely applied during molecular analysis. However, the presence of undesirable compounds such as polyphenols and polysaccharides is one of the biggest problems faced during the isolation and purification of high quality DNA in plants. Therefore, achievement of fast and accurate methods for DNA extraction is crucial in order to produce pure samples. Leaves of strawberry genotypes (Fragaria ananassa have high contents of polysaccharides and polyphenols which increase the sample viscosity and decrease the DNA quality, interfering with the PCR performance. Thereby, in this study we evaluated the quality and amount of genomic DNA extracted from young leaves of strawberry after tissue lyophilization and maceration in presence of polivinilpirrolidone (PVP. The CTAB method was used as reference procedure and it was modified to improve the DNA extraction. The modifications consisted of tissue lyophilization overnight until it was completely freeze-dried and addition of PVP during the tissue maceration in liquid nitrogen. The results showed the efficiency and reliability of the modified method compared to the unmodified method, indicating that combination of lyophilization and PVP improve the quality and amount of the DNA extracted from strawberry leaves.Vários métodos de extração de DNA genômico para a identificação e caracterização da diversidade genética em diferentes espécies de plantas são rotineiramente aplicados durante a análise molecular. Entretanto, a presença de compostos indesejáveis, tais como polifenóis e polissacarídeos, é um dos maiores problemas que ocorrem durante o isolamento e purificação de DNA de alta qualidade em plantas. Dessa forma, o sucesso no desenvolvimento de métodos de extração de DNA rápidos e acurados é crucial para produzir amostras puras. Folhas de genótipos de

  10. 黑翅土白蚁基因组DNA提取方法的优化%The optimization of extraction method for genomic DNA of Odontotermes formosanus

    Institute of Scientific and Technical Information of China (English)

    龙雁华; 李娟; 孔雪; 方志; 杨云秋

    2013-01-01

    Objective In order to obtain good genomic DNA for researches on termites species diversity,we made some comparison and improvements on the methods of extraction.Methods The methods of CTAB and proteinase K were compared with regard to genomic DNA extraction.The method of proteinase K was optimized by orthogonal analysis.Results The proteinase K method was better than CTAB method by producing better quality and higher yield.The optimal process combination was 150 μL of lysis buffer,6 μL of proteinase K,1 hour of action time,and no addition of RNAase.Conclusion The genomic DNA obtained using the optimized method can give clear and stable electrophoresis bands,which is fully usable for further experiments.%目的 为快速地提取到质量较好的黑翅土白蚁基因组DNA进行白蚁种群多样性的研究,对基因组DNA提取方法进行了比较与改进.方法 先初步采取CTAB法与蛋白酶K法对黑翅土白蚁基因组DNA的提取方法进行比较,再利用正交设计法对蛋白酶K法中裂解液、蛋白酶、RNA酶及作用时间4个因素进行优化.结果 蛋白酶K法获得的基因组DNA的质量与产量稍优于CTAB法;较佳的提取步骤组合为:裂解液150 μL,蛋白酶K 6μL,作用时间1h,RNA酶可不添加.结论 采用优化后的方法获得的基因组DNA为模板进行PCR扩增,得到了清晰、稳定的扩增谱带,完全可用于相关后续实验.

  11. 油棕基因组 DNA 3种提取方法的比较研究%Comparison of Three Extract Methods for Genomic DNA of Elaeis guineensis

    Institute of Scientific and Technical Information of China (English)

    周丽霞; 肖勇; 杨耀东; 马子龙

    2013-01-01

      采用CTAB小样提取法、PVP法和SDS-CTAB改良法,分别从油棕嫩叶和老叶中提取基因组DNA,并通过紫外分光光度计、琼脂糖凝胶电泳和PCR反应进行检测。研究结果表明:用CTAB小样提取法提取的油棕嫩叶总DNA的质量最好,纯度最高;用其他2种方法提取的DNA的质量均较差。%Using CTAB extraction with small sample , PVP method and SDS -CTAB improved method respectively , Genomic DNAs were extracted from the young and mature leaves of Elaeis guineensis Jacq., and were tested by the ultraviolet spectrophotome-ter, agarose gel electrophoresis and PCR reaction .The results showed the extracted total DNA from the young leaves of Elaeis guineensis had the best quality and the highest purity by the CTAB extraction with small sample , but the extracted DNA by other two methods was of poor quality .

  12. Event extraction for DNA methylation

    Directory of Open Access Journals (Sweden)

    Ohta Tomoko

    2011-10-01

    Full Text Available Abstract Background We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation. Results We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events. We retrain a state-of-the-art event extraction system on the corpus and find that automatic extraction of DNA methylation events, the methylated genes, and their methylation sites can be performed at 78% precision and 76% recall. Conclusions Our results demonstrate that reliable extraction methods for DNA methylation events can be created through corpus annotation and straightforward retraining of a general event extraction system. The introduced resources are freely available for use in research from the GENIA project homepage http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA.

  13. Isolation of Actinomycetes from Mangrove in Guangxi and Extraction of Its Genomic DNA%广西红树林放线菌的分离和DNA的提取

    Institute of Scientific and Technical Information of China (English)

    徐雅娟; 陈森洲; 骆耐香; 孔杰; 黄大林

    2009-01-01

    The actinomycetes in sea mud samples that from mangrove in Guangxi was isolated and its genomic DNA was extracted for 16S rDNA PCR amplification, and the isolated actinomycetes was identified. The results showed that the genomic DNA of actinomycetes from mangrove soil could successfully amplified 16S rDNA.%从广西红树林海泥样本中分离放线菌,提取其基因组DNA并进行16S rDNA PCR扩增,对所得放线菌进行鉴定.结果表明,从红树林土壤中提取的放线菌基因组DNA可成功扩增出16S rDNA.

  14. Genomic DNA Isolation by Phenol/Chloroform Extracting Method from Sheep Blood Clot%酚/氯仿抽提法提取绵羊凝血块中基因组DNA

    Institute of Scientific and Technical Information of China (English)

    曹果清; 莫清珊; 陈凤仙

    2009-01-01

    [Objective] The aim was to establish the method of extracting genomic DNA from sheep blood clot on the basis of the improvement of method for extracting genomic DNA from tissues. [Method]The genomic DNA with complete primary structure and high purity was obtained from the sheep blood clot after the steps of cutting the sheep blood clot with ophthalmic scissors, cell lysis with tissue DNA extracts and digested by proteinase K, extracting with phenol/chloroform and precipitating with ethanol were performed. [Result]The concentration of the extracted DNA was 159.90±0.70 ng/μl and the ratio of the A260/A280 was 1.80+0.01. The sheep microsatellite locus of BM203 was amplified by using the extracted DNA from the sheep blood clot as template of PCR, and the PCR result was perfect. [Conclusion]This method is simple and feasible, the quantity and quality of the extracted DNA can satisfy the demands for the subsequent researches. It is worth to extending and using for reference.%[目的]对组织DNA提取方法进行改进,建立一种从绵羊凝血块中提取基因组DNA的方法.[方法]将绵羊凝血块用眼科剪剪碎,用组织DNA抽提液裂解细胞,用蛋白酶K消化后,经过酚/氯仿抽提,无水乙醇沉淀获得基因组DNA.用NanoDrop ND-1000微型分光光度计检测DNA浓度和纯度.用0.8%琼脂糖凝胶电泳检验基因组DNA的完整性.以绵羊微卫星位点BM203为扩增位点,分别以F:5′-GGGTGTGACATTTTGTTCCC-3′,R:5′-CTGCTCGCCACTAGTCCTTC-3′为上下游引物,进行PCR扩增试验.PCR产物用1.5%琼脂糖凝胶电泳检测.[结果]提取的DNA浓度为(159.90±0.70) ng/μl,A260/A280比值为1.80±0.01,分子完整,结果理想.以从凝血块中提取的DNA为模板,对绵羊BM203微卫星位点进行了PCR扩增,扩增产物条带整齐、明亮、特导性强,扩增效果好.[结论]该方法简单、实用,提取的DNA可满足后续相关研究对DNA质量的要求,值得推广借鉴.

  15. A improved method for extracting genomic DNA from reserved blood%改良碘化钾法提取冻存外周血基因组 DNA 的方法探讨

    Institute of Scientific and Technical Information of China (English)

    蔡雪梅; 李穗雯; 胡大春

    2013-01-01

    Objective To explore the modified potassium iodide method (Improved method) for extracting the long-term cryopreservation of peripheral blood genomic DNA. Methods The potassium iodide (KI) method was improved by increasing the blood volume from 100μL to 200μL, replacing the sterile distilled water with 0.9% NH4CL solution for destruction the red blood cells, increasing the 5 mol/L KI solution dosage(70μL) for cracking the white cells membrane, and centrifuging at low temperature(4℃ ). The modified potassium iodide method was used for extracting the genomic DNA from 82 blood samples reserved in -80℃, and the concentration and purity of the extracted DNA was compared with the KI method. Meanwhile the extracted DNA was used as the template to amplify CYP2C19 gene by PCR. Results The extracted DNA concentration and A260/A280 of the KI method and the improved method were 128.2±34.9μg/mL, 1.74±0.08 and 220±91.29μg/mL, 1.87±0.12, respectively. The DNA purity of improved method was higher, and there were significant statistically different (P<0.01). The amount of DNA extracted by the modified method was more than that of KI method. The genomic DNA extracted by improved method were amplified using PCR, which result were stable. Conclusion The genomic DNA extracted from the long-term cryopreservation of peripheral blood using improved KI method had higher quality, which were able to meet the demand on the clinical study of cryopreserved samples.%  目的探讨用改良碘化钾法(改良法)提取长期冻存外周血基因组 DNA 的方法.方法对碘化钾(KI)法加以改良,包括:血量由100μL 增加到200μL;使用0.9% NH4CL 溶液代替无菌重蒸馏水裂解红细胞;增加裂解白细胞膜的5 mol/L KI 溶液的用量(为70μL);低温(4℃)离心.然后用改良碘化钾法从82份-80℃冻存外周血标本中提取基因组 DNA.同时使用碘化钾法提取其中的30份血标本,比对两种方法提取 DNA

  16. A rapid genomic DNA extraction protocol from deciduous tree phloem%落叶果树韧皮部提取DNA的方法研究

    Institute of Scientific and Technical Information of China (English)

    杨英军; 李学强; 张军科

    2001-01-01

    A rapid DNA extraction protocol from deciduous tree phloem was studied.Its extraction procedure was simple and the output was high. The quality of extracted DNA and the affect of PCR were also good. The extracted DNA was suitable for PCR and RAPD analysis.%探讨了从木本果树韧皮部提取DNA的方法.结果表明,采用该法提取DNA,步骤简单,产率高,质量优,PCR效果好,适用于RAPD分析.

  17. Comparison of four methods of DNA extraction from rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Polyphenols, teroens, and resins make it difficult to obtain high quality genomic DNA from rice. Four extraction methods were compared in our study, and CTAB precipitation was the most practical one.

  18. Influence of EDTA and magnesium on DNA extraction from blood ...

    African Journals Online (AJOL)

    Influence of EDTA and magnesium on DNA extraction from blood samples and specificity of polymerase chain reaction. ... African Journal of Biotechnology ... of initial EDTA level added to blood samples on quantity and quality of genomic DNA ...

  19. Technical note: Comparative analyses of the quality and yield of genomic DNA from invasive and noninvasive, automated and manual extraction methods.

    Science.gov (United States)

    Foley, C; O'Farrelly, C; Meade, K G

    2011-06-01

    Several new automated methods have recently become available for high-throughput DNA extraction, including the Maxwell 16 System (Promega UK, Southampton, UK). The purpose of this report is to compare automated with manual DNA extraction methods, and invasive with noninvasive sample collection methods, in terms of DNA yield and quality. Milk, blood, and nasal swab samples were taken from 10 cows for DNA extraction. Nasal swabs were also taken from 10 calves and semen samples from 15 bulls for comparative purposes. The Performagene Livestock (DNA Genotek, Kanata, Ontario, Canada) method was compared with similar samples taken from the same animal using manual extraction methods. All samples were analyzed using both the Qubit Quantification Platform (Invitrogen Ltd., Paisley, UK) and NanoDrop spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE) to accurately assess DNA quality and quantity. In general, the automated Maxwell 16 System performed best, consistently yielding high quantity and quality DNA across the sample range tested. Average yields of 28.7, 10.3, and 19.2 μg of DNA were obtained from 450 μL of blood, 400 μL of milk, and a single straw of semen, respectively. The quality of DNA obtained from buffy coat and from semen was significantly higher with the automated method than with the manual methods (260/280 ratio of 1.9 and 1.8, respectively). Centrifugation of whole blood facilitated the concentration of leukocytes in the buffy coat, which significantly increased DNA yield after manual extraction. The Performagene method also yielded 18.4 and 49.8 μg of high quality (260/280 ratio of 1.8) DNA from the cow and calf nasal samples, respectively. These results show the advantages of noninvasive sample collection and automated methods for high-throughput extraction and biobanking of high quality DNA. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Extraction method of large genomic DNA for wheat stripe rust%小麦条锈菌大片段基因组DNA的提取方法研究

    Institute of Scientific and Technical Information of China (English)

    庄华; 岳海梅; 郑文明; 王晓杰; 康振生

    2011-01-01

    由条锈菌Puccinia striiformis引致的小麦条锈病是小麦最重要的病害之一.由于其活体寄生的特点,对小麦条锈菌的遗传学和分子生物学研究十分有限,大片段核DNA的提取研究还未见报道.高分子量基因组DNA是开展大片段基因组文库构建、基因组分析以及基因组重建的重要基础,通过系统建立和优化小麦条锈菌大片段基因组DNA的分离方法,成功获得分子量大于1Mb高质量的病菌基因组DNA.%The stripe rust caused by Puccinia striiformis is one of the most important diseases of wheat. Because of its parasitic living characteristics, studies on genetics and molecular biology of the rust is largely limited. Extraction of large fragments of nuclear DNA from P. Striiformis has not been reported, but high molecular weight genomic DNA is very important to construct a large fragment genomic library, and perform sequencing and analysis of genome. In this study, we systematically established and optimized a method of separating large genomic DNA of wheat stripe rust, and over 1Mb of genomic DNA in molecular weight was observed by pulse electrophoresis, indicating that high quality of the genomic DNA was obtained successfully, and could be used for constructing large fragment genomic library and further genomic sequencing of wheat stripe rust.

  1. Leukocyte telomere length variation due to DNA extraction method.

    Science.gov (United States)

    Denham, Joshua; Marques, Francine Z; Charchar, Fadi J

    2014-12-04

    Telomere length is indicative of biological age. Shorter telomeres have been associated with several disease and health states. There are inconsistencies throughout the literature amongst relative telomere length measured by quantitative PCR (qPCR) and different extraction methods or kits used. We quantified whole-blood leukocyte telomere length using the telomere to single copy gene (T/S) ratio by qPCR in 20 young (18-25 yrs) men after extracting DNA using three common extraction methods: Lahiri and Nurnberger (high salt) method, PureLink Genomic DNA Mini kit (Life Technologies) and QiaAmp DNA Mini kit (Qiagen). Telomere length differences of DNA extracted from the three extraction methods was assessed by one-way analysis of variance (ANOVA). DNA purity differed between extraction methods used (P=0.01). Telomere length was impacted by the DNA extraction method used (P=0.01). Telomeres extracted using the Lahiri and Nurnberger method (mean T/S ratio: 2.43, range: 1.57-3.02) and PureLink Genomic DNA Mini Kit (mean T/S ratio: 2.57, range: 2.24-2.80) did not differ (P=0.13). Likewise, QiaAmp and Purelink-extracted telomeres were not statistically different (P=0.14). The Lahiri-extracted telomeres, however, were significantly shorter than those extracted using the QiaAmp DNA Mini Kit (mean T/S ratio: 2.71, range: 2.32-3.02; P=0.003). DNA purity was associated with telomere length. There are discrepancies between the length of leukocyte telomeres extracted from the same individuals according to the DNA extraction method used. DNA purity could be responsible for the discrepancy in telomere length but this will require validation studies. We recommend using the same DNA extraction kit when quantifying leukocyte telomere length by qPCR or when comparing different cohorts to avoid erroneous associations between telomere length and traits of interest.

  2. Comparison of Different Extraction Methods of Genomic DNA from Avena sativa L%燕麦种子基因组DNA不同提取方法的比较

    Institute of Scientific and Technical Information of China (English)

    郝豆豆; 朱勇; 雷鸣; 武俊喜; 拉多; 张勇群

    2015-01-01

    为缩短DNA提取时间 ,省去种子萌发到幼苗培养等一系列过程 ,以燕麦种子为材料 ,用5种方法提取其基因组DNA ,通过紫外分光光度法检测DNA的浓度和纯度 ,琼脂糖凝胶电泳检测DNA的完整性 ,以ITS2为引物将燕麦种子基因组DNA进行PCR扩增.结果表明 :5种方法中除了传统CTAB法 ,其余方法都可以提取到燕麦种子基因组DNA ,但不同方法提取到的基因组 DNA 的纯度、浓度存在差异 ,试剂盒法提取的DNA质量最好、纯度最高 ,但提取的DNA量少且成本高 ,改良CTAB法和高盐低pH法提取的DNA的纯度相近 ,都有少量的蛋白质和糖类的污染 ,改良SDS法提取的DNA纯度最低.%In order to overleap seeding culture and decrease the experimental time ,taking Avena sativa L seeds as material ,the genomic DNA of Avena sativa L were extracted by five kinds of methods .The concentraction and purity of DNA were detected by ultraviolet spectrophotometry .And integrity was detected by agarose gel electrophoresis .Based on ITS2 for primers ,the DNA was detected through PCR amplification .The results showed that except for traditional CTAB ,the other four methods could extract the genomic DNA from Avena sativa L seeds ,there were obvious difference in extracted purity of genomic DNA with different methods ,DNA was extracted with the kit method which had the highest quality and purity ,but it was expensive and had less DNA extracted .The difference of DNA purity between improved CTAB method and high salt and low pH method was not very obvious ,there was a small number of protein and carbohydrate in DNA .The purity of DNA was the lowest with improved SDS method .

  3. Comparative analysis of protocols for DNA extraction from soybean caterpillars.

    Science.gov (United States)

    Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C

    2016-04-07

    Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.

  4. Comparison of Methods of Genomic DNA Extraction from Penicillium expansum for PCR Detection%用于PCR检测的扩展青霉基因组DNA提取方法比较

    Institute of Scientific and Technical Information of China (English)

    何鸿举; 焦凌霞; 樊明涛; 刘晓娇; 吕丽娟; 魏新元

    2011-01-01

    为寻找一种经济、简便、高效的基因组DNA提取方法,进一步开展扩展青霉的分子生物学研究,采用氯化苄法、玻璃珠法、玻璃珠+氯化苄法、试剂盒法4种方法提取扩展青霉的基因组DNA,并测定DNA质量浓度以及进行PCR和电泳分析,比较不同提取方法的效果.结果表明,4种方法均可提取到基因组DNA,其抽提质量优劣依次为试剂盒法、玻璃珠+氯化苄法、玻璃珠法、氯化苄法.其中玻璃珠+氯化苄法提取效率接近试剂盒法,效果良好,并且此法成本低廉、操作简单、结果稳定,可代替昂贵的试剂盒法用于扩展青霉基因组DNA的提取.%The aim was to search an economic,convenient and high efficient extraction method for genomic DNA of Penicillium expansum to provide the scientific basis for further molecular biological study.The genomic DNA of Penicillium expansum strains were extracted by four methods such as Benzyl chloride, Glass beads,Glass beads with Benzyl chloride and ZR Fungal DNA Kit, and the effects of the different extraction methods were compared through the quality detection and PCR analysis.The results shows that these four extraction methods all could extract the genomic DNA and their order of the extraction quality from good to bad was ZR Fungal DNA Kit,Glass beads with Benzyl chloride,Glass beads method,Benzyl chloride method,and the method of Glass beads with Benzyl chloride is simple and accurate with a good reproducibility,which can replace the Kit for the extraction of genomic DNA from Penicillium expansum.

  5. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus;

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible ...

  6. 人血凝块提取基因组DNA碘化钾法建立%Potassium iodide method:a qiuck way of genomic DNA extraction from human blood clotting

    Institute of Scientific and Technical Information of China (English)

    魏俊; 张珍真; 朱惠莲; 黄演林; 林森彬; 刘鹏

    2011-01-01

    目的 通过与酚/氯仿法比较,建立一种快速、经济、高效从人血凝块提取基因组DNA的简易方法.方法采用双蒸水低渗破碎红细胞,碘化钾直接、快速裂解白细胞及其核膜,氯仿/异戊醇沉淀蛋白质及残存细胞碎片,最后经异丙醇和乙醇沉淀基因组DNA.结果 采用该法提取的基因组DNA浓度为(46.4±8.8)mg/L,吸光度值A260/A280为(1.79±0.23),与酚/氯仿法(46.1±8.3,1.78±0.22)比较差异无统计学意义(P>0.05);2种方法 提取基因组DNA凝胶电泳条带完整,PCR扩增目的 条带完整,能够满足分子生物学实验要求.结论 碘化钾法是一种快速、简便、经济、高效提取人血凝块基因组DNA的方法,可以广泛运用于大规模人群基因组学研究.%Objective To establish a simple,quick and economical method for genomic DNA extraction from human blood clotting compared with traditional phenol-chloroform method. Methods Double distilled water was used to lyse red blood cells (RBC) and saturated potassium iodide to lyse white blood cells (WBC) and its nuclear membrane. Chloroform and isoamyl alcohol was used to precipitate proteins and the residues of cells. The the genomic DNA was precipitated by isopropanol and ethanol. Results The average quantity of genomic DNA extracted was 46.4 ± 8.8mg/L and the ratio of A260/A280 was 1.79 ± 0.23. Furthermore, no statistical signifcance was observed when compared with phenol-chloroform method. The electrophoretic bands of genomic DNA and PCR amplification products were distinct,and the extracted genomic DNA reached the standard for molecular biological experiment. Conclusion The postassium iodide method is a simple,quick,economical and efficient way for genomic DNA extraction from human blood clotting, and could be used in large genomics study.

  7. Automated Extraction of DNA from clothing

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hjort, Benjamin Benn; Nøhr Hansen, Thomas

    2011-01-01

    Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing...... the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable DNA profiles....

  8. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  9. Repeated extraction of DNA from FTA cards

    OpenAIRE

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus; Frank-Hansen, Rune; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range.

  10. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  11. Genomic DNA Extraction from Apis cerana cerana Preserved by Different Methods%不同方法保存的蜜蜂基因组DNA提取的比较

    Institute of Scientific and Technical Information of China (English)

    闫华超; 贾少波; 王雪梅

    2011-01-01

    目的:找出适合DNA提取的昆虫标本保存方法.方法:用几种常用的昆虫标本保存方法对蜜蜂处理不同时间后,用蛋白酶K法对其基因组DNA进行提取和纯化,然后对提取产物做琼脂糖凝胶电泳及紫外吸收分析.结果:75%乙醇及冻存处理材料的基因组DNA得率较高,为7.13~8.85 μg/g,电泳条带较亮;甲醛处理材料的基因组DNA得率较低,为1.50~3.21 μg/g.结论:用75%乙醇及冻存处理蜜蜂较适合于其基因组DNA的提取,不宜用甲醛.%Objective: To find suitable insect preserving method for genomic DNA extracting. Methods: The Apis cerana cerana were preserved by different methods for different time. Genomic DNA were extracted and amplified using the proteinase K method from Apis cerana cerana, and the products were analyzed by using agarose gel electrophoresis and UV spectrophotometer. Results: The results suggested that with respect to DNA extraction, the freezing specimens and those be preserved in 75% alcohol were extracted more DNA, it was 7.13~8.85 M-g/g, and their electrophoresis bands were broad. However those be preserved in formaldehyde were extracted little DNA, it was 1.50-3.21 |ig/g. Conclusion: Freezing and preserve in 75% alcohol are suit for extracting DNA.

  12. 不同方法提取吴茱萸叶片基因组DNA和RNA的比较%Comparation on different methods on genomic DNA and RNA extraction from young leaves of Evodia rutaecarpa

    Institute of Scientific and Technical Information of China (English)

    吴波; 高丹; 潘超美; 张寿文

    2012-01-01

    分别研究对比了3种不同方法提取吴茱萸叶片基因组DNA和RNA的质量,以确定适合吴茱萸叶片基因组DNA和RNA的提取方法.采用紫外分光光度法和普通电泳检测法比较了常规CTAB法、SDS法和改良CTAB法提取吴茱萸叶片基因组DNA的效果;采用紫外分光光度法和非变性电泳检测法比较了酚-SDS法、Trizol法和改良异硫氰酸胍法提取吴茱萸叶片RNA的效果.结果表明,分别采用不同方法提取的吴茱萸叶片基因组DNA和RNA的质量差异较大.常规CTAB法和SDS法无法提取出高质量的吴茱萸叶片基因组DNA,而改良CTAB法提取效果较好;酚-SDS法和Trizol法不适合高质量吴茱萸叶片RNA的提取,而改良异硫氰酸胍法的提取效果良好.%In order to definite suitable extraction methods of genomic DNA and RNA from Evodia rutae carpa' s young leaves, three difference methods were compared each other, respectively. Ultraviolet spectropho tometry and ordinary electrophoresis methods were used to detect and compare the extraction effect of genomic DNA on traditional CTAB method, SDS method and modified CTAB method. Ultraviolet spectrophotometry and native gel electrophoresis were used to detect and compare the extraction effect of RNA on phenol-SDS method, Trizol method and modified guanidine thiocyanate method. The result showed that the qualities of genomic DNA and RNA extracted from Evodia rutaecarpd s young leaves were clearly different using different extraction methods. The quality of genomic DNA exacted from Evodia rutaecarpa' s young leaves with CTAB method and SDS method were not satisfied, but the extraction effect was very well using modified CTAB method. The quali ties of RNA extracted from Evodia rutaecarpa's young leaves with Phenoi-SDS method and Trizol method were not high, but the extraction effect was very well using modified guanidine thiocyanate method.

  13. DNA extraction from formalin-fixed material.

    Science.gov (United States)

    Campos, Paula F; Gilbert, Thomas M P

    2012-01-01

    The principal challenges facing PCR-based analyses of DNA extracted from formalin-fixed materials are fragmentation of the DNA and cross-linked protein-DNA complexes. Here, we present an efficient protocol to extract DNA from formalin-fixed or paraffin-embedded tissues (FFPE). In this protocol, protein-DNA cross-links are reversed using heat and alkali treatment, yielding significantly longer fragments and larger amounts of PCR-amplifiable DNA than standard DNA extraction protocols.

  14. Automated Extraction of DNA from clothing

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hjort, Benjamin Benn; Nøhr Hansen, Thomas;

    2011-01-01

    Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing t...... the amount of PCR inhibitors in the DNA extracts and increasing the proportion of reportable DNA profiles.......Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing...

  15. A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested.

    Science.gov (United States)

    Lahiri, D K; Bye, S; Nurnberger, J I; Hodes, M E; Crisp, M

    1992-12-01

    We compared ten methods for extraction of DNA from whole blood. Nine methods require incubation with either enzymes or treatment of organic solvents or both. The 'Rapid Method' (RM) (Method 10) avoids the use of organic solvents (phenol/chloroform) and eliminates completely the use of proteinase K. Thus, the time and cost of DNA extraction are reduced significantly. This is accomplished by salting out and precipitation of the cellular proteins in saturated sodium chloride. This method takes less than an hour to completion, without compromising the yield or the quality of DNA. Using RM, we can make DNA from 0.1 ml of whole blood and as little as 0.5 ml of blood yields DNA sufficient to run a few Southern blots. The RM can also be applied to packed cells. The DNA is free of RNA, protein and degrading enzymes. The uncut DNA runs as a typical slow-migrating, high-molecular-weight and undegraded species in an agarose gel. The DNA is suitable for digestion by various restriction endonucleases. This procedure works equally well with fresh blood samples and with those that are stored at 4 degrees C and -70 degrees C. To our knowledge the RM reported here is the safest, fastest and most quantitative and economical method for preparation of DNA from whole blood and cells.

  16. Comparison of Different Extraction Methods of Genomic DNA of Raw Soybean Milk%生豆浆基因组DNA不同提取方法的比较研究

    Institute of Scientific and Technical Information of China (English)

    徐伟丽; 杜明; 马莺; 李启明; 汪家琦

    2011-01-01

    [目的]探讨适宜生豆浆的基因组DNA提取方法.[方法]以市售豆浆为材料,分别采用热解法、异丙醇沉淀法、CTAB法、SDS法、高盐低pH和异硫氰酸胍法以及它们的改良方法提取基因组DNA,并比较了以上方法的提取效果.[结果]除异丙醇沉淀法外,其他方法提取的基因组DNA均可满足PCR检测要求.同时,综合考虑基因组DNA的纯度和浓度,生豆浆基因组DNA提取方法的优劣依次为:改进高盐低pH法、高盐低pH法、改进CTAB法、改进异丙醇沉淀法、异硫氰酸胍法和改进热解法.[结论]这几种生豆粉基因组DNA提取方法均具有操作简单、耗时短、利于快速检测的优点.%[Objective] The paper was to explore DNA extraction method of raw soybean milk. [Method] With soybean milk purchased from market as material, pyrolysis method, isopropanol precipitation method, CTAB method, SDS method, high-salt low-pH and guanidine isothio-cyanate method, as well as their improve methods were used to extract genomic DNA, and the extraction effects of these methods were compared. [ Result] In addition to isopropanol precipitation method, genomic DNA extracted by the rest methods all could meet the needs of PCR detection. Meanwhile, based on the comprehensive consideration of concentration and purity of DNA, the better extraction methods for genomic DNA of raw soybean milk successively were improved high-salt low-pH method, high-salt low-pH method, improved CTAB method, improved isopropanol precipitation method, guanidine isothiocyanate method and improved pyrolysis method. [Conclusion] These extraction methods for genomic DNA of raw soybean milk had simply operation and short time consumption, which were conducive for fast detection.

  17. Automated DNA extraction from pollen in honey.

    Science.gov (United States)

    Guertler, Patrick; Eicheldinger, Adelina; Muschler, Paul; Goerlich, Ottmar; Busch, Ulrich

    2014-04-15

    In recent years, honey has become subject of DNA analysis due to potential risks evoked by microorganisms, allergens or genetically modified organisms. However, so far, only a few DNA extraction procedures are available, mostly time-consuming and laborious. Therefore, we developed an automated DNA extraction method from pollen in honey based on a CTAB buffer-based DNA extraction using the Maxwell 16 instrument and the Maxwell 16 FFS Nucleic Acid Extraction System, Custom-Kit. We altered several components and extraction parameters and compared the optimised method with a manual CTAB buffer-based DNA isolation method. The automated DNA extraction was faster and resulted in higher DNA yield and sufficient DNA purity. Real-time PCR results obtained after automated DNA extraction are comparable to results after manual DNA extraction. No PCR inhibition was observed. The applicability of this method was further successfully confirmed by analysis of different routine honey samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. DNA Extraction and Primer Selection

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads

    Talk regarding pitfalls in DNA extraction and 16S amplicon primer choice when performing community analysis of complex microbial communities. The talk was a part of Workshop 2 "Principles, Potential, and Limitations of Novel Molecular Methods in Water Engineering; from Amplicon Sequencing to -omics...

  19. DNA Extraction Techniques for Use in Education

    Science.gov (United States)

    Hearn, R. P.; Arblaster, K. E.

    2010-01-01

    DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…

  20. DNA Extraction Techniques for Use in Education

    Science.gov (United States)

    Hearn, R. P.; Arblaster, K. E.

    2010-01-01

    DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…

  1. Comparative Analysis of High-salt Methods of Genomic DNA Extraction from Astragalus membranaceus%高盐方法提取蒙古黄芪基因组DNA比较分析

    Institute of Scientific and Technical Information of China (English)

    韩雅楠; 赵秀娟; 李艳君; 蔡禄

    2011-01-01

    为了提取高质量的蒙古黄芪(Astragalus membranaceus)基因组DNA,采用高盐十二烷基硫酸钠(SDS)法、高盐溴化十六烷基三甲基溴化铵(CTAB)法和高盐低pH值法,结果表明高盐CTAB法获得的黄芪基因组DNA纯度高,能用于PCR扩增和限制性内切酶酶切.是提取黄芪基因组总DNA的最佳方法.%High-salt SDS, high-salt CTAB, and high-salt low pH value methods were used to extract high quality Astragalus membranaceus genomic DNA.The results showed that the genomic DNA with the highest quality was extracted by high-salt CTAB method, and was preferable enough to be used as PCR template and digested by restriction enzyme completely; thus high-salt CTAB was the best DNA extraction method.

  2. Studies on Genomic DNA Extraction and Establishment of AFLP Reaction System in Chinese Cabbage%大白菜基因组DNA的提取及AFLP反应体系的建立

    Institute of Scientific and Technical Information of China (English)

    孟淑春; 张海英; 郑晓鹰; 刘玉梅; 王永健

    2009-01-01

    [Objective] The obtained clear AFLP fingerprint of Chinese cabbage provided basis for studies on the molecular markers of Chinese cabbage cultivars and the phylogenetic relationship among Chinese cabbage cultivars. [Method] With the test materials of leaves of Chinese cabbages, the high-quality total DNA from leaves of Chinese cabbages was extracted by the modified CTAB method. DNA restriction-ligase reaction, pre-amplification and selective amplification were optimized, and the AFLP silver-staining reaction system for Chinese cabbage was established. [Result] The quality of DNA template influenced restriction enzyme digestion and the subsequent ligase amplification reaction, while the modified CTAB extraction method could be used in AFLP analysis of Chinese cabbage to obtain a clear AFLP fingerprint. The optimum conditions for restriction enzyme digestion of genomic DNA from Chinese cabbage were as follows: 150 g DNA template, 12.5 μl reaction volume, 1.25 U Eco R Ⅰ, 1.25 U Mse Ⅰ and 5×Reaction Buffer with 4 h at 37 ℃. The ligation reaction with 2.5 h at 20 ℃ was the optimum condition. Six pairs of primers including E-AAC/M-CAG, E-AAG/M-CAC, E-ACA/M-CTG, E-ACT/M-CAC, E-ACT/M-CTT and E-ACT/M-CTC all had its own stable and clear patterns. [Conclusion] With abundant bands and high polymorphism, AFLP selective amplification is an efficient molecular marker for genomic polymorphism of Chinese cabbage.

  3. Isolation of genomic DNA from mammalian cells.

    Science.gov (United States)

    Koh, Cheryl M

    2013-01-01

    The isolation of genomic DNA from mammalian cells is a routine molecular biology laboratory technique with numerous downstream applications. The isolated DNA can be used as a template for PCR, cloning, and genotyping and to generate genomic DNA libraries. It can also be used for sequencing to detect mutations and other alterations, and for DNA methylation analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Comparison of three DNA extraction methods for recovery of soil protist DNA.

    Science.gov (United States)

    Santos, Susana S; Nielsen, Tue Kjærgaard; Hansen, Lars H; Winding, Anne

    2015-08-01

    The use of molecular methods to investigate protist communities in soil is in rapid development this decade. Molecular analysis of soil protist communities is usually dependant on direct genomic DNA extraction from soil and inefficient or differential DNA extraction of protist DNA can lead to bias in downstream community analysis. Three commonly used soil DNA extraction methods have been tested on soil samples from three European Long-Term Observatories (LTOs) with different land-use and three protist cultures belonging to different phylogenetic groups in different growth stages. The methods tested were: ISOm-11063 (a version of the ISO-11063 method modified to include a FastPrep ®-24 mechanical lysis step), GnS-GII (developed by the GenoSol platform to extract soil DNA in large-scale soil surveys) and a commercial DNA extraction kit - Power Lyzer™ PowerSoil® DNA Isolation Kit (MoBio). DNA yield and quality were evaluated along with DNA suitability for amplification of 18S rDNA fragments by PCR. On soil samples, ISOm-11063 yields significantly higher DNA for two of the three soil samples, however, MoBio extraction favors DNA quality. This method was also more effective to recover copies of 18S rDNA numbers from all soil types. In addition and despite the lower yields, higher DNA quality was observed with DNA extracted from protist cultures with the MoBio method. Likewise, a bead-beating step shows to be a good solution for DNA extraction of soil protists, since the recovery of DNA from protist cultures and from the different soil samples with the ISOm method proved to be efficient in recovering PCR-amplifiable DNA. This study showed that soil DNA extraction methods provide biased results towards the cyst stages of protist organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of an improved method for extraction of genomic DNA from bacillus, used for PCR directly%直接用于PCR反应的芽胞杆菌基因组DNA抽提改良方法的建立

    Institute of Scientific and Technical Information of China (English)

    胥振国; 蔡玉华; 袁星; 刘修树; 江昌俊

    2012-01-01

    目的:建立一种直接用于PCR反应的芽胞杆菌基因组DNA提取的改良方法.方法:用十六烷基三甲基溴化铵(Cetyhrimethyl ammonium bromide,CTAB)-溶菌酶-冻融裂解法提取蜡样芽胞杆菌、苏云金芽胞杆菌、纳豆芽胞杆菌基因组DNA,用紫外分光光度计测定提取的基因组DNA在230、260、280 nm波长下的A值,计算DNA浓度,并以提取的基因组DNA为模板进行PCR扩增.结果:采用改良CTAB法提取的基因组DNA A260/A280值均在1.8~2.0之间,A206/A230值均大于2.0,DNA浓度均大于110 μg/ml;PCR扩增产物均可见1 500 bp的清晰条带,浓度较高,未见其他特异条带.结论:CTAB-溶菌酶-冻融裂解法提取芽胞杆菌基因组DNA简单、高效,并可用于PCR反应,适用于临床分子生物学检验.%Objective To develop an improved method for extraction of genomic DNA from bacillus,which can be used directly for PCR. Methods Genomic DNAs were extracted from Bacillus cereus,Bacillus thuringiensis and Bacillus natto by cetyl trimethyl ammonium bromide (CTAB)-lysozyme-frozen-thaw lysis method and determined for Avalues at wavelengths of 230,260 and 280 nm by utralviolet spectrophotometer,based on which the DNA concentrations of extracted samples were calculated. The extracted DNAs were used as templates for PCR. Results The A260/A280 values of DNAs extracted by the improved CTAB method were 1. 8 ~ 2. 0,while the A260/A280 values were more than 2. 0,and the DNA concentrations were more than 110 μg/ml. PCR product showed clear bands each at length of 1 500 bp and a high concentration,while no other specific bands were observed,and all the bands were clear. Conclusion CTAB-lysozyme-frozen-thaw lysis method was simple and effective for extraction of genomic DNA from bacillus and might be used for PCR,which was suitable for molecular biological test in clinic.

  6. Extraction of genomic DNA from solid tissues of teleostei fish/ Extração de DNA genômico em tecidos sólidos de peixes teleósteos

    Directory of Open Access Journals (Sweden)

    Eliane Gasparino

    2006-06-01

    Full Text Available The object of this work was to extract the genomic DNA of solid tissue from Nile tilapia (Oreochromis niloticus, pacu (Piaractus mesopotamicus, piau (Leporinus sp. and curimba (Prochilodus lineatus, using the methods Proteinase K (PK and Cetyltrimethylammiun Bromide (CTAB. The DNA extractedfrom samples of liver, kidney, tail fin, heart, muscle and gills were quantified in spectrophotometer to determine the concentration and purity through the ratio A260nm/A280nm. The data were statistically analyzed and there were no significant effect of interaction between species and tissues about the purityand concentration of the DNA obtained with CTAB, but for the PK there were interaction about the concentration. Using the CTAB method was verified that the mean quantity of DNA in the curimbakidney was significantly (pO objetivo desse trabalho foi extrair o DNA genômico de tecidos sólidos de tilápia do Nilo (Oreochromis niloticus, pacu (Piaractus mesopotamicus, piau (Leporinus sp. e curimba (Prochilodus lineatus, utilizando os métodos Proteinase K (PK e Brometo de Cetiltrimetilamônio (CTAB. O DNA extraído das amostras de fígado, rim, nadadeira caudal, coração, músculo e brânquias foi quantificado em espectrofotômetro para determinação da concentração e da pureza por meio da razão A260nm/A280nm. Os dados foram estatisticamente analisados e não se observou efeito significativo para a interação entre espécies e tecidos em relação à pureza e concentração do DNA obtido a partir do CTAB, porém para PK houve interação em relação à concentração. Utilizando o método CTAB verificou-se que a concentração média de DNA no rim de curimba foi significativamente (p < 0,05 inferior (106,98 ?g/mL à observada em pacu (1727,90 ?g/mL, porém não diferiram das encontradas em piau (497,20 ?g/mL e tilápia (234,50 ?g/ mL. Para o método PK, a concentração média de DNA utilizando o músculo de tilápia do Nilo apresentou o menor valor

  7. Comparison of Two Methods for Extracting Genomic DNA from Human Whole Blood%两种提取冻存全血基因组DNA方法的比较

    Institute of Scientific and Technical Information of China (English)

    吕晓岩; 严笠; 刘霞; 肖苒

    2015-01-01

    ObjectiveTo compare the effect and characteristics of genomic DNA extraction from frozen whole blood using two different methods. MethodsGenomic DNA were extracted with potassium iodide method and Promega Genomic DNA Puriifcation Kit.The detection was performed by UV spectrophotometry, gel electrophoresis and PCR.ResultsThe concentration of genomic DNA extracted by potassium iodide method and Promega Genomic DNA Puriifcation Kit method was: (330.9±0.94)ng/μL and (490.3±3.16)ng/μL; and the ratio of A260/A280 was: (1.87±0.03) and (1.85±0.06).The quantity of genomic DNA extracted by kit is slightly higher than that by potassium iodide method. There is no signiifcant difference in DNA quality and purity between two methods.ConclusionKit is the more simple, faster, non-toxic method compared with the potassium iodide method, but the cost is expensive. Potassium iodide method is helpful to extract genomic DNA from a large number of clinical blood samples due to the low cost. Two methods are able to meet the needs of molecular biology experiments.%目的:比较两种不同方法提取冻存全血中基因组DNA的效果和特点。方法分别用改良碘化钾法和Promega全血基因组提取试剂盒提取全血基因组DNA,通过紫外分光光度仪、凝胶电泳、PCR进行检测。结果改良碘化钾法和试剂盒法提取的基因组DNA浓度分别为(330.9±0.94)ng/μL和(490.3±3.16)ng/μL;纯度为(1.87±0.03)和(1.85±0.06)。试剂盒法提取的基因组DNA含量稍高于改良碘化钾法,质量和纯度无显著差异。结论试剂盒法更简便、快速、无毒地进行提取DNA,但价格较贵;改良碘化钾法价格低廉,适合大量临床血液标本的提取,能够满足分子生物学实验的需要。

  8. Evaluation of DNA and RNA extraction methods.

    Science.gov (United States)

    Edwin Shiaw, C S; Shiran, M S; Cheah, Y K; Tan, G C; Sabariah, A R

    2010-06-01

    This study was done to evaluate various DNA and RNA extractions from archival FFPE tissues. A total of 30 FFPE blocks from the years of 2004 to 2006 were assessed with each modified and adapted method. Extraction protocols evaluated include the modified enzymatic extraction method (Method A), Chelex-100 extraction method (Method B), heat-induced retrieval in alkaline solution extraction method (Methods C and D) and one commercial FFPE DNA Extraction kit (Qiagen, Crawley, UK). For RNA extraction, 2 extraction protocols were evaluated including the enzymatic extraction method (Method 1), and Chelex-100 RNA extraction method (Method 2). Results show that the modified enzymatic extraction method (Method A) is an efficient DNA extraction protocol, while for RNA extraction, the enzymatic method (Method 1) and the Chelex-100 RNA extraction method (Method 2) are equally efficient RNA extraction protocols.

  9. 松墨天牛成虫标本保存及其DNA提取质量比较%Comparison of the quality of genomic DNA extracted from adult specimens of Monochamus alternatus preserved by different methods

    Institute of Scientific and Technical Information of China (English)

    曲良建; 王丽娟; 王青华; 王玉珠; 张永安

    2014-01-01

    Objectives] To find which method of preserving Monochamus alternatus specimens produced the best quality genomic DNA. [Methods] Genomic DNA from Monochamus alternatus adults that had been preserved using different methods (liquid nitrogen, 100%ethanol at-20℃, 100%ethanol at room temperature and museum specimens) for more than 2 years, was extracted using the SDS-proteinase K method and the quality of the extracted genomic DNA compared. [Results] The best quality genomic DNA was obtained from specimens that had been stored in liquid nitrogen, and the next best from those that had been preserved in 100%ethanol at-20℃. [Conclusion] The best quality DNA was extracted from specimens that had been frozen in liquid nitrogen or preserved in 100%ethanol at-20℃. The DNA samples obtained from such specimens are suitable for PCR amplification and sequencing.%【目的】探讨适合DNA 提取的天牛成虫标本保存方法。【方法】采用SDS-蛋白酶K消化法对液氮中冷冻保存、无水乙醇-20℃冷冻保存、无水乙醇室温保存和干标本室温保存且保存时间在2年以上的松墨天牛Monochamus alternates Hope成虫标本基因组DNA进行提取,并对不同保存方式提取的DNA样本进行了质量比较和分析。【结果】在上述常见的松墨天牛成虫标本4种保存方式中,以液氮中冷冻保存效果最佳,其次为无水乙醇-20℃冷冻保存,插针干标本室温保藏效果最差。利用昆虫线粒体基因COⅠ和COⅡ的通用引物从上述DNA中均能够成功扩增出目的片段,测序结果证实扩增片段符合预期。【结论】液氮和无水乙醇-20℃冷冻保存适合松墨天牛成虫标本长期保存,且不影响后续的PCR扩增和测序。

  10. Establishment of a Rapid Method for Extracting Human Genomic DNA from Peripheral Clotted Blood%一种快速、经济提取外周凝血基因组DNA方法的建立

    Institute of Scientific and Technical Information of China (English)

    许丽娟; 马骁; 王洋阳; 王静; 潘晴; 刘梅

    2011-01-01

    Objective: To establish a rapid, economical method for extracting genotnic DNA from peripheral clotted blood. Methods: Explore a optimum homogenate condition, homogenate the clotted blood, extracting the genomic DNA by KI method. Use agarose gel electrophoresis, single PCR and multiplex PCR detect the genomic DNA extraction yield and quality. And compared with the traditional extraction methods, Proteinase K digestion method and KI method which extract DNA from anti-coagulated blood. Results: The optimum homogenate condition is 39000 rmp and 15 seconds. The genomic DNA was extracted under this condition has good integrity. There is no significant difference of purity and yield between this method and Proteinase K digestion and KI method. Single PCR and multiplex PCR also obtained good amplification results. Conclusion: Compared with traditional extraction methods (Proteinase K digestion method),this method can save time and cost, which can extract DNA rapidly,economical and effectively,and can be used in clinical and research analysis, and can solve the blood genomic DNA sources of some of the research institutions.%目的:建立一种经济、快速且高质量提取人体外周凝血DNA的方法.方法:摸索最佳的匀浆条件,对外周凝血块进行匀浆,采用KI法对匀浆液进行基因组DNA的提取,通过凝胶电泳、单重PCR和多重PCR检测凝血基因组DNA的提取产量和质量,并分别与常规的凝血基因组DNA提取方法,即蛋白酶K消化法,以及提取抗凝血基因组DNA的KI法进行比较分析.结果:最佳的匀浆条件为:39000 rmp,15秒.在此条件下提取的基因组DNA完整性好,纯度和产量与蛋白酶K消化法提取凝血DNA和KI法提取抗凝血DNA的结果相比,没有统计学差异.单重PCR和多重PCR也获得了理想的扩增结果.结论:与常规的外周凝血提取方法相比(蛋白酶K消化法),本方法节省了时间和成本,能快速、经济、有效地提取外周凝血基因组DNA,可

  11. QIAamp及Biomed粪便细菌基因组DNA提取试剂盒提取人肠道细菌基因组DNA质量的差异%Quality differences of bacterial genome DNA extracted from the human intestine by using QIAamp and Biomed DNA Stool Mini Kits

    Institute of Scientific and Technical Information of China (English)

    宋美茹; 姚萍; 张跃新

    2012-01-01

    BACKGROUND: Several studies have showed that there are different qualities of bacterial genome DNA extracted from the humanintestine using different kits. Therefore, it is essential and urgent to select an effective, simple, and excellent DNA stool mini kit.OBJECTIVE: To compare the quality differences of bacterial genome DNA extracted from the human intestinal by using QIAampand Biomed DNA Stool Mini Kits.METHODS: Thirty fresh fecal samples of healthy adult people were selected, and bacterial genome DNA was extracted usingthese two kits. Concentration, absorbance radio of 260 to 280 nm and extraction rate were measured. Species-specific primersfor Lactobacillus group were designed by a set of 16S rDNA-targeted to conduct the general PCR using the genome DNA as thetemplate. The electrophoresis strip's number, brightness and density were compared after gel electrophoresis; subsequently, thenumber of Lactobacillus group was detected by fluorescent real-time PCR.RESULTS AND CONCLUSION: Concentration, extraction rate, expression level, Lactobacillus amount of bacterial genomeDNA extracted from the human intestinal using QIAamp kit were higher than those using Biomed kit (P<0.05 or P<0.01). Itsuggests that the quality of genome DNA extracted with QIAamp kit is more excellent than that with Biomed kit.%背景:有研究表明,不同试剂盒提取的粪便细菌基因组DNA 质量有差别,选择一种操作简便、质量优良的粪便细菌基因组DNA 提取试剂盒成为研究者们关注和急需解决的问题.目的:比较QIAamp 及Biomed 粪便细菌基因组DNA 提取试剂盒提取的人肠道细菌基因组DNA 质量的差异.方法:收集健康成年人新鲜粪便标本30 例,用两种试剂盒分别提取细菌基因组DNA,检测其浓度、吸光度A260/280 nm 值及提取率,设计乳酸菌属16S rDNA 基因特异性引物,以各自所提DNA 为模板,进行常规聚合酶链反应,凝胶电泳后比较条带数量、明暗度及密度,并进行实

  12. Comparison of Different Extraction Methods of Genomic DNA of Raw Soybean Milk%生豆浆基因组DNA不同提取方法的比较研究

    Institute of Scientific and Technical Information of China (English)

    徐伟丽; 杜明; 马莺; 李启明; 汪家琦

    2011-01-01

    [Objective] The paper was too explore and compare methods of DNA extraction from raw soybean milk.[Method] Taken the soybean milk purchased from market as the material,pyrolysis method,isopropanol precipitation method,CTAB method,SDS method,high-salt low-pH and guanidine isothiocyanate method,as well as their improved methods were used to extract genomic DNA,and the extraction effects of these methods were compared by detecting the DNA using optical density,agarosegel electrophoresis and polymerase chain reaction(PCR)methods.[Result] The genomic DNA extracted by all methods except isopropanol precipitation method could be used in PCR reaction.Meanwhile,the high DNA concentration and purity will be gained by different methods in the order of high-salt low-pH method,high-salt low-pH method,improved CTAB method,improved isopropanol precipitation method,guanidine isothiocyanate method and improved pyrolysis method.[Conclusion] These methods are simply to operate,fast to gain results,and suitable for the extraction of total DNA from raw soybean milk.%[目的]探讨适宜生豆浆的DNA提取方法。[方法]以市售豆浆为材料,分别采用热解法、异丙醇沉淀法、CTAB法、SDS法、高盐低pH和异硫氰酸胍法以及它们的改良方法提取基因组DNA,并比较了以上方法的提取效果。[结果]除异丙醇沉淀法外,其他方法提取的基因组DNA均可满足PCR检测要求。同时,综合考虑基因组DNA的纯度和浓度,生豆浆基因组DNA提取方法的优劣依次为:改进高盐低pH法、高盐低pH法、改进CTAB法、改进异丙醇沉淀法、异硫氰酸胍法和改进热解法。[结论]这几种豆粉基因组DNA提取方法均具有操作简单、耗

  13. 不同方法从绞股蓝种子中提取基因组DNA的研究%Study on Different Methods for Extraction Genomic DNA from Pentaphyllum seeds

    Institute of Scientific and Technical Information of China (English)

    黄玉兰; 岳才军

    2013-01-01

    以绞股蓝种子为研究材料,采用改良的CTAB法、改良的SDS法和高盐低pH法对绞股蓝基因组DNA进行提取,对提取效果采用紫外分光光度计检测、琼脂糖凝胶电泳和RAPD进行综合比较分析。结果表明:3种提取方法所获得的DNA,其OD260/OD280多数都在1.80~2.00,琼脂糖凝胶电泳结果也显示DNA 的质量很好,改良的SDS法提取效率显著好于改良的CTAB法和高盐低pH法;而且改良的SDS法提取的DNA的RAPD图谱条带最亮、最清晰。因此,从DNA产量、质量等方面综合考虑,改良的SDS法为绞股蓝种子DNA提取的有效方法。%The article regards Pentaphyllum seeds as the research material,which genomic DNA were extracted with improved CTAB method,improved SDS method and high salt and low pH method. Extracting efficiency were comprehensively analyzed with ultraviolet spectrophotometer,agarose gel electrophoresis and RAPD. The results show that three methods all can extract genomic DNA,which the number of most OD260/OD280 is ranging from 1.80~2.00 and the result of Agarose gel electrophoresis is very good. The improved SDS method is significant better than improved CTAB method,high salt and low pH method,which DNA RAPD map is the brightest and the clearest. Considering from the DNA production,quality,etc,the improved SDS method is the most effective method to extract genomic DNA from Pentaphyllum seeds.

  14. The First Attested Extraction of Ancient DNA in Legumes (Fabaceae).

    Science.gov (United States)

    Mikić, Aleksandar M

    2015-01-01

    Ancient DNA (aDNA) is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae) are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analyzing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum) and bitter vetch (Vicia ervilia) from Hissar, southeast Serbia, dated to 1,350-1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB) method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl(-1) of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK, and rbcL) among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighboring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide.

  15. COMPARISON OF METHEDS FOR GENOMIC DNA EXTRACTION FROM Mycoplasma ovipneumoniae%羊肺炎支原体基因组DNA几种提取方法的比较

    Institute of Scientific and Technical Information of China (English)

    张明月; 刘晓松; 常建华; 吴树清; 赵世华; 韩广富; 郭荣

    2012-01-01

    In order to select the best way to extract genomic DNA in Mycoplasma for molecular identify and PCR detecting.Using two kit products,Phenol/chloroform/isoamyl alcohol method,CTAB method,high salt method and boiling method extracted genomic DNA from Mycoplasma culture media of two strains,evaluated their useful efficiency as templates in PCR procedure after optimization.The Results indicted:All the genomic DNA samples could be detected by PCR.CTAB method and imported kit yielded the best quality DNA,Phenol/chloroform/isoamyl alcohol method,high salt method and kit made in China produced lower quality DNA,and the worest quality product resulted from boiling method.CTAB method and high salt method could be the optimal ways for obtaining the genomic DNA.%为了筛选支原体基因组DNA最优提取方法以便用于支原体的检测和分子鉴定,本试验采用两种试剂盒、CTAB法、高盐法、酚/氯仿/异戊醇法和煮菌法对3批两种支原体液体培养物进行总DNA提取,通过检测基因组DNA纯度和PCR产物比较其提取效果.结果显示:6种方法提取的支原体基因组DNA均能用于PCR.进口试剂盒和CTAB法获得的DNA纯度最高,酚/氯仿/异戊醇法、高盐法和国产试剂盒次之,煮菌法省时但质量较差,酚/氯仿/异戊醇法较慢.CTAB法和高盐法可快速获得优质的基因组DNA,可作为提取支原体基因组DNA的首选方法.

  16. Study on comparison of methods of extracting genome DNA from wheat%小麦基因组DNA提取方法比较研究

    Institute of Scientific and Technical Information of China (English)

    王小利

    2012-01-01

    This paper introduces 4 methods of wheat DNA extraction. The DNA concentration and quality are compared by using agarose gel electrophoresis and protein nucteic acid analyzer. Experimental results show that there is somewhat difference in DNA concentration between the 4 methods. The DNA concentration in Program I is the highest, but the consumption of reagent is the most. The DNA concentration of Program 11 is the lowest, but the process is simple. The extracted DNA concentrations are equivalent to Programs Ⅲ and IV. There is protein pollution in Program Ⅲ, but the process is simple. The purity of Program IV is higher than others, but the process is the most complex, Using the same pair of primers and the reaction system, the extracted DNA is amplified by PCR. The results show that the 4 methods all can meet the requirement of molecular marker detection.%用4种方法对小麦基因组DNA进行提取,采用琼脂糖凝胶电泳法和核酸蛋白分析仪比较DNA的浓度和质量,结果显示,4种DNA提取方法在DNA浓度上有所差别,方法一所提取的DNA浓度最高,但消耗试剂最多;方法二所提取的DNA浓度最低,有蛋白质污染,但过程简单;方法三和方法四所提取的DNA浓度相当,方法三有蛋白质污染,过程简单,方法四纯度高,过程最复杂.采用同一对引物和反应体系对所提取的DNA进行PCR扩增,结果显示4种方法所提取的基因组DNA均能满足分子标记检测的需要.

  17. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  18. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  19. Simple & Safe Genomic DNA Isolation.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  20. Automated extraction of DNA from clothing

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hjort, Benjamin Benn; Nøhr Hansen, Thomas

    2011-01-01

    Presence of PCR inhibitors in extracted DNA may interfere with the subsequent quantification and short tandem repeat (STR) reactions used in forensic genetic DNA typing. We have compared three automated DNA extraction methods based on magnetic beads with a manual method with the aim of reducing t...

  1. Selective microbial genomic DNA isolation using restriction endonucleases.

    Science.gov (United States)

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  2. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Directory of Open Access Journals (Sweden)

    Peterson Kenneth R

    2004-04-01

    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  3. 纯培养节旋藻全基因组提取方法的比较研究%Comparative investigation on whole genome DNA extraction of axenic strains of Athrospira platensis

    Institute of Scientific and Technical Information of China (English)

    李善策; 李勇勇; 夏金兰; 秦松

    2013-01-01

    Single filaments of Arthrospira/Spirulina strains were picked up and axenicly cultured. Six protocols for ex-traction of whole genome DNA of the Arthrospira strains were comparatively studied. The phylogenetic analysis of 16S rRNA-ITS (internally transcribed spacer) gene sequences as molecular markers were conducted. The results show that the method of Freezing-thawing CTAB was effective in extracting extra-genomic DNA, not chromasomal from the tested strains. The extracted DNA containing excellent overall quality and high molecular weight can be directly used for molecular biology experiments. The molecular phylogenetic dendrogram indicates that the strains used in this research were all Arthrospira platensis, which were significantly different from strains of Spirulina in molecu-lar classification and identification in cyanobacterial genus.%本研究从实验室保藏的节旋藻(Arthrospira)藻种出发,挑取形态不同的单藻丝体进行纯化培养,采用6种方法进行全基因组DNA提取的比较研究,而后以16S rRNA-ITS区基因作为分子标记对藻株进行相关序列测定和分子系统进化分析。结果表明,冻融 CTAB 法能够提取出包含染色体外 DNA 在内的节旋藻全基因组,高质量样品可以满足分子生物学实验要求;分子系统研究表明,纯化藻株皆为钝顶节旋藻,节旋藻与螺旋藻在分子鉴定中属间差异明显。

  4. Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol.

    Science.gov (United States)

    Johns, M B; Paulus-Thomas, J E

    1989-08-01

    We have developed a new, rapid method for the extraction of human genomic DNA from whole blood samples. Traditionally, genomic DNA has been extracted from blood by overnight proteinase K digestion of lysed peripheral lymphocytes followed by phenol/chloroform extraction. In addition to being time consuming, the use of phenol involves inherent risks due to the toxic nature of the reagent. Our method for the extraction of DNA from whole blood uses sodium perchlorate and chloroform instead of phenol with a significant time savings realized as well as fewer hazards to the technician. Furthermore, DNA prepared by this new method is an excellent substrate for restriction endonuclease digestion and Southern hybridization analysis.

  5. 一种改良的快速高质大豆基因组DNA提取方法%An Improved Method to Rapid and High-quality of Genomic DNA Extraction from Soybean

    Institute of Scientific and Technical Information of China (English)

    任良真; 张春宝; 赵洪锟; 董英山; 赵丽梅

    2012-01-01

    为了探索一种适用于大豆叶片基因组DNA的快速、高效的提取方法,在传统的SDS提取方法的基础上,通过将缓冲液成分和浓度进行改良并加入表面活性剂Tween-20,优化实验流程.用限制性内切酶对该方法提取的DNA进行酶切及电泳检测,可得均一弥散条带.以提取的DNA模版扩增大豆Actin基因,测序后证实片段正确.同样以其为模版以SSR引物Sctt011进行SSR-PCR反应,并通过聚丙烯酰胺凝胶电泳检测,也可观察到特异性明显且无杂质的目的条带.实验结果表明,该方法提取的DNA完全符合各种分子实验的要求.本研究方法可用于快速提取大豆叶片基因组DNA,同时提高了提取DNA的质量.%In order to explore a method to fast extract high-quality soybean leaf genomic DNA. This study improved buffer composition and concentration, added surfactant Tween-20, and optimized the experimental procedure on the basis of the SDS method. The extracted DNA was digested with the restriction enzyme EcoR I, electrophoresis displayed it was digested completely. And the DNA was used as template to amplify the soybean Actin gene, sequencing confirmed the segment was correct. And the DNA was also used for SSR-PCR reaction with SSR primer Sctt011, polyacrylamide gel electrophoresis results showed the bands were specifical and clear. The results showed that the extracted DNA could be used for various molecular experiments. The method could shorten the DNA extraction time, while improve the quality of extracted DNA.

  6. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    of each method’s ability to analyze DNA copy number data. Moreover, our study shows that analysis methods developed for cancer research may also successfully be applied to DNA copy number profiles from bacterial genomes. However, here the purpose is to characterize variations in the gene content...... to verify predictions of highly expressed genes. Moreover, the codon bias of microbial genomes was found to constitute an environmental signature. For example, soil bacteria have very similar codon bias....

  7. Microwave-based Method for Genomic DNA Extraction and Rapid Detection Method from Xanthomonas axonopodis pv.citri%柑桔溃疡病菌基因组DNA的微波法抽提及快速检测

    Institute of Scientific and Technical Information of China (English)

    姚廷山; 周常勇; 胡军华; 冉春; 李鸿筠; 刘浩强; 肖田

    2012-01-01

    利用微波热震惊提取固体表面柑桔溃疡病基因组DNA并加以优化,所得到的基因组DNA可作为PCR反应的模板进行16SrDNA基因有效扩增.与柑桔溃疡病基园组DNA其他抽提方法相比较,微波法更适用于该病的快速检测,具有快速、筒便、费用低廉等特点,且对设备的要求不高,用特异性引物XCF/XCR可实现柑桔溃疡病菌的快速鉴定.%The optimized microwave extraction was conducted to attract the genome of citrus canker disease. The genome extraction method was fast,easy to handle with low cost The extracted DNA was suitable for PCR. The microwave-based method was suitable for fast identification compare to other methods. The method was effective, easy and fast, so it was recommended that the extraction method was applied for the detection of Xanthomonas oxonopodit pv. citri using primers XCF/XCR.

  8. Rapid DNA extraction methods and new primers for randomly amplified polymorphic DNA analysis of Giardia duodenalis.

    Science.gov (United States)

    Deng, M Q; Cliver, D O

    1999-08-01

    A randomly amplified polymorphic DNA (RAPD) procedure using simple genomic DNA preparation methods and newly designed primers was optimized for analyzing Giardia duodenalis strains. Genomic DNA was extracted from in vitro cultivated trophozoites by five freezing-thawing cycles or by sonic treatment. Compared to a conventional method involving proteinase K digestion and phenol extraction, both freezing-thawing and sonication were equally efficient, yet with the advantage of being much less time- and labor-intensive. Five of the 10 tested RAPD primers produced reproducible polymorphisms among five human origin G. duodenalis strains, and grouping of these strains based on RAPD profiles was in agreement among these primers. The consistent classification of two standard laboratory reference strains, Portland-1 and WB, in the same group confirmed previous results using other fingerprinting methods, indicating that the reported simple DNA extraction methods and the selected primers are useful in RAPD for molecular characterization of G. duodenalis strains.

  9. DNA extraction of birch leaves by improved CTAB method and optimization of its ISSR system

    Institute of Scientific and Technical Information of China (English)

    PAN hua; YANG Chuan-ping; WEI Zhi-gang; JIANG Jing

    2006-01-01

    The basic method of DNA extraction (CTAB) was improved as the multi-times STE-CTAB extraction method and used to extract the DNA of birch leaved in this experiment. Results showed that the improved method is suitable not only for genomic DNA extraction of birch but also for that of other plants. The purity of genomic DNA extracted by the multi-times STE-CTAB extraction method is higher than that by one time STE-CTAB method, and it does not need the process of RNase. The factors of influencing ISSR system were explored based on the genomic DNA of birch extracted by the two methods. The optimal conditions for ISSR system were determined as follows: cycles of denaturation for 30 s at 94℃, annealing for 30 s at 51 ℃, extension for 30 s at 72℃, and a final 7 min extension at 72 ℃.

  10. 烟粉虱全基因组DNA四种提取方法的比较%Comparison of Four Methods for Whole Genomic DNA Extraction from Bemisia tabaci

    Institute of Scientific and Technical Information of China (English)

    戴恬美; 吕志创; 万方浩

    2014-01-01

    获得大量、高质量的全基因组DNA是在DNA水平上研究许多生物的分子机制的基本前提。微小昆虫由于其体型微小,单头提取DNA浓度低,无法满足部分试验所需。为寻找一种方便、快捷、高效的全基因组提取方法,参考国内外单头微小昆虫基因组DNA提取常用方法,以烟粉虱为研究材料,选取醋酸钾(KAc)法、盐析法、氯仿-异戊醇法和苯酚提取法四种方法进行多头烟粉虱的全基因组DNA提取。通过微量核酸蛋白分析仪、基因组DNA直接琼脂糖凝胶电泳、甲基化敏感扩增多态性(Methylation sensitive amplification polymorphism,MSAP)引物扩增产物的琼脂糖凝胶电泳对DNA样品进行检测,比较提取DNA的产量、质量,并综合分析各提取方法所需时间及所用试剂的毒性大小。结果表明,盐析法提取的DNA平均浓度为521 ng/μL,纯度能满足分子检测要求,用MSAP引物能得到较好的扩增结果,相比其它方法,盐析法更简便、快速且无毒。因此盐析法是多头烟粉虱全基因组DNA提取的最佳方法。%Obtaining high-quality DNA is a prerequisite to study the molecular mechanisms of many organisms. For tiny insects, low DNA concentration(from one single insect)is unable to meet the need of some experiments. To find a convenient and efficient method for whiteflies genome extraction, KAc, salting-out, chloroform-isoamylol and phenol methods were used to extract bull whiteflies genome DNA, respectively. The efficiency of different DNA extraction methods were evaluated by comparing the concentration, purity, PCR products of DNA, extraction time and the toxicity of the reagents, respectively. The results showed that the average concentration of DNA extraction of salting-out method was 521 ng/μL, and the purity could meet the experiment requirements, and the PCR product brand of MSAP primer amplification was bright. Compared to other methods, salting

  11. EXTRAÇÃO DE DNA GENÔMICO DE Passiflora spp. PARA ANÁLISES PCR-RAPD GENOMIC DNA EXTRACTION FROM Passiflora spp. FOR PCR-RAPD ANALYSES

    Directory of Open Access Journals (Sweden)

    HUGO BRUNO MOLINARI

    2001-08-01

    Full Text Available A identificação e caracterização da diversidade genética de plantas por meio de técnicas moleculares envolvem a avaliação de vários indivíduos, necessitando-se, portanto, de métodos rápidos e precisos de extração do DNA. O co-isolamento de polissacarídeos, fenóis e compostos secundários é o principal problema encontrado no isolamento e purificação de DNA vegetal. Folhas das diversas espécies de Passiflora possuem níveis variados desses compostos que podem comprometer este procedimento. O presente estudo foi realizado com o objetivo de avaliar a qualidade e quantidade de DNA de folhas de variedades de Passiflora spp., utilizando-se de três métodos de extração. Os três métodos forneceram DNA em qualidade e quantidade suficientes para a realização da técnica PCR-RAPD.The identification and characterization of the genetic diversity of plants by molecular techniques involve the evaluation of several individuals, therefore requiring fast and precise extraction methods of DNA. Co-isolation of polysaccharides, phenols and secondary products is the main problem during isolation and purification of plant DNA. The leaves of several species of Passiflora have different levels of those compounds that can compromise this procedure. The objective of this study was to evaluate the quality and amount of DNA extracted from Passiflora spp. varieties using three extraction methods. The three methods supplied DNA in quality and quantity sufficient amount for PCR-RAPD analyses.

  12. A single protocol for extraction of gDNA from bacteria and yeast.

    Science.gov (United States)

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification.

  13. 基于DGGE分析的大鼠粪便及肠道细菌DNA提取方法研究%Genomic DNA Extraction from Rat Faecal and Intestinal Microflora Based on DGGE Analysis

    Institute of Scientific and Technical Information of China (English)

    郑刚; 陈己任; 胡博文; 陈彦斌; 赵国华

    2011-01-01

    In this study,SD rats were fed dietary fiber from tomato skin for understanding the effect of dietary fiber on intestinal flora.The feces and cecum of rats were collected and stored at-70 ℃.Bacterial genomic DNA was extracted from feces and cecum using TIANamp bacterial DNA kit,proteinase K-CTAB(cetyltrimethylammonium bromide) and muramidase protocol,respectively.The extracted DNA was assayed by agarose gel electrophoresis,bacterial universal primer PCR and denaturing gradient gel electrophoresis(DGGE).Results showed that more and better DNA was extracted by using modified muramidase method with lower cost and shorter extraction time when compared with other methods.Therefore,the modified muramidase protocol is the best for DNA extraction from feces and cecum of rats.%为获得高质量肠道细菌总DNA用于研究膳食纤维对大鼠肠道菌群的影响,本实验以SD大鼠为实验动物,灌胃番茄皮膳食纤维,收集大鼠粪便及盲肠,-70℃冰箱保存。分别采用Tiangen细菌基因组试剂盒法、蛋白酶K-十六烷基三甲基溴化铵(CTAB)法和溶菌酶法提取粪便和肠道中的细菌总DNA,通过琼脂糖凝胶电泳、细菌通用引物PCR扩增和变性梯度凝胶电泳(DGGE)对提取效果进行观察比较,发现将溶菌酶法进行改进后,可以获得满意效果。改进后的溶菌酶法与另外两种方法比较,具有成本低、时间短、DNA得率高和多样性好等特点;该方法获得的DNA样品适合于用DGGE技术分析大鼠粪便及肠道菌群。

  14. A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples.

    Science.gov (United States)

    Claassen, Shantelle; du Toit, Elloise; Kaba, Mamadou; Moodley, Clinton; Zar, Heather J; Nicol, Mark P

    2013-08-01

    Differences in the composition of the gut microbiota have been associated with a range of diseases using culture-independent methods. Reliable extraction of nucleic acid is a key step in identifying the composition of the faecal microbiota. Five widely used commercial deoxyribonucleic acid (DNA) extraction kits (QIAsymphony® Virus/Bacteria Midi Kit (kit QS), ZR Fecal DNA MiniPrep™ (kit Z), QIAamp® DNA Stool Mini Kit (kit QA), Ultraclean® Fecal DNA Isolation Kit (kit U) and PowerSoil® DNA Isolation Kit (kit P)) were evaluated, using human faecal samples. Yield, purity and integrity of total genomic DNA were compared spectrophotometrically and using gel electrophoresis. Three bacteria, commonly found in human faeces were quantified using real time polymerase chain reaction (qPCR) and total bacterial diversity was studied using denaturing gradient gel electrophoresis (DGGE) as well as terminal restriction fragment length polymorphism (T-RFLP). The measurements of DNA yield and purity exhibited variations between the five kits tested in this study. Automated kit QS exhibited the best quality and highest quantity of DNA. All kits were shown to be reproducible with CV values≤0.46 for DNA extraction. qPCR results showed that all kits were uniformly efficient for extracting DNA from the selected target bacteria. DGGE and T-RFLP produced the highest diversity scores for DNA extracted using kit Z (H'=2.30 and 1.27) and kit QS (H'=2.16 and 0.94), which also extracted the highest DNA yields compared to the other kits assessed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ancient DNA: genomic amplification of Roman and medieval bovine bones

    Directory of Open Access Journals (Sweden)

    A. Valentini

    2010-04-01

    Full Text Available Cattle remains (bones and teeth of both roman and medieval age were collected in the archaeological site of Ferento (Viterbo, Italy with the aim of extracting and characterising nucleic acids. Procedures to minimize contamination with modern DNA and to help ancient DNA (aDNA preservation of the archaeological remains were adopted. Different techniques to extract aDNA (like Phenol/chloroform extraction from bovine bones were tested to identify the method that applies to the peculiar characteristics of the study site. Currently, aDNA investigation is mainly based on mtDNA, due to the ease of amplification of the small and high-copied genome and to its usefulness in evolutionary studies. Preliminary amplification of both mitochondrial and nuclear aDNA fragments from samples of Roman and medieval animals were performed and partial specific sequences of mitochondrial D-loop as well as of nuclear genes were obtained. The innovative amplification of nuclear aDNA could enable the analysis of genes involved in specific animal traits, giving insights of ancient economic and cultural uses, as well as providing information on the origin of modern livestock population.

  16. Comparison of phenol chloroform method and salting out method for genomic DNA extraction%酚/氯仿法和盐析法提取人类外周血基因组DNA方法的比较

    Institute of Scientific and Technical Information of China (English)

    宋洁云; 刘芳宏; 马军; 陈远帆; 王海俊

    2013-01-01

    目的 比较两种不同方法提取的基因组DNA的纯度、产量和后续实验效果.方法 采用酚/氯仿法和盐析法两种方法直接从全血中提取基因组DNA,并采用电泳、PCR和基质支持的激光释放/电离飞行时间质谱分析(MALDI-TOF MS)方法进行检测.结果 酚/氯仿法提取的基因组DNA纯度高于盐析法(P<0.001),但两组纯度平均值都高于1.80;没有发现两种方法提取的DNA浓度存在差异(P=0.819).两组DNA在电泳中都没有出现明显拖尾现象,均很容易扩增出胰岛素诱导基因2片段,并且在MALDI-TOF MS检测中,两组DNA样本结果没有明显差异.结论 酚/氯仿法和盐析法提取的基因组DNA质量无明显差异.相比酚/氯仿法,盐析法能简便、快速、无毒地进行DNA提取,适合于大规模的分子生物学实验.%Objective To detect the purity,quantity and follow-up experimental effects of DNA extracted with two methods. Methods Extract genomic DNA with phenol chloroform method and salting out method,and detect the DNA samples with electrophoresis, PCR and Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrome try (MALDI-TOF MS). Results Purity of DNA extracted with phenol chloroform method was higher than that with salting out method,with both mean purity higher than 1.80. The quantity was not significantly different between two methods (P=0. 819). The DNA samples did not smear on gel,and the PCR test of INSIG2 gene and MALD1-TOF MS test did not show difference between DNA isolated with two methods. Conclusion There was no difference between DNA samples isolated with phenol chloroform method and salting out method. Compared to phenol chloroform method, salting out method was much simpler, more quick and harmless, and was applicable to molecular biology experiments with large scale.

  17. 不同处理对柿属植物DNA提取产率和品质的影响%Effect of Different Treatments on Genomic DNA Extraction in Diospyros spp

    Institute of Scientific and Technical Information of China (English)

    易庆平; 罗正荣

    2012-01-01

    基于CTAB法对鄂柿一号、前川次郎、君迁子3份材料进行DNA提取纯化,探讨不同采样时期、不同的纯化及沉淀方法对柿属植物DNA产率和品质的影响.结果表明,不同时期采样对DNA产率影响很大,随叶片生长,DNA产率不断下降,成熟叶片DNA产率仅为幼嫩叶片的16.7%~19.4%;在苯酚氯仿法、高盐乙醚法、CTAB沉淀法中以高盐乙醚法效果最好,可酶切,能有效去除多糖污染,产率较高;4种沉淀方法中,高浓度的盐溶液有助于去除多糖、多酚等杂质,相比单纯的乙醇或异丙醇沉淀可获得更高品质的DNA.另外,不同材料间提取DNA难度存在较大差异.%The efficiency of many nucleic acid isolation techniques is affected by the presence of plant metabolites such as polysaccharides, polyphones, etc. Based on CTAB DNA extraction method, some treatments with different sampling, purifying and precipitating were studied to preserve the effect on genomic DNA extraction in three materials of Diospyros spp. The results indicated that as the tissue developed, the yield of DNA decreased. Compared with tender shoots, the amount of DNA from mature leaves was 16. 7% —18. 4%. Among three purification methods, the high salt/water-saturated ether obtained high-quality easily digested DNA with higher yield. In addition, add high concentration salt before organic precipitation is helpful to remove the impurity, could gain higher-quality DNA. The efficiency of DNA extraction form cultivars differs much.

  18. The Extraction of the Genomic DNA in Bitter Gourd and Optimization of ISSR Amplified System%苦瓜基因组DNA的提取及ISSR扩增体系的优化

    Institute of Scientific and Technical Information of China (English)

    田丽波; 谷幸幸; 商桑; 杨衍

    2013-01-01

    In order to rapid acquiring high quality genomic DNA of Bitter gourd (Momordica charantia L.) and research the resistance gene molecular marker of powdery mildew (Sphaerotheca fuliginea), the paper compared the extracted genomic DNA' s yield and quality by different extracted methods and different physiological periods' leaves of bitter gourd to search the best method and the most suitable period in extracting genomic DNA from bitter gourd. The annealing temperatures of ISSR-PCR (inter-simple sequence repeat and polymerase chain reaction) was researched, and the concentrations of Mg2+, dNTPs, Taq DNA polymerase, genomic DNA and primers which effect ISSR-PCR were optimized by using orthogonal design method. The result showed that the OD260/OD280 values of the genomic DNA extracted from the top leaves of bitter gourd by improved CTAB method were 1.8-2.0 and the OD260/OD230 values were about 2.0, the electrophoretogram showed that the primary brands were clear and less degradation, the DNA samples were pure and had good quality, the effect was the best. The optimal system was 2.5 μL 10×PCR buffer, 2.5 mmol/LMgCl2, 250μmol/L dNTPs, 10 ng genomic DNA, 0.75 U Taq DNA polymerase, 0.7μmol/L primers, and the total volume of the reaction was 25μL, the most compatible annealing temperatures of primer UBC826 was 53℃. The optimal system could be employed to gain good results in repeated PCR experiments. The best extracting method was the improved CTAB method and the top tender leaf was the most fitting.%为了快速获取高质量的苦瓜基因组DNA,以便进行苦瓜白粉病抗性基因分子标记研究,比较了不同的DNA提取方法、不同部位的苦瓜叶片提取基因组DNA的产量和质量,探究了苦瓜基因组DNA提取的最佳方法和叶片的最适部位;研究了ISSR-PCR的退火温度,并采用正交设计法对影响ISSR-PCR的Mg2+、dNTPs、Taq酶、模板DNA以及引物浓度等5个因素进行了优化.结果表明,采用改良CTAB法

  19. Extracting biological knowledge from DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    De La Vega, F.M. [CINVESTAV-IPN (Mexico); Thieffry, D. [Universite Libre de Bruxelles, Rhode-Saint-Genese (Belgium)]|[Universidad Nacional Autonoma de Mexico, Morelos (Mexico); Collado-Vides, J. [Universidad Nacional Autonoma de Mexico, Morelos (Mexico)

    1996-12-31

    This session describes the elucidation of information from dna sequences and what challenges computational biologists face in their task of summarizing and deciphering the human genome. Techniques discussed include methods from statistics, information theory, artificial intelligence and linguistics. 1 ref.

  20. Highly Effective DNA Extraction Method from Fresh, Frozen, Dried and Clotted Blood Samples

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2011-09-01

    Full Text Available Introduction: Today, with the tremendous potential of genomics and other recent advances in science, the role of science to improve reliable DNA extraction methods is more relevant than ever before. The ideal process for genomic DNA extraction demands high quantities of pure, integral and intact genomic DNA (gDNA from the sample with minimal co-extraction of inhibitors of downstream processes. Here, we report the development of a very rapid, less-hazardous, and high throughput protocol for extracting of high quality DNA from blood samples. Methods: Dried, clotted and ethylene diamine tetra-acetic acid (EDTA treated fresh and frozen blood samples were extracted using this method in which the quality and integrity of the extracted DNA were corroborated by agarose gel electrophoresis, PCR reaction and DNA digestion using restricted enzyme. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8 with high intactness of DNA. Results: PCR and DNA digestion experiments indicated that the final solutions of extracted DNA contained no inhibitory substances, which confirms that the isolated DNA is of good quality. Conclusion: The high quality and quantity of current method, no enzymatic processing and accordingly its low cost, make it appropriate for DNA extraction not only from human but also from animal blood samples in any molecular biology labs.

  1. DNA Extraction from Eriocaulon Plants and Construction of RAPD System

    Institute of Scientific and Technical Information of China (English)

    Xue Xian; Lin Shanzhi; Zhang Zhixiang

    2004-01-01

    There have been many arguments on the classification of Eriocaulon Linn. by morphology so far, and little is known about the use of molecular marker for genetic for genetic diversity of Eriocaulon plants. To apply the technique of molecular marker to the research of genetic diversity of Eriocaulon plants, the study of the extraction method of DNA from the Eriocaulon plants and the RAPD system are essential for researchers. In this paper, the extraction of genome DNA from the silica-gel-dried leaves of several species of Eriocaulon distributed in China was studied, and the best RAPD analysis technique condition of Eriocaulon plants was analyzed.

  2. Overcoming DNA extraction problems from carnivorous plants

    Directory of Open Access Journals (Sweden)

    Fleischmann, Andreas

    2009-12-01

    Full Text Available We tested previously published protocols for DNA isolation from plants with high contents of polyphenols and polysaccharides for several taxa of carnivorous plants. However, we did not get satisfying results with fresh or silica dried leaf tissue obtained from field collected or greenhouse grown plants, nor from herbarium specimens. Therefore, we have developed a simple modified protocol of the commercially available Macherey- Nagel NucleoSpin® Plant kit for rapid, effective and reproducible isolation of high quality genomic DNA suitable for PCR reactions. DNA extraction can be conducted from both fresh and dried leaf tissue of various carnivorous plant taxa, irrespective of high contents of polysaccharides, phenolic compounds and other secondary plant metabolites that interfere with DNA isolation and amplification.

    Probamos algunos protocolos publicados previamente para el aislamiento del ADN de plantas con alto contenido de polifenoles y polisacáridos para varios táxones de plantas carnívoras. Sin embargo, no conseguimos muy buenos resultados ni con tejidos de hojas frescas, ni con tejidos de hojas secadas en gel de sílice obtenidas de plantas colectadas en el campo o cultivadas en los invernaderos, ni de especímenes de herbario. Por lo tanto, hemos desarrollado un protocolo sencillo, modificado del Macherey- Nagel NucleoSpin® Plant kit disponible en el mercado para el aislamiento rápido, eficaz y reproducible de ADN genómico de alta calidad conveniente para la reacción en cadena de la polimerasa. La extracción del ADN se puede realizar en tejidos de hojas frescas o secas de varios táxones de plantas carnívoras, sin importar el grado de contenido de polisacáridos, compuestos fenólicos u otros metabolitos secundarios que interfieren con el aislamiento y la amplificación del ADN.

  3. Genomic DNA extraction from whole blood stored from 15- to 30-years at -20 °C by rapid phenol-chloroform protocol: a useful tool for genetic epidemiology studies.

    Science.gov (United States)

    Di Pietro, Fabio; Ortenzi, Francesco; Tilio, Martina; Concetti, Fabio; Napolioni, Valerio

    2011-02-01

    Long-term stored (LTS) whole blood collection can be an important source of DNA without collection costs, but there is a lack of information on methods useful to extract genomic DNA from such type of biological material. Here we report a simple and fast revisited phenol/chloroform extraction method from LTS whole blood. Protocol reliability was assessed by comparison with proteinase K and silica-gel membrane spin column-based DNA extraction methods using LTS -20 °C whole blood from 1980, and by testing it on 82 whole blood samples, collected from 1980 to 1995, with high quality (A(260/280) = 1.79 ± 0.32 O.D., A(260/230) = 1.45 ± 0.52 O.D.) and quantity results. Genotyping efficiency was also checked by performing RFLP-PCR and ASP-PCR of p53 Pro72Arg (rs1042522) SNP and hTERT MNS16A VNTR, respectively, resulting in 100% of samples successfully typed. In addition to the goodness and the efficiency of method proposed here, this protocol achieves working time reduction combining extraction and purification steps, allowing to work at room temperature. Furthermore, phenol is able to inactivate any potential nuclease and potential infective sources from the first step on. Based on these results we also conclude that LTS -20 °C whole blood samples may be considered a reliable and potential resource for future genotyping studies and retrospective analysis in a genetic epidemiological setting. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Nondestructive DNA extraction from museum specimens.

    Science.gov (United States)

    Hofreiter, Michael

    2012-01-01

    Natural history museums around the world hold millions of animal and plant specimens that are potentially amenable to genetic analyses. With more and more populations and species becoming extinct, the importance of these specimens for phylogenetic and phylogeographic analyses is rapidly increasing. However, as most DNA extraction methods damage the specimens, nondestructive extraction methods are useful to balance the demands of molecular biologists, morphologists, and museum curators. Here, I describe a method for nondestructive DNA extraction from bony specimens (i.e., bones and teeth). In this method, the specimens are soaked in extraction buffer, and DNA is then purified from the soaking solution using adsorption to silica. The method reliably yields mitochondrial and often also nuclear DNA. The method has been adapted to DNA extraction from other types of specimens such as arthropods.

  5. No genome barriers to promiscuous DNA

    Science.gov (United States)

    Lewin, R.

    1984-06-01

    Farrelly and Butow (1983) used the term 'promiscuous DNA' in their report of the apparent natural transfer of yeast mitochondrial DNA sequences into the nuclear genome. Ellis (1982) applied the same term in an editorial comment. It is pointed out since that time the subject of DNA's promiscuity has exploded with a series of reports. According to a report by Stern (1984), movement of DNA sequences between chloroplasts and mitochondria is not just a rare event but is a rampant process. It was recently concluded that 'the widespread presence of ctDNA sequences in plant mtDNA is best regarded as a dramatic demonstration of the dynamo nature of interactions between the chloroplast and the mitochondrion, similar to the ongoing process of interorganellar DNA transfer already documented between mitochondrion and nucleus and between chloroplast and nucleus'.

  6. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  7. Extraction of DNA from plant and fungus tissues in situ

    Directory of Open Access Journals (Sweden)

    Abu Almakarem Amal S

    2012-06-01

    Full Text Available Abstract Background When samples are collected in the field and transported to the lab, degradation of the nucleic acids contained in the samples is frequently observed. Immediate extraction and precipitation of the nucleic acids reduces degradation to a minimum, thus preserving accurate sequence information. An extraction method to obtain high quality DNA in field studies is described. Findings DNA extracted immediately after sampling was compared to DNA extracted after allowing the sampled tissues to air dry at 21°C for 48 or 72 hours. While DNA extracted from fresh tissues exhibited little degradation, DNA extracted from all tissues exposed to 21°C air for 48 or 72 hours exhibited varying degrees of degradation. Yield was higher for extractions from fresh tissues in most cases. Four microcentrifuges were compared for DNA yield: one standard electric laboratory microcentrifuge (max rcf = 16,000×g, two battery-operated microcentrifuges (max rcf = 5,000 and 3,000 ×g, and one manually-operated microcentrifuge (max rcf = 120×g. Yields for all centrifuges were similar. DNA extracted under simulated field conditions was similar in yield and quality to DNA extracted in the laboratory using the same equipment. Conclusions This CTAB (cetyltrimethylammonium bromide DNA extraction method employs battery-operated and manually-operated equipment to isolate high quality DNA in the field. The method was tested on plant and fungus tissues, and may be adapted for other types of organisms. The method produced high quality DNA in laboratory tests and under simulated field conditions. The field extraction method should prove useful for working in remote sites, where ice, dry ice, and liquid nitrogen are unavailable; where degradation is likely to occur due to the long distances between the sample site and the laboratory; and in instances where other DNA preservation and transportation methods have been unsuccessful. It may be possible to adapt

  8. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  9. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  10. Application of Gelatin-Coated Magnetic Particles for Isolation of Genomic DNA from Bones.

    Science.gov (United States)

    Khanpetch, Pongsak; Intorasoot, Sorasak; Prasitwattanseree, Sukon; Mekjaidee, Karnda; Mahakkanukrauh, Pasuk

    2015-07-01

    To develop a method for human genomic DNA extraction from bone using gelatin-coated magnetic particles. Thirty human metacarpal with the bone age ranging from 36 to 93 years were included in the present study. Genomic DNA was extracted from bones using gelatin-coated magnetic particles. The concentration and purity of DNA were analyzed in comparison with a reference method. In addition, the quality of extracted DNA was examined for sex determination by conventional polymerase chain reaction (PCR). The average DNA concentration using gelatin coated magnetic particles exhibited approximately 15 times higher than a reference method with an insignificantly difference of the DNA purity in both methods. Twelve (40%) and fifteen (50%) samples out of thirty DNA isolated using established and reference method, respectively, could be amplified and sex correctly determined by PCR. Gelatin coated magnetic particle is rapid, simple, and well-suited for isolation of DNA from bones.

  11. Extracting DNA from submerged pine wood.

    Science.gov (United States)

    Reynolds, M Megan; Williams, Claire G

    2004-10-01

    A DNA extraction protocol for submerged pine logs was developed with the following properties: (i) high molecular weight DNA, (ii) PCR amplification of chloroplast and nuclear sequences, and (iii) high sequence homology to voucher pine specimens. The DNA extraction protocol was modified from a cetyltrimehtylammonium bromide (CTAB) protocol by adding stringent electrophoretic purification, proteinase K, RNAse, polyvinyl pyrrolidone (PVP), and Gene Releaser. Chloroplast rbcL (ribulose-1,5-bisphosphate carboxylase) could be amplified. Nuclear ribosomal sequences had >95% homology to Pinus taeda and Pinus palustris. Microsatellite polymorphism for PtTX2082 matched 2 of 14 known P. taeda alleles. Our results show DNA analysis for submerged conifer wood is feasible.

  12. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Watson Spencer K

    2006-12-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded (FFPE tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. Results We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb. When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. Conclusion Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.

  13. Establishment and Optimization of Protocol for Genomic DNA Extraction from Seeds of Jatropha curcas%麻疯树(Jatropha curcas L.)种子总DNA提取方法的建立和优化

    Institute of Scientific and Technical Information of China (English)

    李静; 曾德贤; 吴子欢; 范林元; 刘飞虎

    2011-01-01

    A protocol to extract genomic DNA from seeds of Jatropha curcas was established and optimized in order to overleap seedling cultnre and decrease the experimental time. Considering the high contents of proteins. polyphenols and polysaccharides in the seeds, this protocol applied efficient procedures based on CTAB method to remove the secondary metabolites and impuriy. Antioxidant PVP was used to remove polyphenols when sample was homogenized , whereas the cell nuchlear separation buffer was used to remove polysacchandes, and then phenol - chloroform - isoamyl alcohol ( volume proportion = 25 ∶ 24∶ 1 ) extraction to get rid of proteins. The obtained genomic DNA with satisfied concentration and quality couH be used in the test of electrophoresis and ISSR-PCR amplification.%用种子提取DNA可省却培育幼苗过程而加快实验进度,为此建立了麻疯树(Jatropha curcas L.)种子DNA提取方法.针对麻疯树种子富含蛋白质、多酚及多糖等次生物质的特点,基于CTAB法进行优化,在研磨种子时加入抗氧化剂PVP去除多酚,接着用核分离缓冲液去除多糖,再通过酚-氯仿-异戊醇(体积比=25:24:1)抽提去除蛋白质.所提取的麻疯树种子总DNA浓度和质量均较高,经琼脂糖凝胶电泳和ISSR-PCR扩增得到了非常清晰的DNA条带.

  14. The first attested extraction of ancient DNA in legumes (Fabaceae

    Directory of Open Access Journals (Sweden)

    Aleksandar M. Mikić

    2015-11-01

    Full Text Available Ancient DNA (aDNA is any DNA extracted from ancient specimens, important for diverse evolutionary researches. The major obstacles in aDNA studies are mutations, contamination and fragmentation. Its studies may be crucial for crop history if integrated with human aDNA research and historical linguistics, both general and relating to agriculture. Legumes (Fabaceae are one of the richest end economically most important plant families, not only from Neolithic onwards, since they were used as food by Neanderthals and Paleolithic modern man. The idea of extracting and analysing legume aDNA was considered beneficial for both basic science and applied research, with an emphasis on genetic resources and plant breeding. The first reported successful and attested extraction of the legume aDNA was done from the sample of charred seeds of pea (Pisum sativum and bitter vetch (Vicia ervilia from Hissar, southeast Serbia, dated to 1,350 - 1,000 Before Christ. A modified version of cetyltrimethylammonium bromide (CTAB method and the commercial kit for DNA extraction QIAGEN DNAesy yielded several ng μl-1 of aDNA of both species and, after the whole genome amplification and with a fragment of nuclear ribosomal DNA gene 26S rDNA, resulted in the detection of the aDNA among the PCR products. A comparative analysis of four informative chloroplast DNA regions (trnSG, trnK, matK and rbcL among the modern wild and cultivated pea taxa demonstrated not only that the extracted aDNA was genuine, on the basis of mutation rate, but also that the ancient Hissar pea was most likely an early domesticated crop, related to the modern wild pea of a neighbouring region. It is anticipated that this premier extraction of legume aDNA may provide taxonomists with the answers to diverse questions, such as leaf development in legumes, as well as with novel data on the single steps in domesticating legume crops worldwide.

  15. DNA extraction from keratin and chitin.

    Science.gov (United States)

    Campos, Paula F; Gilbert, Thomas M P

    2012-01-01

    DNA extracted from keratinous and chitinous materials can be a useful source of genetic information. To effectively liberate the DNA from these materials, buffers containing relatively high levels of DTT, proteinase K, and detergent are recommended, followed by purification using either silica-column or organic methods.

  16. Rapid DNA extraction of pig ear tissues.

    Science.gov (United States)

    Kunhareang, S; Zhou, H; Hickford, J G H

    2010-07-01

    A single-step DNA isolation procedure from pig tissues was developed and the product used directly for polymerase chain reaction (PCR) amplification, single-strand conformational polymorphism (SSCP) analysis and sequencing. The procedure consists of proteinase K digestion of 2-10mg of fresh tissue, at 55 degrees C for 1h, followed by application of the products of digestion to filter paper. A 1.2mm-diameter punch of that paper has sufficient DNA to act as a template for PCR amplification. The quality of the genomic DNA appeared to be high as the PCR amplicons produced sharp banding patterns on both agarose gel electrophoresis and on SSCP analysis, and they could be used for DNA sequencing following cloning. The dried genomic DNA on filter paper can be kept at room temperature. The procedure is considered effective as it is simple, fast and inexpensive. It would be useful for large-scale genotyping and could be used to obtain genomic DNA from various tissues.

  17. Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core shell magnetic nanoparticles

    Science.gov (United States)

    Xie, Xin; Nie, Xiaorong; Yu, Bingbin; Zhang, Xu

    2007-04-01

    A series of protocols are proposed to extract genomic DNA from whole blood at different scales using carboxyl-functionalized magnetic nanoparticles as solid-phase absorbents. The enrichment of leucocytes and the adsorption of genomic DNA can be achieved with the same carboxyl-functionalized magnetic nanoparticles. The DNA bound to the bead surfaces can be used directly as PCR templates. By coupling cell separation and DNA purification, the whole operation can be accomplished in a few minutes. Our simplified protocols proved to be rapid, low cost, and biologically and chemically non-hazardous, and are therefore promising for microfabrication of a DNA-preparation chip and routine laboratory use.

  18. Extraction of Genomic DNA and Optimization of the RAPD Reaction System of Sesame Highly Sterile Lines%芝麻高度不育材料基因组DNA提取及RAPD反应体系的建立

    Institute of Scientific and Technical Information of China (English)

    赵莉; 孔小卫; 汪强; 林勇翔; 田东丰

    2013-01-01

    The genomic DNA extraction and the RAPD-PCR reaction conditions were optimized when using genomes from sesame leaves of temporary maintainer line WB51220,AB Line infertile plant 0176A,fertile plant 0176B,and Wanzhi No.1 as templates. The results indicated that the genomic DNAs extracted from sesame leaves by improved CTAB DNA extraction method satisfied the requirement of genetic diversity analysis. The best reaction condition for RAPD analysis was as follows:Taq DNA polymerase 1.5 U,dNTP 0.25 mmoL/L,Mg2+2.0 mmoL/L,and random primer 0.75μmoL/L in a total volume of 20μL. Electrophoresis results indicated that bands amplified from the genomic DNAs of four varieties had four common bands in length of 1900,1800,1000,and 900 bp,respectively. The differences were that new bands in length of 2000 bp and 450 bp were amplified from AB line infertile plant 0176A when compared with temporary maintainer line WB51220 and fertile plant 0176B,respectively. And two new bands in length of 750 bp and 1200 bp were amplified from fertile plant 0176B when compared with Wanzhi NO.1.%以临时保持系WB51220、两用系0176A不育株、可育株0176B和皖芝1号等4份材料的叶片为研究材料,对其基因组DNA的提取及对RAPD反应体系进行优化。结果表明,改良的CTAB法获得的芝麻基因组DNA片段大小经电泳检测满足RAPD等遗传多样性分析要求;筛选出RAPD最佳反应体系:20μL反应体系含有1.5 U Taq DNA聚合酶,0.25 mmoL/L dNTP,2.0 mmoL/L Mg2+,0.75μmoL/L引物;4个不同品种的叶片基因组DNA的电泳条带之间有着明显差异,他们共有的条带为1900、1800、1000、900 bp;不同的是,临时保持系WB51220比两用系0176A不育株少了1个2000 bp的条带,可育株0176B比两用系0176A不育株少了1个450 bp条带,皖芝1号比可育株0176B少了1个750 bp和1个1200 bp的条带。

  19. 三种赤潮微藻基因组DNA快速制备方法的研究%Reliable and rapid genomic DNA extraction method of three species of red tide algae

    Institute of Scientific and Technical Information of China (English)

    石彦红; 张凤英; 马凌波

    2009-01-01

    采用超声波法、煮沸法和微波法3种方法分别对塔玛亚历山大藻、环状异帽藻和角毛藻进行细胞破碎及快速制备基因组DNA的研究.通过细胞计数和DNA浓度测定的手段对三种方法进行了比较,以选择适合不同藻种的细胞破碎方法.结果表明,塔玛亚历山大藻和环状异帽藻用超声波法破碎效果较好;角毛藻用微波法较好.对用该三种方法制备的基因组DNA做了PCR扩增,电泳检测表明,与CTAB法扩增效果一样.本文建立的微藻DNA快速制备方法有望应用在赤潮藻类的快速分子鉴定方面.%Recovering DNA of high quality and quantity is a prerequisite for ensuring suitable applications such as detecting red tide algae based on polymerase chain reaction (PCR). We report here DNA rapid isolation protocols for three species of red tide alage: Alexandrium tamarense , Heterocapsa circularisquama and Chaetoceros sp.. The cell walls of algae were crushed by ultrasonication, boiling and microwave method, respectively. And crushing efficiency was calculated by counting cells and assaying yield ratio of genomic DNA. These assays indicated that ultrasonication was an appropriate method for disrupting cell walls of A. tamarense and H. circularisquama , and microwave for Chaetoceros sp.. PCR amplification was made on the extracted DNA got by three methods, and the result showed the same as that by CTAB method. Our DNA extraction protocols can be applied with success to other red tide microalgae and suitable for further molecular analysis.

  20. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    Directory of Open Access Journals (Sweden)

    Nidhi Nair

    2017-07-01

    Full Text Available Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.

  1. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  2. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2016-01-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant...... archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  3. Microscope Titration and Extraction of DNA from Liver.

    Science.gov (United States)

    Mayo, Lois T.; And Others

    1993-01-01

    Describes a simple and inexpensive, one-period activity to extract DNA to make the study of DNA less abstract. A microscope titration is used to determine when cells are ready for DNA extraction. (PR)

  4. Microscope Titration and Extraction of DNA from Liver.

    Science.gov (United States)

    Mayo, Lois T.; And Others

    1993-01-01

    Describes a simple and inexpensive, one-period activity to extract DNA to make the study of DNA less abstract. A microscope titration is used to determine when cells are ready for DNA extraction. (PR)

  5. Accurate determination of DNA yield from individual mosquitoes for population genomic applications

    Institute of Scientific and Technical Information of China (English)

    Craig S.Wilding; D.Weetman; K.Steen; M.J.Donnelly

    2009-01-01

    Accurate estimates of DNA quantity are likely to become increasingly important for successful genomic screening of insect populations via recently developed, highly multiplexed genotyping assays and high-throughput sequencing methods. Here we show that genomic DNA extractions from single Anopheles gambiae Giles using a standard commercial kit-based methodology yield extracts with concentrations below the linear range of spectrophotometric absorbance at 260 nm. Concentrations determined by spectrophotometry were not reproducible, and are therefore neither accurate nor reliable. However,DNA quantification using a fluorescent nucleic acid stain (PicoGreenR) gave highly reproducible concentration estimates, and indicated that, on average, single mosquitoes yielded approximately 300 ng of DNA. Such a total yield is currently insufficient for many highthroughput genome screening applications, necessitating whole genome amplification of all or most individuals in a population prior to genotyping.

  6. Genomic selective constraints in murid noncoding DNA.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2006-11-01

    Full Text Available Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.

  7. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield....

  8. Microbial DNA extraction from samples of varied origin

    National Research Council Canada - National Science Library

    S. Ray Chaudhuri; A. K. Pattanayak; A. R. Thakur

    2006-01-01

    The impact of four different soil DNA extraction methods on the quantity and quality of isolated community DNA was evaluated using agarose gel electrophoresis, DNA spectrum study and PCR-based 16S ribosomal DNA analysis...

  9. HIGH EFFICIENT EXTRA-GENOMIC DNA EXTRACTION AND PURIFICATION FROM SPIRULINA%螺旋藻(Spirulina)基因组外DNA的高效提取与纯化

    Institute of Scientific and Technical Information of China (English)

    曹学成; 汪志平; 杨灵勇; 徐步进

    2007-01-01

    通过研究建立了一种简便、高效提取螺旋藻基因组外DNA(exDNA)的方法--CTAB-蛋白酶K法.该法先以含200μg/ml蛋白酶K的CTAB提取液裂解螺旋藻细胞, 并用氯仿/异戊醇抽提得到总DNA粗提物, 粗提物再经100 μg/ml蛋白酶K酶解及酚/氯仿/异戊醇抽提得到总DNA, 再利用凝胶冻融离心法得到高纯度exDNA.利用上述方法, 对6株钝顶螺旋藻品系Sp-1、Sp-2、Sp-3、Sp-4、Sp-5和Sp-6所作的研究结果表明, (1) 6株品系均含有exDNA, 但数目与相对质量不尽相同; (2) Sp-1、Sp-2、Sp-5和Sp-6均只有一种exDNA, 依次约为1.15kb、0.75kb、1.15kb和1.1kb; (3) Sp-3和Sp-4均有2条exDNA带, Sp-3的exDNA约为1.55kb和3.0kb, Sp-4的exDNA约为1.8kb和3.6kb; (4) 螺旋藻品种(系)间exDNA的异同性及其与生理生态等特性的关系, 暗示着exDNA可能与螺旋藻的分类、进化和形态建成等重大生物学课题有关, 并有可能担负着某些生物学功能.

  10. [Research advances on DNA extraction methods from peripheral blood mononuclear cells].

    Science.gov (United States)

    Wang, Xiao-Ying; Yu, Chen-Xi

    2014-10-01

    DNA extraction is a basic technology of molecular biology. The purity and the integrality of DNA structure are necessary for different experiments of gene engineering. As commonly used materials in the clinical detection, the fast, efficient isolation and extraction of genomic DNA from peripheral blood mononuclear cells is very important for the inspection and analysis of clinical blood. At present, there are many methods for extracting DNA, such as phenol-chloroform method, salting out method, centrifugal adsorption column chromatography method (artificial methods), magnetic beads (semi-automatic method) and DNA extraction kit. In this article, a brief review of the principle for existing DNA blood extraction method, the specific steps and the assessment of the specific methods briefly are summarized.

  11. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Directory of Open Access Journals (Sweden)

    Børglum Anders D

    2011-07-01

    Full Text Available Abstract Background The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix. Results This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P Conclusion Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.

  12. Extraction of Chromosomal DNA from Schizosaccharomyces pombe.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    Extraction of DNA from Schizosaccharomyces pombe cells is required for various uses, including templating polymerase chain reactions (PCRs), Southern blotting, library construction, and high-throughput sequencing. To purify high-quality DNA, the cell wall is removed by digestion with Zymolyase or Lyticase and the resulting spheroplasts lysed using sodium dodecyl sulfate (SDS). Cell debris, SDS, and SDS-protein complexes are subsequently precipitated by the addition of potassium acetate and removed by centrifugation. Finally, DNA is precipitated using isopropanol. At this stage, purity is usually sufficient for PCR. However, for more sensitive procedures, such as restriction enzyme digestion, additional purification steps, including proteinase K digestion and phenol-chloroform extraction, are recommended. All of these steps are described in detail here.

  13. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Storage of plant tissues for DNA is important to avoid degradation of DNA. Preliminary ..... cessful was when SDS based isolation protocol (Edwards ..... preservative facilitating DNA extraction from 'difficult' plants collected.

  14. 大花蕙兰基因组DNA提取及RAPD反应条件探索%Genomic DNA Extraction and RAPD Protocols for Cymbidium hybridium

    Institute of Scientific and Technical Information of China (English)

    李冬梅; 朱根发; 叶庆生

    2006-01-01

    用SDS、CTAB和改良CTAB法分别提取大花蕙兰叶片基因组DNA,发现以改良CTAB法提取的DNA纯度高,产率也较高.以5'-GGTGCTCCGT-3'(BA440)为随机引物,并以大花蕙兰品种‘金杯'(Cymbidium hybridium cv.Hiroshima Golden Cup"Sunny Moon")的DNA为模板,对RAPD(Random Amplified Polymorphic DNA)反应体系进行了优化研究,结果表明,25μl反应体系中,Mg2+、Taq DNA聚合酶、引物、模板DNA和dNTP 5种主要成分的适宜浓度或用量分别是:2.0 mmol/L、1.0 U、0.20μmol/L、25 ng和0.20 mmol/L.扩增程序优化为:94℃预变性4 min;94℃变性0.5 min,37℃退火1 min,72℃延伸1 min,40个循环;最后72℃延伸7 min.

  15. 一种提取肠道细菌总基因组DNA的方法%A simple protocol for genomic DNA extraction from human intestinal microflora

    Institute of Scientific and Technical Information of China (English)

    张雪雁; 李琳琳

    2007-01-01

    目的:尝试提取人体肠道菌群总DNA,为研究肠道菌群结构提供依据.方法:以人体粪便为样本,使用PBS多次清洗,离心样品,沉淀粪便中的菌体.使用裂解液、溶菌酶和蛋白酶K等裂解菌体,用酚/氯仿方法抽提DNA,以提取到的肠道细菌总DNA为模板进行ERIC-PCR扩增.结果:电泳显示样品DNA条带明亮,少数样品DNA存在降解现象;ERIC-PCR扩增得到较清晰的指纹图谱.结论:经改进后的方法操作简单、实用、经济,适用于肠道菌群结构的研究.

  16. Comparison of Three Different DNA Extraction Methods for Linguatula serrata as a Food Born Pathogen.

    Science.gov (United States)

    Eslami, Gilda; Khalatbari-Limaki, Sepideh; Ehrampoush, Mohammad Hasan; Gholamrezaei, Mostafa; Hajimohammadi, Bahador; Oryan, Ahmad

    2017-01-01

    One of the most important items in molecular characterization of food-borne pathogens is high quality genomic DNA. In this study, we investigated three protocols and compared their simplicity, duration and costs for extracting genomic DNA from Linguatula serrata. The larvae were collected from the sheep's visceral organs from the Yazd Slaughterhouse during May 2013. DNA extraction was done in three different methods, including commercial DNA extraction kit, Phenol Chloroform Isoamylalcohol (PCI), and salting out. Extracted DNA in each method was assessed for quantity and quality using spectrophotometery and agarose gel electrophoresis, respectively. The less duration was regarding to commercial DNA extraction kit and then salting out protocol. The cost benefit one was salting out and then PCI method. The best quantity was regarding to PCI with 72.20±29.20 ng/μl, and purity of OD260/OD280 in 1.76±0.947. Agarose gel electrophoresis for assessing the quality found all the same. Salting out is introduced as the best method for DNA extraction from L. seratta as a food-borne pathogen with the least costand appropriate purity. Although, the best purity was regarding to PCI but PCI is not safe as salting out. In addition, the duration of salting out was less than PCI. The least duration was seen in commercial DNA extraction kit, but it is expensive and therefore is not recommended for developing countries where consumption of offal is common.

  17. Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling.

    Science.gov (United States)

    Ghantous, Akram; Saffery, Richard; Cros, Marie-Pierre; Ponsonby, Anne-Louise; Hirschfeld, Steven; Kasten, Carol; Dwyer, Terence; Herceg, Zdenko; Hernandez-Vargas, Hector

    2014-07-01

    Neonatal dried blood spots (DBS) represent an inexpensive method for long-term biobanking worldwide and are considered gold mines for research for several human diseases, including those of metabolic, infectious, genetic and epigenetic origin. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome wide profiling. Degradation of DNA in DBS often occurs during storage and extraction. Moreover, amplifying small quantities of DNA often leads to a bias in subsequent data, particularly in methylome profiles. Thus it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses. Using combinations of in-house-derived and modified commercial extraction kits, we developed a robust and efficient protocol, compatible with methylome studies, many of which require stringent bisulfite conversion steps. Several parameters were tested in a step-wise manner, including blood extraction, cell lysis, protein digestion, and DNA precipitation, purification and elution. DNA quality was assessed based on spectrophotometric measurements, DNA detectability by PCR, and DNA integrity by gel electrophoresis and bioanalyzer analyses. Genome scale Infinium HumanMethylation450 and locus-specific pyrosequencing data generated using the refined DBS extraction protocol were of high quality, reproducible and consistent. This study may prove useful to meet the increased demand for research on prenatal, particularly epigenetic, origins of human diseases and for newborn screening programs, all of which are often based on DNA extracted from DBS.

  18. Efficient DNA extraction from nail clippings using the protease solution from Cucumis melo.

    Science.gov (United States)

    Yoshida-Yamamoto, Shumi; Nishimura, Sayaka; Okuno, Teruko; Rakuman, Miki; Takii, Yukio

    2010-09-01

    Owing to the increasing importance of genomic information, obtaining genomic DNA easily from biological specimens has become more and more important. This article proposes an efficient method for obtaining genomic DNA from nail clippings. Nail clippings can be easily obtained, are thermostable and easy to transport, and have low infectivity. The drawback of their use, however, has been the difficulty of extracting genomic material from them. We have overcome this obstacle using the protease solution obtained from Cucumis melo. The keratinolytic activity of the protease solution was 1.78-fold higher than that of proteinase K, which is commonly used to degrade keratin. With the protease solution, three times more DNA was extracted than when proteinase K was used. In order to verify the integrity of the extracted DNA, genotype analysis on 170 subjects was performed by both PCR-RFLP and Real Time PCR. The results of the genotyping showed that the extracted DNA was suitable for genotyping analysis. In conclusion, we have developed an efficient extraction method for using nail clippings as a genome source and a research tool in molecular epidemiology, medical diagnostics, and forensic science.

  19. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  20. Extraction of DNA from malaria-infected erythrocytes using isotachophoresis.

    Science.gov (United States)

    Marshall, Lewis A; Han, Crystal M; Santiago, Juan G

    2011-12-15

    We demonstrate a technique for purification of nucleic acids from malaria parasites infecting human erythrocytes using isotachophoresis (ITP). We release nucleic acids from malaria-infected erythrocytes by lysing with heat and proteinase K for 10 min and immediately, thereafter, load sample onto a capillary device. We study the effect of temperature on lysis efficiency. We also implement pressure-driven counterflow during ITP extraction to extend focusing time and increase nucleic acid yield. We show that the purified genomic DNA samples are compatible with polymerase chain reaction (PCR) and demonstrate a clinically relevant limit of detection of 0.5 parasites per nanoliter using quantitative PCR.

  1. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing

    DEFF Research Database (Denmark)

    Gamba, Cristina; Hanghøj, Kristian Ebbesen; Gaunitz, Charleen

    2016-01-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs...... of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning...... a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules...

  2. An optimized affordable DNA-extraction method from Salmonella enterica Enteritidis for PCR experiments

    Directory of Open Access Journals (Sweden)

    Karimnasab, N.,

    2013-12-01

    Full Text Available In diagnostic and research bacteriology settings with budget and staff restrictions, fast and cost-effective genome extraction methods are desirable. If not inactivated properly, cellular and/or environmental DNA nucleases will degrade genomic material during the extraction stage, and therefore might give rise to incorrect results in PCR experiments. When crude cell extracts, proteinase K–treated templates and purified DNAs prepared by phenol-chloroform-isoamylalcohol method as well as a commercial extraction kit were subjected to the Salmonella enterica Enteritidis specific STM2 PCR, with exception of crude cell extract, PCR products from all other three methods saved their integrity for 28 days post-generation. This work aimed to find out whether improvement to boiling method can guaranty stability of PCR products. As results showed, treatment of crude cell extracts from S. Enteritidis with proteinase K offers an inexpensive, fast and effective DNA extraction method suitable for high-throughput laboratories.

  3. Extraction of Bacterial Genomic DNA from Cerebrospinal Fluid of Bacterial Meningitis Patients and Identification of 16S rDNA%细菌性脑膜炎患者脑脊液细菌基因组DNA的提取及16SrDNA的鉴定

    Institute of Scientific and Technical Information of China (English)

    梁志娟; 侯晓霖; 王振海; 刘爱翠

    2013-01-01

    Objective To investigate the application of 16S rDNA as a diagnostic tool for bacterial meningitis . Methods The cerebrospinal fluid (CSF) samples were harvested from patients clinically suspected of bacterial meningitis . Bacterial genomic DNA in the CSF was extracted after bacterial enrichment by high-speed centrifugation. Then PCR amplification of 16S rDNA fragment was performed. The results of PCR amplification were compared with those of bacterial culture. Results Twenty-three of the 58 (39.7% ) cases were positive for 16S rDNA in PCR amplification ,which was significantly higher than the positive rate of bacterial culture with only 10 positive cases (17. 2% )(P<0. 05 ). Conclusion The DNA extraction and 16S rDNA PCR detection are simple procedures with short time consumption and high sensitivity suggesting their good application prospect in etio-logical diagnosis of bacterial meningitis.%目的 探讨16S rDNA聚合酶链式反应(PCR)在细菌性脑脊液病原菌检查中的应用价值.方法 收集临床疑诊为细菌性脑膜炎的患者脑脊液标本,高速离心富集细菌后,进行脑脊液中细菌基因组DNA的提取,再进行16S rDNA PCR扩增和琼脂糖凝胶电泳.将检测结果与传统的细菌培养结果进行比较.结果 58例患者脑脊液样本中,23例16S rDNA PCR阳性,阳性率为39.7%;58例脑脊液样本中细菌培养阳性为10例,阳性率为17.2%.PCR检测阳性率明显高于传统的细菌分离培养法(P<0.05).结论 脑脊液细菌基因组DNA提取及16S rDNA PCR鉴定技术操作简单,耗时短,灵敏度高,在细菌性脑膜炎病原学诊断方面具有良好的应用前景.

  4. DNA Repair and Genome Maintenance in Bacillus subtilis

    OpenAIRE

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutage...

  5. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human brain tissue.

    Science.gov (United States)

    Wang, Jian-Hua; Gouda-Vossos, Amany; Dzamko, Nicolas; Halliday, Glenda; Huang, Yue

    2013-10-01

    Both fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) human brain tissues are invaluable resources for molecular genetic studies of central nervous system diseases, especially neurodegenerative disorders. To identify the optimal method for DNA extraction from human brain tissue, we compared methods on differently-processed tissues. Fragments of LRRK2 and MAPT (257 bp and 483 bp/245 bp) were amplified for evaluation. We found that for FFPE samples, the success rate of DNA extraction was greater when using a commercial kit than a laboratory-based method (successful DNA extraction from 76% versus 33% of samples). PCR amplicon size and storage period were key factors influencing the success rate of DNA extraction from FFPE samples. In the fresh-frozen samples, the DNA extraction success rate was 100% using either a commercial kit (QIAamp DNA Micro) or a laboratory-based method (sample boiling in 0.1 mol/L NaOH, followed by proteinase K digestion, and then DNA extraction using Chelex-100) regardless of PCR amplicon length or tissue storage time. Although the present results demonstrate that PCR-amplifiable genomic DNA can be extracted from both fresh-frozen and FFPE samples, fresh brain tissue is recommended for DNA extraction in future neuropathological studies.

  7. Extraction of ultrashort DNA molecules from herbarium specimens.

    Science.gov (United States)

    Gutaker, Rafal M; Reiter, Ella; Furtwängler, Anja; Schuenemann, Verena J; Burbano, Hernán A

    2017-02-01

    DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.

  8. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  9. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  10. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  11. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  12. Methods for microbial DNA extraction from soil for PCR amplification

    OpenAIRE

    Yeates C; Gillings, MR; Davison AD; Altavilla N; Veal DA

    1998-01-01

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol pr...

  13. A Simplified Rice DNA Extraction Protocol for PCR Analysis

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-yue; CUI Hai-rui; BAO Jin-song; ZHOU Xiang-sheng; SHU Qing-yao

    2006-01-01

    A simple protocol was established for DNA extraction using etiolated rice seedlings, whereby rice DNA was directly extracted ir 0.5 mol/L NaOH solution in a single eppendorf tube. Results of comparative PCR analyses and electrophoresis showed that the DNA extracted using this method was as good and useful as that using standard CTAB method.

  14. Comparing DNA extraction methods for analysis of botanical materials found in anti-diabetic supplements.

    Science.gov (United States)

    Llongueras, Jose P; Nair, Saraswathy; Salas-Leiva, Dayana; Schwarzbach, Andrea E

    2013-03-01

    A comparative performance evaluation of DNA extraction methods from anti-diabetic botanical supplements using various commercial kits was conducted, to determine which produces the best quality DNA suitable for PCR amplification, sequencing and species identification. All plant materials involved were of suboptimal quality showing various levels of degradation and therefore representing real conditions for testing herbal supplements. Eight different DNA extraction methods were used to isolate genomic DNA from 13 medicinal plant products. Two methods for evaluation, DNA concentration measurements that included absorbance ratios as well as PCR amplifiability, were used to determine quantity and quality of extracted DNA. We found that neither DNA concentrations nor commonly used UV absorbance ratio measurements at A(260)/A(280) between 1.7 and 1.9 are suitable for globally predicting PCR success in these plant samples, and that PCR amplifiablity itself was the best indicator of extracted product quality. However, our results suggest that A(260)/A(280) ratios below about 1.3 and above 2.3 indicated a DNA quality too poor to amplify. Therefore, A(260)/A(280) measurements are not useful to identify samples that likely will amplify but can be used to exclude samples that likely will not amplify reducing the cost for unnecessarily subjecting samples to PCR. The two Nucleospin(®) plant II kit extraction methods produced the most pure and amplifiable genomic DNA extracts. Our results suggest that there are clear, discernable differences between extraction methods for low quality plant samples in terms of producing contamination-free, high-quality genomic DNA to be used for further analysis.

  15. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip.

    Science.gov (United States)

    Cortijo, Sandra; Wardenaar, René; Colomé-Tatché, Maria; Johannes, Frank; Colot, Vincent

    2014-01-01

    DNA methylation is an epigenetic mark that is essential for preserving genome integrity and normal development in plants and mammals. Although this modification may serve a variety of purposes, it is best known for its role in stable transcriptional silencing of transposable elements and epigenetic regulation of some genes. In addition, it is increasingly recognized that alterations in DNA methylation patterns can sometimes be inherited across multiple generations and thus are a source of heritable phenotypic variation that is independent of any DNA sequence changes. With the advent of genomics, it is now possible to analyze DNA methylation genome-wide with high precision, which is a prerequisite for understanding fully the various functions and phenotypic impact of this modification. Indeed, several so-called epigenomic mapping methods have been developed for the analysis of DNA methylation. Among these, immunoprecipitation of methylated DNA followed by hybridization to genome tiling arrays (MeDIP-chip) arguably offers a reasonable compromise between cost, ease of implementation, and sensitivity to date. Here we describe the application of this method, from DNA extraction to data analysis, to the study of DNA methylation genome-wide in Arabidopsis.

  16. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms.

    Science.gov (United States)

    Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H

    2012-07-01

    The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.

  17. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Zhang, R; Ma, Z H; Wu, B M

    2015-05-01

    Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.

  18. Genotyping whole-genome-amplified DNA from 3- to 25-year-old neonatal dried blood spot samples with reference to fresh genomic DNA.

    Science.gov (United States)

    Hollegaard, Mads Vilhelm; Thorsen, Poul; Norgaard-Pedersen, Bent; Hougaard, David Michael

    2009-07-01

    Stored surplus of dried blood spot (DBS) samples from neonatal screening programs constitute a vast potential for large genetic epidemiological studies. However, age of the samples and the small amounts of DNA available may limit their usage. In this study we validate genotyping accuracy and efficiency of whole-genome-amplified DNA (wgaDNA) obtained from stored DBS samples, with reference to fresh genomic DNA from the same individuals. DBS samples from 29 volunteers, stored for up to 25 years, in the Danish Neonatal Screening Biobank were included and three DNA extraction methods, each using one 3.2 mm disk, were evaluated. Four whole-genome amplification kits, and one re-amplification kit, were used. Thirty-one SNPs were genotyped using the Sequenom platform and the wgaDNA samples calls were compared with their references for accuracy and efficiency evaluation. The genotype calls done blinded by the user had in many setups a 100% call- and concordance rate. Our results showed that genotyping performance is dependent on the combination of extraction procedure and amplification method, whereas years of storage did not seem to influence in this study. Based on these results we conclude that DBS samples should be considered a reliable and potential resource for future genotyping studies.

  19. Standardization of DNA extraction from invasive alien weed ...

    African Journals Online (AJOL)

    DNA isolation from the weed, Parthenium hysterophorus is complicated due to the ... version of cetyltrimethylammonium bromide (CTAB) method constituting high ... The resulted genomic DNA showed fine random amplified polymorphic DNA ...

  20. High Purity DNA Extraction with a SPE Microfluidic Chip Using KI as the Binding Salt

    Institute of Scientific and Technical Information of China (English)

    Xing CHEN; Da Fu CUI; Chang Chun LIU

    2006-01-01

    Based on solid phase extraction method, a novel silicon-PDMS-glass microchip for high purity DNA extraction has been developed by using KI as the binding salt. The microfluidic chip fabricated by MEMS technology was composed of a silicon substrate with a coiled channel and a compounded PDMS-glass cover. With this microfluidic chip, the wall of the coiled channel was used as solid phase matrix for binding DNA and DNA was extracted by the fluxion of the binding buffer, washing buffer and elution buffer. KI as a substitute for guanidine, was used successfully as binding salt for purification DNA, obtaining higher purity of genomic DNA and about 13.9 ng DNA from 1 μL rat whole blood in 35 minutes.

  1. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    Science.gov (United States)

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  2. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds

    Indian Academy of Sciences (India)

    MOHAMMED BAQUR SAHIB A. AL-SHUHAIB

    2017-03-01

    There is no ‘one’ procedure for extracting DNA from the whole blood of both mammals and birds, since each species has a unique property that require different methods to release its own DNA. Therefore, to obtain genomic DNA, a universal, rapid, and noncostly method was developed. A very simple biological basis is followed in this procedure, in which, when the bloodis placed in water, it rapidly enters the RBCs by osmosis and causes cells to burst by hemolysis. The validity of extracting genomic DNA was confirmed by several molecular biological experiments. It was found that this method provides an efficient and versatile alternative for extracting bulk amounts of highly-qualified DNA from the blood of a wide range of species. This is the first manuscript that describes use of distilled water as the only eliminator of RBCs among all other known DNA extraction techniques.

  3. A universal, rapid, and inexpensive method for genomic DNA isolation from the whole blood of mammals and birds.

    Science.gov (United States)

    Al-Shuhaib Mohammed Baqur, Sahib A

    2017-03-01

    There is no 'one' procedure for extracting DNA from the whole blood of both mammals and birds, since each species has a unique property that require different methods to release its own DNA. Therefore, to obtain genomic DNA, a universal, rapid, and noncostly method was developed. A very simple biological basis is followed in this procedure, in which, when the blood is placed in water, it rapidly enters the RBCs by osmosis and causes cells to burst by hemolysis. The validity of extracting genomic DNA was confirmed by several molecular biological experiments. It was found that this method provides an efficient and versatile alternative for extracting bulk amounts of highly-qualified DNA from the blood of a wide range of species. This is the first manuscript that describes use of distilled water as the only eliminator of RBCs among all other known DNA extraction techniques.

  4. Comparison of Two Methods for the Isolation of Genomic DNA from Cyathostomin Adult Parasites

    Directory of Open Access Journals (Sweden)

    Juliana Bana ISHII

    2017-07-01

    Full Text Available Cyathostomins are the most common and important group of large intestine nematodes, infecting horses worldwide. The current control strategy is associated with the development of anthelmintic resistance, which has been reported worldwide. Therefore, experiments with this family of parasites have become progressively important to provide their monitoring and control strategies. The aim of the present study was to propose a faster and more economic assay for isolation of genomic DNA from the adult stage of Cyathostomin parasites than reported. Adult parasites were collected from a single horse from a farm in São José dos Pinhais, PR, Brazil, and were identified. Genomic DNA was isolated from ten individual female adult parasites using a standardized procedure developed. Then, extraction from ten individual female was carried out by another DNA extraction method. DNA concentration from both methods were measured and compared. We obtained a good DNA quality with this standardized procedure. As a result of this analysis, we propose a modified phenol-chloroform method, which will contribute to assays that require DNA extraction from adult worms for genomic DNA sequences of cyathostomin, or species-specific identification.

  5. GFF-Ex: a genome feature extraction package

    OpenAIRE

    Rastogi, Achal; Gupta, Dinesh

    2014-01-01

    Background Genomic features of whole genome sequences emerging from various sequencing and annotation projects are represented and stored in several formats. Amongst these formats, the GFF (Generic/General Feature Format) has emerged as a widely accepted, portable and successfully used flat file format for genome annotation storage. With an increasing interest in genome annotation projects and secondary and meta-analysis, there is a need for efficient tools to extract sequences of interests f...

  6. Evaluation of Five Methods for Total DNA Extraction from Western Corn Rootworm Beetles

    Science.gov (United States)

    Chen, Hong; Rangasamy, Murugesan; Tan, Sek Yee; Wang, Haichuan; Siegfried, Blair D.

    2010-01-01

    Background DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction. Methodology/Principal Findings From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol® reagent, Puregene® solutions and DNeasy® column were compared in terms of DNA quantity and quality, cost of materials, and time consumed. Although all five methods resulted in acceptable DNA concentrations and absorbance ratios, the SDS and CTAB methods resulted in higher DNA yield (ng DNA vs. mg tissue) at much lower cost and less degradation as revealed on agarose gels. The DNeasy® kit was most time-efficient but was the costliest among the methods tested. The effects of ethanol volume, temperature and incubation time on precipitation of DNA were also investigated. The DNA samples obtained by the five methods were tested in PCR for six microsatellites located in various positions of the beetle's genome, and all samples showed successful amplifications. Conclusion/Significance These evaluations provide a guide for choosing methods of DNA extraction from western corn rootworm beetles based on expected DNA yield and quality, extraction time, cost, and waste control. The extraction conditions for this mid-size insect were optimized. The DNA extracted by the five methods was suitable for further molecular applications such as PCR and sequencing by synthesis. PMID:20730102

  7. Evaluation of five methods for total DNA extraction from western corn rootworm beetles.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available BACKGROUND: DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction. METHODOLOGY/PRINCIPAL FINDINGS: From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol reagent, Puregene solutions and DNeasy column were compared in terms of DNA quantity and quality, cost of materials, and time consumed. Although all five methods resulted in acceptable DNA concentrations and absorbance ratios, the SDS and CTAB methods resulted in higher DNA yield (ng DNA vs. mg tissue at much lower cost and less degradation as revealed on agarose gels. The DNeasy kit was most time-efficient but was the costliest among the methods tested. The effects of ethanol volume, temperature and incubation time on precipitation of DNA were also investigated. The DNA samples obtained by the five methods were tested in PCR for six microsatellites located in various positions of the beetle's genome, and all samples showed successful amplifications. CONCLUSION/SIGNIFICANCE: These evaluations provide a guide for choosing methods of DNA extraction from western corn rootworm beetles based on expected DNA yield and quality, extraction time, cost, and waste control. The extraction conditions for this mid-size insect were optimized. The DNA extracted by the five methods was suitable for further molecular applications such as PCR and sequencing by synthesis.

  8. Microbial diversity in fecal samples depends on DNA extraction method

    DEFF Research Database (Denmark)

    Mirsepasi, Hengameh; Persson, Søren; Struve, Carsten

    2014-01-01

    BACKGROUND: There are challenges, when extracting bacterial DNA from specimens for molecular diagnostics, since fecal samples also contain DNA from human cells and many different substances derived from food, cell residues and medication that can inhibit downstream PCR. The purpose of the study...... was to evaluate two different DNA extraction methods in order to choose the most efficient method for studying intestinal bacterial diversity using Denaturing Gradient Gel Electrophoresis (DGGE). FINDINGS: In this study, a semi-automatic DNA extraction system (easyMag®, BioMérieux, Marcy I'Etoile, France......) and a manual one (QIAamp DNA Stool Mini Kit, Qiagen, Hilden, Germany) were tested on stool samples collected from 3 patients with Inflammatory Bowel disease (IBD) and 5 healthy individuals. DNA extracts obtained by the QIAamp DNA Stool Mini Kit yield a higher amount of DNA compared to DNA extracts obtained...

  9. 一管酒精法提取转基因小鼠胚胎组织基因组的实验方法及应用%Protocol and application of ethanol method to extract genomic DNA from transgenic mouse embryos

    Institute of Scientific and Technical Information of China (English)

    翁敏杰; 杜建霖; 蒲荻; 张进; 李晓群; 刘亚杰; 余强

    2012-01-01

    Objective: To optimize the method of genome extraction and to establish an effective,convenient and fast research platform which could identify and screen the transgenic mice on a large scale. Methods: The Genomic DNA was extracted by using the ethanol method. Results :The results of spectrophotometry and gel electrophoresis revealed that the concentration, purity and quality of the genomic DNA extracted through the ethanol method had no obvious difference compared with that extracted through the classical phenol/ chloroform method. The genomic DNA obtained by the two extraction protocols could both be digested completely and able to identify the knock-in mice by PCR amplification. Both the templates were well used in gene sequencing and Real-time PCR to detect the exogenous genft and the relative copy numbers. Conclusion:The DNA extracted through the ethanol method was superior in quality and had stable and reliable test results in transgenic mice identifying, digestion, gene sequencing and Real-time PCR amplification.%目的:优化提取基因组的方法,建立高效、简便、快速提取基因组DNA的方法,用于大批量转基因小鼠鉴定.方法:用一管酒精基因组DNA抽提法抽提基因组DNA.结果:经过分光光度法检测基因组DNA浓度、纯度及电泳分析DNA质量,显示一管酒精抽提法提取的基因组与经典酚/氯仿提取法提取的基因组产量、纯度及质量没有明显差别;酶切全基因组后,2种方法获得的基因组都可以被酶完全切开;两者模板都能成功应用PCR扩增来鉴定基因敲入小鼠并可应用于基因组测序及Real-time PCR检测基因敲入小鼠中外源基因并鉴定其相对拷贝数.结论:一管酒精基因组抽提法得到的DNA质量可靠,可高效、简便、快速鉴定转基因小鼠及进行基因组DNA酶切、测序、Real-time PCR等后续实验.

  10. Two-dimensional DNA displays for comparisons of bacterial genomes

    Directory of Open Access Journals (Sweden)

    Malloff Chad

    2003-01-01

    Full Text Available We have developed two whole genome-scanning techniques to aid in the discovery of polymorphisms as well as horizontally acquired genes in prokaryotic organisms. First, two-dimensional bacterial genomic display (2DBGD was developed using restriction enzyme fragmentation to separate genomic DNA based on size, and then employing denaturing gradient gel electrophoresis (DGGE in the second dimension to exploit differences in sequence composition. This technique was used to generate high-resolution displays that enable the direct comparison of > 800 genomic fragments simultaneously and can be adapted for the high-throughput comparison of bacterial genomes. 2DBGDs are capable of detecting acquired and altered DNA, however, only in very closely related strains. If used to compare more distantly related strains (e.g. different species within a genus numerous small changes (i.e. small deletions and point mutations unrelated to the interesting phenotype, would encumber the comparison of 2DBGDs. For this reason a second method, bacterial comparative genomic hybridization (BCGH, was developed to directly compare bacterial genomes to identify gain or loss of genomic DNA. BCGH relies on performing 2DBGD on a pooled sample of genomic DNA from 2 strains to be compared and subsequently hybridizing the resulting 2DBGD blot separately with DNA from each individual strain. Unique spots (hybridization signals represent foreign DNA. The identification of novel DNA is easily achieved by excising the DNA from a dried gel followed by subsequent cloning and sequencing. 2DBGD and BCGH thus represent novel high resolution genome scanning techniques for directly identifying altered and/or acquired DNA.

  11. Combing genomic DNA for structural and functional studies.

    Science.gov (United States)

    Schurra, Catherine; Bensimon, Aaron

    2009-01-01

    Molecular combing is a process whereby single DNA molecules bind by their extremities to a silanised surface and are then uniformly stretched and aligned by a receding air/water interface (1). This method, with a high resolution ranging from a few kilobases to megabases, has many applications in the field of molecular cytogenetics, allowing structural and functional analysis at the genome level. Here we describe protocols for preparing DNA for combing and for the use of fluorescent hybridisation (FH) applied to combed DNA to conduct physical mapping or genomic structural analysis. We also present the methodology for visualising and studying DNA replication using combed DNA.

  12. Slow DNA loss in the gigantic genomes of salamanders.

    Science.gov (United States)

    Sun, Cheng; López Arriaza, José R; Mueller, Rachel Lockridge

    2012-01-01

    Evolutionary changes in genome size result from the combined effects of mutation, natural selection, and genetic drift. Insertion and deletion mutations (indels) directly impact genome size by adding or removing sequences. Most species lose more DNA through small indels (i.e., ~1-30 bp) than they gain, which can result in genome reduction over time. Because this rate of DNA loss varies across species, small indel dynamics have been suggested to contribute to genome size evolution. Species with extremely large genomes provide interesting test cases for exploring the link between small indels and genome size; however, most large genomes remain relatively unexplored. Here, we examine rates of DNA loss in the tetrapods with the largest genomes-the salamanders. We used low-coverage genomic shotgun sequence data from four salamander species to examine patterns of insertion, deletion, and substitution in neutrally evolving non-long terminal repeat (LTR) retrotransposon sequences. For comparison, we estimated genome-wide DNA loss rates in non-LTR retrotransposon sequences from five other vertebrate genomes: Anolis carolinensis, Danio rerio, Gallus gallus, Homo sapiens, and Xenopus tropicalis. Our results show that salamanders have significantly lower rates of DNA loss than do other vertebrates. More specifically, salamanders experience lower numbers of deletions relative to insertions, and both deletions and insertions are skewed toward smaller sizes. On the basis of these patterns, we conclude that slow DNA loss contributes to genomic gigantism in salamanders. We also identify candidate molecular mechanisms underlying these differences and suggest that natural variation in indel dynamics provides a unique opportunity to study the basis of genome stability.

  13. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device

    DEFF Research Database (Denmark)

    Marie, Rodolphe; Pedersen, Jonas Nyvold; L. V. Bauer, David

    2013-01-01

    We show how a bird’s-eye view of genomic structure can be obtained at ∼1-kb resolution from long (∼2 Mb) DNA molecules extracted from whole chromosomes in a nanofluidic laboratoryon-a-chip. We use an improved single-molecule denaturation mapping approach to detect repetitive elements and known...

  14. The near-quantitative sampling of genomic DNA from various food-borne Eubacteria

    National Research Council Canada - National Science Library

    Irwin, Peter; Nguyen, Ly; He, Yiping; Paoli, George; Gehring, Andrew; Chen, Chin-Yi

    2014-01-01

    .... In this work we have tested a dozen commercial bacterial genomic DNA extraction methodologies on an average of 7.70 × 10(6) (±9.05%), 4.77 × 10(8) (±31.0%), and 5.93 × 10(8) (±4.69...

  15. Genomic DNA isolation of Acrocomia aculeata (Arecaceae) from leaf and stipe tissue samples for PCR analysis.

    Science.gov (United States)

    Lanes, E C M; Nick, C; Kuki, K N; Freitas, R D; Motoike, S Y

    2013-09-23

    Macaw palm, Acrocomia aculeata is an oleaginous species of the Arecaceae family; it has been identified as one of the most promising plants for sustainable production of renewable energy, especially biodiesel. We developed an efficient protocol of genomic DNA extraction for A. aculeata using leaf and stipe tissues, based on the cationic hexadecyltrimethylammonium bromide method, and we evaluated the quantity, purity, and integrity of the resultant DNA. We also determined whether these procedures interfere with PCR amplification using SSR molecular markers. The lowest concentration of DNA was obtained from stipe tissues (135 ng/μL), while fresh leaf tissues provided the highest concentration of DNA (650 ng/μL). Good quality DNA was obtained from fresh leaf, lyophilized leaf, and stipe tissues (relative purity, 1.79-1.89 nm). Differences in quantity and quality of DNA extracted from different tissues did not interfere with general patterns of PCR amplification based on SSR markers.

  16. Optimized microbial DNA extraction from diarrheic stools

    Directory of Open Access Journals (Sweden)

    Donatin Emilie

    2012-12-01

    Full Text Available Abstract Background The detection of enteropathogens in stool specimens increasingly relies on the detection of specific nucleic acid sequences. We observed that such detection was hampered in diarrheic stool specimens and we set-up an improved protocol combining lyophilization of stools prior to a semi-automated DNA extraction. Findings A total of 41 human diarrheic stool specimens comprising of 35 specimens negative for enteropathogens and six specimens positive for Salmonella enterica in culture, were prospectively studied. One 1-mL aliquot of each specimen was lyophilised and total DNA was extracted from lyophilised and non-lyophilised aliquots by combining automatic and phenol-chloroform DNA extraction. DNA was incorporated into real-time PCRs targeting the 16S rRNA gene of Bacteria and the archaea Methanobrevibacter smithii and the chorismate synthase gene of S. enterica. Whereas negative controls consisting in DNA-free water remained negative, M. smithii was detected in 26/41 (63.4% non-lyophilised (Ct value 28.78 ± 9.1 versus 39/41 (95.1% lyophilised aliquots (Ct value 22.04 ± 5.5; bacterial 16S rRNA was detected in 33/41 (80.5% non-lyophilised (Ct value 28.11 ± 5.9 versus 40/41 (97.6% lyophilised aliquots (Ct value 24.94 ± 6.6; and S. enterica was detected in 6/6 (100% non-lyophilized and lyophilized aliquots (Ct value 26.98 ± 4.55 and 26.16 ± 4.97, respectively. S. enterica was not detected in the 35 remaining diarrheal-stool specimens. The proportion of positive specimens was significantly higher after lyophilization for the detection of M. smithii (p = 0.00043 and Bacteria (p = 0.015. Conclusion Lyophilization of diarrheic stool specimens significantly increases the PCR-based detection of microorganisms. The semi-automated protocol described here could be routinely used for the molecular diagnosis of infectious diarrhea.

  17. Successive DNA extractions improve characterization of soil microbial communities

    Directory of Open Access Journals (Sweden)

    Mauricio R. Dimitrov

    2017-02-01

    Full Text Available Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%, as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition.

  18. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR.

    Science.gov (United States)

    Metwally, L; Fairley, D J; Coyle, P V; Hay, R J; Hedderwick, S; McCloskey, B; O'Neill, H J; Webb, C H; Elbaz, W; McMullan, R

    2008-03-01

    The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.

  19. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  20. Purification of total DNA extracted from activated sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Purification of the total DNA extracted from activated sludge samples was studied. The effects of extraction buffers and lysis treatments (lysozyme, sodium dodecyl sulfate (SDS), sonication, mechanical mill and thermal shock) on yield and purity of the total DNA extracted from activated sludge were investigated. It was found that SDS and mechanical mill were the most effective ways for cell lysis, and both gave the highest DNA yields, while by SDS and thermal shock, the purest DNA extract could be obtained. The combination of SDS with other lysis treatment, such as sonication and thermal shock, could apparently increase the DNA yields but also result in severe shearing. For the purification of the crude DNA extract, polyvinyl polypyrrolidone was used for the removal of humic contaminants. Cetyltrimethyl ammonium bromide, potassium acetate and phenol/chloroform were used to remove proteins and polysaccharides from crude DNA. Crude DNA was further purified by isopropanol precipitation. Thus, a suitable protocol was proposed for DNA extraction, yielding about 49.9 mg (DNA)/g volatile suspended solids, and the DNA extracts were successfully used in PCR amplifications for 16S rDNA and 16S rDNA V3 region. The PCR products of 16S rDNA V3 region allowed the DGGE analysis (denatured gradient gel electrophoresis) to be possible.

  1. COMPARISON OF COMMERCIAL DNA KITS AND TRADITIONAL DNA EXTRACTION PROCEDURE IN PCR DETECTION OF PORK IN DRY/FERMENTED SAUSAGES

    Directory of Open Access Journals (Sweden)

    Ivona Djurkin Kušec

    2015-09-01

    Full Text Available In the present study four commercially available DNA extraction kits (Wizard® Genomic DNA Purification Kit, High Pure PCR Template Kit, DNeasy mericon Food and GeneJET PCR Purification Kit, as well as standard phenol/chloroform isolation technique have been evaluated regarding their concentration, purity and suitability for amplification of porcine DNA in dry/fermented sausages. The isolates were assessed for quantity and quality using spectrophotometer (IMPLEN GmbH, Germany. To verify template usability and quality of isolated DNA, the polymerase chain reaction (PCR targeting at porcine cytochrome b by species specific primers was used. The comparison of extraction methods revealed satisfactory efficiency and purity of all extraction kits, while with standard phenol/chloroform isolation method high concentrations of DNA with low A260/280 were obtained. However, all the investigated techniques proved to be suitable for identification of porcine DNA in dry/fermented sausage. Thus, the standard phenol/chloroform DNA extraction method, as the cost-effective one, can be recommended as a good alternative to more expensive isolation kits when investigating the presence of pork DNA in dry/ fermented meat products.

  2. ATM signaling and genomic stability in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Martin F. [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia) and Central Clinical Division, University of Queensland, Brisbane (Australia)]. E-mail: martinl@qimr.edu.au; Birrell, Geoff [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Chen, Philip [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Kozlov, Sergei [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Scott, Shaun [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Gueven, Nuri [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia)

    2005-01-06

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.

  3. DNA-free genome editing methods for targeted crop improvement.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala

    2016-07-01

    Evolution of the next-generation clustered, regularly interspaced, short palindromic repeat/Cas9 (CRISPR/Cas9) genome editing tools, ribonucleoprotein (RNA)-guided endonuclease (RGEN) RNPs, is paving the way for developing DNA-free genetically edited crop plants. In this review, I discuss the various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants. Furthermore, focus is given on the importance of developing DNA-free genome edited crop plants, including perennial crop plants. The possible regulation on the DNA-free, next-generation genome-edited crop plants is also highlighted.

  4. Extraction and fractionation of RNA and DNA from single cells using selective lysing and isotachophoresis

    Science.gov (United States)

    Shintaku, Hirofumi; Santiago, Juan G.

    2015-03-01

    Single cell analyses of RNA and DNA are crucial to understanding the heterogeneity of cell populations. The numbers of approaches to single cells analyses are expanding, but sequence specific measurements of nucleic acids have been mostly limited to studies of either DNA or RNA, and not both. This remains a challenge as RNA and DNA have very similar physical and biochemical properties, and cross-contamination with each other can introduce false positive results. We present an electrokinetic technique which creates the opportunity to fractionate and deliver cytoplasmic RNA and genomic DNA to independent downstream analyses. Our technique uses an on-chip system that enables selective lysing of cytoplasmic membrane, extraction of RNA (away from genomic DNA and nucleus), focusing, absolute quantification of cytoplasmic RNA mass. The absolute RNA mass quantification is performed using fluorescence observation without enzymatic amplification in genomic DNA amount in the nucleus can be measured. We demonstrate the technique using single mouse B lymphocyte cells, for which we extracted an average of 14.1 pg total cytoplasmic RNA per cell. We also demonstrate correlation analysis between the absolute amount of cytoplasmic RNA and relative amount of genomic DNA, showing heterogeneity associated with cell cycle.

  5. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  6. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  7. 东方百合杂种后代试管苗叶片总DNA提取方法的选择%Choosing Suitable Method to Extract Genomic DNA from the Leaves of In-tube Seedling of the Hybrid Offspring of Oriental Lily

    Institute of Scientific and Technical Information of China (English)

    胡凤荣; 国荣荣; 王斐; 王江勇

    2013-01-01

      以东方百合‘Sorbonne’בFrancia’的杂种后代试管苗叶片为材料,采用CTAB-高盐法、简易CTAB法、CTAB-硅珠法和SDS-CTAB法等4种DNA提取方法,比较DNA耗时、纯度、得率、浓度和质量等指标,以期为东方百合‘Sorbonne’בFrancia’杂种群体大量杂种后代试管苗叶片总DNA的提取筛选适宜方法.结果表明,除CTAB-硅珠法未获得DNA,其余3种方法均获得条带清晰、完整性好的DNA.在耗时方面, CTAB-硅珠法<简易CTAB法extract genomic DNA from the Leaves of in-tube seedling of oriental lily, the hybrids offspring derived from the cross of Sorbonne × Francia were used as the experimental materials in this study. We compared the DAN quality and extracting efficiency of the employed DNA extraction methods, such as SDS-CTAB, Simple and ease CTAB, CTAB-high salt precipitation and CTAB-silica purifi-cation, in the facets of the purity, yield, concentration, and time consuming to choosing the ideal DNA extraction method. Three methods can be used to extract DNA with good banding profiles and Integrity except CTAB-silica purification missing DNA. The orders of the time consuming were from more to less following as CTAB-silica purification, Simple and ease CTAB, CTAB-high salt precipitation and SDS-CTAB. In the term of DNA purity, the simple CTAB method got the highest DNA purity than that of the SDS-CTAB and CTAB-high salt precipitation, which the extracted DNA with the excellent quality with OD260/OD280, 1.98, OD260/OD230, 2.01;while the concentration of the extracted DNA reached 190.01 ng/μL as well as 57.01μg/g of the DNA yield. Above all, Simple and

  8. Microfluidic chip for stacking, separation and extraction of multiple DNA fragments.

    Science.gov (United States)

    Wu, Ruige; Seah, Y P; Wang, Zhiping

    2016-03-11

    A disposable integrated microfluidic device was developed for rapid sample stacking, separation and extraction of multiple DNA fragments from a relatively large amount of sample. Isotachophoresis hyphenated gel electrophoresis (ITP-GE) was used to pre-concentrate and separate DNA fragments, followed by extraction of pure DNA fragments with electroelution on-chip. DNA fragments of 200bp, 500bp and 1kbp were successfully separated and collected in the extraction chamber within 25min. The extraction efficiency obtained from the chip was 49.9%, 52.1% and 53.7% for 200bp, 500bp and 1kbp DNA fragments, respectively. The extracted DNA fragments exhibited compatibility with downstream enzymatic reactions, for example PCR. The chip was also used to extract DNA fragments with specific size range from sheared genomic DNA and demonstrated similar performance to that using traditional gel cutting method. The whole assay can finish in 32min, 6 times faster than traditional method. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CTAB-silica Method for DNA Extraction and Purification from Castanea mollissima and Ginkgo biloba

    Institute of Scientific and Technical Information of China (English)

    Shen Yongbao; Shi Jisen

    2003-01-01

    A new method CTAB-silica for DNA extraction and purification from the leaves and buds of Castanea mollissima and Ginkgo biloba was tested. The method is based on the silica-based purification protocol developed by Boom et al. (1990). By modifying the protocol, plant genome DNA could be extracted easily from dormant buds, mature leaves, and other parts of plant. Our results showed that the purified DNA was of high purity and could be analyzed by PCR. Furthermore, this CTAB-silica method took much less time for a successful DNA purification process compared to the traditional methods (CTAB and SDS). By our method, the suitable DNA can be extracted and purified from over 10 plant samples by one person in an hour.

  10. DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA.

    Science.gov (United States)

    Docherty, Sophia J; Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert; Mill, Jonathan

    2010-11-01

    DNA methylation plays a vital role in normal cellular function, with aberrant methylation signatures being implicated in a growing number of human pathologies and complex human traits. Methods based on the modification of genomic DNA with sodium bisulfite are considered the 'gold-standard' for DNA methylation profiling on genomic DNA; however they require large amounts of DNA and may be prohibitively expensive when used on the large sample sizes necessary to detect small effects. DNA pooling approaches are already widely used in large-scale studies of DNA sequence and gene expression. In this paper, we describe the application of this economical DNA pooling technique to the study of DNA methylation profiles. This method generates accurate quantitative assessments of group DNA methylation averages, reducing the time, cost and amount of DNA starting material required for large-scale epigenetic investigation of disease phenotypes.

  11. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition.

    Science.gov (United States)

    Knudsen, Berith E; Bergmark, Lasse; Munk, Patrick; Lukjancenko, Oksana; Priemé, Anders; Aarestrup, Frank M; Pamp, Sünje J

    2016-01-01

    Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial resistance from different reservoirs. Here, we compare in a stepwise approach a total of eight commercially available DNA extraction kits and 16 procedures based on these for three specimen types (human feces, pig feces, and hospital sewage). We assess DNA extraction using spike-in controls and different types of beads for bead beating, facilitating cell lysis. We evaluate DNA concentration, purity, and stability and microbial community composition using 16S rRNA gene sequencing and for selected samples using shotgun metagenomic sequencing. Our results suggest that inferred community composition was dependent on inherent specimen properties as well as DNA extraction method. We further show that bead beating or enzymatic treatment can increase the extraction of DNA from Gram-positive bacteria. Final DNA quantities could be increased by isolating DNA from a larger volume of cell lysate than that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10.6084/m9.figshare.3475406. IMPORTANCE Sequencing-based analyses of microbiomes may lead to a breakthrough in our understanding of the microbial worlds associated with humans

  12. Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA.

    Science.gov (United States)

    Hakenberg, S; Hügle, M; Meyer, P; Behrmann, O; Dame, G; Urban, G A

    2015-05-15

    With a rapid and simple actuation protocol electrophoretic nucleic acid extraction is easy automatable, requires no moving parts, is easy to miniaturize and furthermore possesses a size dependent cut-off filter adjustable by the pore size of the hydrogel. However electrophoretic nucleic acid extraction from bacteria has so far been applied mainly for short RNA targets. One of the reasons is that electrophoretic processing of unfragmented genomic DNA strands is time-consuming, because of the length. Here DNA fragmentation would accelerate extraction and isolation. We introduce on-chip lysis and non-enzymatic DNA cleavage directly followed by a purifying step for receiving amplifiable DNA fragments from bacteria in less than 25 min. In contrast to restriction enzymes the Fenton reaction is known to cleave DNA without nucleotide specificity. The reaction mix contains iron(II) EDTA, sodium ascorbate, hydrogen peroxide and lysozyme. The degree of fragmentation can be adjusted by the concentration of reagents. The results enable electrophoretic extraction methods to unspecifically process long genomic DNA in a short time frame, e.g. for pathogen detection in a lab-on-a-chip format. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Efficient and scalable serial extraction of DNA and RNA from frozen tissue samples.

    Science.gov (United States)

    Mathot, Lucy; Lindman, Monica; Sjöblom, Tobias

    2011-01-07

    Advances in cancer genomics have created a demand for scalable sample processing. We here present a process for serial extraction of nucleic acids from the same frozen tissue sample based on magnetic silica particles. The process is automation friendly with high recoveries of pure DNA and RNA suitable for analysis.

  14. Transparent DNA/RNA Co-extraction Workflow Protocol Suitable for Inhibitor-Rich Environmental Samples That Focuses on Complete DNA Removal for Transcriptomic Analyses.

    Science.gov (United States)

    Lim, Natalie Y N; Roco, Constance A; Frostegård, Åsa

    2016-01-01

    Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer's recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of "representative samples" is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis.

  15. Tracking genome engineering outcome at individual DNA breakpoints.

    Science.gov (United States)

    Certo, Michael T; Ryu, Byoung Y; Annis, James E; Garibov, Mikhail; Jarjour, Jordan; Rawlings, David J; Scharenberg, Andrew M

    2011-07-10

    Site-specific genome engineering technologies are increasingly important tools in the postgenomic era, where biotechnological objectives often require organisms with precisely modified genomes. Rare-cutting endonucleases, through their capacity to create a targeted DNA strand break, are one of the most promising of these technologies. However, realizing the full potential of nuclease-induced genome engineering requires a detailed understanding of the variables that influence resolution of nuclease-induced DNA breaks. Here we present a genome engineering reporter system, designated 'traffic light', that supports rapid flow-cytometric analysis of repair pathway choice at individual DNA breaks, quantitative tracking of nuclease expression and donor template delivery, and high-throughput screens for factors that bias the engineering outcome. We applied the traffic light system to evaluate the efficiency and outcome of nuclease-induced genome engineering in human cell lines and identified strategies to facilitate isolation of cells in which a desired engineering outcome has occurred.

  16. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  17. APOBEC3A damages the cellular genome during DNA replication.

    Science.gov (United States)

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  18. CGH and SNP array using DNA extracted from fixed cytogenetic preparations and long-term refrigerated bone marrow specimens

    Directory of Open Access Journals (Sweden)

    MacKinnon Ruth N

    2012-02-01

    Full Text Available Abstract Background The analysis of nucleic acids is limited by the availability of archival specimens and the quality and amount of the extracted material. Archived cytogenetic preparations are stored in many laboratories and are a potential source of total genomic DNA for array karyotyping and other applications. Array CGH using DNA from fixed cytogenetic preparations has been described, but it is not known whether it can be used for SNP arrays. Diagnostic bone marrow specimens taken during the assessment of hematological malignancies are also a potential source of DNA, but it is generally assumed that DNA must be extracted, or the specimen frozen, within a day or two of collection, to obtain DNA suitable for further analysis. We have assessed DNA extracted from these materials for both SNP array and array CGH. Results We show that both SNP array and array CGH can be performed on genomic DNA extracted from cytogenetic specimens stored in Carnoy's fixative, and from bone marrow which has been stored unfrozen, at 4°C, for at least 36 days. We describe a procedure for extracting a usable concentration of total genomic DNA from cytogenetic suspensions of low cellularity. Conclusions The ability to use these archival specimens for DNA-based analysis increases the potential for retrospective genetic analysis of clinical specimens. Fixed cytogenetic preparations and long-term refrigerated bone marrow both provide DNA suitable for array karyotyping, and may be suitable for a wider range of analytical procedures.

  19. Optimization of the Phenol -Chloroform Silica DNA Extraction Method in Ancient Bones DNA Extraction

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2014-04-01

    Full Text Available Introduction: DNA extraction from the ancient bones tissues is currently very difficult. Phenol chloroform silica method is one of the methods currently used for this aim. The purpose of this study was to optimize the assessment method. Methods: DNA of 62 bone tissues (average 3-11 years was first extracted with phenol chloroform silica methods and then with changing of some parameters of the methods the extracted DNA was amplified in eight polymorphisms area including FES, F13, D13S317, D16, D5S818, vWA and CD4. Results from samples gained by two methods were compared in acrylamide gel. Results: The average of PCR yield for new method and common method in eight polymorphism regions was 75%, 78%, 81%, 76%, 85%, 71%, 89%, 86% and 64%, 39%, 70%, 49%, 68%, 76%, 71% and 28% respectively. The average of DNA in optimized (in 35l silica density and common method were 267.5 µg/ml with 1.12 purity and 192.76 g/ml with 0.84 purity respectively. Conclusions: According to the findings of this study, it is estimated that longer EDTA attendance is an efficient agent in removing calcium and also adequate density of silica particles can be efficient in removal of PCR inhibitors.

  20. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    Science.gov (United States)

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  1. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  2. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    Directory of Open Access Journals (Sweden)

    Andaine Seguin-Orlando

    Full Text Available Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  3. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    Science.gov (United States)

    Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic

    2013-01-01

    Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  4. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  5. Increasing DNA extraction yield from saliva stains with a modified Chelex method.

    Science.gov (United States)

    Sweet, D; Lorente, M; Valenzuela, A; Lorente, J A; Alvarez, J C

    1996-12-27

    Recovery, preservation and analysis of body fluid stains is an important aspect of forensic science. PCR-based typing of DNA extracted from recovered stains is often a crucial method to identify a perpetrator or exclude an innocent suspect. This paper reports an improved method of extracting genomic DNA from saliva stains deposited on human skin in simulated bite mark situations. Results of organic (phenol-chloroform) extraction and Chelex extraction were compared to a modified Chelex method developed by the authors. Modifications include pre-extraction preparation with proteinase K and incubations at 56 degrees C and 100 degrees C plus microconcentration of the solution. Quantification results using the classical Chelex extraction method showed that 31.9 +/- 4.22% of the deposited DNA was recovered, but using the modified Chelex extraction method DNA recovery was increased to 47.7 +/- 6.90%. The quantity and quality of extracted DNA was shown to be adequate for PCR-based typing at two STR loci.

  6. An isothermal primer extension method for whole genome amplification of fresh and degraded DNA: applications in comparative genomic hybridization, genotyping and mutation screening.

    Science.gov (United States)

    Lee, Cheryl I P; Leong, Siew Hong; Png, Adrian E H; Choo, Keng Wah; Syn, Christopher; Lim, Dennis T H; Law, Hai Yang; Kon, Oi Lian

    2006-01-01

    We describe a protocol that uses a bioinformatically optimized primer in an isothermal whole genome amplification (WGA) reaction. Overnight incubation at 37 degrees C efficiently generates several hundred- to several thousand-fold increases in input DNA. The amplified product retains reasonably faithful quantitative representation of unamplified whole genomic DNA (gDNA). We provide protocols for applying this isothermal primer extension WGA protocol in three different techniques of genomic analysis: comparative genomic hybridization (CGH), genotyping at simple tandem repeat (STR) loci and screening for single base mutations in a common monogenic disorder, beta-thalassemia. gDNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues can also be amplified with this protocol.

  7. Concentrating Genomic Length DNA in a Microfabricated Array

    DEFF Research Database (Denmark)

    Chen, Yu; Abrams, Ezra S.; Boles, T. Christian

    2015-01-01

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 μm=s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting...

  8. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  9. Preliminary assessment for DNA extraction on microfluidic channel

    Science.gov (United States)

    Gopinath, Subash C. B.; Hashim, Uda; Uda, M. N. A.

    2017-03-01

    The aim of this research is to extract, purify and yield DNA in mushroom from solid state mushroom sample by using fabricated continuous high-capacity sample delivery microfluidic through integrated solid state extraction based amino-coated silica bead. This device is made to specifically extract DNA in mushroom sample in continuous inflow process with energy and cost consumption. In this project, we present two methods of DNA extraction and purification which are by using centrifuge (complex and conventional method) and by using microfluidic biosensor (new and fast method). DNA extracted can be determined by using ultraviolet-visible spectroscopy (UV-VIS). The peak obtained at wavelength 260nm after measuring the absorbance of sample proves that DNA is successfully extracted from the mushroom.

  10. Cytogenetic analysis from DNA by comparative genomic hybridization.

    Science.gov (United States)

    Tachdjian, G; Aboura, A; Lapierre, J M; Viguié, F

    2000-01-01

    Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.

  11. TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

    Institute of Scientific and Technical Information of China (English)

    Kunling Chen; Caixia Gao

    2013-01-01

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology.Transcription activator-like effector nucleases (TALENs),consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain,are newly developed versatile reagents for genome engineering in different organisms.Because of the simplicity of the DNA recognition code and their modular assembly,TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location.Thus,they provide a valuable approach to targeted genome modifications such as mutations,insertions,replacements or chromosome rearrangements.In this article,we review the development of TALENs,and summarize the principles and tools for TALEN-mediated gene targeting in plant cells,as well as current and potential strategies for use in plant research and crop improvement.

  12. A comparison of DNA extraction methods using Petunia hybrida tissues.

    Science.gov (United States)

    Tamari, Farshad; Hinkley, Craig S; Ramprashad, Naderia

    2013-09-01

    Extraction of DNA from plant tissue is often problematic, as many plants contain high levels of secondary metabolites that can interfere with downstream applications, such as the PCR. Removal of these secondary metabolites usually requires further purification of the DNA using organic solvents or other toxic substances. In this study, we have compared two methods of DNA purification: the cetyltrimethylammonium bromide (CTAB) method that uses the ionic detergent hexadecyltrimethylammonium bromide and chloroform-isoamyl alcohol and the Edwards method that uses the anionic detergent SDS and isopropyl alcohol. Our results show that the Edwards method works better than the CTAB method for extracting DNA from tissues of Petunia hybrida. For six of the eight tissues, the Edwards method yielded more DNA than the CTAB method. In four of the tissues, this difference was statistically significant, and the Edwards method yielded 27-80% more DNA than the CTAB method. Among the different tissues tested, we found that buds, 4 days before anthesis, had the highest DNA concentrations and that buds and reproductive tissue, in general, yielded higher DNA concentrations than other tissues. In addition, DNA extracted using the Edwards method was more consistently PCR-amplified than that of CTAB-extracted DNA. Based on these results, we recommend using the Edwards method to extract DNA from plant tissues and to use buds and reproductive structures for highest DNA yields.

  13. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  14. DNA extraction protocol for biological ingredient analysis of Liuwei Dihuang Wan.

    Science.gov (United States)

    Cheng, Xinwei; Chen, Xiaohua; Su, Xiaoquan; Zhao, Huanxin; Han, Maozhen; Bo, Cunpei; Xu, Jian; Bai, Hong; Ning, Kang

    2014-06-01

    Traditional Chinese medicine (TCM) preparations are widely used for healthcare and clinical practice. So far, the methods commonly used for quality evaluation of TCM preparations mainly focused on chemical ingredients. The biological ingredient analysis of TCM preparations is also important because TCM preparations usually contain both plant and animal ingredients, which often include some mis-identified herbal materials, adulterants or even some biological contaminants. For biological ingredient analysis, the efficiency of DNA extraction is an important factor which might affect the accuracy and reliability of identification. The component complexity in TCM preparations is high, and DNA might be destroyed or degraded in different degrees after a series of processing procedures. Therefore, it is necessary to establish an effective protocol for DNA extraction from TCM preparations. In this study, we chose a classical TCM preparation, Liuwei Dihuang Wan (LDW), as an example to develop a TCM-specific DNA extraction method. An optimized cetyl trimethyl ammonium bromide (CTAB) method (TCM-CTAB) and three commonly-used extraction kits were tested for extraction of DNA from LDW samples. Experimental results indicated that DNA with the highest purity and concentration was obtained by using TCM-CTAB. To further evaluate the different extraction methods, amplification of the second internal transcribed spacer (ITS2) and the chloroplast genome trnL intron was carried out. The results have shown that PCR amplification was successful only with template of DNA extracted by using TCM-CTAB. Moreover, we performed high-throughput 454 sequencing using DNA extracted by TCM-CTAB. Data analysis showed that 3-4 out of 6 prescribed species were detected from LDW samples, while up to 5 contaminating species were detected, suggesting TCM-CTAB method could facilitate follow-up DNA-based examination of TCM preparations. Copyright © 2014. Production and hosting by Elsevier Ltd.

  15. DNA Extraction Protocol for Biological Ingredient Analysis of Liuwei Dihuang Wan

    Institute of Scientific and Technical Information of China (English)

    Xinwei Cheng; Xiaohua Chen; Xiaoquan Su; Huanxin Zhao; Maozhen Han; Cunpei Bo; Jian Xu; Hong Bai; Kang Ning

    2014-01-01

    Traditional Chinese medicine (TCM) preparations are widely used for healthcare and clinical practice. So far, the methods commonly used for quality evaluation of TCM preparations mainly focused on chemical ingredients. The biological ingredient analysis of TCM preparations is also important because TCM preparations usually contain both plant and animal ingredients, which often include some mis-identified herbal materials, adulterants or even some biological con-taminants. For biological ingredient analysis, the efficiency of DNA extraction is an important fac-tor which might affect the accuracy and reliability of identification. The component complexity in TCM preparations is high, and DNA might be destroyed or degraded in different degrees after a series of processing procedures. Therefore, it is necessary to establish an effective protocol for DNA extraction from TCM preparations. In this study, we chose a classical TCM preparation, Liuwei Dihuang Wan (LDW), as an example to develop a TCM-specific DNA extraction method. An optimized cetyl trimethyl ammonium bromide (CTAB) method (TCM-CTAB) and three com-monly-used extraction kits were tested for extraction of DNA from LDW samples. Experimental results indicated that DNA with the highest purity and concentration was obtained by using TCM-CTAB. To further evaluate the different extraction methods, amplification of the second internal transcribed spacer (ITS2) and the chloroplast genome trnL intron was carried out.The results have shown that PCR amplification was successful only with template of DNA extracted by using TCM-CTAB. Moreover, we performed high-throughput 454 sequencing using DNA extracted by TCM-CTAB. Data analysis showed that 3-4 out of 6 prescribed species were detected from LDW samples, while up to 5 contaminating species were detected, suggesting TCM-CTAB method could facilitate follow-up DNA-based examination of TCM preparations.

  16. Comparison and optimization of methods for the simultaneous extraction of DNA, RNA, proteins, and metabolites.

    Science.gov (United States)

    Vorreiter, Fränze; Richter, Silke; Peter, Michel; Baumann, Sven; von Bergen, Martin; Tomm, Janina M

    2016-09-01

    The challenge of performing a time-resolved comprehensive analysis of molecular systems has led to the quest to optimize extraction methods. When the size of a biological sample is limited, there is demand for the simultaneous extraction of molecules representing the four areas of "omics": genomics, transcriptomics, proteomics, and metabolomics. Here we optimized a protocol for the simultaneous extraction of DNA, RNA, proteins, and metabolites and compared it with two existing protocols. Our optimization comprised the addition of a methanol/chloroform metabolite purification before the separation of DNA/RNA and proteins. Extracted DNA, RNA, proteins, and metabolites were quantitatively and/or qualitatively analyzed. Of the three methods, only the newly developed protocol yielded all biomolecule classes of adequate quantity and quality. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Standardization of DNA extraction from sand flies: Application to genotyping by next generation sequencing.

    Science.gov (United States)

    Casaril, Aline Etelvina; de Oliveira, Liliane Prado; Alonso, Diego Peres; de Oliveira, Everton Falcão; Gomes Barrios, Suellem Petilim; de Oliveira Moura Infran, Jucelei; Fernandes, Wagner de Souza; Oshiro, Elisa Teruya; Ferreira, Alda Maria Teixeira; Ribolla, Paulo Eduardo Martins; de Oliveira, Alessandra Gutierrez

    2017-06-01

    Standardization of the methods for extraction of DNA from sand flies is essential for obtaining high efficiency during subsequent molecular analyses, such as the new sequencing methods. Information obtained using these methods may contribute substantially to taxonomic, evolutionary, and eco-epidemiological studies. The aim of the present study was to standardize and compare two methods for the extraction of genomic DNA from sand flies for obtaining DNA in sufficient quantities for next-generation sequencing. Sand flies were collected from the municipalities of Campo Grande, Camapuã, Corumbá and Miranda, state of Mato Grosso do Sul, Brazil. Three protocols using a silica column-based commercial kit (ReliaPrep™ Blood gDNA Miniprep System kit, Promega(®)), and three protocols based on the classical phenol-chloroform extraction method (Uliana et al., 1991), were compared with respect to the yield and quality of the extracted DNA. DNA was quantified using a Qubit 2.0 fluorometer. The presence of sand fly DNA was confirmed by PCR amplification of the IVS6 region (constitutive gene), followed by electrophoresis on a 1.5% agarose gel. A total of 144 male specimens were analyzed, 72 per method. Significant differences were observed between the two methods tested. Protocols 2 and 3 of phenol-chloroform extraction presented significantly better performance than all commercial kit extraction protocols tested. For phenol-chloroform extraction, protocol 3 presented significantly better performance than protocols 1 and 2. The IVS6 region was detected in 70 of 72 (97.22%) samples extracted with phenol, including all samples for protocols 2 and 3. This is the first study on the standardization of methods for the extraction of DNA from sand flies for application to next-generation sequencing, which is a promising tool for entomological and molecular studies of sand flies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  19. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing.

    Science.gov (United States)

    Gamba, Cristina; Hanghøj, Kristian; Gaunitz, Charleen; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Bradley, Daniel G; Orlando, Ludovic

    2016-03-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost-effective solution for downstream applications, including DNA sequencing on HTS platforms. © 2015 John Wiley & Sons Ltd.

  20. DNA secondary structures and epigenetic determinants of cancer genome evolution

    OpenAIRE

    2010-01-01

    An unstable genome is a hallmark of many cancers. It is unclear, however, whether some mutagenic features driving somatic alterations in cancer are encoded in the genome sequence and whether they can operate in a tissue-specific manner. We performed a genome-wide analysis of 663,446 DNA breakpoints associated with somatic copy-number alterations (SCNAs) from 2,792 cancer samples classified into 26 cancer types. Many SCNA breakpoints are spatially clustered in cancer genomes. We observed a sig...

  1. [DNA extraction methods of compost for molecular ecology analysis].

    Science.gov (United States)

    Yang, Zhao-Hui; Xiao, Yong; Zeng, Guang-Ming; Liu, Yun-Guo; Deng, Jiu-Hua

    2006-08-01

    Molecular ecology provides new techniques for studying compost microbes, and the DNA extraction is the basis of molecular techniques. Because of the contamination of humic acids, it turns to be more difficult for compost microbial DNA extraction. Three different approaches, named as lysozyme lysis, ultrasonic lysis and proteinase K lysis with CTAB, were used to extract the total DNA from compost. The detection performed on a nucleic acids and protein analyzer showed that all the three approaches produced high DNA yields. The agarose gel electrophoresis showed that the DNA fragments extracted from compost had a length of about 23 kb. A eubacterial 16S rRNA gene targeted primer pair (27F and 1 495R) was used for PCR amplification, and all the samples got almost the full length 16S rDNA sequence (about 1.5 kb). After digested by restriction endonucleases (Hae Ill and Alu I), the restriction map showed relatively identical microbial diversity in the DNA, which was extracted by the three different approaches. All the compost microbial DNA extracted by the three different approaches could be used for molecular ecological study, and researchers should choose the right approach for extracting microbial DNA from compost based on the facts.

  2. A Simple, Inexpensive and Safe Method for DNA Extraction of Frigid and Clotted Blood Samples

    Directory of Open Access Journals (Sweden)

    Nasrin Mohammadi

    2015-07-01

    Full Text Available Background: Extraction of blood genomicDNAis one of the main approaches for clinical and molecular biology studies. Although several methods have been developed for extraction of blood genomic DNA, most of these methods consume long time and use expensive chemicals such as proteinase K and toxic organic solvent such as phenol and chloroform. The objective of this study was to developed easy and safe method forDNAextraction from clotted and frozen whole blood. This method has many advantages: time reducing, using inexpensive materials, without phenol and chloroform, achieving of high molecular weight and good quality genomicDNA.Materials and Methods: DNA extraction was performed by two methods (new and phenol-chloroform method. Then quantity and quality parameters were evaluated by 1% agarose gel electrophoresis, Nano drop analysis and efficiency of Polymerase Chain Reaction (PCR.Results: Extracted DNA from 500μL of blood samples were 457.7ng/μl and 212ng/μL and their purity (OD260/OD280 were 1.8 and 1.81 for new recommended and phenol–chloroform methods respectively. The PCR results indicated that D16S539 and CSF1PO loci were amplified.Conclusion: These results shown that this method is simple, fast, safe and most economical.

  3. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Dimitrov, M.R.; Veraart, A.J.; De Hollander, M.; Smidt, H.; van Veen, J.A.; Kuramae, E.E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing

  4. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Rocha Dimitrov, Mauricio; Veraart, Annelies J.; Hollander, de Mattias; Smidt, Hauke; Veen, van Johannes A.; Kuramae, Eiko E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies

  5. An efficient method for DNA extraction from Cladosporioid fungi

    NARCIS (Netherlands)

    Moslem, M.A.; Bahkali, A.H.; Abd-Elsalam, K.A.; Wit, de P.J.G.M.

    2010-01-01

    We developed an efficient method for DNA extraction from Cladosporioid fungi, which are important fungal plant pathogens. The cell wall of Cladosporioid fungi is often melanized, which makes it difficult to extract DNA from their cells. In order to overcome this we grew these fungi for three days on

  6. An efficient method for DNA extraction from Cladosporioid fungi

    NARCIS (Netherlands)

    Moslem, M.A.; Bahkali, A.H.; Abd-Elsalam, K.A.; Wit, de P.J.G.M.

    2010-01-01

    We developed an efficient method for DNA extraction from Cladosporioid fungi, which are important fungal plant pathogens. The cell wall of Cladosporioid fungi is often melanized, which makes it difficult to extract DNA from their cells. In order to overcome this we grew these fungi for three days on

  7. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection

    Institute of Scientific and Technical Information of China (English)

    Jin-Long Yang; Ming-Shu Wang; An-Chun Cheng; Kang-Cheng Pan; Chuan-Feng Li; Shu-Xuan Deng

    2008-01-01

    AIM: To develop a simple and convenient method for extracting genomic DNA from intestinal microflora for enterobacterial repetitive intergenic consensus (ERIC)-PCR detection.METHODS: Five methods of extracting bacterial DNA,including Tris-EDTA buffer, chelex-100, ultrapure water,2% sodium dodecyl sulfate and 10% Triton-100 with and without sonication, were compared with the commercial fecal DNA extraction kit method, which is considered as the gold standard for DNA extraction. The comparison was based on the yield and purity of DNA and the indexes of the structure and property of micro-organisms that were reflected by ERIC-PCR.RESULTS: The yield and purity of DNA obtained by the chelex method was similar to that obtained with the fecal DNA kit. The ERIC-PCR results obtained for the DNA extracted by the chelex method and those obtained for DNA extracted with the fecal DNA kit were basically the same.CONCLUSION: The chelex method is recommended for ERIC-PCR experiments in view of its simplicity and costeffectiveness; and it is suitable for extracting total DNA from intestinal micro-organisms, particularly for handling a large number of samples.

  8. Tools for Extracting Actionable Medical Knowledge from Genomic Big Data

    OpenAIRE

    Goldstein, Theodore Charles

    2013-01-01

    Cancer is an ideal target for personal genomics-based medicine that uses high-throughput genome assays such as DNA sequencing, RNA sequencing, and expression analysis (collectively called omics); however, researchers and physicians are overwhelmed by the quantities of big data from these assays and cannot interpret this information accurately without specialized tools. To address this problem, I have created software methods and tools called OCCAM (OmiC data Cancer Analytic Model) and DIPSC (...

  9. Assessment of DNA extracted from FTA® cards for use on the Illumina iSelect BeadChip

    Directory of Open Access Journals (Sweden)

    Schnabel Robert D

    2009-06-01

    Full Text Available Abstract Background As FTA® cards provide an ideal medium for the field collection of DNA we sought to assess the quality of genomic DNA extracted from this source for use on the Illumina BovineSNP50 iSelect BeadChip which requires unbound, relatively intact (fragment sizes ≥ 2 kb, and high-quality DNA. Bovine blood and nasal swab samples collected on FTA cards were extracted using the commercially available GenSolve kit with a minor modification. The call rate and concordance of genotypes from each sample were compared to those obtained from whole blood samples extracted by standard PCI extraction. Findings An ANOVA analysis indicated no significant difference (P > 0.72 in BovineSNP50 genotype call rate between DNA extracted from FTA cards by the GenSolve kit or extracted from whole blood by PCI. Two sample t-tests demonstrated that the DNA extracted from the FTA cards produced genotype call and concordance rates that were not different to those produced by assaying DNA samples extracted by PCI from whole blood. Conclusion We conclude that DNA extracted from FTA cards by the GenSolve kit is of sufficiently high quality to produce results comparable to those obtained from DNA extracted from whole blood when assayed by the Illumina iSelect technology. Additionally, we validate the use of nasal swabs as an alternative to venous blood or buccal samples from animal subjects for reliably producing high quality genotypes on this platform.

  10. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples.

    Science.gov (United States)

    Vishnivetskaya, Tatiana A; Layton, Alice C; Lau, Maggie C Y; Chauhan, Archana; Cheng, Karen R; Meyers, Arthur J; Murphy, Jasity R; Rogers, Alexandra W; Saarunya, Geetha S; Williams, Daniel E; Pfiffner, Susan M; Biggerstaff, John P; Stackhouse, Brandon T; Phelps, Tommy J; Whyte, Lyle; Sayler, Gary S; Onstott, Tullis C

    2014-01-01

    The total community genomic DNA (gDNA) from permafrost was extracted using four commercial DNA extraction kits. The gDNAs were compared using quantitative real-time PCR (qPCR) targeting 16S rRNA genes and bacterial diversity analyses obtained via 454 pyrosequencing of the 16S rRNA (V3 region) amplified in single or nested PCR. The FastDNA(®) SPIN (FDS) Kit provided the highest gDNA yields and 16S rRNA gene concentrations, followed by MoBio PowerSoil(®) (PS) and MoBio PowerLyzer™ (PL) kits. The lowest gDNA yields and 16S rRNA gene concentrations were from the Meta-G-Nome™ (MGN) DNA Isolation Kit. Bacterial phyla identified in all DNA extracts were similar to that found in other soils and were dominated by Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Acidobacteria. Weighted UniFrac and statistical analyses indicated that bacterial community compositions derived from FDS, PS, and PL extracts were similar to each other. However, the bacterial community structure from the MGN extracts differed from other kits exhibiting higher proportions of easily lysed β- and γ-Proteobacteria and lower proportions of Actinobacteria and Methylocystaceae important in carbon cycling. These results indicate that gDNA yields differ between the extraction kits, but reproducible bacterial community structure analysis may be accomplished using gDNAs from the three bead-beating lysis extraction kits. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. A RAPID PCR-QUALITY DNA EXTRACTION METHOD IN FISH

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LIANG Hong-Wei; ZOU Gui-Wei

    2012-01-01

    PCR has been a general preferred method for biological research in fish, and previous research have enabled us to extract and purify PCR-quality DNA templates in laboratories[1-4]. The same problem among these procedures is waiting for tissue digesting for a long time. The overabundance time spent on PCR-quality DNA extraction restricts the efficiency of PCR assay, especially in large-scale PCR amplification, such as SSR-based genetic-mapping construction [5,6], identification of germ plasm resource[7,8] and evolution research [9,10], etc. In this study, a stable and rapid PCR-quality DNA extraction method was explored, using a modified alkaline lysis protocol. Extracting DNA for PCR only takes approximately 25 minutes. This stable and rapid DNA extraction method could save much laboratory time and promotes.%PCR has been a general preferred method for biological research in fish,and previous research have enabled us to extract and purify PCR-quality DNA templates in laboratories [1-4].The same problem among these procedures is waiting for tissue digesting for a long time.The overabundance time spent on PCR-quality DNA extraction restricts the efficiency of PCR assay,especially in large-scale PCR amplification,such as SSR-based genetic-mapping construction [5,6],identification of germ plasm resource[7,8] and evolution research [9,10],etc.In this study,a stable and rapid PCR-quality DNA extraction method was explored,using a modified alkaline lysis protocol.Extracting DNA for PCR only takes approximately 25 minutes.This stable and rapid DNA extraction method could save much laboratory time and promotes.

  12. The effect of DNA extraction methodology on gut microbiota research applications.

    Science.gov (United States)

    Gerasimidis, Konstantinos; Bertz, Martin; Quince, Christopher; Brunner, Katja; Bruce, Alanna; Combet, Emilie; Calus, Szymon; Loman, Nick; Ijaz, Umer Zeeshan

    2016-07-26

    The effect that traditional and modern DNA extraction methods have on applications to study the role of gut microbiota in health and disease is a topic of current interest. Genomic DNA was extracted from three faecal samples and one probiotic capsule using three popular methods; chaotropic (CHAO) method, phenol/chloroform (PHEC) extraction, proprietary kit (QIAG). The performance of each of these methods on DNA yield and quality, microbiota composition using quantitative PCR, deep sequencing of the 16S rRNA gene, and sequencing analysis pipeline was evaluated. The CHAO yielded the highest and the QIAG kit the lowest amount of double-stranded DNA, but the purity of isolated nucleic acids was better for the latter method. The CHAO method yielded a higher concentration of bacterial taxa per mass (g) of faeces. Sequencing coverage was higher in CHAO method but a higher proportion of the initial sequencing reads were retained for assignments to operational taxonomic unit (OTU) in the QIAG kit compared to the other methods. The QIAG kit appeared to have longer trimmed reads and shorter regions of worse quality than the other two methods. A distinct separation of α-diversity indices between different DNA extraction methods was not observed. When compositional dissimilarities between samples were explored, a strong separation was observed according to sample type. The effect of the extraction method was either marginal (Bray-Curtis distance) or none (unweighted Unifrac distance). Taxon membership and abundance in each sample was independent of the DNA extraction method used. We have benchmarked several DNA extraction methods commonly used in gut microbiota research and their differences depended on the downstream applications intended for use. Caution should be paid when the intention is to pool and analyse samples or data from studies which have used different DNA extraction methods.

  13. Defining functional DNA elements in the human genome.

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  14. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples

    DEFF Research Database (Denmark)

    Bag, Satyabrata; Saha, Bipasa; Mehta, Ojasvi

    2016-01-01

    and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing...... methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved...

  15. Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support

    Science.gov (United States)

    Saiyed, Z. M.; Ramchand, C. N.; Telang, S. D.

    2008-05-01

    In recent years, techniques employing magnetizable solid-phase supports (MSPS) have found application in numerous biological fields. This magnetic separation procedure offers several advantages in terms of subjecting the analyte to very little mechanical stress compared to other methods. Secondly, these methods are non-laborious, cheap, and often highly scalable. The current paper details a genomic DNA isolation method optimized in our laboratory using magnetic nanoparticles as a solid-phase support. The quality and yields of the isolated DNA from all the samples using magnetic nanoparticles were higher or equivalent to the traditional DNA extraction procedures. Additionally, the magnetic method takes less than 15 min to extract polymerase chain reaction (PCR) ready genomic DNA as against several hours taken by traditional phenol-chloroform extraction protocols. Moreover, the isolated DNA was found to be compatible in PCR amplification and restriction endonuclease digestion. The developed procedure is quick, inexpensive, robust, and it does not require the use of organic solvents or sophisticated instruments, which makes it more amenable to automation and miniaturization.

  16. Selection of the most suitable method for the extraction of DNA from foods and feeds for species identification

    Directory of Open Access Journals (Sweden)

    Michaela Nesvadbová

    2010-01-01

    Full Text Available High quality and purity of DNA isolated from food and feed is essential for species identification and has unpredictable influences an effect of analysis. In this study, the efficiency of eight different methods for DNA isolation was investigated. For DNA extraction, the raw chicken meet, ham, sausages, tinned lunch meat, pate, tinned feeds for dogs, complete granulated feeds for dogs and chicken flour were used. Kits of several different producers, i.e.: NucleoSpin Food (Marchery-Nagel, Wizard Genomic DNA Purification Kit (Promega, Invisorb Spin Food Kit I (Invitek, Wizard SV Genomic DNA Purification System (Promega, JetQuick Tissue DNA Spin Kit (Genomed, RNA Blue (Top-Bio, JetQuick Blood & Cell Culture Kit (Genomed, QIAamp DNA Mini Kit and QIAamp DNA Blood Mini Kit (Qiagen were employed in the study. Gel agarose electrophoresis for primary verification of DNA quality was performed. The isolates were subsequently assessed for quantity and quality using by spectrophotometer Nanodrop 2000 (Thermo Scientific. To verify of template usability and quality of isolated DNA, the polymerase chain reaction (PCR was used.Differences between isolated DNA from tinned products and meat, ham, sausage, granulated dog feed and chicken flour were found. In tinned food and feed, the DNA was more degraded, DNA content and DNA purity was lower and also PCR amplification was the most difficult. Overall DNA yield and quality have important influence on PCR products amplification. The best results were obtained with NucleoSpin Food and JetQuick Tissue DNA Spin Kit. DNA extracted by these methods proved highest yields, purity and template quality in all foods and feeds and the results of PCR analysis are excellent reproducible. Analyses showed that results depended on different food or feed using and dif­fe­rent isolation system.The results of this work will be utilized to choose the suitable isolating kit for educational course, which is designed for students and

  17. Evaluation of six commercial DNA extraction kits for recovery of Burkholderia pseudomallei DNA.

    Science.gov (United States)

    Marques, Maria Angela de Mello; Zimmermann, Pia; Messelhäußer, Ute; Sing, Andreas

    2012-12-01

    Six commercially available DNA extraction kits, as well as thermal lysis and proteinase K DNA extraction were evaluated regarding bacterial inactivation, DNA yield and purity, and their use in a Burkholderia pseudomallei real-time PCR. While all methods successfully inactivated the bacteria, by measuring DNA purity and the level of detection by real-time PCR, the proteinase K method was the most sensitive.

  18. T-DNA Integration Category and Mechanism in Rice Genome

    Institute of Scientific and Technical Information of China (English)

    Jiang WANG; Lin LI; Zhen-Ying SHI; Xin-Shan WAN; Lin-Sheng AN; Jing-Liu ZHANG

    2005-01-01

    T-DNA integration is a key step in the process of plant transformation, which is proven to be important for analyzing T-DNA integration mechanism. The structures of T-DNA right borders inserted into the rice (Oryza sativa L.) genome and their flanking sequences were analyzed. It was found that the integrated ends of the T-DNA right border occurred mainly on five nucleotides "TGACA" in inverse repeat (IR)sequence of 25 bp, especially on the third base "A". However, the integrated ends would sometimes lie inward of the IR sequence, which caused the IR sequence to be lost completely. Sometimes the right integrated ends appeared on the vector sequences rightward of the T-DNA right border, which made the TDNA, carrying vector sequences, integrated into the rice genome. These results seemingly suggest that the IR sequence of the right border plays an important role in the process of T-DNA integration into the rice genome, but is not an essential element. The appearance of vector sequences neighboring the T-DNA right border suggested that before being transferred into the plant cell from Agrobacterium, the entire T-DNA possibly began from the left border in synthesis and then read through at the right border. Several nucleotides in the T-DNA right border homologous with plant DNA and filler DNAs were frequently discovered in the integrated position ofT-DNA. Some small regions in the right border could match with the plant sequence, or form better matches, accompanied by the occurrence of filler DNA, through mutual twisting, and then the TDNA was integrated into plant chromosome through a partially homologous recombination mechanism. The appearance of filler DNA would facilitate T-DNA integration. The fragments flanking the T-DNA right border in transformed rice plants could derive from different parts of the inner T-DNA region; that is, disruption and recombination could occur at arbitrary positions in the entire T-DNA, in which the homologous area was comparatively

  19. DNA Repair Systems: Guardians of the Genome

    Indian Academy of Sciences (India)

    2016-10-01

    The 2015 Nobel Prize in Chemistry was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar to honour their accomplishments in the field of DNA repair. Ever since the discovery of DNA structure and their importance in the storage of genetic information, questions about their stability became pertinent. A molecule which is crucial for the development and propagation of an organism must be closely monitored so that the genetic information is not corrupted. Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial in the fight against cancer and other debilitating diseases.

  20. Collection of genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash.

    Science.gov (United States)

    García-Closas, M; Egan, K M; Abruzzo, J; Newcomb, P A; Titus-Ernstoff, L; Franklin, T; Bender, P K; Beck, J C; Le Marchand, L; Lum, A; Alavanja, M; Hayes, R B; Rutter, J; Buetow, K; Brinton, L A; Rothman, N

    2001-06-01

    Blood samples are an excellent source of large amounts of genomic DNA. However, alternative sources are often needed in epidemiological studies because of difficulties in obtaining blood samples. This report evaluates the buccal cytobrush and alcohol-containing mouthwash protocols for collecting DNA by mail. Several DNA extraction techniques are also evaluated. The study was conducted in two phases. In phase 1, we compared cytobrush and mouthwash samples collected by mail in two different epidemiological studies: (a) cytobrush samples (n = 120) from a United States case-control study of breast cancer; and (b) mouthwash samples (n = 40) from a prospective cohort of male United States farmers. Findings from phase 1 were confirmed in phase 2, where we randomized cytobrush (n = 28) and mouthwash (n = 25) samples among participants in the breast cancer study to directly compare both collection methods. The median human DNA yield determined by hybridization with a human DNA probe from phenol-chloroform extracts was 1.0 and 1.6 microg/2 brushes for phases 1 and 2, respectively, and 27.5 and 16.6 microg/mouthwash sample for phases 1 and 2, respectively. Most (94-100%) mouthwash extracts contained high molecular weight DNA (>23 kb), in contrast to 55-61% of the brush extracts. PCR success rates for amplification of beta-globin gene fragments (268, 536, and 989 bp) were similar for cytobrush and mouthwash phenol-chloroform extracts (range, 94.4-100%). Also, we obtained high success rates in determining the number of CAG repeats in the androgen receptor gene, characterizing tetranucleotide microsatellites in six gene loci, and screening for mutations in the BRCA1/2 genes in a subset of phenol-chloroform DNA extracts. Relative to DNA extracted by phenol-chloroform from cytobrush samples, DNA extracted by NaOH had lower molecular weight, decreased PCR success rates for most assays performed, and unreliably high spectrophotometer readings for DNA yields. In conclusion, although

  1. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic...... cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard...

  2. [Extraction and analysis of nuclear DNA from free margin of nail material].

    Science.gov (United States)

    Nie, Sheng-Jie; Yang, Yan-Mei; Tang, Wen-Ru; Xu, Bing-Ying; Jing, Qiang; Xiao, Chun-Jie

    2007-11-01

    To investigate the feasibility of DNA analysis from free margin of the nail, genomic DNA was extracted from the free margin of nail clipping of 10 volunteers using the proteinase K/SDS -based organic method, the Chelex-100 method, or a combined method. Target DNA was simultaneously amplified using a fluorescent multiplex AmpFlSTR Identifier kit. The PCR products were analyzed on the ABI PRISM 3130 Genetic Analyzer. The results showed that, compared with profiles achieved by genotyping of blood samples from each volunteer as reference, 100% concordance was achieved using the combined method. The STR genotype profiles obtained through the organic method were acceptable, despite preferential amplification at some loci. In contrast, no readable profiles could be determined when DNA was extracted by the Chelex-100 method, and there were a large number of alleles missing. Our data suggest that free margin of nail can be used for nuclear DNA analysis, but the type of DNA isolation method used is critical. The traditional organic extraction method works reasonably well for free margin nail DNA isolation, and combination of organic extraction and the Chelex-100 method works best.

  3. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  4. Inconsistencies in Neanderthal genomic DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Wall

    2007-10-01

    Full Text Available Two recently published papers describe nuclear DNA sequences that were obtained from the same Neanderthal fossil. Our reanalyses of the data from these studies show that they are not consistent with each other and point to serious problems with the data quality in one of the studies, possibly due to modern human DNA contaminants and/or a high rate of sequencing errors.

  5. Highly efficient automated extraction of DNA from old and contemporary skeletal remains.

    Science.gov (United States)

    Zupanič Pajnič, Irena; Debska, Magdalena; Gornjak Pogorelc, Barbara; Vodopivec Mohorčič, Katja; Balažic, Jože; Zupanc, Tomaž; Štefanič, Borut; Geršak, Ksenija

    2016-01-01

    We optimised the automated extraction of DNA from old and contemporary skeletal remains using the AutoMate Express system and the PrepFiler BTA kit. 24 Contemporary and 25 old skeletal remains from WWII were analysed. For each skeleton, extraction using only 0.05 g of powder was performed according to the manufacturer's recommendations (no demineralisation - ND method). Since only 32% of full profiles were obtained from aged and 58% from contemporary casework skeletons, the extraction protocol was modified to acquire higher quality DNA and genomic DNA was obtained after full demineralisation (FD method). The nuclear DNA of the samples was quantified using the Investigator Quantiplex kit and STR typing was performed using the NGM kit to evaluate the performance of tested extraction methods. In the aged DNA samples, 64% of full profiles were obtained using the FD method. For the contemporary skeletal remains the performance of the ND method was closer to the FD method compared to the old skeletons, giving 58% of full profiles with the ND method and 71% of full profiles using the FD method. The extraction of DNA from only 0.05 g of bone or tooth powder using the AutoMate Express has proven highly successful in the recovery of DNA from old and contemporary skeletons, especially with the modified FD method. We believe that the results obtained will contribute to the possibilities of using automated devices for extracting DNA from skeletal remains, which would shorten the procedures for obtaining high-quality DNA from skeletons in forensic laboratories. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Mitochondrial DNA insertions in the nuclear Capra hircus genome.

    Science.gov (United States)

    Ning, F Y; Fu, J; Du, Z H

    2017-01-23

    Nuclear mitochondrial pseudogenes (numts), originating from mtDNA insertions into the nuclear genome, have been detected in many species. However, the distribution of numts in the newly published nuclear genome of domestic goat (Capra hircus) has not yet been explored. We used the entire goat mtDNA sequence and nuclear genome, to identify 118 numts using BLAST. Of these, 79 were able to map sequences to the genome. Further analysis showed that the size of the numts ranged from 318 to 9608 bp, and the homologous identity between numts and their respective corresponding mtDNA fragments varied between 65 and 99%. The identified Yunnan black goat numts covered nearly all the mitochondrial genes including mtDNA control region, and were distributed over all chromosomes with the exception of chromosomes 18, 21, and 25. The Y chromosome was excluded from our analysis, as sequence data are currently not available. Among the discovered 79 numts that we were able to map to the genome, 26 relatively complete mitochondrial genes were detected. Our results constitute valuable information for subsequent studies related to mitochondrial genes and goat evolution.

  7. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  8. Differential DNA Methylation Analysis without a Reference Genome.

    Science.gov (United States)

    Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph

    2015-12-22

    Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  9. Mitochondrial DNA insertions in the nuclear horse genome.

    Science.gov (United States)

    Nergadze, S G; Lupotto, M; Pellanda, P; Santagostino, M; Vitelli, V; Giulotto, E

    2010-12-01

    The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  10. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  11. The influence of substrate on DNA transfer and extraction efficiency.

    Science.gov (United States)

    Verdon, Timothy J; Mitchell, R John; van Oorschot, Roland A H

    2013-01-01

    The circumstances surrounding deposition of DNA profiles are increasingly becoming an issue in court proceedings, especially whether or not the deposit was made by primary transfer. In order to improve the currently problematic evaluation of transfer scenarios in court proceedings, we examined the influence a variety of nine substrate types (six varieties of fabric, plywood, tarpaulin, and plastic sheets) has on DNA transfer involving blood. DNA transfer percentages were significantly higher (p=0.03) when the primary substrate was of non-porous material (such as tarpaulin, plastic or, to a lesser degree, wood) and the secondary substrate porous (such as fabrics). These findings on transfer percentages confirm the results of previous studies. Fabric composition was also shown to have a significant (p=0.03) effect on DNA transfer; when experiments were performed with friction from a variety of fabrics to a specific weave of cotton, transfer percentages ranged from 4% (flannelette) to 94% (acetate). The propensity for the same nine substrates to impact upon the efficiency of DNA extraction procedures was also examined. Significant (p=0.03) differences were found among the extraction efficiencies from different materials. When 15μL of blood was deposited on each of the substrates, the lowest quantity of DNA was extracted from plastic (20ng) and the highest quantities extracted from calico and flannelette (650ng). Significant (pDNA extraction yield from different initial blood volumes from all substrates. Also, significantly greater (pDNA was seen during concentration of extracts with higher compared to lower initial quantities of DNA. These findings suggest that the efficiency of extraction and concentration impacts upon the final amount of DNA available for analysis and that consideration of these effects should not be ignored. The application of correction factors to adjust for any variation among extraction and concentration efficiencies among substrates is

  12. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis

    Directory of Open Access Journals (Sweden)

    Alyssa D. Ammazzalorso

    2015-08-01

    Full Text Available Background. Blacklegged ticks (Ixodes scapularis are important disease vectors in the United States, known to transmit a variety of pathogens to humans, including bacteria, protozoa, and viruses. Their importance as a disease vector necessitates reliable and comparable methods for extracting microbial DNA from ticks. Furthermore, to explore the population genetics or genomics of this tick, appropriate DNA extraction techniques are needed for both the vector and its microbes. Although a few studies have investigated different methods of DNA isolation from ticks, they are limited in the number and types of DNA extraction and lack species-specific quantification of DNA yield.Methods. Here we determined the most efficient and consistent method of DNA extraction from two different developmental stages of I. scapularis—nymph and adult—that are the most important for disease transmission. We used various methods of physical disruption of the hard, chitinous exoskeleton, as well as commercial and non-commercial DNA isolation kits. To gauge the effectiveness of these methods, we quantified the DNA yield and confirmed the DNA quality via PCR of both tick and microbial genetic material.Results. DNA extraction using the Thermo GeneJET Genomic DNA Purification Kit resulted in the highest DNA yields and the most consistent PCR amplification when combined with either cutting or bead beating with select matrices across life stages. DNA isolation methods using ammonium hydroxide as well as the MoBio PowerSoil kit also produced strong and successful PCR amplification, but only for females.Discussion. We contrasted a variety of readily available methods of DNA extraction from single individual blacklegged ticks and presented the results through a quantitative and qualitative assessment.

  13. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis).

    Science.gov (United States)

    Ammazzalorso, Alyssa D; Zolnik, Christine P; Daniels, Thomas J; Kolokotronis, Sergios-Orestis

    2015-01-01

    Background. Blacklegged ticks (Ixodes scapularis) are important disease vectors in the United States, known to transmit a variety of pathogens to humans, including bacteria, protozoa, and viruses. Their importance as a disease vector necessitates reliable and comparable methods for extracting microbial DNA from ticks. Furthermore, to explore the population genetics or genomics of this tick, appropriate DNA extraction techniques are needed for both the vector and its microbes. Although a few studies have investigated different methods of DNA isolation from ticks, they are limited in the number and types of DNA extraction and lack species-specific quantification of DNA yield. Methods. Here we determined the most efficient and consistent method of DNA extraction from two different developmental stages of I. scapularis-nymph and adult-that are the most important for disease transmission. We used various methods of physical disruption of the hard, chitinous exoskeleton, as well as commercial and non-commercial DNA isolation kits. To gauge the effectiveness of these methods, we quantified the DNA yield and confirmed the DNA quality via PCR of both tick and microbial genetic material. Results. DNA extraction using the Thermo GeneJET Genomic DNA Purification Kit resulted in the highest DNA yields and the most consistent PCR amplification when combined with either cutting or bead beating with select matrices across life stages. DNA isolation methods using ammonium hydroxide as well as the MoBio PowerSoil kit also produced strong and successful PCR amplification, but only for females. Discussion. We contrasted a variety of readily available methods of DNA extraction from single individual blacklegged ticks and presented the results through a quantitative and qualitative assessment.

  14. Streamlining DNA barcoding protocols: automated DNA extraction and a new cox1 primer in arachnid systematics.

    Directory of Open Access Journals (Sweden)

    Nina Vidergar

    Full Text Available BACKGROUND: DNA barcoding is a popular tool in taxonomic and phylogenetic studies, but for most animal lineages protocols for obtaining the barcoding sequences--mitochondrial cytochrome C oxidase subunit I (cox1 AKA CO1--are not standardized. Our aim was to explore an optimal strategy for arachnids, focusing on the species-richest lineage, spiders by (1 improving an automated DNA extraction protocol, (2 testing the performance of commonly used primer combinations, and (3 developing a new cox1 primer suitable for more efficient alignment and phylogenetic analyses. METHODOLOGY: We used exemplars of 15 species from all major spider clades, processed a range of spider tissues of varying size and quality, optimized genomic DNA extraction using the MagMAX Express magnetic particle processor-an automated high throughput DNA extraction system-and tested cox1 amplification protocols emphasizing the standard barcoding region using ten routinely employed primer pairs. RESULTS: The best results were obtained with the commonly used Folmer primers (LCO1490/HCO2198 that capture the standard barcode region, and with the C1-J-2183/C1-N-2776 primer pair that amplifies its extension. However, C1-J-2183 is designed too close to HCO2198 for well-interpreted, continuous sequence data, and in practice the resulting sequences from the two primer pairs rarely overlap. We therefore designed a new forward primer C1-J-2123 60 base pairs upstream of the C1-J-2183 binding site. The success rate of this new primer (93% matched that of C1-J-2183. CONCLUSIONS: The use of C1-J-2123 allows full, indel-free overlap of sequences obtained with the standard Folmer primers and with C1-J-2123 primer pair. Our preliminary tests suggest that in addition to spiders, C1-J-2123 will also perform in other arachnids and several other invertebrates. We provide optimal PCR protocols for these primer sets, and recommend using them for systematic efforts beyond DNA barcoding.

  15. Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA.

    Science.gov (United States)

    Atanesyan, Lilit; Steenkamer, Maryvonne J; Horstman, Anja; Moelans, Cathy B; Schouten, Jan P; Savola, Suvi P

    2017-01-01

    Molecular genetic analysis of formalin-fixed, paraffin-embedded (FFPE) tissues is of great importance both for research and diagnostics. Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for gene copy number determination, and it has been successfully used for FFPE tissue-extracted DNA analysis. However, there have been no studies addressing the effect of tissue fixation procedures and DNA extraction methods on MLPA. This study therefore focuses on selecting optimal preanalytic conditions such as FFPE tissue preparation conditions and DNA extraction methods. Healthy tissues were fixed in buffered or nonbuffered formalin for 1 hour, 12 to 24 hours, or 48 to 60 hours at 4 °C or at room temperature. DNA extracted from differently fixed and subsequently paraffin-embedded tissues was used for MLPA. Four commercial DNA extraction kits and one in-house method were compared. Tissues fixed for 12 to 24 hours in buffered formalin at room temperature produced DNA with the most optimal quality for MLPA. The in-house FFPE DNA extraction method was shown to perform as efficient as or even superior to other methods in terms of suitability for MLPA, time and cost-efficiency, and ease of performance. FFPE-extracted DNA is well suitable for MLPA analysis, given that optimal tissue fixation and DNA extraction methods are chosen.

  16. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils

    Directory of Open Access Journals (Sweden)

    Eduardo A. Mondino

    2015-06-01

    Full Text Available We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB- for extracting nucleic acid (DNA from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  17. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils.

    Science.gov (United States)

    Mondino, Eduardo A; Covacevich, Fernanda; Studdert, Guillermo A; Pimentel, João P; Berbara, Ricardo L L

    2015-01-01

    We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB-) for extracting nucleic acid (DNA) from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  18. High-quality plant DNA extraction for PCR: an easy approach.

    Science.gov (United States)

    Ahmed, I; Islam, M; Arshad, W; Mannan, A; Ahmad, W; Mirza, B

    2009-01-01

    Polymerase chain reaction has found wide applications in modern research involving transformations and other genomic studies. For reproducible PCR results, however, the quantity and quality of template DNA is of considerable importance. A simple and efficient plant DNA extraction procedure for isolation of high-quality DNA from plant tissues is presented here. It requires maceration of plant tissue of about 1.0 cm(2) (e.g. of a leaf blade) in DNA extraction buffer (100 mM Tris-HCl, 100 mM EDTA, 250 mM NaCl) using 1.5-mL microfuge tubes, followed by cell lysis with 20% SDS, and DNA extraction with phenol: chloroform: iso-amyl alcohol (25:24:1). Hydrated ether is then used to remove polysaccharides and other contaminants from the DNA preparation. Average DNA yield is 20-30 microg cm(-2) for fresh tissues, and ratio of absorbance at 260 nm to absorbance at 280 nm is 1.5-1.8. The DNA is quite suitable for PCR using microsatellites, RAPD and specific markers for recombinant selection. Amplifications have been obtained for these markers by using template DNA extracted from fresh as well as frozen leaf tissues of various plants, including barley, oat, potato and tomato. DNA stored for more than 2 years has been successfully amplified with microsatellite markers, which shows suitability of this method after long-term storage of DNA. Besides, the ease of use and cost-effectiveness make the procedure attractive.

  19. Extraction of high quality DNA from bloodstains using diatoms.

    Science.gov (United States)

    Günther, S; Herold, J; Patzelt, D

    1995-01-01

    A simple method is described for the extraction of high quality DNA for PCR amplification. The DNA was extracted by using Chelex-100 ion exchange resin or a special cell lysis buffer containing proteinase K. For further purification the DNA was bound to silica in the presence of a chaotrophic agent. Hence it is possible to unlimitedly wash the bound DNA and inhibitory substances are removed. By using diatoms as a source of silicates, this method is very economical and can therefore be used as a routine method.

  20. A rapid and efficient assay for extracting DNA from fungi

    Science.gov (United States)

    Griffin, Dale W.; Kellogg, C.A.; Peak, K.K.; Shinn, E.A.

    2002-01-01

    Aims: A method for the rapid extraction of fungal DNA from small quantities of tissue in a batch-processing format was investigated. Methods and Results: Tissue (DNA for PCR/ sequencing applications. Conclusions: The method allowed batch DNA extraction from multiple fungal isolates using a simple yet rapid and reliable assay. Significance and Impact of the Study: Use of this assay will allow researchers to obtain DNA from fungi quickly for use in molecular assays that previously required specialized instrumentation, was time-consuming or was not conducive to batch processing.

  1. DNA extraction from paraffin embedded material for genetic and epigenetic analyses.

    Science.gov (United States)

    Pikor, Larissa A; Enfield, Katey S S; Cameron, Heryet; Lam, Wan L

    2011-03-26

    Disease development and progression are characterized by frequent genetic and epigenetic aberrations including chromosomal rearrangements, copy number gains and losses and DNA methylation. Advances in high-throughput, genome-wide profiling technologies, such as microarrays, have significantly improved our ability to identify and detect these specific alterations. However as technology continues to improve, a limiting factor remains sample quality and availability. Furthermore, follow-up clinical information and disease outcome are often collected years after the initial specimen collection. Specimens, typically formalin-fixed and paraffin embedded (FFPE), are stored in hospital archives for years to decades. DNA can be efficiently and effectively recovered from paraffin-embedded specimens if the appropriate method of extraction is applied. High quality DNA extracted from properly preserved and stored specimens can support quantitative assays for comparisons of normal and diseased tissues and generation of genetic and epigenetic signatures (1). To extract DNA from paraffin-embedded samples, tissue cores or microdissected tissue are subjected to xylene treatment, which dissolves the paraffin from the tissue, and then rehydrated using a series of ethanol washes. Proteins and harmful enzymes such as nucleases are subsequently digested by proteinase K. The addition of lysis buffer, which contains denaturing agents such as sodium dodecyl sulfate (SDS), facilitates digestion (2). Nucleic acids are purified from the tissue lysate using buffer-saturated phenol and high speed centrifugation which generates a biphasic solution. DNA and RNA remain in the upper aqueous phase, while proteins, lipids and polysaccharides are sequestered in the inter- and organic-phases respectively. Retention of the aqueous phase and repeated phenol extractions generates a clean sample. Following phenol extractions, RNase A is added to eliminate contaminating RNA. Additional phenol extractions

  2. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    OpenAIRE

    Barnes, Ryan; Eckert, Kristin

    2017-01-01

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome ...

  3. Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wound infections using a gel-based DNA profiling method.

    Science.gov (United States)

    Dilhari, Ayomi; Sampath, Asanga; Gunasekara, Chinthika; Fernando, Neluka; Weerasekara, Deepaka; Sissons, Chris; McBain, Andrew; Weerasekera, Manjula

    2017-09-19

    Infected chronic wounds are polymicrobial in nature which include a diverse group of aerobic and anaerobic microorganisms. Majority of these communal microorganisms are difficult to grow in vitro. DNA fingerprinting methods such as polymerase chain reaction-denaturation gradient gel electrophoresis (PCR-DGGE) facilitate the microbial profiling of complex ecosystems including infected chronic wounds. Six different DNA extraction methods were compared for profiling of the microbial community associated with chronic wound infections using PCR-DGGE. Tissue debris obtained from chronic wound ulcers of ten patients were used for DNA extraction. Total nucleic acid was extracted from each specimen using six DNA extraction methods. The yield, purity and quality of DNA was measured and used for PCR amplification targeting V2-V3 region of eubacterial 16S rRNA gene. QIAGEN DNeasy Blood and Tissue Kit (K method) produced good quality genomic DNA compared to the other five DNA extraction methods and gave a broad diversity of bacterial communities in chronic wounds. Among the five conventional methods, bead beater/phenol-chloroform based DNA extraction method with STES buffer (BP1 method) gave a yield of DNA with a high purity and resulted in a higher DGGE band diversity. Although DNA extraction using heat and NaOH had the lowest purity, DGGE revealed a higher bacterial diversity. The findings suggest that the quality and the yield of genomic DNA are influenced by the DNA extraction protocol, thus a method should be carefully selected in profiling a complex microbial community.

  4. Necessity of Purification during Bacterial DNA Extraction with Environmental Soils.

    Science.gov (United States)

    Lim, Hyun Jeong; Choi, Jung-Hyun; Son, Ahjeong

    2017-08-08

    Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium) showed that sand samples containing less than 10 ug/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of magnesium ion was different from other inhibitors due to the complexation interaction of magnesium ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 ug/g of humic acids, less than 70% clay content and less than 0.01% magnesium ion content.

  5. The linguistics of DNA. [HUMAN GENOME PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Searls, D.B. (Univ. of Pennsylvania, Philadelphia (United States))

    Discusses the structure of DNA and RNA and the mechanisms of transcription and translation in relation to the grammatical rules of language. The ultimate purpose is to design a grammar which can be used to write flexible, adaptive computer programs for searching nucleotide sequences, with the goal of being able to search large sequences for gene-coding regions. 11 refs., 16 figs.

  6. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-12-01

    Full Text Available Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23 kb metagenomic DNA (260/280 ratio >1.8 with a good yield (55.8 ± 3.8 ng/mg of feces. We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes = 227.9:1 in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies.

  7. An Improved Methodology to Overcome Key Issues in Human Fecal Metagenomic DNA Extraction.

    Science.gov (United States)

    Kumar, Jitendra; Kumar, Manoj; Gupta, Shashank; Ahmed, Vasim; Bhambi, Manu; Pandey, Rajesh; Chauhan, Nar Singh

    2016-12-01

    Microbes are ubiquitously distributed in nature, and recent culture-independent studies have highlighted the significance of gut microbiota in human health and disease. Fecal DNA is the primary source for the majority of human gut microbiome studies. However, further improvement is needed to obtain fecal metagenomic DNA with sufficient amount and good quality but low host genomic DNA contamination. In the current study, we demonstrate a quick, robust, unbiased, and cost-effective method for the isolation of high molecular weight (>23kb) metagenomic DNA (260/280 ratio >1.8) with a good yield (55.8±3.8ng/mg of feces). We also confirm that there is very low human genomic DNA contamination (eubacterial: human genomic DNA marker genes=2(27.9):1) in the human feces. The newly-developed method robustly performs for fresh as well as stored fecal samples as demonstrated by 16S rRNA gene sequencing using 454 FLX+. Moreover, 16S rRNA gene analysis indicated that compared to other DNA extraction methods tested, the fecal metagenomic DNA isolated with current methodology retains species richness and does not show microbial diversity biases, which is further confirmed by qPCR with a known quantity of spike-in genomes. Overall, our data highlight a protocol with a balance between quality, amount, user-friendliness, and cost effectiveness for its suitability toward usage for culture-independent analysis of the human gut microbiome, which provides a robust solution to overcome key issues associated with fecal metagenomic DNA isolation in human gut microbiome studies. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  8. DNA Extraction by Isotachophoresis in a Microfluidic Channel

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, S J

    2011-08-10

    Biological assays have many applications. For example, forensics personnel and medical professionals use these tests to diagnose diseases and track their progression or identify pathogens and the host response to them. One limitation of these tests, however, is that most of them target only one piece of the sample - such as bacterial DNA - and other components (e.g. host genomic DNA) get in the way, even though they may be useful for different tests. To address this problem, it would be useful to extract several different substances from a complex biological sample - such as blood - in an inexpensive and efficient manner. This summer, I worked with Maxim Shusteff at Lawrence Livermore National Lab on the Rapid Automated Sample Prep project. The goal of the project is to solve the aforementioned problem by creating a system that uses a series of different extraction methods to extract cells, bacteria, and DNA from a complex biological sample. Biological assays can then be run on purified output samples. In this device, an operator could input a complex sample such as blood or saliva, and would receive separate outputs of cells, bacteria, viruses, and DNA. I had the opportunity to work this summer with isotachophoresis (ITP), a technique that can be used to extract nucleic acids from a sample. This technique is intended to be the last stage of the purification device. Isotachophoresis separates particles based on different electrophoretic mobilities. This technique is convenient for out application because free solution DNA mobility is approximately equal for DNA longer than 300 base pairs in length. The sample of interest - in our case DNA - is fed into the chip with streams of leading electrolyte (LE) and trailing electrolyte (TE). When an electric field is applied, the species migrate based on their electrophoretic mobilities. Because the ions in the leading electrolyte have a high electrophoretic mobility, they race ahead of the slower sample and trailing

  9. Improvement of Genomic DNA Extraction and Optimization of ISSR-PCR Amplification for Passion Fruit%西番莲基因组DNA的提取及ISSR-PCR的优化

    Institute of Scientific and Technical Information of China (English)

    吴田; 谢江; 蓝增全

    2011-01-01

    By comparing five DNA extraction methods, an efficient method suitable for ISSR-PCR of passion fruit (Passiflora edulis) was identified. The factors influencing ISSR-PCR for passion-fruit were optimized. The result showed that the modified SDS-Ⅱ procedure was most suitable for ISSR-PCR amplification for passion fruit. Detected on 2% agarose, 4.12 amplification bands on the average were observed in the ISSR-PCR products. The optimum amplification conditions for ISSR-PCR of passion fruit were 5 ng DNA template, 0. 2 mmol/L dNTPs, 0. 5 μmol/L primer, 0. 2 U Taq DNA polymerase and 1 × buffer (Mg2+ ) in 20μL reaction volumes.%对5种DNA提取方法进行比较,得到一种效率较高的、且适用于西番莲ISSR-PCR的DNA提取方法.同时,对影响西番莲ISSR-PCR的因子进行优化.结果表明:改良的SDS法2提取的DNA最适宜进行西番莲的ISSR-PCR扩增.ISSR-PCR产物在2%琼脂糖凝胶上检测,发现PCR扩增的平均条带数为4.12条.西番莲的ISSR-PCR的最优体系为20μL PCR反应液体系中含有1×buffer(Mg2+),0.2 mmol/L dNTPs,0.5 μmol/L引物,0.2 U Taq DNA聚合酶,5 ng DNA模板.

  10. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis.

    Science.gov (United States)

    Clark, Kevin D; Nacham, Omprakash; Yu, Honglian; Li, Tianhao; Yamsek, Melissa M; Ronning, Donald R; Anderson, Jared L

    2015-02-03

    DNA extraction represents a significant bottleneck in nucleic acid analysis. In this study, hydrophobic magnetic ionic liquids (MILs) were synthesized and employed as solvents for the rapid and efficient extraction of DNA from aqueous solution. The DNA-enriched microdroplets were manipulated by application of a magnetic field. The three MILs examined in this study exhibited unique DNA extraction capabilities when applied toward a variety of DNA samples and matrices. High extraction efficiencies were obtained for smaller single-stranded and double-stranded DNA using the benzyltrioctylammonium bromotrichloroferrate(III) ([(C8)3BnN(+)][FeCl3Br(-)]) MIL, while the dicationic 1,12-di(3-hexadecylbenzimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide bromotrichloroferrate(III) ([(C16BnIM)2C12(2+)][NTf2(-), FeCl3Br(-)]) MIL produced higher extraction efficiencies for larger DNA molecules. The MIL-based method was also employed for the extraction of DNA from a complex matrix containing albumin, revealing a competitive extraction behavior for the trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P6,6,6,14(+)][FeCl4(-)]) MIL in contrast to the [(C8)3BnN(+)][FeCl3Br(-)] MIL, which resulted in significantly less coextraction of albumin. The MIL-DNA method was employed for the extraction of plasmid DNA from bacterial cell lysate. DNA of sufficient quality and quantity for polymerase chain reaction (PCR) amplification was recovered from the MIL extraction phase, demonstrating the feasibility of MIL-based DNA sample preparation prior to downstream analysis.

  11. Extraction of high quality DNA from seized Moroccan cannabis resin (Hashish.

    Directory of Open Access Journals (Sweden)

    Moulay Abdelaziz El Alaoui

    Full Text Available The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004 adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR amplification of tetrahydrocannabinolic acid (THCA synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances.

  12. Complete mitochondrial genome of wild aurochs (Bos primigenius) reconstructed from ancient DNA.

    Science.gov (United States)

    Zeyland, J; Wolko, L; Bocianowski, J; Szalata, M; Słomski, R; Dzieduszycki, A M; Ryba, M; Przystałowska, H; Lipiński, D

    2013-01-01

    Extinct aurochs (Bos primigenius), accepted as the ancestor of domestic cattle, was one of the largest wild animals inhabiting Europe, Asia and North Africa. The gradual process of aurochs extinction finished in Poland in 1627, were the last recorded aurochs, a female, died. Some aspects of cattle domestication history and the distribution of aurochs genetic material among modern cattle breeds still remain unclear. Analyses of ancient DNA (aDNA) from bone sample deliver new genetic information about extinct wild aurochs as well as modern cattle phylogeny. DNA was extracted from a fragment of aurochs fossil bone found in the Pisz Forest, Poland. The sample was radiocarbon-dated to about 1500 yBP. The aDNA was used for Whole Genome Amplification in order to form a DNA bank. Auroch mitochondrial DNA sequences were amplified using sets of 41 primers overlapping the whole mtDNA, cloned and sequenced. The sequence of the whole mitochondrial genome was reconstructed and deposed in GenBank [GenBank:JQ437479]. Based on the phylogenetic analyses of the Bovine mitochondrial genomes, a phylogenetic tree was created. As expected, the tree clearly shows that the mtDNA sequence of the analyzed PWA (Polish Wild Aurochs) individual belongs to haplogroup P. In the course of the comparative mtDNA analysis we identified 30 nucleotide marker positions for haplogroup P and nine unique PWA differences compared to the two remaining haplotype P representatives. Our analysis provides the next step to the reconstruction of the demographic history of this extinct but still exciting species.

  13. DNA extraction for streamlined metagenomics of diverse environmental samples.

    Science.gov (United States)

    Marotz, Clarisse; Amir, Amnon; Humphrey, Greg; Gaffney, James; Gogul, Grant; Knight, Rob

    2017-06-01

    A major bottleneck for metagenomic sequencing is rapid and efficient DNA extraction. Here, we compare the extraction efficiencies of three magnetic bead-based platforms (KingFisher, epMotion, and Tecan) to a standardized column-based extraction platform across a variety of sample types, including feces, oral, skin, soil, and water. Replicate sample plates were extracted and prepared for 16S rRNA gene amplicon sequencing in parallel to assess extraction bias and DNA quality. The data demonstrate that any effect of extraction method on sequencing results was small compared with the variability across samples; however, the KingFisher platform produced the largest number of high-quality reads in the shortest amount of time. Based on these results, we have identified an extraction pipeline that dramatically reduces sample processing time without sacrificing bacterial taxonomic or abundance information.

  14. [Analysis of different methods of extracting DNA from paraffin-embedded tissues and the application of nest PCR].

    Science.gov (United States)

    Yan, Limin; Sun, Baocun; Zhao, Xiulan; Liu, Zenghui; Song, Wenjing

    2011-08-01

    The aim of this research was to explore the most optimal method of DNA extraction from formalin-fixed, paraffin-embedded (FFPE) tissues, and to improve the amplification of long fragments with the method. Three methods, one step method, phenol-chloroform extraction method, and genomic DNA purification kit method, were employed to extract DNA from twenty normal thyroid tissues which were fixed with formalin and embedded with paraffin. The highest proportionality of OD260/OD280 in the examples was obtained by phenol-chloroform extraction method, 1.703 +/- 0.086, compared to the results of the other two methods. As for the long DNA segments amplification, the achievement ratio of one step method, phenol-chloroform extraction method and genomic DNA purification kit method were 0%, 5% and 10%, respectively, by traditional PCR method, but 0%, 95% and 85% respectively by the nest PCR. We have found that the best process of extracting DNA from FFPE is digesting by proteinase K and purifying by phenol-chloroform, and it is effective to amplify long DNA segments from FFPE by nest PCR.

  15. Whole genome methylation profiling by immunoprecipitation of methylated DNA.

    Science.gov (United States)

    Sharp, Andrew J

    2012-01-01

    I provide a protocol for DNA methylation profiling based on immunoprecipitation of methylated DNA using commercially available monoclonal antibodies that specifically recognize 5-methylcytosine. Quantification of the level of enrichment of the resulting DNA enables DNA methylation to be assayed for any genomic locus, including entire chromosomes or genomes if appropriate microarray or high-throughput sequencing platforms are used. In previous studies (1, 2), I have used hybridization to oligonucleotide arrays from Roche Nimblegen Inc, which allow any genomic region of interest to be interrogated, dependent on the array design. For example, using modern tiling arrays comprising millions of oligonucleotide probes, several complete human chromosomes can be assayed at densities of one probe per 100 bp or greater, sufficient to yield high-quality data. However, other methods such as quantitative real-time PCR or high-throughput sequencing can be used, giving either measurement of methylation at a single locus or across the entire genome, respectively. While the data produced by single locus assays is relatively simple to analyze and interpret, global assays such as microarrays or high-throughput sequencing require more complex statistical approaches in order to effectively identify regions of differential methylation, and a brief outline of some approaches is given.

  16. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  17. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    Science.gov (United States)

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  18. How to Concentrate Genomic Length DNA in a Microfabricated Array

    Science.gov (United States)

    Chen, Yu; Abrams, Ezra; Boles, Christian; Pedersen, Jonas; Flyvbjerg, Henrik; Sturm, James; Austin, Robert

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 ?m/s, if the single-molecule DNA globule has a sufficiently large shear modulus.. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil-size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot where concentration occurs as a function of PEG con- centration, flow speed, and bump array parameters using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.

  19. Resurrection of DNA function in vivo from an extinct genome.

    Science.gov (United States)

    Pask, Andrew J; Behringer, Richard R; Renfree, Marilyn B

    2008-05-21

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  20. Resurrection of DNA function in vivo from an extinct genome.

    Directory of Open Access Journals (Sweden)

    Andrew J Pask

    Full Text Available There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine, obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  1. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  2. Design of a protocol for obtaining genomic DNA from saliva using mouthwash: Samples taken from patients with periodontal disease

    Science.gov (United States)

    Mendoza, Ángel Chávez; Volante, Beatriz Buentello; Hernández, María Esther Ocharán; Mendoza, Claudia Camelia Calzada; Pliego, Arturo Flores; Baptista Gonzalez, Héctor A.; Juárez, Higinio Estrada

    2016-01-01

    Background Obtaining high quality genomic DNA safely and economically is vital for diverse studies of large populations aimed at evaluating the role of genetic factors in susceptibility to disease. Aim This study was to test a protocol for the extraction of high quality genomic DNA from saliva samples obtained with mouthwash and taken from patients with periodontal disease. Methods Saliva samples were taken from 60 patients and then stored at room temperature. DNA extraction was carried out at distinct post-sampling times (10, 20 and 30 days). Evaluation of genomic DNA was performed with spectrophotometry, electrophoresis, and PCR genotyping and sequencing. Results The greatest concentration of DNA obtained was 352 μg at 10 days post-sampling, followed by 121.025 μg and 19.59 μg at 20 and 30 days, respectively. When determining the purity of DNA with the spectrophotometric ratio of 260/230, the relations of 1.20, 1.40 and 0.781 were obtained for 10, 20 and 30 days, respectively. In all samples, it was possible to amplify the product of 485 bp and the sequence of the amplicons showed 95% similarity to the reference sequence. Conclusion The present protocol represents an easy, safe and economical technique for obtaining high quality genomic DNA. PMID:27195211

  3. Study of microtip-based extraction and purification of DNA from human samples for portable devices

    Science.gov (United States)

    Fotouhi, Gareth

    DNA sample preparation is essential for genetic analysis. However, rapid and easy-to-use methods are a major challenge to obtaining genetic information. Furthermore, DNA sample preparation technology must follow the growing need for point-of-care (POC) diagnostics. The current use of centrifuges, large robots, and laboratory-intensive protocols has to be minimized to meet the global challenge of limited access healthcare by bringing the lab to patients through POC devices. To address these challenges, a novel extraction method of genomic DNA from human samples is presented by using heat-cured polyethyleneimine-coated microtips generating a high electric field. The microtip extraction method is based on recent work using an electric field and capillary action integrated into an automated device. The main challenges to the method are: (1) to obtain a stable microtip surface for the controlled capture and release of DNA and (2) to improve the recovery of DNA from samples with a high concentration of inhibitors, such as human samples. The present study addresses these challenges by investigating the heat curing of polyethyleneimine (PEI) coated on the surface of the microtip. Heat-cured PEI-coated microtips are shown to control the capture and release of DNA. Protocols are developed for the extraction and purification of DNA from human samples. Heat-cured PEI-coated microtip methods of DNA sample preparation are used to extract genomic DNA from human samples. It is discovered through experiment that heat curing of a PEI layer on a gold-coated surface below 150°C could inhibit the signal of polymerase chain reaction (PCR). Below 150°C, the PEI layer is not completely cured and dissolved off the gold-coated surface. Dissolved PEI binds with DNA to inhibit PCR. Heat curing of a PEI layer above 150°C on a gold-coated surface prevents inhibition to PCR and gel electrophoresis. In comparison to gold-coated microtips, the 225°C-cured PEI-coated microtips improve the

  4. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  5. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Lescai, Francesco; Grove, Jakob

    2016-01-01

    Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can......_ref and a WB_ref replica sharing DNA extract with the WB_ref sample. Pilot 3: DBS_2x3.2, WB_ref, wgaDNA of 2x1.6 mm neonatal DBSs and wgaDNA of the WB reference sample. Following sequencing and data analysis, we compared pairwise variant calls to obtain a measure of similarity--the concordance rate...... be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject...

  6. Optimization of DNA extraction for advancing coral microbiota investigations.

    Science.gov (United States)

    Weber, Laura; DeForce, Emelia; Apprill, Amy

    2017-02-08

    DNA-based sequencing approaches are commonly used to identify microorganisms and their genes and document trends in microbial community diversity in environmental samples. However, extraction of microbial DNA from complex environmental samples like corals can be technically challenging, and extraction methods may impart biases on microbial community structure. We designed a two-phase study in order to propose a comprehensive and efficient method for DNA extraction from microbial cells present in corals and investigate if extraction method influences microbial community composition. During phase I, total DNA was extracted from seven coral species in a replicated experimental design using four different MO BIO Laboratories, Inc., DNA Isolation kits: PowerSoil®, PowerPlant® Pro, PowerBiofilm®, and UltraClean® Tissue & Cells (with three homogenization permutations). Technical performance of the treatments was evaluated using DNA yield and amplification efficiency of small subunit ribosomal RNA (SSU ribosomal RNA (rRNA)) genes. During phase II, potential extraction biases were examined via microbial community analysis of SSU rRNA gene sequences amplified from the most successful DNA extraction treatments. In phase I of the study, the PowerSoil® and PowerPlant® Pro extracts contained low DNA concentrations, amplified poorly, and were not investigated further. Extracts from PowerBiofilm® and UltraClean® Tissue and Cells permutations were further investigated in phase II, and analysis of sequences demonstrated that overall microbial community composition was dictated by coral species and not extraction treatment. Finer pairwise comparisons of sequences obtained from Orbicella faveolata, Orbicella annularis, and Acropora humilis corals revealed subtle differences in community composition between the treatments; PowerBiofilm®-associated sequences generally had higher microbial richness and the highest coverage of dominant microbial groups in comparison to the Ultra

  7. Rapid Extraction of Human DNA Containing Humic Acid

    OpenAIRE

    Sutlović, Davorka; Definis Gojanović, Marija; Anđelinović, Šimun

    2007-01-01

    The identification process of dead bodies or human remains is nowadays conducted in numerous fields of forensic science, archeology and other judicial cases. A particular problem is the isolation and DNA typing of human remains found in mass graves, due to the degradation process, as well as post mortal DNA contamination with bacteria, fungi, humic acids, metals, etc. In this study, the influence of humic acid (HA) on the DNA extraction and typing is investigated. If present in...

  8. A Comparison of DNA Extraction Methods using Petunia hybrida Tissues

    OpenAIRE

    Tamari, Farshad; Hinkley, Craig S.; Ramprashad, Naderia

    2013-01-01

    Extraction of DNA from plant tissue is often problematic, as many plants contain high levels of secondary metabolites that can interfere with downstream applications, such as the PCR. Removal of these secondary metabolites usually requires further purification of the DNA using organic solvents or other toxic substances. In this study, we have compared two methods of DNA purification: the cetyltrimethylammonium bromide (CTAB) method that uses the ionic detergent hexadecyltrimethylammonium brom...

  9. Criminal Genomic Pragmatism: Prisoners' Representations of DNA Technology and Biosecurity

    Directory of Open Access Journals (Sweden)

    Helena Machado

    2012-01-01

    Full Text Available Background. Within the context of the use of DNA technology in crime investigation, biosecurity is perceived by different stakeholders according to their particular rationalities and interests. Very little is known about prisoners’ perceptions and assessments of the uses of DNA technology in solving crime. Aim. To propose a conceptual model that serves to analyse and interpret prisoners’ representations of DNA technology and biosecurity. Methods. A qualitative study using an interpretative approach based on 31 semi-structured tape-recorded interviews was carried out between May and September 2009, involving male inmates in three prisons located in the north of Portugal. The content analysis focused on the following topics: the meanings attributed to DNA and assessments of the risks and benefits of the uses of DNA technology and databasing in forensic applications. Results. DNA was described as a record of identity, an exceptional material, and a powerful biometric identifier. The interviewees believed that DNA can be planted to incriminate suspects. Convicted offenders argued for the need to extend the criteria for the inclusion of DNA profiles in forensic databases and to restrict the removal of profiles. Conclusions. The conceptual model entitled criminal genomic pragmatism allows for an understanding of the views of prison inmates regarding DNA technology and biosecurity.

  10. A simple method for normalization of DNA extraction to improve the quantitative detection of soil-borne plant pathogenic oomycetes by real-time PCR.

    Science.gov (United States)

    Li, M; Ishiguro, Y; Kageyama, K; Zhu, Z

    2015-08-01

    Most of the current research into the quantification of soil-borne pathogenic oomycetes lacks determination of DNA extraction efficiency, probably leading to an incorrect estimation of DNA quantity. In this study, we developed a convenient method by using a 100 bp artificially synthesized DNA sequence derived from the mitochondrion NADH dehydrogenase subunit 2 gene of Thunnus thynnus as a control to determine the DNA extraction efficiency. The control DNA was added to soils and then co-extracted along with soil genomic DNA. DNA extraction efficiency was determined by the control DNA. Two different DNA extraction methods were compared and evaluated using different types of soils, and the commercial kit was proved to give more consistent results. We used the control DNA combined with real-time PCR to quantify the oomycete DNAs from 12 naturally infested soils. Detectable target DNA concentrations were three to five times higher after normalization. Our tests also showed that the extraction efficiencies varied on a sample-to-sample basis and were DNA control for the normalization of DNA extraction by real-time PCR. By combining two different efficient soil DNA extraction methods, the developed quantification method dramatically improved the results. This study also proves that the developed normalization method is necessary and useful for the accurate quantification of soil-borne plant pathogenic oomycetes. © 2015 The Society for Applied Microbiology.

  11. DNA extraction from benthic Cyanobacteria: comparative assessment and optimization.

    Science.gov (United States)

    Gaget, V; Keulen, A; Lau, M; Monis, P; Brookes, J D

    2017-01-01

    Benthic Cyanobacteria produce toxic and odorous compounds similar to their planktonic counterparts, challenging the quality of drinking water supplies. The biofilm that benthic algae and other micro-organisms produce is a complex and protective matrix. Monitoring to determine the abundance and identification of Cyanobacteria, therefore, relies on molecular techniques, with the choice of DNA isolation technique critical. This study investigated which DNA extraction method is optimal for DNA recovery in order to guarantee the best DNA yield for PCR-based analysis of benthic Cyanobacteria. The conventional phenol-chloroform extraction method was compared with five commercial kits, with the addition of chemical and physical cell-lysis steps also trialled. The efficacy of the various methods was evaluated by measuring the quantity and quality of DNA by UV spectrophotometry and by quantitative PCR (qPCR) using Cyanobacteria-specific primers. The yield and quality of DNA retrieved with the commercial kits was significantly higher than that of DNA obtained with the phenol-chloroform protocol. Kits including a physical cell-lysis step, such as the MO BIO Power Soil and Biofilm kits, were the most efficient for DNA isolation from benthic Cyanobacteria. These commercial kits allow greater recovery and the elimination of dangerous chemicals for DNA extraction, making them the method of choice for the isolation of DNA from benthic mats. They also facilitate the extraction of DNA from benthic Cyanobacteria, which can help to improve the characterization of Cyanobacteria in environmental studies using qPCRs or population composition analysis using next-generation sequencing. © 2016 The Society for Applied Microbiology.

  12. Adenoviral vector DNA for accurate genome editing with engineered nucleases.

    Science.gov (United States)

    Holkers, Maarten; Maggio, Ignazio; Henriques, Sara F D; Janssen, Josephine M; Cathomen, Toni; Gonçalves, Manuel A F V

    2014-10-01

    Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.

  13. Residual soil DNA extraction increases the discriminatory power between samples.

    Science.gov (United States)

    Young, Jennifer M; Weyrich, Laura S; Clarke, Laurence J; Cooper, Alan

    2015-06-01

    Forensic soil analysis relies on capturing an accurate and reproducible representation of the diversity from limited quantities of soil; however, inefficient DNA extraction can markedly alter the taxonomic abundance. The performance of a standard commercial DNA extraction kit (MOBIO PowerSoil DNA Isolation kit) and three modified protocols of this kit: soil pellet re-extraction (RE); an additional 24-h lysis incubation step at room temperature (RT); and 24-h lysis incubation step at 55°C (55) were compared using high-throughput sequencing of the internal transcribed spacer I ribosomal DNA. DNA yield was not correlated with fungal diversity and the four DNA extraction methods displayed distinct fungal community profiles for individual samples, with some phyla detected exclusively using the modified methods. Application of a 24 h lysis step will provide a more complete inventory of fungal biodiversity, and re-extraction of the residual soil pellet offers a novel tool for increasing discriminatory power between forensic soil samples.

  14. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae.

    Science.gov (United States)

    Eland, Lucy E; Davenport, Russell; Mota, Cesar R

    2012-10-15

    The use of molecular methods to investigate microalgal communities of natural and engineered freshwater resources is in its infancy, with the majority of previous studies carried out by microscopy. Inefficient or differential DNA extraction of microalgal community members can lead to bias in downstream community analysis. Three commercially available DNA extraction kits have been tested on a range of pure culture freshwater algal species with diverse cell walls and mixed algal cultures taken from eutrophic waste stabilization ponds (WSP). DNA yield and quality were evaluated, along with DNA suitability for amplification of 18S rRNA gene fragments by polymerase chain reaction (PCR). QiagenDNeasy(®) Blood and Tissue kit (QBT), was found to give the highest DNA yields and quality. Denaturant Gradient Gel Electrophoresis (DGGE) was used to assess the diversity of communities from which DNA was extracted. No significant differences were found among kits when assessing diversity. QBT is recommended for use with WSP samples, a conclusion confirmed by further testing on communities from two tropical WSP systems. The fixation of microalgal samples with ethanol prior to DNA extraction was found to reduce yields as well as diversity and is not recommended.

  15. Design optimization methods for genomic DNA tiling arrays.

    Science.gov (United States)

    Bertone, Paul; Trifonov, Valery; Rozowsky, Joel S; Schubert, Falk; Emanuelsson, Olof; Karro, John; Kao, Ming-Yang; Snyder, Michael; Gerstein, Mark

    2006-02-01

    A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences.

  16. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    Science.gov (United States)

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. DNA extraction protocol for rapid PCR detection of pathogenic bacteria.

    Science.gov (United States)

    Brewster, Jeffrey D; Paoli, George C

    2013-11-01

    Twelve reagents were evaluated to develop a direct DNA extraction method suitable for PCR detection of foodborne bacterial pathogens. Many reagents exhibited strong PCR inhibition, requiring significant dilution of the extract with a corresponding reduction in sensitivity. Most reagents also exhibited much lower recovery of DNA from the gram-positive test organism (Listeria monocytogenes) than from the gram-negative organism (Escherichia coli O157:H7), preventing unbiased detection and quantitation of both organisms. The 5× HotSHOT+Tween reagent exhibited minimal inhibition and high extraction efficiency for both test organisms, providing a 15-min single-tube DNA-extraction protocol suitable for highly sensitive quantitative PCR assays. Published by Elsevier Inc.

  18. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

    Science.gov (United States)

    Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2016-04-01

    Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High-throughput DNA extraction of forensic adhesive tapes.

    Science.gov (United States)

    Forsberg, Christina; Jansson, Linda; Ansell, Ricky; Hedman, Johannes

    2016-09-01

    Tape-lifting has since its introduction in the early 2000's become a well-established sampling method in forensic DNA analysis. Sampling is quick and straightforward while the following DNA extraction is more challenging due to the "stickiness", rigidity and size of the tape. We have developed, validated and implemented a simple and efficient direct lysis DNA extraction protocol for adhesive tapes that requires limited manual labour. The method uses Chelex beads and is applied with SceneSafe FAST tape. This direct lysis protocol provided higher mean DNA yields than PrepFiler Express BTA on Automate Express, although the differences were not significant when using clothes worn in a controlled fashion as reference material (p=0.13 and p=0.34 for T-shirts and button-down shirts, respectively). Through in-house validation we show that the method is fit-for-purpose for application in casework, as it provides high DNA yields and amplifiability, as well as good reproducibility and DNA extract stability. After implementation in casework, the proportion of extracts with DNA concentrations above 0.01ng/μL increased from 71% to 76%. Apart from providing higher DNA yields compared with the previous method, the introduction of the developed direct lysis protocol also reduced the amount of manual labour by half and doubled the potential throughput for tapes at the laboratory. Generally, simplified manual protocols can serve as a cost-effective alternative to sophisticated automation solutions when the aim is to enable high-throughput DNA extraction of complex crime scene samples. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. A direct detection of Escherichia coli genomic DNA using gold nanoprobes

    Directory of Open Access Journals (Sweden)

    Padmavathy

    2012-02-01

    Full Text Available Abstract Background In situation like diagnosis of clinical and forensic samples there exists a need for highly sensitive, rapid and specific DNA detection methods. Though conventional DNA amplification using PCR can provide fast results, it is not widely practised in diagnostic laboratories partially because it requires skilled personnel and expensive equipment. To overcome these limitations nanoparticles have been explored as signalling probes for ultrasensitive DNA detection that can be used in field applications. Among the nanomaterials, gold nanoparticles (AuNPs have been extensively used mainly because of its optical property and ability to get functionalized with a variety of biomolecules. Results We report a protocol for the use of gold nanoparticles functionalized with single stranded oligonucleotide (AuNP- oligo probe as visual detection probes for rapid and specific detection of Escherichia coli. The AuNP- oligo probe on hybridization with target DNA containing complementary sequences remains red whereas test samples without complementary DNA sequences to the probe turns purple due to acid induced aggregation of AuNP- oligo probes. The color change of the solution is observed visually by naked eye demonstrating direct and rapid detection of the pathogenic Escherichia coli from its genomic DNA without the need for PCR amplification. The limit of detection was ~54 ng for unamplified genomic DNA. The method requires less than 30 minutes to complete after genomic DNA extraction. However, by using unamplified enzymatic digested genomic DNA, the detection limit of 11.4 ng was attained. Results of UV-Vis spectroscopic measurement and AFM imaging further support the hypothesis of aggregation based visual discrimination. To elucidate its utility in medical diagnostic, the assay was validated on clinical strains of pathogenic Escherichia coli obtained from local hospitals and spiked urine samples. It was found to be 100% sensitive and proves to

  1. Extraction DNA from Activated Sludge-Comparing with Soil Sample

    Institute of Scientific and Technical Information of China (English)

    谢冰; 奚旦立; 陈季华

    2003-01-01

    DNA directly extraction from activated sludge and soil sample with enzyme lyses methods was investigated in this paper. DNA yield from activated sludge was 3.0 mg/g. VLSS, and 28.2-43.8 μg/g soil respectively. The resulting DNA is suitable for PCR.By studied methods, higher quality and quantity of sludge DNA could be obtained rapidly and inexpensively from large number of samples, and the PCR product obtained from this protocol was not affected by contaminated higher concentration of heavy metals.

  2. Comprehensive Analysis of Prokaryotes in Environmental Water Using DNA Microarray Analysis and Whole Genome Amplification

    Directory of Open Access Journals (Sweden)

    Norihisa Ishii

    2013-10-01

    Full Text Available The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA, labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming.

  3. Cascade cell lyses and DNA extraction for identification of genes and microorganisms in kefir grains.

    Science.gov (United States)

    Kowalczyk, Magdalena; Kolakowski, Piotr; Radziwill-Bienkowska, Joanna M; Szmytkowska, Agnieszka; Bardowski, Jacek

    2012-02-01

    Kefir is a dairy product popular in many countries in Central Europe, especially in Poland and other countries of Eastern and Northern Europe. This type of fermented milk is produced by a complex population of symbiotic bacteria and yeasts. In this work, conditions for DNA extraction, involving disruption of kefir grains and a cascade of cell lysis treatments, were established. Extraction procedure of total microbial DNA was carried out directly from fresh kefir grains. Using different lysis stringency conditions, five DNA pools were obtained. Genetic diversity of DNA pools were validated by RAPD analysis, which showed differences in patterns of amplified DNA fragments, indicating diverse microbial composition of all the analysed samples. These DNA pools were used for construction of genomic DNA libraries for sequencing. As much as 50% of the analysed nucleotide sequences showed homology to sequences from bacteria belonging to the Lactobacillus genus. Several sequences were similar to sequences from bacteria representing Lactococcus, Oenococcus, Pediococcus, Streptococcus and Leuconostoc species. Among homologues of yeast proteins were those from Candida albicans, Candida glabrata, Kluyveromyces lactis and Saccharomyces cerevisiae. In addition, several sequences were found to be homologous to sequences from bacteriophages.

  4. Highly efficient DNA extraction method from skeletal remains

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  5. Modification of gelatin-DNA interaction for optimised DNA extraction from gelatin and gelatin capsule.

    Science.gov (United States)

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; El Sheikha, Aly Farag; Khairil Mokhtar, Nur Fadhilah; Ismail, Amin; Ali, Md Eaqub

    2016-05-01

    Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples. The yield of DNA extracted from porcine gelatin was significantly increased when the pH of the samples was adjusted to pH 8.5 prior to DNA precipitation with isopropanol. The optimal pH for DNA precipitation from bovine gelatin solution was then determined at the original pH range of solution: pH 7.6 to 8. A DNA fragment of approximately 300 base pairs was available for PCR amplification. DNA extracted from gelatin and commercially available capsules has been successfully utilised for species detection using real-time PCR assay. However, significant adulterations of porcine and bovine in pure gelatin and capsules have been detected, which require further analytical techniques for validation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%.

  7. Isolation and amplification of genomic DNA from recalcitrant dried berries of black pepper (Piper nigrum L.)--a medicinal spice.

    Science.gov (United States)

    Dhanya, K; Kizhakkayil, Jaleel; Syamkumar, S; Sasikumar, B

    2007-10-01

    Black pepper is an important medicinal spice traded internationally. The extraction of high quality genomic DNA for PCR amplification from dried black pepper is challenging because of the presence of the exceptionally large amount of oxidized polyphenolic compounds, polysaccharides and other secondary metabolites. Here we report a modified hexadecyl trimethyl ammonium bromide (CTAB) protocol by incorporating potassium acetate and a final PEG precipitation step to isolate PCR amplifiable genomic DNA from dried and powdered berries of black pepper. The protocol has trade implication as it will help in the PCR characterization of traded black peppers from different countries.

  8. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Martino, D; Harsløf, Laurine Bente Schram;

    2015-01-01

    Recent evidence suggests that the effects of n-3LCPUFA might be mediated through epigenetic mechanisms, especially DNA-methylation, during pregnancy and early life. A randomized trial was conducted in 133 9-mo-old, infants who received 3.8g/day of fish oil (FO) or sunflower oil (SO) for 9 mo....... In a subset of 12 children, buffy-coat DNA was extracted before and after intervention and analyzed on Illumina-Human-Methylation 450-arrays to explore genome-wide differences between the FO and SO groups. Genome-wide-methylation analysis did not reveal significant differences between groups after adjustment...

  9. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    PURPOSE: Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight...... thrombi. CONCLUSIONS: Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold....

  10. Overcoming DNA extraction problems from carnivorous plants

    OpenAIRE

    Fleischmann, Andreas; Heubl, Günther

    2009-01-01

    We tested previously published protocols for DNA isolation from plants with high contents of polyphenols and polysaccharides for several taxa of carnivorous plants. However, we did not get satisfying results with fresh or silica dried leaf tissue obtained from field collected or greenhouse grown plants, nor from herbarium specimens. Therefore, we have developed a simple modified protocol of the commercially available Macherey- Nagel NucleoSpin® Plant kit for rapid, effective and reproducible ...

  11. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  12. Alu Mobile Elements: From Junk DNA to Genomic Gems

    Directory of Open Access Journals (Sweden)

    Sami Dridi

    2012-01-01

    Full Text Available Alus, the short interspersed repeated sequences (SINEs, are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.

  13. An integrated encyclopedia of DNA elements in the human genome.

    Science.gov (United States)

    2012-09-01

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  14. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  15. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  16. Impact of chromatin structures on DNA processing for genomic analyses.

    Directory of Open Access Journals (Sweden)

    Leonid Teytelman

    Full Text Available Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin. Using input samples from ChIP-Seq studies, we detected a similar bias throughout the heterochromatic portions of the yeast genome. We also observed significant chromatin-related effects at telomeres, protein binding sites, and genes, reflected in the variation of input-Seq coverage. Experimental tests of candidate regions showed that chromatin influenced shearing at some loci, and that chromatin could also lead to enriched or depleted DNA levels in prepared samples, independently of shearing effects. Our results suggested that assays relying on immunoprecipitation of chromatin will be biased by intrinsic differences between regions packaged into different chromatin structures - biases which have been largely ignored to date. These results established the pervasiveness of this bias genome-wide, and suggested that this bias can be used to detect differences in chromatin structures across the genome.

  17. Universal seeds for cDNA-to-genome comparison

    Directory of Open Access Journals (Sweden)

    Florea Liliana

    2008-01-01

    Full Text Available Abstract Background To meet the needs of gene annotation for newly sequenced organisms, optimized spaced seeds can be implemented into cross-species sequence alignment programs to accurately align gene sequences to the genome of a related species. So far, seed performance has been tested for comparisons between closely related species, such as human and mouse, or on simulated data. As the number and variety of genomes increases, it becomes desirable to identify a small set of universal seeds that perform optimally or near-optimally on a large range of comparisons. Results Using statistical regression methods, we investigate the sensitivity of seeds, in particular good seeds, between four cDNA-to-genome comparisons at different evolutionary distances (human-dog, human-mouse, human-chicken and human-zebrafish, and identify classes of comparisons that show similar seed behavior and therefore can employ the same seed. In addition, we find that with high confidence good seeds for more distant comparisons perform well on closer comparisons, within 98–99% of the optimal seeds, and thus represent universal good seeds. Conclusion We show for the first time that optimal and near-optimal seeds for distant species-to-species comparisons are more generally applicable to a wide range of comparisons. This finding will be instrumental in developing practical and user-friendly cDNA-to-genome alignment applications, to aid in the annotation of new model organisms.

  18. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.

    Science.gov (United States)

    Richard, Guy-Franck; Kerrest, Alix; Dujon, Bernard

    2008-12-01

    Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.

  19. Automated DNA extraction of single dog hairs without roots for mitochondrial DNA analysis.

    Science.gov (United States)

    Bekaert, Bram; Larmuseau, Maarten H D; Vanhove, Maarten P M; Opdekamp, Anouschka; Decorte, Ronny

    2012-03-01

    Dogs are intensely integrated in human social life and their shed hairs can play a major role in forensic investigations. The overall aim of this study was to validate a semi-automated extraction method for mitochondrial DNA analysis of telogenic dog hairs. Extracted DNA was amplified with a 95% success rate from 43 samples using two new experimental designs in which the mitochondrial control region was amplified as a single large (± 1260 bp) amplicon or as two individual amplicons (HV1 and HV2; ± 650 and 350 bp) with tailed-primers. The results prove that the extraction of dog hair mitochondrial DNA can easily be automated to provide sufficient DNA yield for the amplification of a forensically useful long mitochondrial DNA fragment or alternatively two short fragments with minimal loss of sequence in case of degraded samples.

  20. Proboscidean DNA from museum and fossil specimens: an assessment of ancient DNA extraction and amplification techniques.

    Science.gov (United States)

    Yang, H; Golenberg, E M; Shoshani, J

    1997-06-01

    Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.

  1. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA.

    Directory of Open Access Journals (Sweden)

    Jesper Buchhave Poulsen

    Full Text Available Stored neonatal dried blood spot (DBS samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA. Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject we analysed a neonatal DBS sample and corresponding adult whole-blood (WB reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2 and raw DNA extract of the WB reference sample (WB_ref. Pilot 2: DBS_2x3.2, WB_ref and a WB_ref replica sharing DNA extract with the WB_ref sample. Pilot 3: DBS_2x3.2, WB_ref, wgaDNA of 2x1.6 mm neonatal DBSs and wgaDNA of the WB reference sample. Following sequencing and data analysis, we compared pairwise variant calls to obtain a measure of similarity-the concordance rate. Concordance rates were slightly lower when comparing DBS vs WB sample types than for any two WB sample types of the same subject before filtering of the variant calls. The overall concordance rates were dependent on the variant type, with SNPs performing best. Post-filtering, the comparisons of DBS vs WB and WB vs WB sample types yielded similar concordance rates, with values close to 100%. WgaDNA of neonatal DBS samples performs with great accuracy and efficiency in exome sequencing. The wgaDNA performed similarly to matched high-quality reference-whole-blood DNA-based on concordance rates calculated from variant calls. No differences were observed substituting 2x3.2 with 2x1.6 mm discs, allowing for additional reduction of sample material in future projects.

  2. Comparison of buccal and blood-derived canine DNA, either native or whole genome amplified, for array-based genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Lawley Cynthia

    2011-06-01

    Full Text Available Abstract Background The availability of array-based genotyping platforms for single nucleotide polymorphisms (SNPs for the canine genome has expanded the opportunities to undertake genome-wide association (GWA studies to identify the genetic basis for Mendelian and complex traits. Whole blood as the source of high quality DNA is undisputed but often proves impractical for collection of the large numbers of samples necessary to discover the loci underlying complex traits. Further, many countries prohibit the collection of blood from dogs unless medically necessary thereby restricting access to critical control samples from healthy dogs. Alternate sources of DNA, typically from buccal cytobrush extractions, while convenient, have been suggested to have low yield and perform poorly in GWA. Yet buccal cytobrushes provide a cost-effective means of collecting DNA, are readily accepted by dog owners, and represent a large resource base in many canine genetics laboratories. To increase the DNA quantities, whole genome amplification (WGA can be performed. Thus, the present study assessed the utility of buccal-derived DNA as well as whole genome amplification in comparison to blood samples for use on the most recent iteration of the canine HD SNP array (Illumina. Findings In both buccal and blood samples, whether whole genome amplified or not, 97% of the samples had SNP call rates in excess of 80% indicating that the vast majority of the SNPs would be suitable to perform association studies regardless of the DNA source. Similarly, there were no significant differences in marker intensity measurements between buccal and blood samples for copy number variations (CNV analysis. Conclusions All DNA samples assayed, buccal or blood, native or whole genome amplified, are appropriate for use in array-based genome-wide association studies. The concordance between subsets of dogs for which both buccal and blood samples, or those samples whole genome amplified, was

  3. Primers for the Amplification of the Circular Chloroplast DNA from the A-genome Group of Cultivated Cotton

    Institute of Scientific and Technical Information of China (English)

    IBRAHIM Rashid Ismael Hag; AZUMA Jun-Ichi; SAKAMOTO Masahiro

    2008-01-01

    @@ The availability of the plastid genome sequences is one of the bases for comparative,functional,and structural genomic studies of plastid-containing living organisms,in addition to the application of plastid genetic engineering technology.The past efforts to sequence plastid genomes involve complicated preparation protocols.One procedure starts with the isolation of plastids,which was tiresome and time wasting that followed by a second step to extract plastid DNA from the isolated plastids,then finally the build up of plasmid or bacterial artificial chromosome (BAC) library.

  4. DNA extraction methods for panbacterial and panfungal PCR detection in intraocular fluids.

    Science.gov (United States)

    Mazoteras, Paloma; Bispo, Paulo José Martins; Höfling-Lima, Ana Luisa; Casaroli-Marano, Ricardo P

    2015-07-01

    Three different methods of DNA extraction from intraocular fluids were compared with subsequent detection for bacterial and fungal DNA by universal PCR amplification. Three DNA extraction methods, from aqueous and vitreous humors, were evaluated to compare their relative efficiency. Bacterial (Gram positive and negative) and fungal strains were used in this study: Escherichia coli, Staphylococcus epidermidis and Candida albicans. The quality, quantification, and detection limit for DNA extraction and PCR amplification were analyzed. Validation procedures for 13 aqueous humor and 14 vitreous samples, from 20 patients with clinically suspected endophthalmitis were carried out. The column-based extraction method was the most time-effective, achieving DNA detection limits ≥10(2) and 10(3 )CFU/100 µL for bacteria and fungi, respectively. PCR amplification detected 100 fg, 1 pg and 10 pg of genomic DNA of E. coli, S. epidermidis and C. albicans respectively. PCR detected 90.0% of the causative agents from 27 intraocular samples collected from 20 patients with clinically suspected endophthalmitis, while standard microbiological techniques could detect only 60.0%. The most frequently found organisms were Streptococcus spp. in 38.9% (n = 7) of patients and Staphylococcus spp. found in 22.2% (n = 4). The column-based extraction method for very small inocula in small volume samples (50-100 µL) of aqueous and/or vitreous humors allowed PCR amplification in all samples with sufficient quality for subsequent sequencing and identification of the microorganism in the majority of them.

  5. Nonhomologous DNA End Joining in Cell-Free Extracts

    OpenAIRE

    Sheetal Sharma; Raghavan, Sathees C.

    2010-01-01

    Among various DNA damages, double-strand breaks (DSBs) are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ) is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  6. Nonhomologous DNA End Joining in Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Sheetal Sharma

    2010-01-01

    Full Text Available Among various DNA damages, double-strand breaks (DSBs are considered as most deleterious, as they may lead to chromosomal rearrangements and cancer when unrepaired. Nonhomologous DNA end joining (NHEJ is one of the major DSB repair pathways in higher organisms. A large number of studies on NHEJ are based on in vitro systems using cell-free extracts. In this paper, we summarize the studies on NHEJ performed by various groups in different cell-free repair systems.

  7. Complete mitochondrial DNA genome of Pseudobagrus truncatus (Siluriformes: Bagridae).

    Science.gov (United States)

    Liang, Hong-wei; Meng, Yan; Li, Zhong; Zhang, Yan; Zou, Gui-wei

    2014-06-01

    In this study, the complete mitochondrial DNA (mtDNA) sequence of Pseudobagrus truncatus (Siluriformes: Bagridae) was determined. The complete mtDNA genome sequence of P. truncatus is 16,533 bp in size. It consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding control region. The gene order and genes were the same as that found in other previously reported catfishes. The overall-based composition was 31.6% A, 26.7% T, 14.9% G and 26.8% C, with a high A + T content (58.3%). This complete mitogenome of P. truncatus provides a basic data for studies on species identification, molecular systematics and conservation genetics.

  8. Volume visualization of multiple alignment of genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nameeta; Weber, Gunther H.; Dillard, Scott E.; Hamann, Bernd

    2004-05-01

    Genomes of hundreds of species have been sequenced to date and many more are being sequenced. As more and more sequence data sets become available, and as the challenge of comparing these massive ''billion basepair DNA sequences'' becomes substantial, so does the need for more powerful tools supporting the exploration of these data sets. Similarity score data used to compare aligned DNA sequences is inherently one-dimensional. One-dimensional (1D) representations of these data sets do not effectively utilize screen real estate. We present a technique to arrange 1D data in 3D space to allow us to apply state-of-the-art interactive volume visualization techniques for data exploration. We provide results for aligned DNA sequence data and compare it with traditional 1D line plots. Our technique, coupled with 1D line plots, results in effective multiresolution visualization of very large aligned sequence data sets.

  9. An improved electroelution method for separation of DNA from humic substances in marine sediment DNA extracts.

    Science.gov (United States)

    Kallmeyer, Jens; Smith, David C

    2009-07-01

    We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants method is quantitative and does not discriminate on the basis of size, as determined using DNA standards and DNA extracts from environmental samples. Amplification of DNA is considerably improved due to removal of PCR inhibitors. For Archaea, only these purified extracts yielded PCR products. This method allows for the use of relatively large volumes of sediment and is particularly useful for sediments containing low biomass such as deeply buried marine sediments. It works with both organic-ri