WorldWideScience

Sample records for genomic analysis distinguishes

  1. Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal

    Science.gov (United States)

    Vrljicak, Pavle; Chang, Alex C. Y.; Morozova, Olena; Wederell, Elizabeth D.; Niessen, Kyle; Marra, Marco A.; Karsan, Aly

    2010-01-01

    Valve formation during embryonic heart development involves a complex interplay of regional specification, cell transformations, and remodeling events. While many studies have addressed the role of specific genes during this process, a global understanding of the genetic basis for the regional specification and development of the heart valves is incomplete. We have undertaken genome-wide transcriptional profiling of the developing heart valves in the mouse. Four Serial Analysis of Gene Expression libraries were generated and analyzed from the mouse atrio-ventricular canal (AVC) at embryonic days 9.5–12.5, covering the stages from initiation of endothelial to mesenchymal transition (EMT) through to the beginning of endocardial cushion remodeling. We identified 14 distinct temporal patterns of gene expression during AVC development. These were associated with specific functions and signaling pathway members. We defined the temporal distribution of mesenchyme genes during the EMT process and of specific Notch and transforming growth factor-β targets. This work provides the first comprehensive temporal dataset during the formation of heart valves. These results identify molecular signatures that distinguish different phases of early heart valve formation allowing gene expression and function to be further investigated. PMID:19952280

  2. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids.

    Science.gov (United States)

    Jheng, Cheng-Fong; Chen, Tien-Chih; Lin, Jhong-Yi; Chen, Ting-Chieh; Wu, Wen-Luan; Chang, Ching-Chun

    2012-07-01

    The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Quantitative analysis of polycomb response elements (PREs at identical genomic locations distinguishes contributions of PRE sequence and genomic environment

    Directory of Open Access Journals (Sweden)

    Okulski Helena

    2011-03-01

    Full Text Available Abstract Background Polycomb/Trithorax response elements (PREs are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. Results We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7 with a PRE from the vestigial (vg gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT that is essential for silencing. Conclusions This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design.

  4. Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.

    Science.gov (United States)

    Srivastava, Surabhi; Gala, Hardik P; Mishra, Rakesh K; Dhawan, Jyotsna

    2018-01-01

    Regenerative potential in adult stem cells is closely associated with the establishment of-and exit from-a temporary state of quiescence. Emerging evidence not only provides a rationale for the link between lineage determination programs and cell cycle regulation but also highlights the understanding of quiescence as an actively maintained cellular program, encompassing networks and mechanisms beyond mitotic inactivity or metabolic restriction. Interrogating the quiescent genome and transcriptome using deep-sequencing technologies offers an unprecedented view of the global mechanisms governing this reversibly arrested cellular state and its importance for cell identity. While many efforts have identified and isolated pure target stem cell populations from a variety of adult tissues, there is a growing appreciation that their isolation from the stem cell niche in vivo leads to activation and loss of hallmarks of quiescence. Thus, in vitro models that recapitulate the dynamic reversibly arrested stem cell state in culture and lend themselves to comparison with the activated or differentiated state are useful templates for genome-wide analysis of the quiescence network.In this chapter, we describe the methods that can be adopted for whole genome epigenomic and transcriptomic analysis of cells derived from one such established culture model where mouse myoblasts are triggered to enter or exit quiescence as homogeneous populations. The ability to synchronize myoblasts in G 0 permits insights into the genome in "deep quiescence." The culture methods for generating large populations of quiescent myoblasts in either 2D or 3D culture formats are described in detail in a previous chapter in this series (Arora et al. Methods Mol Biol 1556:283-302, 2017). Among the attractive features of this model are that genes isolated from quiescent myoblasts in culture mark satellite cells in vivo (Sachidanandan et al., J Cell Sci 115:2701-2712, 2002) providing a validation of its

  5. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Directory of Open Access Journals (Sweden)

    Joshua D. Campbell

    2018-04-01

    Full Text Available Summary: This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs from five sites associated with smoking and/or human papillomavirus (HPV. SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs, DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+ and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches. : Campbell et al. reveal that squamous cell cancers from different tissue sites may be distinguished from other cancers and subclassified molecularly by recurrent alterations in chromosomes, DNA methylation, messenger and microRNA expression, or by mutations. These affect squamous cell pathways and programs that provide candidates for therapy. Keywords: genomics, transcriptomics, proteomics, head and neck squamous cell carcinoma, lung squamous cell carcinoma, esophageal squamous cell carcinoma, cervical squamous cell carcinoma, bladder carcinoma with squamous differentiation, human papillomavirus

  6. Distinguishing friends, foes, and freeloaders in giant genomes.

    Science.gov (United States)

    Bennetzen, Jeffrey L; Park, Minkyu

    2018-03-12

    Most annotations of large eukaryotic genomes initially find transposable elements (TEs) and other repeats, then mask them so that subsequent efforts can be concentrated on the annotation and study of non-TE genes. However, TEs often contribute to host biology, and their community biologies are of intrinsic interest. This review discusses the challenges, rationale and technologies for comprehensive TE annotation in the commonly giant genomes of animals and plants. Complete discovery of the TEs in a fully sequenced genome is laborious, but feasible, with current strategies in the hands of a careful researcher. These deep TE studies have begun to provide important perspectives on how genomes evolve and the degree to which genome changes do and do not affect eukaryotic biology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

    NARCIS (Netherlands)

    Bulik-Sullivan, Brendan K.; Loh, Po-Ru; Finucane, Hilary K.; Ripke, Stephan; Yang, Jian; Patterson, Nick; Daly, Mark J.; Price, Alkes L.; Neale, Benjamin M.; Corvin, Aiden; Walters, James T. R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C. K.; Chen, Ronald Y. L.; Chen, Eric Y. H.; Cheng, Wei; Cheung, Eric F. C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; O'Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C. A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter D.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H. M.; Wormley, Brandon K.; Wu, Jing Qin; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Stefansson, Kari; Visscher, Peter M.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H. R.; Bramon, Elvira; Buxbaum, Joseph D.; Børglum, Anders D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Nöthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; St Clair, David; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Sullivan, Patrick F.; O'Donovan, Michael C.

    2015-01-01

    Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true

  8. OrthoParaMap: Distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies

    Directory of Open Access Journals (Sweden)

    Young Nevin D

    2003-09-01

    Full Text Available Abstract Background In eukaryotic genomes, most genes are members of gene families. When comparing genes from two species, therefore, most genes in one species will be homologous to multiple genes in the second. This often makes it difficult to distinguish orthologs (separated through speciation from paralogs (separated by other types of gene duplication. Combining phylogenetic relationships and genomic position in both genomes helps to distinguish between these scenarios. This kind of comparison can also help to describe how gene families have evolved within a single genome that has undergone polyploidy or other large-scale duplications, as in the case of Arabidopsis thaliana – and probably most plant genomes. Results We describe a suite of programs called OrthoParaMap (OPM that makes genomic comparisons, identifies syntenic regions, determines whether sets of genes in a gene family are related through speciation or internal chromosomal duplications, maps this information onto phylogenetic trees, and infers internal nodes within the phylogenetic tree that may represent local – as opposed to speciation or segmental – duplication. We describe the application of the software using three examples: the melanoma-associated antigen (MAGE gene family on the X chromosomes of mouse and human; the 20S proteasome subunit gene family in Arabidopsis, and the major latex protein gene family in Arabidopsis. Conclusion OPM combines comparative genomic positional information and phylogenetic reconstructions to identify which gene duplications are likely to have arisen through internal genomic duplications (such as polyploidy, through speciation, or through local duplications (such as unequal crossing-over. The software is freely available at http://www.tc.umn.edu/~cann0010/.

  9. Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases.

    Directory of Open Access Journals (Sweden)

    Mariane M A Stefani

    2017-06-01

    Full Text Available Since leprosy is both treated and controlled by multidrug therapy (MDT it is important to monitor recurrent cases for drug resistance and to distinguish between relapse and reinfection as a means of assessing therapeutic efficacy. All three objectives can be reached with single nucleotide resolution using next generation sequencing and bioinformatics analysis of Mycobacterium leprae DNA present in human skin.DNA was isolated by means of optimized extraction and enrichment methods from samples from three recurrent cases in leprosy patients participating in an open-label, randomized, controlled clinical trial of uniform MDT in Brazil (U-MDT/CT-BR. Genome-wide sequencing of M. leprae was performed and the resultant sequence assemblies analyzed in silico.In all three cases, no mutations responsible for resistance to rifampicin, dapsone and ofloxacin were found, thus eliminating drug resistance as a possible cause of disease recurrence. However, sequence differences were detected between the strains from the first and second disease episodes in all three patients. In one case, clear evidence was obtained for reinfection with an unrelated strain whereas in the other two cases, relapse appeared more probable.This is the first report of using M. leprae whole genome sequencing to reveal that treated and cured leprosy patients who remain in endemic areas can be reinfected by another strain. Next generation sequencing can be applied reliably to M. leprae DNA extracted from biopsies to discriminate between cases of relapse and reinfection, thereby providing a powerful tool for evaluating different outcomes of therapeutic regimens and for following disease transmission.

  10. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells.

    Science.gov (United States)

    Carpentier, Sabrina; Vu Manh, Thien-Phong; Chelbi, Rabie; Henri, Sandrine; Malissen, Bernard; Haniffa, Muzlifah; Ginhoux, Florent; Dalod, Marc

    2016-05-01

    Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A Genome-Wide Scan of DNA Methylation Markers for Distinguishing Monozygotic Twins.

    Science.gov (United States)

    Du, Qingqing; Zhu, Guijun; Fu, Guangping; Zhang, Xiaojing; Fu, Lihong; Li, Shujin; Cong, Bin

    2015-12-01

    Identification of individuals within pairs of monozygotic (MZ) twins remains unresolved using common forensic DNA typing technology. For some criminal cases involving MZ twins as suspects, the twins had to be released due to inability to identify which of the pair was the perpetrator. In this study, we performed a genome-wide scan on whole blood-derived DNA from four pairs of healthy phenotypically concordant MZ twins using the methylated DNA immunoprecipitation sequencing technology to identify candidate DNA methylation markers with capacity to distinguish MZ twins within a pair. We identified 38 differential methylation regions showing within-pair methylation differences in all four MZ pairs. These are all located in CpG islands, 17 of which are promoter-associated, 17 are intergenic islands, and four are intragenic islands. Genes associated with these markers are related with cell proliferation, differentiation, and growth and development, including zinc finger proteins, PRRX2, RBBP9, or are involved in G-protein signaling, such as the regulator of G-protein signaling 16. Further validation studies on additional MZ twins are now required to evaluate the broader utility of these 38 markers for forensic use.

  12. PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data

    DEFF Research Database (Denmark)

    Cosentino, Salvatore; Larsen, Mette Voldby; Aarestrup, Frank Møller

    2013-01-01

    approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated...

  13. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

    DEFF Research Database (Denmark)

    Bulik-Sullivan, Brendan K.; Loh, Po-Ru; Finucane, Hilary K.

    2015-01-01

    a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate...... correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size....

  14. Wavelet coherence analysis : A new approach to distinguish organic and functional tremor types

    NARCIS (Netherlands)

    Kramer, G.; Van der Stouwe, A. M. M.; Maurits, N. M.; Tijssen, M. A. J.; Elting, J. W. J.

    Objective: To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. Methods: In this pilot study,

  15. Fractal analysis of scatter imaging signatures to distinguish breast pathologies

    Science.gov (United States)

    Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.

    2013-02-01

    Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.

  16. Distinguish Spoken English from Written English: Rich Feature Analysis

    Science.gov (United States)

    Tian, Xiufeng

    2013-01-01

    This article aims at the feature analysis of four expository essays (Text A/B/C/D) written by secondary school students with a focus on the differences between spoken and written language. Texts C and D are better written compared with the other two (Texts A&B) which are considered more spoken in language using. The language features are…

  17. Common genomic features of Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni

    Directory of Open Access Journals (Sweden)

    Horn Sharon T

    2007-05-01

    Full Text Available Abstract Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST and a DNA microarray-based comparative genomic indexing (CGI approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd.

  18. Distinguishing subpopulations of marijuana users with latent profile analysis.

    Science.gov (United States)

    Pearson, Matthew R; Bravo, Adrian J; Conner, Bradley T

    2017-03-01

    Although marijuana is the most commonly used illicit drug in the United States, little is known about the effects of typical marijuana use patterns and whether there are distinct subgroups of marijuana users. The present study used latent profile analysis to determine the number of distinct subgroups of marijuana users in a large sample of college students (n=2129 past month marijuana users across 11 universities). We also examined how these distinct groups differ on several putative risk/protective factors (e.g., personality traits, perceptions of marijuana, and motives for using marijuana). Using the Lo-Mendell-Rubin Likelihood Ratio Test, we identified four latent classes with the largest class consisting of infrequent marijuana users, and three other classes demonstrating increasingly frequent use and more negative consequences with the most severe class being the smallest class. We found the largest between-class differences (i.e., distinctions across classes) to be on identification with being a marijuana user and use of protective behavioral strategies (PBS), such that the heavier user classes showed higher identification with marijuana users and lower use of PBS. Our findings demonstrate that college student marijuana users are a heterogeneous group with different profiles of risk/protective factors and that those who use marijuana a few times per month are different from those who are near-daily or daily users. Our findings also serve as a call to action for the field to consider examining identification with being a marijuana user and the use of PBS in future marijuana studies. Copyright © 2016. Published by Elsevier B.V.

  19. Analysis of Financial Ratio to Distinguish Indonesia Joint Venture General Insurance Company Performance using Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available Insurance industry stands as a service business that plays a significant role in Indonesiaeconomical condition. The development of insurance industry in Indonesia, both of generalinsurance and life insurance, has increased very fast. The general insurance industry itselfdivided into two major players which are local private company and Joint Venture Company.Lately, the use of statistical techniques and financial ratios models to asses financial institutionsuch as insurance company have been used as one of the appropriate combination inpredicting the performance of an industry. This research aims to distinguish between JointVenture General Insurance Companies that have a good performance and those who are lessperforming well using Discriminant Analysis. Further, the findings led that DiscriminantAnalysis is able to distinguish Joint Venture General Insurance Companies that have a goodperformance and those who are not performing well. There are also six ratios which are RBC,Technical Reserve to Investment Ratio, Debt Ratio, Return on Equity, Loss Ratio, and ExpenseRatio that stand as the most influential ratios to distinguish the performance of joint venturegeneral insurance companies. In addition, the result suggest business people to be concernedtoward those six ratios, to increase their companies’ performance.Key words: general insurance, financial ratio, discriminant analysis

  20. Molecular analysis distinguishes metastatic disease from second cancers in patients with retinoblastoma.

    Science.gov (United States)

    Racher, Hilary; Soliman, Sameh; Argiropoulos, Bob; Chan, Helen S L; Gallie, Brenda L; Perrier, Renée; Matevski, Donco; Rushlow, Diane; Piovesan, Beata; Shaikh, Furqan; MacDonald, Heather; Corson, Timothy W

    2016-01-01

    The pediatric ocular tumor retinoblastoma readily metastasizes, but these lesions can masquerade as histologically similar pediatric small round blue cell tumors. Since 98% of retinoblastomas have RB1 mutations and a characteristic genomic copy number "signature", genetic analysis is an appealing adjunct to histopathology to distinguish retinoblastoma metastasis from second primary cancer in retinoblastoma patients. Here, we describe such an approach in two retinoblastoma cases. In patient one, allele-specific (AS)-PCR for a somatic nonsense mutation confirmed that a temple mass was metastatic retinoblastoma. In a second patient, a rib mass shared somatic copy number gains and losses with the primary tumor. For definitive diagnosis, however, an RB1 mutation was needed, but heterozygous promoter→exon 11 deletion was the only RB1 mutation detected in the primary tumor. We used a novel application of inverse PCR to identify the deletion breakpoint. Subsequently, AS-PCR designed for the breakpoint confirmed that the rib mass was metastatic retinoblastoma. These cases demonstrate that personalized molecular testing can confirm retinoblastoma metastases and rule out a second primary cancer, thereby helping to direct the clinical management. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy.

    Science.gov (United States)

    Hassoun, Heitham T; Grigoryev, Dmitry N; Lie, Mihaela L; Liu, Manchang; Cheadle, Chris; Tuder, Rubin M; Rabb, Hamid

    2007-07-01

    Acute kidney injury (AKI) is associated with significant mortality, which increases further when combined with acute lung injury. Experiments in rodents have shown that kidney ischemia-reperfusion injury (IRI) facilitates lung injury and inflammation. To identify potential ischemia-specific lung molecular pathways involved, we conducted global gene expression profiling of lung 6 or 36 h following 1) bilateral kidney IRI, 2) bilateral nephrectomy (BNx), and 3) sham laparotomy in C57BL/6J mice. Bronchoalveolar lavage fluid analysis revealed increased total protein, and lung histology revealed increased cellular inflammation following IRI, but not BNx, compared with sham controls. Total RNA from whole lung was isolated and hybridized to 430MOEA (22,626 genes) GeneChips (n = 3/group), which were analyzed by robust multichip average and significance analysis of microarrays and linked to gene ontology (GO) terms using MAPPFinder. The microarray power analysis predicted that the false discovery rate (q or =50%-fold change compared with sham would represent significant changes in gene expression. Analysis identified 266 and 455 ischemia-specific, AKI-associated lung genes with increased expression and 615 and 204 with decreased expression at 6 and 36 h, respectively, compared with sham controls. Real-time PCR analysis validated select array changes in lung serum amyloid A3 and endothelin-1. GO analysis revealed significant activation (Z > 1.95) of several proinflammatory and proapoptotic biological processes. Ischemic AKI induces functional and transcriptional changes in the lung distinct from those induced by uremia alone. Further investigation using this lung molecular signature induced by kidney IRI will provide mechanistic insights and new therapies for critically ill patients with AKI.

  2. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  3. Study on distinguishing of Chinese ancient porcelains by neutron activation and fuzzy cluster analysis

    International Nuclear Information System (INIS)

    Wang An

    1992-01-01

    By means of the method of neutron activation, the contents of trace elements in some samples of Chinese ancient porcelains from different places of production were determined. The data were analysed by fuzzy cluster analysis. On the basis of the above mentioned works, a method with regard to the distinguishing and determining of Chinese ancient porcelain was suggested

  4. Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.

    Science.gov (United States)

    Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J

    2018-01-01

    To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    Science.gov (United States)

    2015-08-01

    Assay development, Bacterial detection, Genome identification , Technical evaluation, Whole genome mapping 16. SECURITY CLASSIFICATION OF: 17...detection, Genome identification , Technical evaluation, Whole genome mapping IntrOductIOn One of the primary goals of public health agencies is the early...multiple bacteria could be uniquely identified within mixtures. In the first set of experiments, three unique organisms ( Bacillus subtilis subsp. globigii

  6. A dictionary based informational genome analysis

    Directory of Open Access Journals (Sweden)

    Castellini Alberto

    2012-09-01

    Full Text Available Abstract Background In the post-genomic era several methods of computational genomics are emerging to understand how the whole information is structured within genomes. Literature of last five years accounts for several alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others, recent approaches are based on empirical frequencies of DNA k-mers in whole genomes. Results Any set of words (factors occurring in a genome provides a genomic dictionary. About sixty genomes were analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local sequence analysis. A software prototype applying a methodology here outlined carried out some computations on genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with frequency distributions. The software performed three main tasks: computation of informational indexes, storage of these in a database, index analysis and visualization. The validation was done by investigating genomes of various organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for example to compute excessively represented functional sequences, such as promoters, was discussed, and suggested a method to define synthetic genetic networks. Conclusions We introduced a methodology based on dictionaries, and an efficient motif-finding software application for comparative genomics. This approach could be extended along many investigation lines, namely exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies.

  7. Coronavirus Genomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Kwok-Yung Yuen

    2010-08-01

    Full Text Available The drastic increase in the number of coronaviruses discovered and coronavirus genomes being sequenced have given us an unprecedented opportunity to perform genomics and bioinformatics analysis on this family of viruses. Coronaviruses possess the largest genomes (26.4 to 31.7 kb among all known RNA viruses, with G + C contents varying from 32% to 43%. Variable numbers of small ORFs are present between the various conserved genes (ORF1ab, spike, envelope, membrane and nucleocapsid and downstream to nucleocapsid gene in different coronavirus lineages. Phylogenetically, three genera, Alphacoronavirus, Betacoronavirus and Gammacoronavirus, with Betacoronavirus consisting of subgroups A, B, C and D, exist. A fourth genus, Deltacoronavirus, which includes bulbul coronavirus HKU11, thrush coronavirus HKU12 and munia coronavirus HKU13, is emerging. Molecular clock analysis using various gene loci revealed that the time of most recent common ancestor of human/civet SARS related coronavirus to be 1999-2002, with estimated substitution rate of 4´10-4 to 2´10-2 substitutions per site per year. Recombination in coronaviruses was most notable between different strains of murine hepatitis virus (MHV, between different strains of infectious bronchitis virus, between MHV and bovine coronavirus, between feline coronavirus (FCoV type I and canine coronavirus generating FCoV type II, and between the three genotypes of human coronavirus HKU1 (HCoV-HKU1. Codon usage bias in coronaviruses were observed, with HCoV-HKU1 showing the most extreme bias, and cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape such codon usage bias in coronaviruses.

  8. Single-Cell Genomic Analysis in Plants

    Directory of Open Access Journals (Sweden)

    Yuxuan Yuan

    2018-01-01

    Full Text Available Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis.

  9. Differential gene expression from genome-wide microarray analyses distinguishes Lohmann Selected Leghorn and Lohmann Brown layers.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The Lohmann Selected Leghorn (LSL and Lohmann Brown (LB layer lines have been selected for high egg production since more than 50 years and belong to the worldwide leading commercial layer lines. The objectives of the present study were to characterize the molecular processes that are different among these two layer lines using whole genome RNA expression profiles. The hens were kept in the newly developed small group housing system Eurovent German with two different group sizes. Differential expression was observed for 6,276 microarray probes (FDR adjusted P-value <0.05 among the two layer lines LSL and LB. A 2-fold or greater change in gene expression was identified on 151 probe sets. In LSL, 72 of the 151 probe sets were up- and 79 of them were down-regulated. Gene ontology (GO enrichment analysis accounting for biological processes evinced 18 GO-terms for the 72 probe sets with higher expression in LSL, especially those taking part in immune system processes and membrane organization. A total of 32 enriched GO-terms were determined among the 79 down-regulated probe sets of LSL. Particularly, these terms included phosphorus metabolic processes and signaling pathways. In conclusion, the phenotypic differences among the two layer lines LSL and LB are clearly reflected in their gene expression profiles of the cerebrum. These novel findings provide clues for genes involved in economically important line characteristics of commercial laying hens.

  10. The Use of Differential Item Functioning (DIF) Analysis to Distinguish Between Similar Job Roles.

    Science.gov (United States)

    Risk, Nicole M; Fidler, James R

    Two primary roles in the clinical laboratory are those of Medical Technologist (MT) and Medical Laboratory Technician (MLT). Job analyses, which form the foundation of test blueprints employed for credentialing practitioners, suggest a reasonable amount of overlap in the tasks performed by MTs and MLTs. However, credentialing assessments must clearly distinguish between the two roles and ensure that they address competencies appropriate to each practice designation. Differential item functioning (DIF) analysis techniques were applied to explore and differentiate the two laboratory practitioner job roles as an aspect of examination development. Results from the analysis suggest a high degree of similarity between these two groups in terms of scope of tasks performed. Subject matter expert interpretation suggests that the assessments are more appropriately differentiated by underlying level of task knowledge rather than scope of tasks. DIF may be applicable to other exploratory investigations that seek to differentiate job roles comprised of common competencies.

  11. The Complete Chloroplast Genome Sequences of Aconitum pseudolaeve and Aconitum longecassidatum, and Development of Molecular Markers for Distinguishing Species in the Aconitum Subgenus Lycoctonum

    Directory of Open Access Journals (Sweden)

    Inkyu Park

    2017-11-01

    Full Text Available Aconitum pseudolaeve Nakai and Aconitum longecassidatum Nakai, which belong to the Aconitum subgenus Lycoctonum, are distributed in East Asia and Korea. Aconitum species are used in herbal medicine and contain highly toxic components, including aconitine. A. pseudolaeve, an endemic species of Korea, is a commercially valuable material that has been used in the manufacture of cosmetics and perfumes. Although Aconitum species are important plant resources, they have not been extensively studied, and genomic information is limited. Within the subgenus Lycoctonum, which includes A. pseudolaeve and A. longecassidatum, a complete chloroplast (CP genome is available for only one species, Aconitum barbatum Patrin ex Pers. Therefore, we sequenced the complete CP genomes of two Aconitum species, A. pseudolaeve and A. longecassidatum, which are 155,628 and 155,524 bp in length, respectively. Both genomes have a quadripartite structure consisting of a pair of inverted repeated regions (51,854 and 52,108 bp, respectively separated by large single-copy (86,683 and 86,466 bp and small single-copy (17,091 and 16,950 bp regions similar to those in other Aconitum CP genomes. Both CP genomes consist of 112 unique genes, 78 protein-coding genes, 4 ribosomal RNA (rRNA genes, and 30 transfer RNA (tRNA genes. We identified 268 and 277 simple sequence repeats (SSRs in A. pseudolaeve and A. longecassidatum, respectively. We also identified potential 36 species-specific SSRs, 53 indels, and 62 single-nucleotide polymorphisms (SNPs between the two CP genomes. Furthermore, a comparison of the three Aconitum CP genomes from the subgenus Lycoctonum revealed highly divergent regions, including trnK-trnQ, ycf1-ndhF, and ycf4-cemA. Based on this finding, we developed indel markers using indel sequences in trnK-trnQ and ycf1-ndhF. A. pseudolaeve, A. longecassidatum, and A. barbatum could be clearly distinguished using the novel indel markers AcoTT (Aconitum trnK-trnQ and Aco

  12. Distinguishing PTSD, Complex PTSD, and Borderline Personality Disorder: A latent class analysis

    Directory of Open Access Journals (Sweden)

    Marylène Cloitre

    2014-09-01

    Full Text Available Background: There has been debate regarding whether Complex Posttraumatic Stress Disorder (Complex PTSD is distinct from Borderline Personality Disorder (BPD when the latter is comorbid with PTSD. Objective: To determine whether the patterns of symptoms endorsed by women seeking treatment for childhood abuse form classes that are consistent with diagnostic criteria for PTSD, Complex PTSD, and BPD. Method: A latent class analysis (LCA was conducted on an archival dataset of 280 women with histories of childhood abuse assessed for enrollment in a clinical trial for PTSD. Results: The LCA revealed four distinct classes of individuals: a Low Symptom class characterized by low endorsements on all symptoms; a PTSD class characterized by elevated symptoms of PTSD but low endorsement of symptoms that define the Complex PTSD and BPD diagnoses; a Complex PTSD class characterized by elevated symptoms of PTSD and self-organization symptoms that defined the Complex PTSD diagnosis but low on the symptoms of BPD; and a BPD class characterized by symptoms of BPD. Four BPD symptoms were found to greatly increase the odds of being in the BPD compared to the Complex PTSD class: frantic efforts to avoid abandonment, unstable sense of self, unstable and intense interpersonal relationships, and impulsiveness. Conclusions: Findings supported the construct validity of Complex PTSD as distinguishable from BPD. Key symptoms that distinguished between the disorders were identified, which may aid in differential diagnosis and treatment planning.

  13. Distinguishing PTSD, Complex PTSD, and Borderline Personality Disorder: A latent class analysis.

    Science.gov (United States)

    Cloitre, Marylène; Garvert, Donn W; Weiss, Brandon; Carlson, Eve B; Bryant, Richard A

    2014-01-01

    There has been debate regarding whether Complex Posttraumatic Stress Disorder (Complex PTSD) is distinct from Borderline Personality Disorder (BPD) when the latter is comorbid with PTSD. To determine whether the patterns of symptoms endorsed by women seeking treatment for childhood abuse form classes that are consistent with diagnostic criteria for PTSD, Complex PTSD, and BPD. A latent class analysis (LCA) was conducted on an archival dataset of 280 women with histories of childhood abuse assessed for enrollment in a clinical trial for PTSD. THE LCA REVEALED FOUR DISTINCT CLASSES OF INDIVIDUALS: a Low Symptom class characterized by low endorsements on all symptoms; a PTSD class characterized by elevated symptoms of PTSD but low endorsement of symptoms that define the Complex PTSD and BPD diagnoses; a Complex PTSD class characterized by elevated symptoms of PTSD and self-organization symptoms that defined the Complex PTSD diagnosis but low on the symptoms of BPD; and a BPD class characterized by symptoms of BPD. Four BPD symptoms were found to greatly increase the odds of being in the BPD compared to the Complex PTSD class: frantic efforts to avoid abandonment, unstable sense of self, unstable and intense interpersonal relationships, and impulsiveness. Findings supported the construct validity of Complex PTSD as distinguishable from BPD. Key symptoms that distinguished between the disorders were identified, which may aid in differential diagnosis and treatment planning.

  14. Whole genome analysis of a Vietnamese trio

    Indian Academy of Sciences (India)

    We here present the first whole genome analysis of an anonymous Kinh Vietnamese (KHV) trio whose genomes were deeply sequenced to 30-fold average ... Wellcome Trust Center for Human Genetics, Oxford University, Oxford, UK; High Performance Computing Center, Hanoi University of Science and Technology, ...

  15. Genomic Analysis of Attenuation in Pandemic Vibrio parahaemolyticus

    Science.gov (United States)

    Pinnell, L. J.; Tallman, J. J., III; Turner, J.

    2016-02-01

    A critical problem in the prevention and treatment of infectious disease is the ability to differentiate virulent from avirulent bacterial strains. The distinction is commonly based on the presence or absence of specific virulence-associated genes. Alternately, serotypic or phylogenetic typing can accurately differentiate virulent from avirulent strains. When these approaches fail, more discriminatory analysis is needed. Pandemic Vibiro parahaemolyticus, distinguishable by genotyping (thermostable direct hemolysin or tdh), serotyping (O3:K6) and multilocus sequence typing (ST3), is regarded as a highly virulent clonal complex. We have previously shown, through population genetics and cytotoxicity testing, that some pandemic strains isolated from environmental sources are avirulent. To investigate the basis for attenuation, we sequenced the draft genomes of 10 pandemic V. parahaemolyticus isolates originating from environmental (N = 7) and clinical sources (N = 3). Genomic comparison of these 10 draft genomes, and the pandemic type strain (RIMD2210633), revealed a large core genome (5,158,719 bp) and a much smaller accessory genome (141,403 bp). The accessory genome was largely comprised of hypothetical proteins; however, several genes encoded phage-related proteins. Phylogenetic analysis, based on 2,902 single nucleotide polymorphisms in the core genome, did not reveal a discernable pattern. Current efforts are focused on the identification of insertions, deletions and point mutations that may alter protein expression or protein function. Preliminary results show that attenuated strains lack the virulence-associated vacB gene (VP1890). This gene encodes a 741 amino acid exoribonuclease homologous to exoribonucleases known to modulate virulence in Salmonella enterica and Helicobacter pylori. The correlation between attenuation and the absence of this gene, suggests that VP1890 plays an important role in human pathogenesis.

  16. Genome sequence and analysis of Lactobacillus helveticus

    Directory of Open Access Journals (Sweden)

    Paola eCremonesi

    2013-01-01

    Full Text Available The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of L. helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract.As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.

  17. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg.

    Directory of Open Access Journals (Sweden)

    Valentine Usongo

    Full Text Available Salmonella enterica serovar Heidelberg (S. Heidelberg is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

  18. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg.

    Science.gov (United States)

    Usongo, Valentine; Berry, Chrystal; Yousfi, Khadidja; Doualla-Bell, Florence; Labbé, Genevieve; Johnson, Roger; Fournier, Eric; Nadon, Celine; Goodridge, Lawrence; Bekal, Sadjia

    2018-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

  19. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Directory of Open Access Journals (Sweden)

    Feltus Frank A

    2011-07-01

    Full Text Available Abstract Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18 to duodecaploid (12X = 108. Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective. Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of

  20. Efficacy of forensic statement analysis in distinguishing truthful from deceptive eyewitness accounts of highly stressful events.

    Science.gov (United States)

    Morgan, Charles A; Colwell, Kevin; Hazlett, Gary A

    2011-09-01

    Laboratory-based detecting deception research suggests that truthful statements differ from those of deceptive statements. This nonlaboratory study tested whether forensic statement analysis (FSA) methods would distinguish genuine from false eyewitness accounts about exposure to a highly stressful event. A total of 35 military participants were assigned to truthful or deceptive eyewitness conditions. Genuine eyewitness reported truthfully about exposure to interrogation stress. Deceptive eyewitnesses studied transcripts of genuine eyewitnesses for 24 h and falsely claimed they had been interrogated. Cognitive Interviews were recorded, transcribed, and assessed by FSA raters blind to the status of participants. Genuine accounts contained more unique words, external and contextual referents, and a greater total word count than did deceptive statements. The type-token ratio was lower in genuine statements. The classification accuracy using FSA techniques was 82%. FSA methods may be effective in real-world circumstances and have relevance to professionals in law enforcement, security, and criminal justice. © 2011 American Academy of Forensic Sciences.

  1. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  2. Comparative Genome Analysis of Enterobacter cloacae

    Science.gov (United States)

    Liu, Wing-Yee; Wong, Chi-Fat; Chung, Karl Ming-Kar; Jiang, Jing-Wei; Leung, Frederick Chi-Ching

    2013-01-01

    The Enterobacter cloacae species includes an extremely diverse group of bacteria that are associated with plants, soil and humans. Publication of the complete genome sequence of the plant growth-promoting endophytic E. cloacae subsp. cloacae ENHKU01 provided an opportunity to perform the first comparative genome analysis between strains of this dynamic species. Examination of the pan-genome of E. cloacae showed that the conserved core genome retains the general physiological and survival genes of the species, while genomic factors in plasmids and variable regions determine the virulence of the human pathogenic E. cloacae strain; additionally, the diversity of fimbriae contributes to variation in colonization and host determination of different E. cloacae strains. Comparative genome analysis further illustrated that E. cloacae strains possess multiple mechanisms for antagonistic action against other microorganisms, which involve the production of siderophores and various antimicrobial compounds, such as bacteriocins, chitinases and antibiotic resistance proteins. The presence of Type VI secretion systems is expected to provide further fitness advantages for E. cloacae in microbial competition, thus allowing it to survive in different environments. Competition assays were performed to support our observations in genomic analysis, where E. cloacae subsp. cloacae ENHKU01 demonstrated antagonistic activities against a wide range of plant pathogenic fungal and bacterial species. PMID:24069314

  3. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei, despite clonal reproduction of hybrids.

    Directory of Open Access Journals (Sweden)

    Lukas Choleva

    Full Text Available Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  4. Proposed criterion for distinguishing ABO mosaics from ABO chimeras using flow cytometric analysis.

    Science.gov (United States)

    Oda, Akira; Matsuyama, Nobuki; Hirashima, Mizuko; Ishii, Hiroyuki; Kimura, Keiko; Matsukura, Harumichi; Hirayama, Fumiya; Kawa, Keisei; Fukumori, Yasuo

    2015-01-01

    Differentiation of ABO mosaics from chimeras is performed using flow cytometry (FCM) analysis. Although mosaics and chimeras have been distinguished by presence or absence of clear resolution using FCM analysis, the lack of quantitative metrics and definitive criteria for this differentiation has made some cases difficult to differentiate. In this study, therefore, we attempted to establish a definitive and quantitative criterion for this differentiation. When FCM histogram gates for group "A" or "B" antigen-negative and -positive red blood cells (RBCs) were set such that group O RBCs were classified as 99 percent negative and group A or B RBCs as 99 percent positive, the percentages of RBCs in the middle region of six chimeras and 23 mosaics (12 A mosaics and 11 B mosaics) were 0.1-0.6 percent and 7.0-19.0 percent, respectively. This results suggested that ABO mosaics and chimeras can be unambiguously differentiated when the cutoff point of the intermediate region is set to 1 percent.

  5. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug

  6. Exploratory analysis of chromatographic fingerprints to distinguish rhizoma Chuanxiong and rhizoma Ligustici.

    Science.gov (United States)

    Alaerts, G; Merino-Arévalo, M; Dumarey, M; Dejaegher, B; Noppe, N; Matthijs, N; Smeyers-Verbeke, J; Vander Heyden, Y

    2010-12-03

    Identification and quality control of products of natural origin, used for preventive and therapeutical goals, is required by regulating authorities, as the World Health Organization. This study focuses on the identification and distinction of the rhizomes from two Chinese herbs, rhizoma Chuanxiong (from Ligusticum chuanxiong Hort.) and rhizoma Ligustici (from Ligusticum jeholense Nakai et Kitag), by chromatographic fingerprints. A second goal is using the fingerprints to assay ferulic acid, as its concentration provides an additional differentiation feature. Several extraction methods were tested, to obtain the highest number of peaks in the fingerprints. The best results were found using 76:19:5 (v/v/v) methanol/water/formic acid as solvent and extracting the pulverized material on a shaking bath for 15 min. Then fingerprint optimization was done. Most information about the herbs, i.e. the highest number of peaks, was observed on a Hypersil ODS column (250 mm × 4.6 mm ID, 5 μm), 1.0% acetic acid in the mobile phase and employing within 50 min linear gradient elution from 5:95 (v/v) to 95:5 (v/v) acetonitrile/water. The final fingerprints were able to distinguish rhizoma Chuanxiong and Ligustici, based on correlation coefficients combined with exploratory data analysis. The distinction was visualized using Principal Component Analysis, Projection Pursuit and Hierarchical Clustering Analysis techniques. Quantification of ferulic acid was possible in the fingerprints of both rhizomes. The time-different intermediate precisions of the fingerprints and of the ferulic acid quantification were shown to be acceptable. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  8. Comparative Genome Analysis in the Integrated Microbial Genomes(IMG) System

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos C.; Markowitz, Victor M.

    2006-03-01

    Comparative genome analysis is critical for the effectiveexploration of a rapidly growing number of complete and draft sequencesfor microbial genomes. The Integrated Microbial Genomes (IMG) system(img.jgi.doe.gov) has been developed as a community resource thatprovides support for comparative analysis of microbial genomes in anintegrated context. IMG allows users to navigate the multidimensionalmicrobial genome data space and focus their analysis on a subset ofgenes, genomes, and functions of interest. IMG provides graphicalviewers, summaries and occurrence profile tools for comparing genes,pathways and functions (terms) across specific genomes. Genes can befurther examined using gene neighborhoods and compared with sequencealignment tools.

  9. GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

    Science.gov (United States)

    Ai, Hannan; Ai, Yuncan; Meng, Fanmei

    2018-01-18

    Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.

  10. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies.

    Science.gov (United States)

    Yu, Kevin K; Cheung, Charlton; Chua, Siew E; McAlonan, Gráinne M

    2011-11-01

    The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay--essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus

  11. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  12. Applied bioinformatics: Genome annotation and transcriptome analysis

    DEFF Research Database (Denmark)

    Gupta, Vikas

    japonicus (Lotus), Vaccinium corymbosum (blueberry), Stegodyphus mimosarum (spider) and Trifolium occidentale (clover). From a bioinformatics data analysis perspective, my work can be divided into three parts; genome annotation, small RNA, and gene expression analysis. Lotus is a legume of significant...... biology and genetics studies. We present an improved Lotus genome assembly and annotation, a catalog of natural variation based on re-sequencing of 29 accessions, and describe the involvement of small RNAs in the plant-bacteria symbiosis. Blueberries contain anthocyanins, other pigments and various...... polyphenolic compounds, which have been linked to protection against diabetes, cardiovascular disease and age-related cognitive decline. We present the first genome- guided approach in blueberry to identify genes involved in the synthesis of health-protective compounds. Using RNA-Seq data from five stages...

  13. Distinguishing patterns in the dynamics of long-term medication use by Markov analysis: beyond persistence

    Directory of Open Access Journals (Sweden)

    Lammers Jan-Willem J

    2007-07-01

    Full Text Available Abstract Background In order to accurately distinguish gaps of varying length in drug treatment for chronic conditions from discontinuation without resuming therapy, short-term observation does not suffice. Thus, the use of inhalation corticosteroids (ICS in the long-term, during a ten-year period is investigated. To describe medication use as a continuum, taking into account the timeliness and consistency of refilling, a Markov model is proposed. Methods Patients, that filled at least one prescription in 1993, were selected from the PHARMO medical record linkage system (RLS containing >95% prescription dispensings per patient originating from community pharmacy records of 6 medium-sized cities in the Netherlands. The probabilities of continuous use, the refilling of at least one ICS prescription in each year of follow-up, and medication free periods were assessed by Markov analysis. Stratified analysis according to new use was performed. Results The transition probabilities of the refilling of at least one ICS prescription in the subsequent year of follow-up, were assessed for each year of follow-up and for the total study period. The change of transition probabilities in time was evaluated, e.g. the probability of continuing ICS use of starters in the first two years (51% of follow-up increased to more than 70% in the following years. The probabilities of different patterns of medication use were assessed: continuous use (7.7%, cumulative medication gaps (1–8 years 69.1% and discontinuing (23.2% during ten-year follow-up for new users. New users had lower probability of continuous use (7.7% and more variability in ICS refill patterns than previous users (56%. Conclusion In addition to well-established methods in epidemiology to ascertain compliance and persistence, a Markov model could be useful to further specify the variety of possible patterns of medication use within the continuum of adherence. This Markov model describes variation in

  14. AGAPE (Automated Genome Analysis PipelinE for pan-genome analysis of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giltae Song

    Full Text Available The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.

  15. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  16. GABA/Glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability.

    Science.gov (United States)

    Bonnet-Brilhault, F; Alirol, S; Blanc, R; Bazaud, S; Marouillat, S; Thépault, R-A; Andres, C R; Lemonnier, É; Barthélémy, C; Raynaud, M; Toutain, A; Gomot, M; Laumonnier, F

    2016-03-01

    Phenotypic and genetic heterogeneity is predominant in autism spectrum disorders (ASD), for which the molecular and pathophysiological bases are still unclear. Significant comorbidity and genetic overlap between ASD and other neurodevelopmental disorders are also well established. However, little is understood regarding the frequent observation of a wide phenotypic spectrum associated with deleterious mutations affecting a single gene even within multiplex families. We performed a clinical, neurophysiological (in vivo electroencephalography-auditory-evoked related potentials) and genetic (whole-exome sequencing) follow-up analysis of two families with known deleterious NLGN4X gene mutations (either truncating or overexpressing) present in individuals with ASD and/or with intellectual disability (ID). Complete phenotypic evaluation of the pedigrees in the ASD individuals showed common specific autistic behavioural features and neurophysiological patterns (abnormal MisMatch Negativity in response to auditory change) that were absent in healthy parents as well as in family members with isolated ID. Whole-exome sequencing in ASD patients from each family identified a second rare inherited genetic variant, affecting either the GLRB or the ANK3 genes encoding NLGN4X interacting proteins expressed in inhibitory or in excitatory synapses, respectively. The GRLB and ANK3 mutations were absent in relatives with ID as well as in control databases. In summary, our findings provide evidence of a double-hit genetic model focused on excitatory/inhibitory synapses in ASD, that is not found in isolated ID, associated with an atypical in vivo neurophysiological pattern linked to predictive coding.

  17. Thermus thermophilus genome analysis: benefits and implications

    Directory of Open Access Journals (Sweden)

    Lioliou Efthimia E

    2004-05-01

    Full Text Available Abstract The genome sequence analysis of Thermus thermophilus HB27, a microorganism with high biotechnological potential, has recently been published. In that report, the chromosomal and the megaplasmid sequence were compared to those of other organisms and discussed on the basis of their physiological and metabolic features. Out of the 2,218 putative genes identified through the large genome sequencing project, a significant number has potential interest for biotechnology. The present communication will discuss the accumulating information on molecules participating in fundamental biological processes or having potential biotechnological importance.

  18. Comparative genome analysis of Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  19. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  20. Comparative Genome Analysis of Fusobacterium nucleatum.

    Science.gov (United States)

    Ang, Mia Yang; Dutta, Avirup; Wee, Wei Yee; Dymock, David; Paterson, Ian C; Choo, Siew Woh

    2016-10-05

    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Applied bioinformatics: Genome annotation and transcriptome analysis

    DEFF Research Database (Denmark)

    Gupta, Vikas

    and dhurrin, which have not previously been characterized in blueberries. There are more than 44,500 spider species with distinct habitats and unique characteristics. Spiders are masters of producing silk webs to catch prey and using venom to neutralize. The exploration of the genetics behind these properties...... japonicus (Lotus), Vaccinium corymbosum (blueberry), Stegodyphus mimosarum (spider) and Trifolium occidentale (clover). From a bioinformatics data analysis perspective, my work can be divided into three parts; genome annotation, small RNA, and gene expression analysis. Lotus is a legume of significant...... has just started. We have assembled and annotated the first two spider genomes to facilitate our understanding of spiders at the molecular level. The need for analyzing the large and increasing amount of sequencing data has increased the demand for efficient, user friendly, and broadly applicable...

  2. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  3. Whole genome analysis of a Vietnamese trio

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... 2008), Korean genome (Ahn et al. 2009), Japanese genome. (Fujimoto et al. 2010), Pakistani genome (Azim et al. 2013),. Turkish genome (Dogan et al. 2014) and Russian genome. (Skryabin et al. 2009). Being the 14th largest country by population in the world,. Vietnam has about 90 million people of 54 ...

  4. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  5. Can Big Five Facets Distinguish between Hedonic and Eudaimonic Well-Being? A Dominance Analysis.

    Science.gov (United States)

    Marrero, Rosario J; Rey, Mar; Hernández-Cabrera, Juan Andrés

    2016-11-22

    In this study, the aim was to analyze the relative importance of Five-Factor Model (FFM) personality facets for eudaimonic or psychological well-being (PWB) and hedonic or subjective well-being (SWB) through dominance analyses. The participants were 1,403 adult residents of Spain (mean age 37.2 years, SD = 13.9). As expected, facets captured a substantial proportion of the variance in PWB and SWB, with PWB being better predicted than SWB (explaining around 36-55% of the variance of PWB vs. 25% of the variance of SWB). Some facets were common to both types of well-being such as depression (explaining between 5-33% of the variance), vulnerability (explaining between 4-21% of the variance), positive emotions (explaining between 2-9% of the variance) and achievement striving (explaining between 2-10% of the variance), whereas others made a unique contribution according to type of well-being. Certain facets had a greater relative importance for women's well-being -e.g., positive emotions explained 9% of the variance of self-acceptance for women vs. 3% for men- and others for men's well-being -e.g., achievement striving explained 9% of the variance of personal growth for men vs. 2% for women-. The present results contribute to the literature by identifying which Big Five facets showed greater relative importance in explaining and distinguishing between PWB and SWB for women and men.

  6. Whole genome analysis of a Vietnamese trio

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... The Ti/Tv ratios are 2.063, 2.064 and 2.063 in the child, father and mother genomes, respectively. The number of detected SNPs in each genome is comparable to those re- ported in other individual genome-wide studies such as. 3,132,608 SNPs in the first Japanese individual genome. (Fujimoto et al.

  7. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  8. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... of Tetraodon nigroviridis facilitated a genome wide analysis of the NRs in fish genome. Seventy one NRs were found in Tetraodon and were compared with mammalian and fish NR family members. In general, there is a higher representation of NRs in fish genomes compared to mammalian ones.

  9. Initial sequencing and comparative analysis of the mouse genome.

    Science.gov (United States)

    Waterston, Robert H; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R; Brown, Daniel G; Brown, Stephen D; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T; Church, Deanna M; Clamp, Michele; Clee, Christopher; Collins, Francis S; Cook, Lisa L; Copley, Richard R; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D; Deri, Justin; Dermitzakis, Emmanouil T; Dewey, Colin; Dickens, Nicholas J; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M; Eddy, Sean R; Elnitski, Laura; Emes, Richard D; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A; Flicek, Paul; Foley, Karen; Frankel, Wayne N; Fulton, Lucinda A; Fulton, Robert S; Furey, Terrence S; Gage, Diane; Gibbs, Richard A; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A; Green, Eric D; Gregory, Simon; Guigó, Roderic; Guyer, Mark; Hardison, Ross C; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B; Johnson, L Steven; Jones, Matthew; Jones, Thomas A; Joy, Ann; Kamal, Michael; Karlsson, Elinor K; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W James; Kirby, Andrew; Kolbe, Diana L; Korf, Ian; Kucherlapati, Raju S; Kulbokas, Edward J; Kulp, David; Landers, Tom; Leger, J P; Leonard, Steven; Letunic, Ivica; Levine, Rosie; Li, Jia; Li, Ming; Lloyd, Christine; Lucas, Susan; Ma, Bin; Maglott, Donna R; Mardis, Elaine R; Matthews, Lucy; Mauceli, Evan; Mayer, John H; McCarthy, Megan; McCombie, W Richard; McLaren, Stuart; McLay, Kirsten; McPherson, John D; Meldrim, Jim; Meredith, Beverley; Mesirov, Jill P; Miller, Webb; Miner, Tracie L; Mongin, Emmanuel; Montgomery, Kate T; Morgan, Michael; Mott, Richard; Mullikin, James C; Muzny, Donna M; Nash, William E; Nelson, Joanne O; Nhan, Michael N; Nicol, Robert; Ning, Zemin; Nusbaum, Chad; O'Connor, Michael J; Okazaki, Yasushi; Oliver, Karen; Overton-Larty, Emma; Pachter, Lior; Parra, Genís; Pepin, Kymberlie H; Peterson, Jane; Pevzner, Pavel; Plumb, Robert; Pohl, Craig S; Poliakov, Alex; Ponce, Tracy C; Ponting, Chris P; Potter, Simon; Quail, Michael; Reymond, Alexandre; Roe, Bruce A; Roskin, Krishna M; Rubin, Edward M; Rust, Alistair G; Santos, Ralph; Sapojnikov, Victor; Schultz, Brian; Schultz, Jörg; Schwartz, Matthias S; Schwartz, Scott; Scott, Carol; Seaman, Steven; Searle, Steve; Sharpe, Ted; Sheridan, Andrew; Shownkeen, Ratna; Sims, Sarah; Singer, Jonathan B; Slater, Guy; Smit, Arian; Smith, Douglas R; Spencer, Brian; Stabenau, Arne; Stange-Thomann, Nicole; Sugnet, Charles; Suyama, Mikita; Tesler, Glenn; Thompson, Johanna; Torrents, David; Trevaskis, Evanne; Tromp, John; Ucla, Catherine; Ureta-Vidal, Abel; Vinson, Jade P; Von Niederhausern, Andrew C; Wade, Claire M; Wall, Melanie; Weber, Ryan J; Weiss, Robert B; Wendl, Michael C; West, Anthony P; Wetterstrand, Kris; Wheeler, Raymond; Whelan, Simon; Wierzbowski, Jamey; Willey, David; Williams, Sophie; Wilson, Richard K; Winter, Eitan; Worley, Kim C; Wyman, Dudley; Yang, Shan; Yang, Shiaw-Pyng; Zdobnov, Evgeny M; Zody, Michael C; Lander, Eric S

    2002-12-05

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  10. Automated genome sequence analysis and annotation.

    Science.gov (United States)

    Andrade, M A; Brown, N P; Leroy, C; Hoersch, S; de Daruvar, A; Reich, C; Franchini, A; Tamames, J; Valencia, A; Ouzounis, C; Sander, C

    1999-05-01

    Large-scale genome projects generate a rapidly increasing number of sequences, most of them biochemically uncharacterized. Research in bioinformatics contributes to the development of methods for the computational characterization of these sequences. However, the installation and application of these methods require experience and are time consuming. We present here an automatic system for preliminary functional annotation of protein sequences that has been applied to the analysis of sets of sequences from complete genomes, both to refine overall performance and to make new discoveries comparable to those made by human experts. The GeneQuiz system includes a Web-based browser that allows examination of the evidence leading to an automatic annotation and offers additional information, views of the results, and links to biological databases that complement the automatic analysis. System structure and operating principles concerning the use of multiple sequence databases, underlying sequence analysis tools, lexical analyses of database annotations and decision criteria for functional assignments are detailed. The system makes automatic quality assessments of results based on prior experience with the underlying sequence analysis tools; overall error rates in functional assignment are estimated at 2.5-5% for cases annotated with highest reliability ('clear' cases). Sources of over-interpretation of results are discussed with proposals for improvement. A conservative definition for reporting 'new findings' that takes account of database maturity is presented along with examples of possible kinds of discoveries (new function, family and superfamily) made by the system. System performance in relation to sequence database coverage, database dynamics and database search methods is analysed, demonstrating the inherent advantages of an integrated automatic approach using multiple databases and search methods applied in an objective and repeatable manner. The GeneQuiz system

  11. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  12. Lipidomic analysis can distinguish between two morphologically similar strains of Nannochloropsis oceanica.

    Science.gov (United States)

    Li, Shuang; Xu, Jilin; Jiang, Ying; Zhou, Chengxu; Yu, Xuejun; Zhong, Yingying; Chen, Juanjuan; Yan, Xiaojun

    2015-04-01

    The two morphologically similar microalgae NMBluh014 and NMBluh-X belong to two different strains of Nannochloropsis oceanica. They possess obviously different feeding effects on bivalves, but are indistinguishable by 18S rRNA and morphological features. In this work, lipidomic analysis followed by principal component analysis and orthogonal projections to latent structures discriminant analysis provided a clear distinction between these strains. Metabolites that definitively contribute to the classification were selected as potential biomarkers. The most important difference in polar lipids were sulfoquinovosyldiacylglycerol (containing 18:1/16:0 and 18:3/16:0) and monogalactosyldiacylglycerol (containing 18:3/16:3 and 20:5/14:0), which were detected only in NMBluh-X. Additionally, an exhaustive qualitative and quantitative profiling of the neutral lipid triacylglycerol (TAG) in the two strains was carried out. The predominant species of TAG containing 16:1/16:1/16:1 acyl groups was detected only in NMBluh-X with a content of ~93.67 ± 11.85 nmol · mg(-1) dry algae at the onset of stationary phase. Meanwhile, TAG containing 16:0/16:0/16:0 was the main TAG in NMBluh014 with a content of 40.25 ± 3.92 nmol · mg(-1) . These results provided the most straightforward evidence for differentiating the two species. The metabolomic profiling indicated that NMBluh-X underwent significant chemical and physiological changes during the growth process, whereas NMBluh014 did not show such noticeable time-dependent metabolite change. This study is the first using Ultra Performance Liquid Chromatography coupled with Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS) for lipidomic profiling with multivariate statistical analysis to explore lipidomic differences of plesiomorphous microalgae. Our results demonstrate that lipidomic profiling is a valid chemotaxonomic tool in the study of microalgal systematics. © 2015 Phycological Society of America.

  13. Time-series analysis of climatologic measurements: a method to distinguish future climatic changes

    International Nuclear Information System (INIS)

    Duband, D.

    1992-01-01

    Time-series analysis of climatic parameters as air temperature, rivers flow rate, lakes or seas level is an indispensable basis to detect a possible significant climatic change. These observations, when they are carefully analyzed and criticized, constitute the necessary reference for testing and validation numerical climatic models which try to simulate the physical and dynamical process of the ocean-atmosphere couple, taking continents into account. 32 refs., 13 figs

  14. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants.

    Science.gov (United States)

    Ayliffe, M A; Scott, N S; Timmis, J N

    1998-06-01

    A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.

  15. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  16. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies...... of the BAC clone derived genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. A revised assembly (Sscrofa10......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  17. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  18. Millstone: software for multiplex microbial genome analysis and engineering.

    Science.gov (United States)

    Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  19. Sexual Motivations and Ideals Distinguish Sexual Identities within the Self-Concept: A Multidimensional Scaling Analysis

    Directory of Open Access Journals (Sweden)

    Celeste Sangiorgio

    2014-04-01

    Full Text Available Many studies explore when and how young people make sexual choices but few empirical investigations link their sexual motivations with their inner conceptions about their sexual identities. We used multidimensional scaling (MDS analysis to connect young adult participants’ (N = 128 self-descriptions of twelve identities to their sexual motivations and ideals. Identities clustered along two semantically distinct dimensions: Dimension 1 was anchored by family identities on one side and non-family identities on the other; Dimension 2 was anchored on one side by friend/romantic relationships and achievement-based social identities on the other. Those who cited intimacy (e.g., sex as an expression of love and enhancement (e.g., gratification; to feel good sexual motivations were more likely to describe their sexual identities and gender identities as distinct from other identities, especially for women. Idealizing physically passionate relationships was positively linked to a higher distinction between sexual and non-sexual identities, and between gender and personal identities and family identities. The mental structuring of identities may inform sexual relationship motives, ideals, and expectations.

  20. The Methanosarcina barkeri genome: comparative analysis withMethanosarcina acetivorans and Methanosarcina mazei reveals extensiverearrangement within methanosarcinal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Dennis L.; Anderson, Iain; Brettin, Thomas S.; Bruce,David C.; Gilna, Paul; Han, Cliff S.; Lapidus, Alla; Metcalf, William W.; Saunders, Elizabeth; Tapia, Roxanne; Sowers, Kevin R.

    2006-05-19

    We report here a comparative analysis of the genome sequence of Methanosarcina barkeri with those of Methanosarcina acetivorans and Methanosarcina mazei. All three genomes share a conserved double origin of replication and many gene clusters. M. barkeri is distinguished by having an organization that is well conserved with respect to the other Methanosarcinae in the region proximal to the origin of replication with interspecies gene similarities as high as 95%. However it is disordered and marked by increased transposase frequency and decreased gene synteny and gene density in the proximal semi-genome. Of the 3680 open reading frames in M. barkeri, 678 had paralogs with better than 80% similarity to both M. acetivorans and M. mazei while 128 nonhypothetical orfs were unique (non-paralogous) amongst these species including a complete formate dehydrogenase operon, two genes required for N-acetylmuramic acid synthesis, a 14 gene gas vesicle cluster and a bacterial P450-specific ferredoxin reductase cluster not previously observed or characterized in this genus. A cryptic 36 kbp plasmid sequence was detected in M. barkeri that contains an orc1 gene flanked by a presumptive origin of replication consisting of 38 tandem repeats of a 143 nt motif. Three-way comparison of these genomes reveals differing mechanisms for the accrual of changes. Elongation of the large M. acetivorans is the result of multiple gene-scale insertions and duplications uniformly distributed in that genome, while M. barkeri is characterized by localized inversions associated with the loss of gene content. In contrast, the relatively short M. mazei most closely approximates the ancestral organizational state.

  1. Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes

    OpenAIRE

    Salmans, Michael Lee; Chaw, Shu-Miaw; Lin, Ching-Ping; Shih, Arthur Chun-Chieh; Wu, Yu-Wei; Mulligan, R. Michael

    2010-01-01

    Sequence analysis of organelle genomes and comprehensive analysis of C-to-U editing sites from flowering and non-flowering plants have provided extensive sequence information from diverse taxa. This study includes the first comprehensive analysis of RNA editing sites from a gymnosperm mitochondrial genome, and utilizes informatics analyses to determine conserved features in the RNA sequence context around editing sites. We have identified 565 editing sites in 21 full-length and 4 partial cDNA...

  2. Barcode server: a visualization-based genome analysis system.

    Directory of Open Access Journals (Sweden)

    Fenglou Mao

    Full Text Available We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a identification of horizontally transferred genes, (b identification of genomic islands with special properties and (c binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a calculation of the k-mer based barcode image for a provided DNA sequence; (b detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c clustering of provided DNA sequences into groups having similar barcodes; and (d homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode.

  3. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  4. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  5. Pathway and network analysis of cancer genomes

    DEFF Research Database (Denmark)

    Creixell, Pau; Reimand, Jueri; Haider, Syed

    2015-01-01

    Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been ...

  6. Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation.

    Science.gov (United States)

    Yoshida, Masa-aki; Ishikura, Yukiko; Moritaki, Takeya; Shoguchi, Eiichi; Shimizu, Kentaro K; Sese, Jun; Ogura, Atsushi

    2011-09-01

    Comparative genome structure analysis allows us to identify novel genes, repetitive sequences and gene duplications. To explore lineage-specific genomic changes of the molluscs that is good model for development of nervous system in invertebrate, we conducted comparative genome structure analyses of three molluscs, pygmy squid, nautilus and scallops using partial genome shotgun sequencing. Most effective elements on the genome structural changes are repetitive elements (REs) causing expansion of genome size and whole genome duplication producing large amount of novel functional genes. Therefore, we investigated variation and proportion of REs and whole genome duplication. We, first, identified variations of REs in the three molluscan genomes by homology-based and de novo RE detection. Proportion of REs were 9.2%, 4.0%, and 3.8% in the pygmy squid, nautilus and scallop, respectively. We, then, estimated genome size of the species as 2.1, 4.2 and 1.8 Gb, respectively, with 2× coverage frequency and DNA sequencing theory. We also performed a gene duplication assay based on coding genes, and found that large-scale duplication events occurred after divergence from the limpet Lottia, an out-group of the three molluscan species. Comparison of all the results suggested that RE expansion did not relate to the increase in genome size of nautilus. Despite close relationships to nautilus, the squid has the largest portion of REs and smaller genome size than nautilus. We also identified lineage-specific RE and gene-family expansions, possibly relate to acquisition of the most complicated eye and brain systems in the three species. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

    Science.gov (United States)

    Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N

    2016-02-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.

  8. Web-based visual analysis for high-throughput genomics.

    Science.gov (United States)

    Goecks, Jeremy; Eberhard, Carl; Too, Tomithy; Nekrutenko, Anton; Taylor, James

    2013-06-13

    Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high

  9. Bioinformatic analysis of whole genome sequencing data

    OpenAIRE

    Maqbool, Khurram

    2014-01-01

    Evolution has shaped the life forms for billion of years. Domestication is an accelerated process that can be used as a model for evolutionary changes. The aim of this thesis project has been to carry out extensive bioinformatic analyses of whole genome sequencing data to reveal SNPs, InDels and selective sweeps in the chicken, pig and dog genome. Pig genome sequencing revealed loci under selection for elongation of back and increased number of vertebrae, associated with the NR6A1, PLAG1,...

  10. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Directory of Open Access Journals (Sweden)

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  11. Creation and genomic analysis of irradiation hybrids in Populus

    Science.gov (United States)

    Matthew S. Zinkgraf; K. Haiby; M.C. Lieberman; L. Comai; I.M. Henry; Andrew Groover

    2016-01-01

    Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in...

  12. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  13. Comparative genomic in situ hybridization analysis on the ...

    African Journals Online (AJOL)

    AJL

    2012-04-10

    Apr 10, 2012 ... Comparative genomic in situ hybridization analysis on the chromosomes of five grass species with rice genomic DNA probe. Chao-Wen She1,2*, Yun-Chun Song3 and Xiang-Hui Jiang1, 2. 1Department of Life Sciences, Huaihua University, No.612 Yingfeng East Road Huaihua 418008, Hunan, China.

  14. Analysis of intra-genomic GC content homogeneity within prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J; Snipen, L; Hardy, S.P.

    2010-01-01

    both aerobic and facultative microbes. Although an association has previously been found between mean genomic GC content and oxygen requirement, our analysis suggests that no such association exits when phylogenetic bias is accounted for. A significant association between GCVAR and mean GC content......Bacterial genomes possess varying GC content (total guanines (Gs) and cytosines (Cs) per total of the four bases within the genome) but within a given genome, GC content can vary locally along the chromosome, with some regions significantly more or less GC rich than on average. We have examined how...... the GC content varies within microbial genomes to assess whether this property can be associated with certain biological functions related to the organism's environment and phylogeny. We utilize a new quantity GCVAR, the intra-genomic GC content variability with respect to the average GC content...

  15. Comparative Genomic Analysis Identifies a Campylobacter Clade Deficient in Selenium Metabolism.

    Science.gov (United States)

    Miller, William G; Yee, Emma; Lopes, Bruno S; Chapman, Mary H; Huynh, Steven; Bono, James L; Parker, Craig T; Strachan, Norval J C; Forbes, Ken J

    2017-07-01

    The nonthermotolerant Campylobacter species C. fetus, C. hyointestinalis, C. iguaniorum, and C. lanienae form a distinct phylogenetic cluster within the genus. These species are primarily isolated from foraging (swine) or grazing (e.g., cattle, sheep) animals and cause sporadic and infrequent human illness. Previous typing studies identified three putative novel C. lanienae-related taxa, based on either MLST or atpA sequence data. To further characterize these putative novel taxa and the C. fetus group as a whole, 76 genomes were sequenced, either to completion or to draft level. These genomes represent 26 C. lanienae strains and 50 strains of the three novel taxa. C. fetus, C. hyointestinalis and C. iguaniorum genomes were previously sequenced to completion; therefore, a comparative genomic analysis across the entire C. fetus group was conducted (including average nucleotide identity analysis) that supports the initial identification of these three novel Campylobacter species. Furthermore, C. lanienae and the three putative novel species form a discrete clade within the C. fetus group, which we have termed the C. lanienae clade. This clade is distinguished from other members of the C. fetus group by a reduced genome size and distinct CRISPR/Cas systems. Moreover, there are two signature characteristics of the C. lanienae clade. C. lanienae clade genomes carry four to ten unlinked and similar, but nonidentical, flagellin genes. Additionally, all 76 C. lanienae clade genomes sequenced demonstrate a complete absence of genes related to selenium metabolism, including genes encoding the selenocysteine insertion machinery, selenoproteins, and the selenocysteinyl tRNA. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  16. A genome-wide analysis of FRT-like sequences in the human genome.

    Science.gov (United States)

    Shultz, Jeffry L; Voziyanova, Eugenia; Konieczka, Jay H; Voziyanov, Yuri

    2011-03-23

    Efficient and precise genome manipulations can be achieved by the Flp/FRT system of site-specific DNA recombination. Applications of this system are limited, however, to cases when target sites for Flp recombinase, FRT sites, are pre-introduced into a genome locale of interest. To expand use of the Flp/FRT system in genome engineering, variants of Flp recombinase can be evolved to recognize pre-existing genomic sequences that resemble FRT and thus can serve as recombination sites. To understand the distribution and sequence properties of genomic FRT-like sites, we performed a genome-wide analysis of FRT-like sites in the human genome using the experimentally-derived parameters. Out of 642,151 identified FRT-like sequences, 581,157 sequences were unique and 12,452 sequences had at least one exact duplicate. Duplicated FRT-like sequences are located mostly within LINE1, but also within LTRs of endogenous retroviruses, Alu repeats and other repetitive DNA sequences. The unique FRT-like sequences were classified based on the number of matches to FRT within the first four proximal bases pairs of the Flp binding elements of FRT and the nature of mismatched base pairs in the same region. The data obtained will be useful for the emerging field of genome engineering.

  17. A genome-wide analysis of FRT-like sequences in the human genome.

    Directory of Open Access Journals (Sweden)

    Jeffry L Shultz

    2011-03-01

    Full Text Available Efficient and precise genome manipulations can be achieved by the Flp/FRT system of site-specific DNA recombination. Applications of this system are limited, however, to cases when target sites for Flp recombinase, FRT sites, are pre-introduced into a genome locale of interest. To expand use of the Flp/FRT system in genome engineering, variants of Flp recombinase can be evolved to recognize pre-existing genomic sequences that resemble FRT and thus can serve as recombination sites. To understand the distribution and sequence properties of genomic FRT-like sites, we performed a genome-wide analysis of FRT-like sites in the human genome using the experimentally-derived parameters. Out of 642,151 identified FRT-like sequences, 581,157 sequences were unique and 12,452 sequences had at least one exact duplicate. Duplicated FRT-like sequences are located mostly within LINE1, but also within LTRs of endogenous retroviruses, Alu repeats and other repetitive DNA sequences. The unique FRT-like sequences were classified based on the number of matches to FRT within the first four proximal bases pairs of the Flp binding elements of FRT and the nature of mismatched base pairs in the same region. The data obtained will be useful for the emerging field of genome engineering.

  18. Comparison of advanced whole genome sequence-based methods to distinguish strains of Salmonella enterica serovar Heidelberg involved in foodborne outbreaks in Québec.

    Science.gov (United States)

    Vincent, Caroline; Usongo, Valentine; Berry, Chrystal; Tremblay, Denise M; Moineau, Sylvain; Yousfi, Khadidja; Doualla-Bell, Florence; Fournier, Eric; Nadon, Céline; Goodridge, Lawrence; Bekal, Sadjia

    2018-08-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. This serovar ranks second and third among serovars that cause human infections in Québec and Canada, respectively, and has been associated with severe infections. Traditional typing methods such as PFGE do not display adequate discrimination required to resolve outbreak investigations due to the low level of genetic diversity of isolates belonging to this serovar. This study evaluates the ability of four whole genome sequence (WGS)-based typing methods to differentiate among 145 S. Heidelberg strains involved in four distinct outbreak events and sporadic cases of salmonellosis that occurred in Québec between 2007 and 2016. Isolates from all outbreaks were indistinguishable by PFGE. The core genome single nucleotide variant (SNV), core genome multilocus sequence typing (MLST) and whole genome MLST approaches were highly discriminatory and separated outbreak strains into four distinct phylogenetic clusters that were concordant with the epidemiological data. The clustered regularly interspaced short palindromic repeats (CRISPR) typing method was less discriminatory. However, CRISPR typing may be used as a secondary method to differentiate isolates of S. Heidelberg that are genetically similar but epidemiologically unrelated to outbreak events. WGS-based typing methods provide a highly discriminatory alternative to PFGE for the laboratory investigation of foodborne outbreaks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abstract Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements

  20. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  1. Genome-wide analysis in endangered populations: a case study in Barbaresca sheep.

    Science.gov (United States)

    Mastrangelo, S; Portolano, B; Di Gerlando, R; Ciampolini, R; Tolone, M; Sardina, M T

    2017-07-01

    Analysis of genomic data is becoming increasingly common in the livestock industry and the findings have been an invaluable resource for effective management of breeding programs in small and endangered populations. In this paper, with the goal of highlighting the potential of genomic analysis for small and endangered populations, genome-wide levels of linkage disequilibrium, measured as the squared correlation coefficient of allele frequencies at a pair of loci, effective population size, runs of homozygosity (ROH) and genetic diversity parameters, were estimated in Barbaresca sheep using Illumina OvineSNP50K array data. Moreover, the breed's genetic structure and its relationship with other breeds were investigated. Levels of pairwise linkage disequilibrium decreased with increasing distance between single nucleotide polymorphisms. An average correlation coefficient base and indicated an endangered status for Barbaresca. Multidimensional scaling, model-based clustering, measurement of population differentiation, neighbor networks and haplotype sharing distinguished Barbaresca from other breeds, showed a low level of admixture with the other breeds considered in this study, and indicated clear genetic differences compared with other breeds. Attention should be given to the conservation of Barbaresca due to its critical conservation status. In this context, genomic information may have a crucial role in management of small and endangered populations.

  2. Data on genome analysis of Bacillus velezensis LS69.

    Science.gov (United States)

    Liu, Guoqiang; Kong, Yingying; Fan, Yajing; Geng, Ce; Peng, Donghai; Sun, Ming

    2017-08-01

    The data presented in this article are related to the published entitled "Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria" (Liu et al., 2017) [1]. Genome analysis revealed B. velezensis LS69 has a good potential for biocontrol and plant growth promotion. This article provides an extended analysis of the genetic islands, core genes and amylolysin loci of B. velezensis LS69.

  3. Data on genome analysis of Bacillus velezensis LS69

    OpenAIRE

    Liu, Guoqiang; Kong, Yingying; Fan, Yajing; Geng, Ce; Peng, Donghai; Sun, Ming

    2017-01-01

    The data presented in this article are related to the published entitled “Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria” (Liu et al., 2017) [1]. Genome analysis revealed B. velezensis LS69 has a good potential for biocontrol and plant growth promotion. This article provides an extended analysis of the genetic islands, core genes and amylolysin loci of B. velezensis LS69.

  4. Data on genome analysis of Bacillus velezensis LS69

    Directory of Open Access Journals (Sweden)

    Guoqiang Liu

    2017-08-01

    Full Text Available The data presented in this article are related to the published entitled “Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria” (Liu et al., 2017 [1]. Genome analysis revealed B. velezensis LS69 has a good potential for biocontrol and plant growth promotion. This article provides an extended analysis of the genetic islands, core genes and amylolysin loci of B. velezensis LS69.

  5. Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution.

    Science.gov (United States)

    Kernaleguen, Magali; Daviaud, Christian; Shen, Yimin; Bonnet, Eric; Renault, Victor; Deleuze, Jean-François; Mauger, Florence; Tost, Jörg

    2018-01-01

    The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and disease-associated investigations. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered as the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here we provide two detailed protocols based on commercial kits for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. If only DNA methylation is of interest, sequencing libraries can be constructed from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For samples with significant levels of hydroxymethylation such as stem cells or brain tissue, we describe the protocol of oxidative bisulfite sequencing (OxBs-seq), which in its current version uses a post-bisulfite adaptor tagging (PBAT) approach. Two methylomes need to be generated: a classic methylome following bisulfite conversion and analyzing both methylated and hydroxymethylated cytosines and a methylome analyzing only methylated cytosines, respectively. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocols have been successfully applied to different human samples and yield robust and reproducible results.

  6. Comparative genome analysis of trypanotolerance QTL

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... homologous genes within the human genome were then identified and aligned to the bovine radiation hybrid map in order to identify the mouse/bovine homologous regions. This revealed homology between murine and bovine QTL on Tir3 while the region on Tir2 is linked to innate immune response.

  7. Hyperstructures, genome analysis and I-cells

    DEFF Research Database (Denmark)

    Amar, P.; Ballet, P.; Barlovatz-Meimon, G.

    2002-01-01

    New concepts may prove necessary to profit from the avalanche of sequence data on the genome, transcriptome, proteome and interactome and to relate this information to cell physiology. Here, we focus on the concept of large activity-based structures, or hyperstructures, in which a variety of type...

  8. Comparative genome analysis of trypanotolerance QTL | Nganga ...

    African Journals Online (AJOL)

    Homologous sequences were used in the definition of synteny relationships and subsequent identification of the shared disease response genes. The homologous genes within the human genome were then identified and aligned to the bovine radiation hybrid map in order to identify the mouse/bovine homologous regions.

  9. Genetic analysis shows that morphology alone cannot distinguish asian carp eggs from those of other cyprinid species

    Science.gov (United States)

    Larson, James H.; McCalla, Sunnie; Chapman, Duane C.; Rees, Christopher B.; Knights, Brent C.; Vallazza, Jon; George, Amy E.; Richardson, William B.; Amberg, Jon

    2016-01-01

    Fish eggs and embryos (hereafter collectively referred to as “eggs”) were collected in the upper Mississippi River main stem (~300 km upstream of previously reported spawning by invasive Asian carp) during summer 2013. Based on previously published morphological characteristics, the eggs were identified as belonging to Asian carp. A subsample of the eggs was subsequently analyzed by using molecular methods to determine species identity. Genetic identification using the cytochrome-c oxidase 1 gene was attempted for a total of 41 eggs. Due to the preservation technique used (formalin) and the resulting DNA degradation, sequences were recovered from only 17 individual eggs. In all 17 cases, cyprinids other than Asian carp (usually Notropis sp.) were identified as the most likely species. In previously published reports, a key characteristic that distinguished Asian carp eggs from those of other cyprinids was size: Asian carp eggs exhibited diameters ranging from 4.0 to 6.0 mm and were thought to be much larger than the otherwise similar eggs of native species. Eggs from endemic cyprinids were believed to rarely reach 3.0 mm and had not been observed to exceed 3.3 mm. However, many of the eggs that were genetically identified as originating from native cyprinids were as large as 4.0 mm in diameter (at early developmental stages) and were therefore large enough to over- lap with the lower end of the size range observed for Asian carp eggs. Researchers studying the egg stages of Asian carp and other cyprinids should plan on preserving subsets of eggs for genetic analysis to confirm morphological identifications.

  10. Combined analysis of circulating epithelial cells and serum thyroglobulin for distinguishing disease status of the patients with papillary thyroid carcinoma.

    Science.gov (United States)

    Lin, Hung-Chih; Liou, Miaw-Jene; Hsu, Hsung-Ling; Hsieh, Jason Chia-Hsun; Chen, Yi-An; Tseng, Ching-Ping; Lin, Jen Der

    2016-03-29

    Papillary thyroid carcinoma (PTC) accounts for about 80% of the cases in thyroid cancer. Routine surveillance by serum thyroglobulin (Tg) and medical imaging is the current practice to monitor disease progression of the patients. Whether enumeration of circulating epithelial cells (CECs) helps to define disease status of PTC patients was investigated. CECs were enriched from the peripheral blood of the healthy control subjects (G1, n = 17) and the patients at disease-free status (G2, n = 26) or with distant metastasis (G3, n = 22). The number of CECs expressing epithelial cell adhesion molecule (EpCAM) or thyroid-stimulating hormone receptor (TSHR) was determined by immunofluorescence microscopy analyses. The medium number of EpCAM+-CECs was 6 (interquartile range 1-11), 12 (interquartile range 7-16) and 91 (interquartile range 31-206) cells/ml of blood for G1, G2 and G3, respectively. EpCAM+-CEC counts were significantly higher in G3 than in G1 (p interquartile range 3-13), 16 (interquartile range 10-24) and 100 (interquartile range 31-226) cells/ml of blood for G1, G2 and G3, respectively. The TSHR+-CEC counts also distinguished G3 from G1 (p < 0.05) and G2 (p < 0.05). With an appropriate cut off value of CEC count, the disease status for 97.9% (47/48) of the cases was clearly defined. Notably, the metastatic disease for all patients in G3 (22/22) was revealed by combined analysis of serum Tg and CEC. This study implicates that CEC testing can supplement the current standard methods for monitoring disease status of PTC.

  11. Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome

    Directory of Open Access Journals (Sweden)

    Childs Kevin L

    2010-11-01

    Full Text Available Abstract Background A goal of the Bovine Genome Database (BGD; http://BovineGenome.org has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. Results and Discussion BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. Conclusions We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence.

  12. Microarray comparative genomic hybridisation analysis incorporating genomic organisation, and application to enterobacterial plant pathogens.

    Directory of Open Access Journals (Sweden)

    Leighton Pritchard

    2009-08-01

    Full Text Available Microarray comparative genomic hybridisation (aCGH provides an estimate of the relative abundance of genomic DNA (gDNA taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain.We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043 and Dickeya dadantii 3937 (Dda3937; and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937.Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic 'accessory' genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation.

  13. Comparative analysis of the mitochondrial genomes in gastropods

    International Nuclear Information System (INIS)

    Arquez, Moises; Uribe, Juan Esteban; Castro, Lyda Raquel

    2012-01-01

    In this work we presented a comparative analysis of the mitochondrial genomes in gastropods. Nucleotide and amino acids composition was calculated and a comparative visual analysis of the start and termination codons was performed. The organization of the genome was compared calculating the number of intergenic sequences, the location of the genes and the number of reorganized genes (breakpoints) in comparison with the sequence that is presumed to be ancestral for the group. In order to calculate variations in the rates of molecular evolution within the group, the relative rate test was performed. In spite of the differences in the size of the genomes, the amino acids number is conserved. The nucleotide and amino acid composition is similar between Vetigastropoda, Ceanogastropoda and Neritimorpha in comparison to Heterobranchia and Patellogastropoda. The mitochondrial genomes of the group are very compact with few intergenic sequences, the only exception is the genome of Patellogastropoda with 26,828 bp. Start codons of the Heterobranchia and Patellogastropoda are very variable and there is also an increase in genome rearrangements for these two groups. Generally, the hypothesis of constant rates of molecular evolution between the groups is rejected, except when the genomes of Caenogastropoda and Vetigastropoda are compared.

  14. Private genome analysis through homomorphic encryption.

    Science.gov (United States)

    Kim, Miran; Lauter, Kristin

    2015-01-01

    The rapid development of genome sequencing technology allows researchers to access large genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy. The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or any interaction with the data owner, which preserves the privacy of genome data. We present evaluation algorithms for secure computation of the minor allele frequencies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of using two practical homomorphic encryption schemes--the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and Naehrig. The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences between them. The performance numbers for BGV are better than YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test statistic in a case-control study.

  15. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes

    Science.gov (United States)

    2012-01-01

    Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported

  16. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    Science.gov (United States)

    Gil, Rosario; Silva, Francisco J.; Zientz, Evelyn; Delmotte, François; González-Candelas, Fernando; Latorre, Amparo; Rausell, Carolina; Kamerbeek, Judith; Gadau, Jürgen; Hölldobler, Bert; van Ham, Roeland C. H. J.; Gross, Roy; Moya, Andrés

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life. PMID:12886019

  17. Analysis tools for the interplay between genome layout and regulation.

    Science.gov (United States)

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  18. Genomic characteristics and comparative genomics analysis of Penicillium chrysogenum KF-25.

    Science.gov (United States)

    Peng, Qin; Yuan, Yihui; Gao, Meiying; Chen, Xupeng; Liu, Biao; Liu, Pengming; Wu, Yan; Wu, Dandan

    2014-02-21

    Penicillium chrysogenum has been used in producing penicillin and derived β-lactam antibiotics for many years. Although the genome of the mutant strain P. chrysogenum Wisconsin 54-1255 has already been sequenced, the versatility and genetic diversity of this species still needs to be intensively studied. In this study, the genome of the wild-type P. chrysogenum strain KF-25, which has high activity against Ustilaginoidea virens, was sequenced and characterized. The genome of KF-25 was about 29.9 Mb in size and contained 9,804 putative open reading frames (orfs). Thirteen genes were predicted to encode two-component system proteins, of which six were putatively involved in osmolarity adaption. There were 33 putative secondary metabolism pathways and numerous genes that were essential in metabolite biosynthesis. Several P. chrysogenum virus untranslated region sequences were found in the KF-25 genome, suggesting that there might be a relationship between the virus and P. chrysogenum in evolution. Comparative genome analysis showed that the genomes of KF-25 and Wisconsin 54-1255 were highly similar, except that KF-25 was 2.3 Mb smaller. Three hundred and fifty-five KF-25 specific genes were found and the biological functions of the proteins encoded by these genes were mainly unknown (232, representing 65%), except for some orfs encoding proteins with predicted functions in transport, metabolism, and signal transduction. Numerous KF-25-specific genes were found to be associated with the pathogenicity and virulence of the strains, which were identical to those of wild-type P. chrysogenum NRRL 1951. Genome sequencing and comparative analysis are helpful in further understanding the biology, evolution, and environment adaption of P. chrysogenum, and provide a new tool for identifying further functional metabolites.

  19. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  20. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  1. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  2. Comparative analysis of prophages in Streptococcus mutans genomes

    Science.gov (United States)

    Fu, Tiwei; Fan, Xiangyu; Long, Quanxin; Deng, Wanyan; Song, Jinlin

    2017-01-01

    Prophages have been considered genetic units that have an intimate association with novel phenotypic properties of bacterial hosts, such as pathogenicity and genomic variation. Little is known about the genetic information of prophages in the genome of Streptococcus mutans, a major pathogen of human dental caries. In this study, we identified 35 prophage-like elements in S. mutans genomes and performed a comparative genomic analysis. Comparative genomic and phylogenetic analyses of prophage sequences revealed that the prophages could be classified into three main large clusters: Cluster A, Cluster B, and Cluster C. The S. mutans prophages in each cluster were compared. The genomic sequences of phismuN66-1, phismuNLML9-1, and phismu24-1 all shared similarities with the previously reported S. mutans phages M102, M102AD, and ϕAPCM01. The genomes were organized into seven major gene clusters according to the putative functions of the predicted open reading frames: packaging and structural modules, integrase, host lysis modules, DNA replication/recombination modules, transcriptional regulatory modules, other protein modules, and hypothetical protein modules. Moreover, an integrase gene was only identified in phismuNLML9-1 prophages. PMID:29158986

  3. Proteomic and genomic analysis of cardiovascular disease

    National Research Council Canada - National Science Library

    Van Eyk, Jennifer; Dunn, M. J

    2003-01-01

    ... to cardiovascular disease. By exploring the various strategies and technical aspects of both, using examples from cardiac or vascular biology, the limitations and the potential of these methods can be clearly seen. The book is divided into three sections: the first focuses on genomics, the second on proteomics, and the third provides an overview of the importance of these two scientific disciplines in drug and diagnostic discovery. The goal of this book is the transfer of their hard-earned lessons to the growing num...

  4. Hyperstructures, genome analysis and I-cells

    DEFF Research Database (Denmark)

    Amar, P.; Ballet, P.; Barlovatz-Meimon, G.

    2002-01-01

    familiar to biologists. Finally, we speculate on how a variety of in silico approaches involving cellular automata and multi-agent systems could be combined to develop new concepts in the form of an Integrated cell (I-cell) which would undergo selection for growth and survival in a world of artificial......New concepts may prove necessary to profit from the avalanche of sequence data on the genome, transcriptome, proteome and interactome and to relate this information to cell physiology. Here, we focus on the concept of large activity-based structures, or hyperstructures, in which a variety of types...

  5. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions

    Directory of Open Access Journals (Sweden)

    Villegas Andre

    2010-09-01

    Full Text Available Abstract Background The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq. Results Panseq was used to identify Escherichia coli O157:H7 and E. coli K-12 genomic islands. Within a population of 60 E. coli O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs of six L. monocytogenes strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST. The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci E. coli O157:H7 SNP dataset. Conclusion Panseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs

  6. Integrative analysis of single nucleotide polymorphisms and gene expression efficiently distinguishes samples from closely related ethnic populations

    Directory of Open Access Journals (Sweden)

    Yang Hsin-Chou

    2012-07-01

    Full Text Available Abstract Background Ancestry informative markers (AIMs are a type of genetic marker that is informative for tracing the ancestral ethnicity of individuals. Application of AIMs has gained substantial attention in population genetics, forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs, the materials of AIMs, are useful for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AIM panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification of samples from closely related ethnic populations. Results We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE markers in 210 independent samples from four ethnic groups in the HapMap II Project, we found that average testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were performed to discern study samples containing individuals from two close Asian populations. The average testing accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were integrated together with SNP markers for the classification of samples from closely related Asian populations. Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing

  7. Quantitative analysis of comparative genomic hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Manoir, S. du; Bentz, M.; Joos, S. [Abteilung Organisation komplexer Genome, Heidelberg (Germany)]|[Institut fuer Humangenetik, Heidelberg (Germany)] [and others

    1995-01-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a program for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.

  8. Mycobacterial species as case-study of comparative genome analysis

    DEFF Research Database (Denmark)

    Zakham, F.; Belayachi, L.; Ussery, David

    2011-01-01

    . Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length...... defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene...... the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str...

  9. Differential Gene Expression from Microarray Analysis Distinguishes Woven and Lamellar Bone Formation in the Rat Ulna following Mechanical Loading

    OpenAIRE

    McKenzie, Jennifer A.; Bixby, Elise C.; Silva, Matthew J.

    2011-01-01

    Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout...

  10. Distinguishing communal narcissism from agentic narcissism: a behavior genetics analysis on the agency-communion model of narcissism

    OpenAIRE

    Luo, Y.L.L; Cai, H.; Sedikides, C.; Song, H.

    2014-01-01

    This article examined the genetic and environmental bases of the newly proposed agency–communion model of narcissism. The model distinguishes between agentic narcissism and communal narcissism. The sample comprised 304 pairs of twins. Genes explained 47% and 25% of the variance in agentic and communal narcissism, respectively; shared environments contributed 0% and 15%, respectively, to agentic and communal narcissism, with non-shared environments accounting for the remaining portions. Althou...

  11. A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands.

    Directory of Open Access Journals (Sweden)

    Ikuo Uchiyama

    Full Text Available Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved orthologous groups (OGs. We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs. In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM genes. Different RM systems sometimes occupied the same (orthologous locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species.

  12. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  13. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate

    Directory of Open Access Journals (Sweden)

    Andersson Jan O

    2010-10-01

    Full Text Available Abstract Background Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig. Results We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse Giardia intestinalis isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of Giardia revealed differential rates of divergence among cellular processes. Conclusions Our results indicate that despite a well conserved core of genes there is significant genome variation between Giardia isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the Giardia genomes and enables the identification of functionally important variation.

  14. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  15. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-genome.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.

  16. TCGA4U: A Web-Based Genomic Analysis Platform To Explore And Mine TCGA Genomic Data For Translational Research.

    Science.gov (United States)

    Huang, Zhenzhen; Duan, Huilong; Li, Haomin

    2015-01-01

    Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.

  17. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  18. Accurate evaluation and analysis of functional genomics data and methods

    Science.gov (United States)

    Greene, Casey S.; Troyanskaya, Olga G.

    2016-01-01

    The development of technology capable of inexpensively performing large-scale measurements of biological systems has generated a wealth of data. Integrative analysis of these data holds the promise of uncovering gene function, regulation, and, in the longer run, understanding complex disease. However, their analysis has proved very challenging, as it is difficult to quickly and effectively assess the relevance and accuracy of these data for individual biological questions. Here, we identify biases that present challenges for the assessment of functional genomics data and methods. We then discuss evaluation methods that, taken together, begin to address these issues. We also argue that the funding of systematic data-driven experiments and of high-quality curation efforts will further improve evaluation metrics so that they more-accurately assess functional genomics data and methods. Such metrics will allow researchers in the field of functional genomics to continue to answer important biological questions in a data-driven manner. PMID:22268703

  19. Virtual Northern analysis of the human genome.

    Directory of Open Access Journals (Sweden)

    Evan H Hurowitz

    2007-05-01

    Full Text Available We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale.We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90% confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs tend to be longer or shorter than average; these functional classes were similar in both human and yeast.Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  20. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens.

    Science.gov (United States)

    Katz, Lee S; Griswold, Taylor; Williams-Newkirk, Amanda J; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A

    2017-01-01

    Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni , and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized

  1. Navigating the research-clinical interface in genomic medicine: analysis from the CSER Consortium.

    Science.gov (United States)

    Wolf, Susan M; Amendola, Laura M; Berg, Jonathan S; Chung, Wendy K; Clayton, Ellen Wright; Green, Robert C; Harris-Wai, Julie; Henderson, Gail E; Jarvik, Gail P; Koenig, Barbara A; Lehmann, Lisa Soleymani; McGuire, Amy L; O'Rourke, Pearl; Somkin, Carol; Wilfond, Benjamin S; Burke, Wylie

    2017-08-31

    PurposeThe Clinical Sequencing Exploratory Research (CSER) Consortium encompasses nine National Institutes of Health-funded U-award projects investigating translation of genomic sequencing into clinical care. Previous literature has distinguished norms and rules governing research versus clinical care. This is the first study to explore how genomics investigators describe and navigate the research-clinical interface.MethodsA CSER working group developed a 22-item survey. All nine U-award projects participated. Descriptive data were tabulated and qualitative analysis of text responses identified themes and characterizations of the research-clinical interface.ResultsSurvey responses described how studies approached the research-clinical interface, including in consent practices, recording results, and using a research versus clinical laboratory. Responses revealed four characterizations of the interface: clear separation between research and clinical care, interdigitation of the two with steps to maintain separation, a dynamic interface, and merging of the two. All survey respondents utilized at least two different characterizations. Although research has traditionally been differentiated from clinical care, respondents pointed to factors blurring the distinction and strategies to differentiate the domains.ConclusionThese results illustrate the difficulty in applying the traditional bifurcation of research versus clinical care to translational models of clinical research, including in genomics. Our results suggest new directions for ethics and oversight.Genetics in Medicine advance online publication, 31 August 2017; doi:10.1038/gim.2017.137.

  2. Comparative analysis of methods for genome-wide nucleosome cartography.

    Science.gov (United States)

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Clinical analysis and interpretation of cancer genome data.

    Science.gov (United States)

    Van Allen, Eliezer M; Wagle, Nikhil; Levy, Mia A

    2013-05-20

    The scale of tumor genomic profiling is rapidly outpacing human cognitive capacity to make clinical decisions without the aid of tools. New frameworks are needed to help researchers and clinicians process the information emerging from the explosive growth in both the number of tumor genetic variants routinely tested and the respective knowledge to interpret their clinical significance. We review the current state, limitations, and future trends in methods to support the clinical analysis and interpretation of cancer genomes. This includes the processes of genome-scale variant identification, including tools for sequence alignment, tumor-germline comparison, and molecular annotation of variants. The process of clinical interpretation of tumor variants includes classification of the effect of the variant, reporting the results to clinicians, and enabling the clinician to make a clinical decision based on the genomic information integrated with other clinical features. We describe existing knowledge bases, databases, algorithms, and tools for identification and visualization of tumor variants and their actionable subsets. With the decreasing cost of tumor gene mutation testing and the increasing number of actionable therapeutics, we expect the methods for analysis and interpretation of cancer genomes to continue to evolve to meet the needs of patient-centered clinical decision making. The science of computational cancer medicine is still in its infancy; however, there is a clear need to continue the development of knowledge bases, best practices, tools, and validation experiments for successful clinical implementation in oncology.

  4. Primer to analysis of genomic data using R

    CERN Document Server

    Gondro, Cedric

    2015-01-01

    Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics or for use in lab sessions. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.  Chapters show how to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R. A wide range of R packages useful for working with genomic data are illustrated with practical examples. In recent years R has b...

  5. Detecting Genomic Signatures of Natural Selection with Principal Component Analysis: Application to the 1000 Genomes Data.

    Science.gov (United States)

    Duforet-Frebourg, Nicolas; Luu, Keurcien; Laval, Guillaume; Bazin, Eric; Blum, Michael G B

    2016-04-01

    To characterize natural selection, various analytical methods for detecting candidate genomic regions have been developed. We propose to perform genome-wide scans of natural selection using principal component analysis (PCA). We show that the common FST index of genetic differentiation between populations can be viewed as the proportion of variance explained by the principal components. Considering the correlations between genetic variants and each principal component provides a conceptual framework to detect genetic variants involved in local adaptation without any prior definition of populations. To validate the PCA-based approach, we consider the 1000 Genomes data (phase 1) considering 850 individuals coming from Africa, Asia, and Europe. The number of genetic variants is of the order of 36 millions obtained with a low-coverage sequencing depth (3×). The correlations between genetic variation and each principal component provide well-known targets for positive selection (EDAR, SLC24A5, SLC45A2, DARC), and also new candidate genes (APPBPP2, TP1A1, RTTN, KCNMA, MYO5C) and noncoding RNAs. In addition to identifying genes involved in biological adaptation, we identify two biological pathways involved in polygenic adaptation that are related to the innate immune system (beta defensins) and to lipid metabolism (fatty acid omega oxidation). An additional analysis of European data shows that a genome scan based on PCA retrieves classical examples of local adaptation even when there are no well-defined populations. PCA-based statistics, implemented in the PCAdapt R package and the PCAdapt fast open-source software, retrieve well-known signals of human adaptation, which is encouraging for future whole-genome sequencing project, especially when defining populations is difficult. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  7. Gene network analysis in plant development by genomic technologies.

    Science.gov (United States)

    Wellmer, Frank; Riechmann, José Luis

    2005-01-01

    The analysis of the gene regulatory networks underlying development is of central importance for a better understanding of the mechanisms that control the formation of the different cell-types, tissues or organs of an organism. The recent invention of genomic technologies has opened the possibility of studying these networks at a global level. In this paper, we summarize some of the recent advances that have been made in the understanding of plant development by the application of genomic technologies. We focus on a few specific processes, namely flower and root development and the control of the cell cycle, but we also highlight landmark studies in other areas that opened new avenues of experimentation or analysis. We describe the methods and the strategies that are currently used for the analysis of plant development by genomic technologies, as well as some of the problems and limitations that hamper their application. Since many genomic technologies and concepts were first developed and tested in organisms other than plants, we make reference to work in non-plant species and compare the current state of network analysis in plants to that in other multicellular organisms.

  8. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... progestins, as well as lipids, cholesterol metabolites, and. Genome inventory and analysis of nuclear hormone receptors in. Tetraodon nigroviridis. RAGHU PRASAD RAO METPALLY. 1, RAMAKRISHNAN VIGNESHWAR. 1, 2 and RAMANATHAN SOWDHAMINI. 1,*. 1National Centre for Biological Sciences ...

  9. Sequencing and Analysis of Neanderthal Genomic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith,Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Paabo,Svante; Pritchard, Jonathan K.; Rubin, Edward M.

    2006-06-13

    Recovery and analysis of multiple Neanderthal autosomalsequences using a metagenomic approach reveals that modern humans andNeanderthals split ~;400,000 years ago, without significant evidence ofsubsequent admixture.

  10. Genome Assembly and Computational Analysis Pipelines for Bacterial Pathogens

    KAUST Repository

    Rangkuti, Farania Gama Ardhina

    2011-06-01

    Pathogens lie behind the deadliest pandemics in history. To date, AIDS pandemic has resulted in more than 25 million fatal cases, while tuberculosis and malaria annually claim more than 2 million lives. Comparative genomic analyses are needed to gain insights into the molecular mechanisms of pathogens, but the abundance of biological data dictates that such studies cannot be performed without the assistance of computational approaches. This explains the significant need for computational pipelines for genome assembly and analyses. The aim of this research is to develop such pipelines. This work utilizes various bioinformatics approaches to analyze the high-­throughput genomic sequence data that has been obtained from several strains of bacterial pathogens. A pipeline has been compiled for quality control for sequencing and assembly, and several protocols have been developed to detect contaminations. Visualization has been generated of genomic data in various formats, in addition to alignment, homology detection and sequence variant detection. We have also implemented a metaheuristic algorithm that significantly improves bacterial genome assemblies compared to other known methods. Experiments on Mycobacterium tuberculosis H37Rv data showed that our method resulted in improvement of N50 value of up to 9697% while consistently maintaining high accuracy, covering around 98% of the published reference genome. Other improvement efforts were also implemented, consisting of iterative local assemblies and iterative correction of contiguated bases. Our result expedites the genomic analysis of virulent genes up to single base pair resolution. It is also applicable to virtually every pathogenic microorganism, propelling further research in the control of and protection from pathogen-­associated diseases.

  11. A look at the strength of micro and macro EEG analysis for distinguishing insomnia within an HIV cohort.

    Science.gov (United States)

    Gunnarsdottir, Kristin M; Kang, Yu Min; Kerr, Matthew S D; Sarma, Sridevi V; Ewen, Joshua; Allen, Richard; Gamaldo, Charlene; Salas, Rachel M E

    2015-01-01

    HIV patients are often plagued by sleep disorders and suffer from sleep deprivation. However, there remains a wide gap in our understanding of the relationship between HIV status, poor sleep, overall function and future outcomes; particularly in the case of HIV patients otherwise well controlled on cART (combined anti-retroviral therapy). In this study, we compared two groups: 16 non-HIV subjects (seronegative controls) and 12 seropositive HIV patients with undetectable viral loads. We looked at sleep behavioral (macro-sleep) features and sleep spectral (micro-sleep) features obtained from human-scored overnight EEG recordings to study whether the scored EEG data can be used to distinguish between controls and HIV subjects. Specifically, the macro-sleep features were defined by sleep stages and included sleep transitions, percentage of time spent in each sleep stage, and duration of time spent in each sleep stage. The micro-sleep features were obtained from the power spectrum of the EEG signals by computing the total power across all channels and frequencies, as well as the average power in each sleep stage and across different frequency bands. While the macro features do not distinguish between the two groups, there is a significant difference and a high classification accuracy for the scoring-independent micro features. This spectral separation is interesting because evidence suggests a relationship between sleep complaints and cognitive dysfunction in HIV patients stable on cART. Furthermore, there are currently no biomarkers that predict the early development of cognitive decline in HIV patients. Thus, a micro-sleep architectural approach could serve as a biomarker to identify HIV patients vulnerable to cognitive decline, providing an avenue to explore the utility of early intervention.

  12. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

    Science.gov (United States)

    Ivanova, Natalia; Sorokin, Alexei; Anderson, Iain; Galleron, Nathalie; Candelon, Benjamin; Kapatral, Vinayak; Bhattacharyya, Anamitra; Reznik, Gary; Mikhailova, Natalia; Lapidus, Alla; Chu, Lien; Mazur, Michael; Goltsman, Eugene; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Grechkin, Yuri; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Ehrlich, S Dusko; Overbeek, Ross; Kyrpides, Nikos

    2003-05-01

    Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

  13. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  14. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  15. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  16. Comparative Analysis of Predicted Gene Expression among Crenarchaeal Genomes

    Directory of Open Access Journals (Sweden)

    Shibsankar Das

    2017-03-01

    Full Text Available Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.

  17. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.

    Science.gov (United States)

    Voigt, Anja; Schöfl, Gerhard; Saluz, Hans Peter

    2012-01-01

    Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis. A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins. This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions.

  18. The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens.

    Directory of Open Access Journals (Sweden)

    Anja Voigt

    Full Text Available Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions.

  19. Comparative analysis of the complete genome of an Acinetobacter calcoaceticus strain adapted to a phenol-polluted environment.

    Science.gov (United States)

    Zhan, Yuhua; Yan, Yongliang; Zhang, Wei; Chen, Ming; Lu, Wei; Ping, Shuzhen; Lin, Min

    2012-01-01

    The complete genome sequence of Acinetobacter calcoaceticus PHEA-2, a non-pathogenic phenol-degrading bacterium previously isolated from industrial wastewater of an oil refinery in China, has been established. This is the first sequence of an A. calcoaceticus strain. We report here a comparative genomic analysis of PHEA-2 with two other Acinetobacter species having different lifestyles, Acinetobacter baumannii AYE, a pathogenic human-adapted strain, and Acinetobacter baylyi ADP1, a soil-living strain. For a long time, A. calcoaceticus could not be easily distinguished from A. baumannii strains. Indeed, whole-genome comparison revealed high synteny between A. calcoaceticus and A. baumannii genomes, but most genes for multiple drug resistance as well as those presumably involved in pathogenicity were not present in the PHEA-2 genome and phylogenetic analysis showed that A. calcoaceticus differed from A. baumannii antibiotic-susceptible strains. It also revealed that many genes associated with environmental adaptation were acquired by horizontal gene transfer, including an 8-kb phenol degradation gene cluster. A relatively higher proportion of transport-related proteins were found in PHEA-2 than in ADP1 and AYE. Overall, these findings highlight the remarkable capacity of A. calcoaceticus PHEA-2 to effectively adapt to a phenol-polluted wastewater environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions

    Science.gov (United States)

    Havt, Alexandre; Nayak, Uma; Pinkerton, Relana; Farber, Emily; Concannon, Patrick; Lima, Aldo A.; Guerrant, Richard L.

    2017-01-01

    Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas. PMID:28100790

  1. Genome sequencing and analysis conference grant

    Energy Technology Data Exchange (ETDEWEB)

    Venter, J.C. [ed.

    1995-10-01

    The 14 plenary session presentations focused on nematode; yeast; fruit fly; plants; mycobacteria; and man. In addition there were presentations on a variety of technical innovations including database developments and refinements, bioelectronic genesensors, computer-assisted multiplex techniques, and hybridization analysis with DNA chip technology. This document includes a list of exhibitors and abstracts of sessions.

  2. Integrative Genomic Analysis of Complex traits

    DEFF Research Database (Denmark)

    Ehsani, Ali Reza

    expression, and metabolite abundance of more and more populations in a multitude of invironments. However, a solid model for including all of this complex information in one analysis, to disentangle genetic variation and the underlying genetic architecture of complex traits and diseases, has not yet been...

  3. Viral genome analysis and knowledge management.

    Science.gov (United States)

    Kuiken, Carla; Yoon, Hyejin; Abfalterer, Werner; Gaschen, Brian; Lo, Chienchi; Korber, Bette

    2013-01-01

    One of the challenges of genetic data analysis is to combine information from sources that are distributed around the world and accessible through a wide array of different methods and interfaces. The HIV database and its footsteps, the hepatitis C virus (HCV) and hemorrhagic fever virus (HFV) databases, have made it their mission to make different data types easily available to their users. This involves a large amount of behind-the-scenes processing, including quality control and analysis of the sequences and their annotation. Gene and protein sequences are distilled from the sequences that are stored in GenBank; to this end, both submitter annotation and script-generated sequences are used. Alignments of both nucleotide and amino acid sequences are generated, manually curated, distilled into an alignment model, and regenerated in an iterative cycle that results in ever better new alignments. Annotation of epidemiological and clinical information is parsed, checked, and added to the database. User interfaces are updated, and new interfaces are added based upon user requests. Vital for its success, the database staff are heavy users of the system, which enables them to fix bugs and find opportunities for improvement. In this chapter we describe some of the infrastructure that keeps these heavily used analysis platforms alive and vital after nearly 25 years of use. The database/analysis platforms described in this chapter can be accessed at http://hiv.lanl.gov http://hcv.lanl.gov http://hfv.lanl.gov.

  4. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  5. CGAP: a new comprehensive platform for the comparative analysis of chloroplast genomes.

    Science.gov (United States)

    Cheng, Jinkui; Zeng, Xu; Ren, Guomin; Liu, Zhihua

    2013-03-14

    Chloroplast is an essential organelle in plants which contains independent genome. Chloroplast genomes have been widely used for plant phylogenetic inference recently. The number of complete chloroplast genomes increases rapidly with the development of various genome sequencing projects. However, no comprehensive platform or tool has been developed for the comparative and phylogenetic analysis of chloroplast genomes. Thus, we constructed a comprehensive platform for the comparative and phylogenetic analysis of complete chloroplast genomes which was named as chloroplast genome analysis platform (CGAP). CGAP is an interactive web-based platform which was designed for the comparative analysis of complete chloroplast genomes. CGAP integrated genome collection, visualization, content comparison, phylogeny analysis and annotation functions together. CGAP implemented four web servers including creating complete and regional genome maps of high quality, comparing genome features, constructing phylogenetic trees using complete genome sequences, and annotating draft chloroplast genomes submitted by users. Both CGAP and source code are available at http://www.herbbol.org:8000/chloroplast. CGAP will facilitate the collection, visualization, comparison and annotation of complete chloroplast genomes. Users can customize the comparative and phylogenetic analysis using their own unpublished chloroplast genomes.

  6. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  7. Genomic analysis and selected molecular pathways in rare cancers

    International Nuclear Information System (INIS)

    Liu, Stephen V; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Demeure, Michael J; Ramanathan, Ramesh K; Von Hoff, Daniel D; Barrett, Michael T; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Eng, Cathy

    2012-01-01

    It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer. (paper)

  8. Comparative Genome Analysis of Basidiomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  9. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I......). Focusing on the same promoter across the cell cycle, we observed that histone modification undergoes very distinct temporal lterations compared to their regulatory functions spatially at different promoters (Papers II). By aggregating different HTS methods including CAGE, 3’end-seq, GRO-seq, RNAPII Ch...

  10. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

    Directory of Open Access Journals (Sweden)

    Jennifer A McKenzie

    Full Text Available Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading or lamellar bone (LBF loading. A set of normal (non-loaded rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR. The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.

  11. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis

    Science.gov (United States)

    Simple sequence repeats (SSR) or microsatellite markers are one of the most informative and versatile DNA-based markers. The use of next-generation sequencing technologies allow whole genome sequencing and make it possible to develop large numbers of SSRs through bioinformatic analysis of genome da...

  12. Genome-wide oligonucleotide-based array comparative genome hybridization analysis of non-isolated congenital diaphragmatic hernia

    NARCIS (Netherlands)

    D.A. Scott; M. Klaassens; A.M. Holder (Ashley); K.P. Lally (Kevin); C.J. Fernandes (Caraciolo); R-J.H. Galjaard (Robert-Jan); D. Tibboel (Dick); J.E.M.M. de Klein (Annelies); B. Lee (Brendan)

    2007-01-01

    textabstractNon-isolated congenital diaphragmatic hernia (CDH+) is a severe birth defect that is often caused by de novo chromosomal anomalies. In this report, we use genome-wide oligonucleotide-based array comparative genome hybridization (aCGH) followed by rapid real-time quantitative PCR analysis

  13. Probabilistic Latent Semantic Analysis Applied to Whole Bacterial Genomes Identifies Common Genomic Features

    Directory of Open Access Journals (Sweden)

    Rusakovica J.

    2014-06-01

    Full Text Available The spread of drug resistance amongst clinically-important bacteria is a serious, and growing, problem [1]. However, the analysis of entire genomes requires considerable computational effort, usually including the assembly of the genome and subsequent identification of genes known to be important in pathology. An alternative approach is to use computational algorithms to identify genomic differences between pathogenic and non-pathogenic bacteria, even without knowing the biological meaning of those differences. To overcome this problem, a range of techniques for dimensionality reduction have been developed. One such approach is known as latent-variable models [2]. In latent-variable models dimensionality reduction is achieved by representing a high-dimensional data by a few hidden or latent variables, which are not directly observed but inferred from the observed variables present in the model. Probabilistic Latent Semantic Indexing (PLSA is an extention of LSA [3]. PLSA is based on a mixture decomposition derived from a latent class model. The main objective of the algorithm, as in LSA, is to represent high-dimensional co-occurrence information in a lower-dimensional way in order to discover the hidden semantic structure of the data using a probabilistic framework.

  14. JBrowse: a dynamic web platform for genome visualization and analysis.

    Science.gov (United States)

    Buels, Robert; Yao, Eric; Diesh, Colin M; Hayes, Richard D; Munoz-Torres, Monica; Helt, Gregg; Goodstein, David M; Elsik, Christine G; Lewis, Suzanna E; Stein, Lincoln; Holmes, Ian H

    2016-04-12

    JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a mature web application suitable for genome visualization and analysis.

  15. Genome-wide functional analysis in Candida albicans

    Science.gov (United States)

    Motaung, Thabiso E.; Ells, Ruan; Pohl, Carolina H.; Albertyn, Jacobus; Tsilo, Toi J.

    2017-01-01

    ABSTRACT Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties. PMID:28277904

  16. The diagnostic value of polymerase chain reaction for Mycobacterium tuberculosis to distinguish intestinal tuberculosis from crohn's disease: A meta-analysis.

    Science.gov (United States)

    Jin, Ting; Fei, Baoying; Zhang, Yu; He, Xujun

    2017-01-01

    Intestinal tuberculosis (ITB) and Crohn's disease (CD) are important differential diagnoses that can be difficult to distinguish. Polymerase chain reaction (PCR) for Mycobacterium tuberculosis (MTB) is an efficient and promising tool. This meta-analysis was performed to systematically and objectively assess the potential diagnostic accuracy and clinical value of PCR for MTB in distinguishing ITB from CD. We searched PubMed, Embase, Web of Science, Science Direct, and the Cochrane Library for eligible studies, and nine articles with 12 groups of data were identified. The included studies were subjected to quality assessment using the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The summary estimates were as follows: sensitivity 0.47 (95% CI: 0.42-0.51); specificity 0.95 (95% CI: 0.93-0.97); the positive likelihood ratio (PLR) 10.68 (95% CI: 6.98-16.35); the negative likelihood ratio (NLR) 0.49 (95% CI: 0.33-0.71); and diagnostic odds ratio (DOR) 21.92 (95% CI: 13.17-36.48). The area under the curve (AUC) was 0.9311, with a Q* value of 0.8664. Heterogeneity was found in the NLR. The heterogeneity of the studies was evaluated by meta-regression analysis and subgroup analysis. The current evidence suggests that PCR for MTB is a promising and highly specific diagnostic method to distinguish ITB from CD. However, physicians should also keep in mind that negative results cannot exclude ITB for its low sensitivity. Additional prospective studies are needed to further evaluate the diagnostic accuracy of PCR.

  17. Guidelines for Genome-Scale Analysis of Biological Rhythms.

    Science.gov (United States)

    Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B

    2017-10-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

  18. Benchmarking undedicated cloud computing providers for analysis of genomic datasets.

    Science.gov (United States)

    Yazar, Seyhan; Gooden, George E C; Mackey, David A; Hewitt, Alex W

    2014-01-01

    A major bottleneck in biological discovery is now emerging at the computational level. Cloud computing offers a dynamic means whereby small and medium-sized laboratories can rapidly adjust their computational capacity. We benchmarked two established cloud computing services, Amazon Web Services Elastic MapReduce (EMR) on Amazon EC2 instances and Google Compute Engine (GCE), using publicly available genomic datasets (E.coli CC102 strain and a Han Chinese male genome) and a standard bioinformatic pipeline on a Hadoop-based platform. Wall-clock time for complete assembly differed by 52.9% (95% CI: 27.5-78.2) for E.coli and 53.5% (95% CI: 34.4-72.6) for human genome, with GCE being more efficient than EMR. The cost of running this experiment on EMR and GCE differed significantly, with the costs on EMR being 257.3% (95% CI: 211.5-303.1) and 173.9% (95% CI: 134.6-213.1) more expensive for E.coli and human assemblies respectively. Thus, GCE was found to outperform EMR both in terms of cost and wall-clock time. Our findings confirm that cloud computing is an efficient and potentially cost-effective alternative for analysis of large genomic datasets. In addition to releasing our cost-effectiveness comparison, we present available ready-to-use scripts for establishing Hadoop instances with Ganglia monitoring on EC2 or GCE.

  19. Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses

    Science.gov (United States)

    Assis, Felipe L.; Bajrai, Leena; Abrahao, Jonatas S.; Kroon, Erna G.; Dornas, Fabio P.; Andrade, Kétyllen R.; Boratto, Paulo V. M.; Pilotto, Mariana R.; Robert, Catherine; Benamar, Samia; La Scola, Bernard; Colson, Philippe

    2015-01-01

    Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment. PMID:26131958

  20. Benchmarking undedicated cloud computing providers for analysis of genomic datasets.

    Directory of Open Access Journals (Sweden)

    Seyhan Yazar

    Full Text Available A major bottleneck in biological discovery is now emerging at the computational level. Cloud computing offers a dynamic means whereby small and medium-sized laboratories can rapidly adjust their computational capacity. We benchmarked two established cloud computing services, Amazon Web Services Elastic MapReduce (EMR on Amazon EC2 instances and Google Compute Engine (GCE, using publicly available genomic datasets (E.coli CC102 strain and a Han Chinese male genome and a standard bioinformatic pipeline on a Hadoop-based platform. Wall-clock time for complete assembly differed by 52.9% (95% CI: 27.5-78.2 for E.coli and 53.5% (95% CI: 34.4-72.6 for human genome, with GCE being more efficient than EMR. The cost of running this experiment on EMR and GCE differed significantly, with the costs on EMR being 257.3% (95% CI: 211.5-303.1 and 173.9% (95% CI: 134.6-213.1 more expensive for E.coli and human assemblies respectively. Thus, GCE was found to outperform EMR both in terms of cost and wall-clock time. Our findings confirm that cloud computing is an efficient and potentially cost-effective alternative for analysis of large genomic datasets. In addition to releasing our cost-effectiveness comparison, we present available ready-to-use scripts for establishing Hadoop instances with Ganglia monitoring on EC2 or GCE.

  1. The sequence and analysis of a Chinese pig genome

    Directory of Open Access Journals (Sweden)

    Fang Xiaodong

    2012-11-01

    Full Text Available Abstract Background The pig is an economically important food source, amounting to approximately 40% of all meat consumed worldwide. Pigs also serve as an important model organism because of their similarity to humans at the anatomical, physiological and genetic level, making them very useful for studying a variety of human diseases. A pig strain of particular interest is the miniature pig, specifically the Wuzhishan pig (WZSP, as it has been extensively inbred. Its high level of homozygosity offers increased ease for selective breeding for specific traits and a more straightforward understanding of the genetic changes that underlie its biological characteristics. WZSP also serves as a promising means for applications in surgery, tissue engineering, and xenotransplantation. Here, we report the sequencing and analysis of an inbreeding WZSP genome. Results Our results reveal some unique genomic features, including a relatively high level of homozygosity in the diploid genome, an unusual distribution of heterozygosity, an over-representation of tRNA-derived transposable elements, a small amount of porcine endogenous retrovirus, and a lack of type C retroviruses. In addition, we carried out systematic research on gene evolution, together with a detailed investigation of the counterparts of human drug target genes. Conclusion Our results provide the opportunity to more clearly define the genomic character of pig, which could enhance our ability to create more useful pig models.

  2. Analysis of the core genome and pangenome of Pseudomonas putida.

    Science.gov (United States)

    Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L

    2016-10-01

    Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Group sparse canonical correlation analysis for genomic data integration.

    Science.gov (United States)

    Lin, Dongdong; Zhang, Jigang; Li, Jingyao; Calhoun, Vince D; Deng, Hong-Wen; Wang, Yu-Ping

    2013-08-12

    The emergence of high-throughput genomic datasets from different sources and platforms (e.g., gene expression, single nucleotide polymorphisms (SNP), and copy number variation (CNV)) has greatly enhanced our understandings of the interplay of these genomic factors as well as their influences on the complex diseases. It is challenging to explore the relationship between these different types of genomic data sets. In this paper, we focus on a multivariate statistical method, canonical correlation analysis (CCA) method for this problem. Conventional CCA method does not work effectively if the number of data samples is significantly less than that of biomarkers, which is a typical case for genomic data (e.g., SNPs). Sparse CCA (sCCA) methods were introduced to overcome such difficulty, mostly using penalizations with l-1 norm (CCA-l1) or the combination of l-1and l-2 norm (CCA-elastic net). However, they overlook the structural or group effect within genomic data in the analysis, which often exist and are important (e.g., SNPs spanning a gene interact and work together as a group). We propose a new group sparse CCA method (CCA-sparse group) along with an effective numerical algorithm to study the mutual relationship between two different types of genomic data (i.e., SNP and gene expression). We then extend the model to a more general formulation that can include the existing sCCA models. We apply the model to feature/variable selection from two data sets and compare our group sparse CCA method with existing sCCA methods on both simulation and two real datasets (human gliomas data and NCI60 data). We use a graphical representation of the samples with a pair of canonical variates to demonstrate the discriminating characteristic of the selected features. Pathway analysis is further performed for biological interpretation of those features. The CCA-sparse group method incorporates group effects of features into the correlation analysis while performs individual feature

  4. Dirofilaria immitis JYD-34 isolate: whole genome analysis.

    Science.gov (United States)

    Bourguinat, Catherine; Lefebvre, Francois; Sandoval, Johanna; Bondesen, Brenda; Moreno, Yovany; Prichard, Roger K

    2017-11-09

    Macrocyclic lactone (ML) anthelmintics are used for chemoprophylaxis for heartworm infection in dogs and cats. Cases of dogs becoming infected with heartworms, despite apparent compliance to recommended chemoprophylaxis with approved preventives, has led to such cases being considered as suspected lack of efficacy (LOE). Recently, microfilariae collected from a small number of LOE isolates were used as a source of infection of new host dogs and confirmed to have reduced susceptibility to ML in controlled efficacy studies using L3 challenge in dogs. A specific Dirofilaria immitis laboratory isolate named JYD-34 has also been confirmed to have less than 100% susceptibility to ML-based preventives. For preventive claims against heartworm disease, evidence of 100% efficacy is required by FDA-CVM. It was therefore of interest to determine whether JYD-34 has a genetic profile similar to other documented LOE and confirmed reduced susceptibility isolates or has a genetic profile similar to known ML-susceptible isolates. In this study, the 90Mbp whole genome of the JYD-34 strain was sequenced. This genome was compared using bioinformatics tools to pooled whole genomes of four well-characterized susceptible D. immitis populations, one susceptible Missouri laboratory isolate, as well as the pooled whole genomes of four LOE D. immitis populations. Fixation indexes (F ST ), which allow the genetic structure of each population (isolate) to be compared at the level of single nucleotide polymorphisms (SNP) across the genome, have been calculated. Forty-one previously reported SNP, that appeared to differentiate between susceptible and LOE and confirmed reduced susceptibility isolates, were also investigated in the JYD-34 isolate. The F ST analysis, and the analysis of the 41 SNP that appeared to differentiate reduced susceptibility from fully susceptible isolates, confirmed that the JYD-34 isolate has a genome similar to previously investigated LOE isolates, and isolates confirmed

  5. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    Genome analysis of nuclear receptors in Tetraodon. 1. J. Biosci. 32(1), January 2007. Tetraodon nigroviridis nuclear receptors. NR. Accession No. No. Gene. DBD. LBD. Invariable Splice junction (D). Chromosome. Subfamily 1: NR1A1. CAF90676.1. 2. TRA f f no. 2. NR1A1. CAG02086.1*. 16. TRA f f yes. UD. NR1A2.

  6. SIDEKICK: Genomic data driven analysis and decision-making framework

    Directory of Open Access Journals (Sweden)

    Yoon Kihoon

    2010-12-01

    Full Text Available Abstract Background Scientists striving to unlock mysteries within complex biological systems face myriad barriers in effectively integrating available information to enhance their understanding. While experimental techniques and available data sources are rapidly evolving, useful information is dispersed across a variety of sources, and sources of the same information often do not use the same format or nomenclature. To harness these expanding resources, scientists need tools that bridge nomenclature differences and allow them to integrate, organize, and evaluate the quality of information without extensive computation. Results Sidekick, a genomic data driven analysis and decision making framework, is a web-based tool that provides a user-friendly intuitive solution to the problem of information inaccessibility. Sidekick enables scientists without training in computation and data management to pursue answers to research questions like "What are the mechanisms for disease X" or "Does the set of genes associated with disease X also influence other diseases." Sidekick enables the process of combining heterogeneous data, finding and maintaining the most up-to-date data, evaluating data sources, quantifying confidence in results based on evidence, and managing the multi-step research tasks needed to answer these questions. We demonstrate Sidekick's effectiveness by showing how to accomplish a complex published analysis in a fraction of the original time with no computational effort using Sidekick. Conclusions Sidekick is an easy-to-use web-based tool that organizes and facilitates complex genomic research, allowing scientists to explore genomic relationships and formulate hypotheses without computational effort. Possible analysis steps include gene list discovery, gene-pair list discovery, various enrichments for both types of lists, and convenient list manipulation. Further, Sidekick's ability to characterize pairs of genes offers new ways to

  7. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  8. A model of the statistical power of comparative genome sequence analysis.

    OpenAIRE

    Sean R Eddy

    2005-01-01

    Comparative genome sequence analysis is powerful, but sequencing genomes is expensive. It is desirable to be able to predict how many genomes are needed for comparative genomics, and at what evolutionary distances. Here I describe a simple mathematical model for the common problem of identifying conserved sequences. The model leads to some useful rules of thumb. For a given evolutionary distance, the number of comparative genomes needed for a constant level of statistical stringency in identi...

  9. Phenotypic and Genomic Analysis of Hypervirulent Human-associated Bordetella bronchiseptica

    Directory of Open Access Journals (Sweden)

    Ahuja Umesh

    2012-08-01

    Full Text Available Abstract Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.

  10. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    Directory of Open Access Journals (Sweden)

    Brunham Robert C

    2004-07-01

    Full Text Available Abstract Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter β for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics.

  11. Comparative analysis of Acinetobacters: three genomes for three lifestyles.

    Directory of Open Access Journals (Sweden)

    David Vallenet

    Full Text Available Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss; ii strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS. Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment, louse, soil.

  12. Multivariate statistical analysis of Raman spectra to distinguish normal, tumor, lymph nodes and mastitis in mouse mammary tissues

    Science.gov (United States)

    Dai, H.; Thakur, J. S.; Serhatkulu, G. K.; Pandya, A. K.; Auner, G. W.; Naik, R.; Freeman, D. C.; Naik, V. M.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra ( > 680) of normal mammary gland, malignant mammary gland tumors, and lymph node tissues from mice injected with 4T1 tumor cells have been recorded using 785 nm excitation laser. The state of the tissues was confirmed by standard pathological tests. The multivariate statistical analysis methods (principle component analysis and discriminant functional analysis) have been used to categorize the Raman spectra. The statistical algorithms based on the Raman spectral peak heights, clearly separated tissues into six distinct classes, including mastitis, which is clearly separated from normal and tumor. This study suggests that the Raman spectroscopy can possibly perform a real-time analysis of the human mammary tissues for the detection of cancer.

  13. Distinguishing HIV-1 drug resistance, accessory, and viral fitness mutations using conditional selection pressure analysis of treated versus untreated patient samples

    Directory of Open Access Journals (Sweden)

    Lee Christopher

    2006-05-01

    Full Text Available Abstract Background HIV can evolve drug resistance rapidly in response to new drug treatments, often through a combination of multiple mutations 123. It would be useful to develop automated analyses of HIV sequence polymorphism that are able to predict drug resistance mutations, and to distinguish different types of functional roles among such mutations, for example, those that directly cause drug resistance, versus those that play an accessory role. Detecting functional interactions between mutations is essential for this classification. We have adapted a well-known measure of evolutionary selection pressure (Ka/Ks and developed a conditional Ka/Ks approach to detect important interactions. Results We have applied this analysis to four independent HIV protease sequencing datasets: 50,000 clinical samples sequenced by Specialty Laboratories, Inc.; 1800 samples from patients treated with protease inhibitors; 2600 samples from untreated patients; 400 samples from untreated African patients. We have identified 428 mutation interactions in Specialty dataset with statistical significance and we were able to distinguish primary vs. accessory mutations for many well-studied examples. Amino acid interactions identified by conditional Ka/Ks matched 80 of 92 pair wise interactions found by a completely independent study of HIV protease (p-value for this match is significant: 10-70. Furthermore, Ka/Ks selection pressure results were highly reproducible among these independent datasets, both qualitatively and quantitatively, suggesting that they are detecting real drug-resistance and viral fitness mutations in the wild HIV-1 population. Conclusion Conditional Ka/Ks analysis can detect mutation interactions and distinguish primary vs. accessory mutations in HIV-1. Ka/Ks analysis of treated vs. untreated patient data can distinguish drug-resistance vs. viral fitness mutations. Verification of these results would require longitudinal studies. The result

  14. Using real-time PCR and Bayesian analysis to distinguish susceptible tubificid taxa important in the transmission of Myxobolus cerebralis, the cause of salmonid whirling disease.

    Science.gov (United States)

    Fytilis, Nikolaos; Rizzo, Donna M; Lamb, Ryan D; Kerans, Billie L; Stevens, Lori

    2013-05-01

    Aquatic oligochaetes have long been appreciated for their value in assessing habitat quality because they are ubiquitous sediment-dwelling filter feeders. Many oligochaete taxa are also important in the transmission of fish diseases. Distinguishing resistant and susceptible taxa is important for managing fish disease, yet challenging in practice. Tubifex tubifex (Oligochaeta: Tubificidae) is the definitive host for the complex life-cycle parasite, Myxobolus cerebralis, the causative agent of salmonid whirling disease. We developed two hydrolysis probe-based qualitative real-time PCR (qPCR) multiplex assays that distinguish among tubificid taxa collected from the Madison River, Montana, USA. The first assay distinguishes T. tubifex from Rhyacodrilus spp.; while the second classifies T. tubifex identified by the first assay into two genetic lineages (I and III). Specificity and sensitivity were optimized for each assay; the two assays showed specificity of 94.3% and 98.6% for the target oligochaetes, respectively. DNA sequencing verified the results. The development of these assays allowed us to more fully describe tubificid community composition (the taxa and their abundance at a site) and estimate the relative abundances of host taxa. To relate tubificid relative abundance to fish disease risk, we determined M. cerebralis infection prevalence in samples identified as T. tubifex using similar molecular techniques. Given prior information (i.e., morphological identification of sexually mature worms), Bayesian analysis inferred that the first qPCR assay improved taxonomic identification. Bayesian inference of the relative abundance of T. tubifex, combined with infection assay results, identified sites with a high prevalence of infected T. tubifex. To our knowledge, this study represents both the first assessment of oligochaete community composition using a qPCR assay based on fluorescent probes and the first use of Bayesian analysis to fully characterize the dominant

  15. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  16. Cross-platform array comparative genomic hybridization meta-analysis separates hematopoietic and mesenchymal from epithelial tumors

    NARCIS (Netherlands)

    Jong, C.; Marchiori, E.; van der Vaart, A.W.; Chin, S.F.; Carvalho, B; Tijssen, M.; Eijk, P.P.; van den IJssel, P.; Grabsch, H.; Quirke, P.; Oudejans, J.J.; Meijer, G.J.; Caldas, C.; Ylstra, B.

    2007-01-01

    A series of studies have been published that evaluate the chromosomal copy number changes of different tumor classes using array comparative genomic hybridization (array CGH); however, the chromosomal aberrations that distinguish the different tumor classes have not been fully characterized.

  17. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  18. A molecular scheme for Yersinia enterocolitica patho-serotyping derived from genome-wide analysis.

    Science.gov (United States)

    Garzetti, Debora; Susen, Rosa; Fruth, Angelika; Tietze, Erhard; Heesemann, Jürgen; Rakin, Alexander

    2014-05-01

    Yersinia enterocolitica is a food-borne, gastro-intestinal pathogen with world-wide distribution. Only 11 serotypes have been isolated from patients, with O:3, O:9, O:8 and O:5,27 being the serotypes most commonly associated with human yersiniosis. Serotype is an important characteristic of Y. enterocolitica strains, allowing differentiation for epidemiology, diagnosis and phylogeny studies. Conventional serotyping, performed by slide agglutination, is a tedious and laborious procedure whose interpretation tends to be subjective, leading to poor reproducibility. Here we present a PCR-based typing scheme for molecular identification and patho-serotyping of Y. enterocolitica. Genome-wide comparison of Y. enterocolitica sequences allowed analysis of the O-antigen gene clusters of different serotypes, uncovering their formerly unknown genomic locations, and selection of targets for serotype-specific amplification. Two multiplex PCRs and one additional PCR were designed and tested on various reference strains and isolates from different origins. Our genotypic assay proved to be highly specific for identification of Y. enterocolitica species, discrimination between virulent and non-virulent strains, distinguishing the main human-related serotypes, and typing of conventionally untypeable strains. This genotyping scheme could be applied in microbiology laboratories as an alternative or complementary method to the traditional phenotypic assays, providing data for epidemiological studies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Combining two large MRI data sets (AddNeuroMed and ADNI) using multivariate data analysis to distinguish between patients with Alzheimer's disease and healthy controls

    DEFF Research Database (Denmark)

    Westman, Eric; Simmons, Andrew; Muehlboeck, J.-Sebastian

    2010-01-01

    and the high resolution sagital 3D T1w MP-RAGE datasets used for image analysis. Regional segmentation of the brain was carried out using the multi-scale ANIMAL image analysis technique (Automated Non-linear Image Matching and Anatomical Labeling). Cortical thickness measurements were performed using CLASP......NeuroMed cohort as a training set and validating the model with the ADNI cohort resulted in a sensitivity of 78% and specificity of 87%. All three models created showed very similar results. Examples of important variables for discriminating between AD and CTL included temporal lobe grey matter volume, total CSF...... volume and mean cortical thickness. Conclusions: Multivariate data analysis is a powerful tool for distinguishing between different patient groups. The AddNeuroMed, ADNI and combined cohorts showed similar patterns of atrophy and the predictive power was very similar. This demonstrates that the methods...

  20. SmashCell: A software framework for the analysis of single-cell amplified genome sequences

    DEFF Research Database (Denmark)

    Harrington, Eoghan D; Arumugam, Manimozhiyan; Raes, Jeroen

    2010-01-01

    SUMMARY: Recent advances in single-cell manipulation technology, whole genome amplification and high-throughput sequencing have now made it possible to sequence the genome of an individual cell. The bioinformatic analysis of these genomes however is far more complicated than the analysis of those...

  1. CDKN2A (INK4A-ARF) mutation analysis to distinguish cutaneous melanoma metastasis from a second primary melanoma.

    NARCIS (Netherlands)

    Blokx, W.A.M.; Lesterhuis, W.J.; Andriessen, M.P.M.; Verdijk, M.A.J.; Punt, C.J.A.; Ligtenberg, M.J.L.

    2007-01-01

    The histologic differential diagnosis between a second primary cutaneous melanoma and cutaneous melanoma metastasis in a patient with a previous history of melanoma can be very difficult. This case report describes the first application of CDKN2A mutation analysis for discriminating a cutaneous

  2. CDKN2A (INK4A-ARF) mutation analysis to distinguish cutaneous melanoma metastasis from a second primary melanoma

    NARCIS (Netherlands)

    Blokx, Willeke A. M.; Lesterhuis, W. Joost; Andriessen, Monique P. M.; Verdijk, Marian A. J.; Punt, Cornelis J. A.; Ligtenberg, Marjolijn J. L.

    2007-01-01

    The histologic differential diagnosis between a second primary cutaneous melanoma and cutaneous melanoma metastasis in a patient with a previous history of melanoma can be very difficult. This case report describes the first application of CDKN2A mutation analysis for discriminating a cutaneous

  3. Good news or bad news: Conducting sentiment analysis on Dutch texts to distinguish between positive and negative relations

    NARCIS (Netherlands)

    van Atteveldt, W.H.; Kleinnijenhuis, J.; Ruigrok, N.; Schlobach, S.

    2008-01-01

    Many research questions in political communication can be answered by representing text as a network of positive or negative relations between actors and issues such as conducted by semantic network analysis. This article presents a system for automatically determining the polarity

  4. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan

    2010-01-01

    Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer...... as a control group. Unsupervised cluster analysis identified two distinct subgroups related to genetic complexity. Sporadic and HBOC associated tumors had complex genetic profiles with an average 41% of the genome altered, whereas the mismatch repair defective tumors had stable genetic profiles...... that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer....

  5. A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ehsan Ardjmand

    2016-01-01

    Full Text Available Artificial neural networks (ANNs are powerful empirical approaches used to model databases with a high degree of accuracy. Despite their recognition as universal approximators, many practitioners are skeptical about adopting their routine usage due to lack of model transparency. To improve the clarity of model prediction and correct the apparent lack of comprehension, researchers have utilized a variety of methodologies to extract the underlying variable relationships within ANNs, such as sensitivity analysis (SA. The theoretical basis of local SA (that predictors are independent and inputs other than variable of interest remain “fixed” at predefined values is challenged in global SA, where, in addition to altering the attribute of interest, the remaining predictors are varied concurrently across their respective ranges. Here, a regression-based global methodology, state-based sensitivity analysis (SBSA, is proposed for measuring the importance of predictor variables upon a modeled response within ANNs. SBSA was applied to network models of a synthetic database having a defined structure and exhibiting multicollinearity. SBSA achieved the most accurate portrayal of predictor-response relationships (compared to local SA and Connected Weights Analysis, closely approximating the actual variability of the modeled system. From this, it is anticipated that skepticisms concerning the delineation of predictor influences and their uncertainty domains upon a modeled output within ANNs will be curtailed.

  6. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available tabase Description Download License Update History of This Database Site Policy | Contact Us Genome analysis methods - PGDBj Regis...switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods

  7. Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome.

    Science.gov (United States)

    Yang, Xin; Zhao, Yunyang; Wang, Lixia; Feng, Hanli; Tan, Li; Lei, Weiqiang; Zhao, Pengfei; Hu, Min; Fang, Rui

    2015-05-20

    Fischoederius elongates is an important trematode of Paramphistomes in ruminants. Animals infected with F. elongates often don't show obvious symptoms, so it is easy to be ignored. However it can cause severe economic losses to the breeding industry. Knowledge of the mitochondrial genome of F. elongates can be used for phylogenetic and epidemiological studies. The complete mt genome sequence of F. elongates is 14,120 bp in length and contains 12 protein-coding genes, 22 tRNA genes, two rRNA genes and two non-coding regions (LNR and SNR). The gene arrangement of F. elongates is the same as other trematodes, such as Fasciola hepatica and Paramphistomum cervi. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes by Maximum-likelihood and Neighbor-joining analysis method showed that F. elongates was closely related to P. cervi. The complete mt genome sequence of F. elongates should provide information for phylogenetic and epidemiological studies for F. elongates and the family Paramphistomidae.

  8. Genomic analysis and clinical management of adolescent cutaneous melanoma.

    Science.gov (United States)

    Rabbie, Roy; Rashid, Mamunur; Arance, Ana M; Sánchez, Marcelo; Tell-Marti, Gemma; Potrony, Miriam; Conill, Carles; van Doorn, Remco; Dentro, Stefan; Gruis, Nelleke A; Corrie, Pippa; Iyer, Vivek; Robles-Espinoza, Carla Daniela; Puig-Butille, Joan A; Puig, Susana; Adams, David J

    2017-05-01

    Melanoma in young children is rare; however, its incidence in adolescents and young adults is rising. We describe the clinical course of a 15-year-old female diagnosed with AJCC stage IB non-ulcerated primary melanoma, who died from metastatic disease 4 years after diagnosis despite three lines of modern systemic therapy. We also present the complete genomic profile of her tumour and compare this to a further series of 13 adolescent melanomas and 275 adult cutaneous melanomas. A somatic BRAF V 600E mutation and a high mutational load equivalent to that found in adult melanoma and composed primarily of C>T mutations were observed. A germline genomic analysis alongside a series of 23 children and adolescents with melanoma revealed no mutations in known germline melanoma-predisposing genes. Adolescent melanomas appear to have genomes that are as complex as those arising in adulthood and their clinical course can, as with adults, be unpredictable. © 2017 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  9. [Ethical and social issues on the human genome analysis].

    Science.gov (United States)

    Archer, L

    1992-03-01

    The modern technologies for human genome analysis raise a variety of ethical and social questions. The pre-symptomatic diagnostic of diseases of late expression is becoming possible for a rapidly increasing number of situations. The use of that knowledge by employers, insurance companies, schools, and society in general, could lead to discriminations and stigmatizations, in addition to adverse psychological reactions. DNA fingerprinting raises questions of privacy and personal autonomy in its applications to paternity proof, criminal proceedings, and establishment of data banks. The project of the immediate and complete sequencing of the human genome will lead to questions of economical ethics, as well as of access, commercialization and property rights of scientific information and materials obtained. It also favours a reducionistic mentality and international unbalances. The molecular biology of humans, which will follow the complete sequencing of the genome, may foster a rethinking of the concepts of freedom of self-determination (basic for moral responsibility) and of equality. The gene therapy and its possible extension to the betterment of the human species, pose questions of ethical limits to this technology. All these problems will have to be answered in terms of the application of the principle of ethical freedom for self-fulfillment, as a right of the human person, as well as of science and society. Scientific, economic and social interests have to be subordinated to the dignity of the human person.

  10. Is Ki-67 of Diagnostic Value in Distinguishing Between Partial and Complete Hydatidiform Moles? A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Zhao, Yue; Xiong, Guang-Wu; Zhang, Xiao-Wei; Hang, B O

    2018-02-01

    To demonstrate the value of Ki-67 in distinguishing between partial and complete hydatidiform moles. We searched electronic databases included Medline, WOK, Cochrane Library and CNKI, through January 24, 2015. Experts were consulted, and references from related articles were examined. The meta-analysis was conducted with RevMan5.3, according to the PRISMA guidelines. Mantel-Haenszel estimates were calculated and pooled under a random effect model, with data expressed as odds ratio (OR) and 95% confidence interval (CI). We analyzed eight trials with a total of 337 participants who underwent uterine curettage and met the inclusion criteria. A significantly higher expression of Ki-67 was observed in complete than in partial hydatidiform moles (OR=3.28; 95%CI=1.80-5.96; pvalue in distinguishing between partial and complete hydatidiform moles. However, the present study had only a limited number of samples, so investigation of a greater number of cases is needed to confirm this conclusion. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis

    International Nuclear Information System (INIS)

    Shen, Guohua; Jia, Zhiyun; Deng, Houfu

    2016-01-01

    The potential performance of apparent diffusion coefficient (ADC) values for distinguishing malignant and benign pulmonary lesions, further characterizing the subtype of lung cancer was assessed. PubMed, EMBASE, Cochrane Library, EBSCO, and three Chinese databases were searched to identify eligible studies on diffusion-weighted imaging (DWI) of focal pulmonary lesions. ADC values of malignant and benign lesions were extracted by lesion type and statistically pooled based on a linear mixed model. Further analysis for subtype of lung cancer was also performed. The methodological quality was assessed using the quality assessment of diagnostic accuracy studies tool. Thirty-four articles involving 2086 patients were included. Malignant pulmonary lesions have significantly lower ADC values than benign lesions [1.21 (95 % CI, 1.19-1.22) mm 2 /s vs. 1.76 (95 % CI, 1.72-1.80) mm 2 /s; P < 0.05]. There is a significant difference between ADC values of small cell lung cancer and non-small cell lung cancer (P < 0.05), while the differences were not significant among histological subtypes of lung cancer. The methodological quality was relatively high, and the data points from Begg's test indicated that there was probably no obvious publication bias. The ADC value is helpful for distinguishing malignant and benign pulmonary lesions and provides a promising method for differentiation of SCLC from NSCLC. (orig.)

  12. Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guohua; Jia, Zhiyun; Deng, Houfu [Sichuan University, Department of Nuclear Medicine, West China Hospital, Chengdu, Sichuan (China)

    2016-02-15

    The potential performance of apparent diffusion coefficient (ADC) values for distinguishing malignant and benign pulmonary lesions, further characterizing the subtype of lung cancer was assessed. PubMed, EMBASE, Cochrane Library, EBSCO, and three Chinese databases were searched to identify eligible studies on diffusion-weighted imaging (DWI) of focal pulmonary lesions. ADC values of malignant and benign lesions were extracted by lesion type and statistically pooled based on a linear mixed model. Further analysis for subtype of lung cancer was also performed. The methodological quality was assessed using the quality assessment of diagnostic accuracy studies tool. Thirty-four articles involving 2086 patients were included. Malignant pulmonary lesions have significantly lower ADC values than benign lesions [1.21 (95 % CI, 1.19-1.22) mm{sup 2}/s vs. 1.76 (95 % CI, 1.72-1.80) mm{sup 2}/s; P < 0.05]. There is a significant difference between ADC values of small cell lung cancer and non-small cell lung cancer (P < 0.05), while the differences were not significant among histological subtypes of lung cancer. The methodological quality was relatively high, and the data points from Begg's test indicated that there was probably no obvious publication bias. The ADC value is helpful for distinguishing malignant and benign pulmonary lesions and provides a promising method for differentiation of SCLC from NSCLC. (orig.)

  13. Chiral Analysis of Methamphetamine in Oral Fluid Samples: A Method to Distinguish Licit from Illicit Drug Use.

    Science.gov (United States)

    Borg, Damon; Kolb, Elizabeth; Lantigua, Cindy; Stripp, Richard

    2018-01-01

    Methamphetamine (MAMP) is a popular illicit drug abused for its central nervous system stimulating effects. MAMP is also used therapeutically in the treatment of overeating disorders, narcolepsy, attention deficit disorder, in over-the-counter (OTC) products to ease nasal congestion. MAMP exists in two enantiomeric forms, dextrorotary (d-MAMP) or levorotary (l-MAMP). The compounds are similar in chemical structure, simply differing in the orientation of functional groups around the asymmetric carbon. In part because of the availability of l-MAMP in OTC nasal inhalers, forensic guidelines require a sample to contain greater than 20% d-MAMP to consider illicit drug use when interpreting results. Standard analytical methods readily detect MAMP in biological specimens but cannot resolve the enantiomeric composition of the sample. Specialized analytical techniques based on chiral separation of the enantiomers are required to differentiate d-MAMP from l-MAMP. Our laboratory sought to develop and validate a method for the analysis of oral fluid specimens for d/l-MAMP using a chiral derivatizing agent and traditional reverse phase liquid chromatography tandem mass spectrometry (LC-MS-MS). MAMP was extracted from dilute oral fluid samples using Strata-XC solid phase extraction (SPE) cartridges and derivatized with Marfey's reagent. Chromatographic separation was achieved using Zorbax Eclipse Plus C18 columns. Linearity, accuracy and precision, recovery, matrix effects and specificity of the method were all within acceptable criteria. Intraday accuracy ranged from 93.3 to 103.4% and precision 0.1 to 1.6%. Interday accuracy ranged from 90.0 to 103.4% and precision 3.8 to 11.6%. Finally, having previously tested positive for MAMP using non-chiral analysis, 256 de-identified authentic oral fluid samples were analyzed using this validated method. 98% of all samples tested positive for d-MAMP at greater than 20%.

  14. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    Science.gov (United States)

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  15. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    Science.gov (United States)

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites. Copyright © 2015 Kulohoma et al.

  16. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome

    Science.gov (United States)

    Cornick, Jennifer E.; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R.; Gray, Katherine J.; Kiran, Anmol M.; Molyneux, Elizabeth; French, Neil; Faragher, Brian E.; Everett, Dean B.; Bentley, Stephen D.

    2015-01-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites. PMID:26259813

  17. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources.

    Directory of Open Access Journals (Sweden)

    Cassidy L Klima

    Full Text Available Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1 and 6 (S6 isolated from pneumonic lesions and serotype 2 (S2 found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2-8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design

  18. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Directory of Open Access Journals (Sweden)

    Giang T. H. Vu

    2015-11-01

    Full Text Available The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus , displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus . The Steyerm. genome (86 Mbp has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The Stapf genome has expanded by whole-genome duplication (WGD and retrotransposition to 1550 Mbp. became allotetraploid after the split from the clade ∼29 Ma. A. St.-Hil. (179 Mbp, a close relative of , proved to be a recent (autotetraploid. Our analyses suggest a common ancestor of the genus a with an intermediate 1C value (400–800 Mbp and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.

  19. Radiation induced genome instability: multiscale modelling and data analysis

    Science.gov (United States)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  20. Whole genome comparative analysis of four Georgian grape cultivars.

    Science.gov (United States)

    Tabidze, V; Pipia, I; Gogniashvili, M; Kunelauri, N; Ujmajuridze, L; Pirtskhalava, M; Vishnepolsky, B; Hernandez, A G; Fields, C J; Beridze, Tengiz

    2017-12-01

    Grapevine is the one of the most important fruit species in the world. Comparative genome sequencing of grape cultivars is very important for the interpretation of the grape genome and understanding its evolution. The genomes of four Georgian grape cultivars-Chkhaveri, Saperavi, Meskhetian green, and Rkatsiteli, belonging to different haplogroups, were resequenced. The shotgun genomic libraries of grape cultivars were sequenced on an Illumina HiSeq. Pinot Noir nuclear, mitochondrial, and chloroplast DNA were used as reference. Mitochondrial DNA of Chkhaveri closely matches that of the reference Pinot noir mitochondrial DNA, with the exception of 16 SNPs found in the Chkhaveri mitochondrial DNA. The number of SNPs in mitochondrial DNA from Saperavi, Meskhetian green, and Rkatsiteli was 764, 702, and 822, respectively. Nuclear DNA differs from the reference by 1,800,675 nt in Chkhaveri, 1,063,063 nt in Meskhetian green, 2,174,995 in Saperavi, and 5,011,513 in Rkatsiteli. Unlike mtDNA Pinot noir, chromosomal DNA is closer to the Meskhetian green than to other cultivars. Substantial differences in the number of SNPs in mitochondrial and nuclear DNA of Chkhaveri and Pinot noir cultivars are explained by backcrossing or introgression of their wild predecessors before or during the process of domestication. Annotation of chromosomal DNA of Georgian grape cultivars by MEGANTE, a web-based annotation system, shows 66,745 predicted genes (Chkhaveri-17,409; Saperavi-17,021; Meskhetian green-18,355; and Rkatsiteli-13,960). Among them, 106 predicted genes and 43 pseudogenes of terpene synthase genes were found in chromosomes 12, 18 random (18R), and 19. Four novel TPS genes not present in reference Pinot noir DNA were detected. Two of them-germacrene A synthase (Chromosome 18R) and (-) germacrene D synthase (Chromosome 19) can be identified as putatively full-length proteins. This work performs the first attempt of the comparative whole genome analysis of different haplogroups

  1. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    a useful tool to visualize the genome composition and sig- natures of nucleotide sequences, where patterns .... K03455) were obtained using the gene cutter tool. (www.hiv.lanl.gov.in). Chaos game .... (b) RC1 control of the HXB2 genome, (c) SIVCPZ genome and (d) HTLV-1 genome. 406. Journal of Genetics, Vol. 92, No.

  2. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    genome signature; DRAP; HIV-1; chaos game representation. Abstract. Dinucleotide usage is known to vary in the genomes of organisms. The dinucleotide usage profiles or genome signatures are similar for sequence samples taken from the same genome, but are different for taxonomically distant species. This concept of ...

  3. Giving versus acting: Using latent profile analysis to distinguish between benevolent and activist support for global poverty reduction.

    Science.gov (United States)

    Thomas, Emma F; McGarty, Craig

    2018-01-01

    There are a variety of ways that people can respond to inequality. This article considers the distinction between collective giving and collective acting, but also adopts a focus on the people who engage in those behaviours. Benevolent supporters engage in efforts to alleviate suffering through the transfer of money or provision of goods ('giving'), while activist supporters engage in actions that aim to challenging an underlying injustice or exploitation ('acting'). Using samples obtained through anti-poverty non-governmental organizations (N = 2,340), latent profile analysis suggested two qualitatively different forms of support for global poverty reduction: a benevolent supporter profile (defined by moderate levels of charitable support) and an activist supporter profile (defined by engagement in a suite of socio-political actions). The two forms of support are predicted by different appraisals for, emotional reactions to (outrage v sympathy), and social change beliefs about, global injustice. Results highlight the theoretical and practical importance of considering subgroup differences in how social justice is pursued. © 2017 The British Psychological Society.

  4. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina

    2014-01-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive...... dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in 13C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation....... Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after ∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does...

  5. Systematic analysis of alternative first exons in plant genomes

    Directory of Open Access Journals (Sweden)

    Zeng Changqing

    2007-10-01

    Full Text Available Abstract Background Alternative splicing (AS contributes significantly to protein diversity, by selectively using different combinations of exons of the same gene under certain circumstances. One particular type of AS is the use of alternative first exons (AFEs, which can have consequences far beyond the fine-tuning of protein functions. For example, AFEs may change the N-termini of proteins and thereby direct them to different cellular compartments. When alternative first exons are distant, they are usually associated with alternative promoters, thereby conferring an extra level of gene expression regulation. However, only few studies have examined the patterns of AFEs, and these analyses were mainly focused on mammalian genomes. Recent studies have shown that AFEs exist in the rice genome, and are regulated in a tissue-specific manner. Our current understanding of AFEs in plants is still limited, including important issues such as their regulation, contribution to protein diversity, and evolutionary conservation. Results We systematically identified 1,378 and 645 AFE-containing clusters in rice and Arabidopsis, respectively. From our data sets, we identified two types of AFEs according to their genomic organisation. In genes with type I AFEs, the first exons are mutually exclusive, while most of the downstream exons are shared among alternative transcripts. Conversely, in genes with type II AFEs, the first exon of one gene structure is an internal exon of an alternative gene structure. The functionality analysis indicated about half and ~19% of the AFEs in Arabidopsis and rice could alter N-terminal protein sequences, and ~5% of the functional alteration in type II AFEs involved protein domain addition/deletion in both genomes. Expression analysis indicated that 20~66% of rice AFE clusters were tissue- and/or development- specifically transcribed, which is consistent with previous observations; however, a much smaller percentage of Arabidopsis

  6. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  7. Orchestrating high-throughput genomic analysis with Bioconductor

    Science.gov (United States)

    Huber, Wolfgang; Carey, Vincent J.; Gentleman, Robert; Anders, Simon; Carlson, Marc; Carvalho, Benilton S.; Bravo, Hector Corrada; Davis, Sean; Gatto, Laurent; Girke, Thomas; Gottardo, Raphael; Hahne, Florian; Hansen, Kasper D.; Irizarry, Rafael A.; Lawrence, Michael; Love, Michael I.; MacDonald, James; Obenchain, Valerie; Oleś, Andrzej K.; Pagès, Hervé; Reyes, Alejandro; Shannon, Paul; Smyth, Gordon K.; Tenenbaum, Dan; Waldron, Levi; Morgan, Martin

    2015-01-01

    Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors. PMID:25633503

  8. Genome sequence and analysis of the tuber crop potato

    DEFF Research Database (Denmark)

    Xu, X.; Pan, S.; Cheng, S.

    2011-01-01

    and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade...... contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop....

  9. The integrated microbial genomes (IMG) system in 2007: datacontent and analysis tool extensions

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Szeto, Ernest; Palaniappan, Krishna; Grechkin, Yuri; Chu, Ken; Chen, I-Min A.; Dubchak, Inna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2007-08-01

    The Integrated Microbial Genomes (IMG) system is a data management, analysis and annotation platform for all publicly available genomes. IMG contains both draft and complete JGI microbial genomes integrated with all other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and annotating genomes, genes and functions, individually or in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through quarterly releases. IMG is provided by the DOE-Joint Genome Institute (JGI) and is available from http://img.jgi.doe.gov.

  10. Comparative analysis of genomic signal processing for microarray data clustering.

    Science.gov (United States)

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.

  11. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    standardized simulations. Model files for various model organisms (fungi and bacteria) are included. Overall, the BioMet Toolbox serves as a valuable resource for exploring the capabilities of these metabolic networks. BioMet Toolbox is freely available at www.sysbio.se/BioMet/....... models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different conditions possible. For facilitating such systemic analysis, we have developed the BioMet Toolbox, a web......-based resource for stoichiometric analysis and for integration of transcriptome and interactome data, thereby exploiting the capabilities of genome-scale metabolic models. The BioMet Toolbox provides an effective user-friendly way to perform linear programming simulations towards maximized or minimized growth...

  12. Comparative Genomics and Transcriptomic Analysis of Mycobacterium Kansasii

    KAUST Repository

    Alzahid, Yara

    2014-04-01

    The group of Mycobacteria is one of the most intensively studied bacterial taxa, as they cause the two historical and worldwide known diseases: leprosy and tuberculosis. Mycobacteria not identified as tuberculosis or leprosy complex, have been referred to by ‘environmental mycobacteria’ or ‘Nontuberculous mycobacteria (NTM). Mycobacterium kansasii (M. kansasii) is one of the most frequent NTM pathogens, as it causes pulmonary disease in immuno-competent patients and pulmonary, and disseminated disease in patients with various immuno-deficiencies. There have been five documented subtypes of this bacterium, by different molecular typing methods, showing that type I causes tuberculosis-like disease in healthy individuals, and type II in immune-compromised individuals. The remaining types are said to be environmental, thereby, not causing any diseases. The aim of this project was to conduct a comparative genomic study of M. kansasii types I-V and investigating the gene expression level of those types. From various comparative genomics analysis, provided genomics evidence on why M. kansasii type I is considered pathogenic, by focusing on three key elements that are involved in virulence of Mycobacteria: ESX secretion system, Phospholipase c (plcb) and Mammalian cell entry (Mce) operons. The results showed the lack of the espA operon in types II-V, which renders the ESX- 1 operon dysfunctional, as espA is one of the key factors that control this secretion system. However, gene expression analysis showed this operon to be deleted in types II, III and IV. Furthermore, plcB was found to be truncated in types III and IV. Analysis of Mce operons (1-4) show that mce-1 operon is duplicated, mce-2 is absent and mce-3 and mce-4 is present in one copy in M. kansasii types I-V. Gene expression profiles of type I-IV, showed that the secreted proteins of ESX-1 were slightly upregulated in types II-IV when compared to type I and the secreted forms of ESX-5 were highly down

  13. Using LC and Hierarchical Cluster Analysis as Tools to Distinguish Timbó Collections into Two Deguelia Species: A Contribution to Chemotaxonomy.

    Science.gov (United States)

    da Costa, Danielle; E Silva, Consuelo; Pinheiro, Aline; Frommenwiler, Débora; Arruda, Mara; Guilhon, Giselle; Alves, Cláudio; Arruda, Alberto; Da Silva, Milton

    2016-04-30

    The species Deguelia utilis and Deguelia rufescens var. urucu, popularly known as "timbó," have been used for many years as rotenone sources in insecticide formulations. In this work, a method was developed and validated using a high-performance liquid chromatography-photodiode array (HPLC-PDA) system, and results were analyzed using hierarchical cluster analysis (HCA). By quantifying the major rotenoids of these species, it was possible to establish a linear relation between them. The ratio between the concentrations of rotenone and deguelin for D. utilis is approximately 1:0.8, respectively, while for D. rufescens var. urucu it is 2:1. These results may help to distinguish these species contributing to their taxonomic identification.

  14. Using LC and Hierarchical Cluster Analysis as Tools to Distinguish Timbó Collections into Two Deguelia Species: A Contribution to Chemotaxonomy

    Directory of Open Access Journals (Sweden)

    Danielle da Costa

    2016-04-01

    Full Text Available The species Deguelia utilis and Deguelia rufescens var. urucu, popularly known as “timbó,” have been used for many years as rotenone sources in insecticide formulations. In this work, a method was developed and validated using a high-performance liquid chromatography-photodiode array (HPLC-PDA system, and results were analyzed using hierarchical cluster analysis (HCA. By quantifying the major rotenoids of these species, it was possible to establish a linear relation between them. The ratio between the concentrations of rotenone and deguelin for D. utilis is approximately 1:0.8, respectively, while for D. rufescens var. urucu it is 2:1. These results may help to distinguish these species contributing to their taxonomic identification.

  15. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  16. IMG 4 version of the integrated microbial genomes comparative analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chen, I-Min A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Palaniappan, Krishna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chu, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Szeto, Ernest [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Pillay, Manoj [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Ratner, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Huang, Jinghua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Huntemann, Marcel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Anderson, Iain [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Billis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Varghese, Neha [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Mavromatis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Pati, Amrita [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Ivanova, Natalia N. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program

    2013-10-27

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).

  17. Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Directory of Open Access Journals (Sweden)

    Zhongqi Ge

    2018-04-01

    Full Text Available Summary: Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies. : Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the importance of this pathway in cancer development. Keywords: ubiquitin pathway, pan-cancer analysis, The Cancer Genome Atlas, tumor subtype, cancer prognosis, therapeutic targets, biomarker, FBXW7

  18. Fine population structure analysis method for genomes of many.

    Science.gov (United States)

    Pan, Xuedong; Wang, Yi; Wong, Emily H M; Telenti, Amalio; Venter, J Craig; Jin, Li

    2017-10-03

    Fine population structure can be examined through the clustering of individuals into subpopulations. The clustering of individuals in large sequence datasets into subpopulations makes the calculation of subpopulation specific allele frequency possible, which may shed light on selection of candidate variants for rare diseases. However, as the magnitude of the data increases, computational burden becomes a challenge in fine population structure analysis. To address this issue, we propose fine population structure analysis (FIPSA), which is an individual-based non-parametric method for dissecting fine population structure. FIPSA maximizes the likelihood ratio of the contingency table of the allele counts multiplied by the group. We demonstrated that its speed and accuracy were superior to existing non-parametric methods when the simulated sample size was up to 5,000 individuals. When applied to real data, the method showed high resolution on the Human Genome Diversity Project (HGDP) East Asian dataset. FIPSA was independently validated on 11,257 human genomes. The group assignment given by FIPSA was 99.1% similar to those assigned based on supervised learning. Thus, FIPSA provides high resolution and is compatible with a real dataset of more than ten thousand individuals.

  19. Genomic Analysis of a Serotype 5 Streptococcus pneumoniae Outbreak in British Columbia, Canada, 2005–2009

    Directory of Open Access Journals (Sweden)

    Ruth R. Miller

    2016-01-01

    Full Text Available Background. Streptococcus pneumoniae can cause a wide spectrum of disease, including invasive pneumococcal disease (IPD. From 2005 to 2009 an outbreak of IPD occurred in Western Canada, caused by a S. pneumoniae strain with multilocus sequence type (MLST 289 and serotype 5. We sought to investigate the incidence of IPD due to this S. pneumoniae strain and to characterize the outbreak in British Columbia using whole-genome sequencing. Methods. IPD was defined according to Public Health Agency of Canada guidelines. Two isolates representing the beginning and end of the outbreak were whole-genome sequenced. The sequences were analyzed for single nucleotide variants (SNVs and putative genomic islands. Results. The peak of the outbreak in British Columbia was in 2006, when 57% of invasive S. pneumoniae isolates were serotype 5. Comparison of two whole-genome sequenced strains showed only 10 SNVs between them. A 15.5 kb genomic island was identified in outbreak strains, allowing the design of a PCR assay to track the spread of the outbreak strain. Discussion. We show that the serotype 5 MLST 289 strain contains a distinguishing genomic island, which remained genetically consistent over time. Whole-genome sequencing holds great promise for real-time characterization of outbreaks in the future and may allow responses tailored to characteristics identified in the genome.

  20. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... on Tabasco), led us to the detection of a high-resolution map of segmental duplications in the pig genome. Comparing these segments with four other Duroc animals sequenced at our institute, supplied the resources needed to describe the first genome-wide and systematic analysis of segmental duplications...

  1. Use of application containers and workflows for genomic data analysis.

    Science.gov (United States)

    Schulz, Wade L; Durant, Thomas J S; Siddon, Alexa J; Torres, Richard

    2016-01-01

    The rapid acquisition of biological data and development of computationally intensive analyses has led to a need for novel approaches to software deployment. In particular, the complexity of common analytic tools for genomics makes them difficult to deploy and decreases the reproducibility of computational experiments. Recent technologies that allow for application virtualization, such as Docker, allow developers and bioinformaticians to isolate these applications and deploy secure, scalable platforms that have the potential to dramatically increase the efficiency of big data processing. While limitations exist, this study demonstrates a successful implementation of a pipeline with several discrete software applications for the analysis of next-generation sequencing (NGS) data. With this approach, we significantly reduced the amount of time needed to perform clonal analysis from NGS data in acute myeloid leukemia.

  2. Use of application containers and workflows for genomic data analysis

    Directory of Open Access Journals (Sweden)

    Wade L Schulz

    2016-01-01

    Full Text Available Background: The rapid acquisition of biological data and development of computationally intensive analyses has led to a need for novel approaches to software deployment. In particular, the complexity of common analytic tools for genomics makes them difficult to deploy and decreases the reproducibility of computational experiments. Methods: Recent technologies that allow for application virtualization, such as Docker, allow developers and bioinformaticians to isolate these applications and deploy secure, scalable platforms that have the potential to dramatically increase the efficiency of big data processing. Results: While limitations exist, this study demonstrates a successful implementation of a pipeline with several discrete software applications for the analysis of next-generation sequencing (NGS data. Conclusions: With this approach, we significantly reduced the amount of time needed to perform clonal analysis from NGS data in acute myeloid leukemia.

  3. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  4. PanWeb: A web interface for pan-genomic analysis.

    Directory of Open Access Journals (Sweden)

    Yan Pantoja

    Full Text Available With increased production of genomic data since the advent of next-generation sequencing (NGS, there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline, Panseq (Pan-Genome Sequence Analysis Program and PGAT (Prokaryotic Genome Analysis Tool. Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.

  5. PanWeb: A web interface for pan-genomic analysis.

    Science.gov (United States)

    Pantoja, Yan; Pinheiro, Kenny; Veras, Allan; Araújo, Fabrício; Lopes de Sousa, Ailton; Guimarães, Luis Carlos; Silva, Artur; Ramos, Rommel T J

    2017-01-01

    With increased production of genomic data since the advent of next-generation sequencing (NGS), there has been a need to develop new bioinformatics tools and areas, such as comparative genomics. In comparative genomics, the genetic material of an organism is directly compared to that of another organism to better understand biological species. Moreover, the exponentially growing number of deposited prokaryote genomes has enabled the investigation of several genomic characteristics that are intrinsic to certain species. Thus, a new approach to comparative genomics, termed pan-genomics, was developed. In pan-genomics, various organisms of the same species or genus are compared. Currently, there are many tools that can perform pan-genomic analyses, such as PGAP (Pan-Genome Analysis Pipeline), Panseq (Pan-Genome Sequence Analysis Program) and PGAT (Prokaryotic Genome Analysis Tool). Among these software tools, PGAP was developed in the Perl scripting language and its reliance on UNIX platform terminals and its requirement for an extensive parameterized command line can become a problem for users without previous computational knowledge. Thus, the aim of this study was to develop a web application, known as PanWeb, that serves as a graphical interface for PGAP. In addition, using the output files of the PGAP pipeline, the application generates graphics using custom-developed scripts in the R programming language. PanWeb is freely available at http://www.computationalbiology.ufpa.br/panweb.

  6. Distinguishing between old and modern permafrost sources in the northeast Siberian land-shelf system with compound-specific δ2H analysis

    Science.gov (United States)

    Vonk, Jorien E.; Tesi, Tommaso; Bröder, Lisa; Holmstrand, Henry; Hugelius, Gustaf; Andersson, August; Dudarev, Oleg; Semiletov, Igor; Gustafsson, Örjan

    2017-08-01

    Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC) stored in permafrost (PF) terrain. When permafrost thaws, its OC is remobilized into the (aquatic) environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC.We here present compound-specific deuterium (δ2H) analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD) and from thawing Holocene permafrost (from near-surface soils). Bulk geochemistry (%OC; δ13C; %total nitrogen, TN) was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33) and mid- to long-chain n-alkanoic acids (C16 to C30) extracted from both ICD-PF samples (n = 9) and modern vegetation and O-horizon (topsoil-PF) samples (n = 9) from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC / TN values and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker δ2H values are statistically different between topsoil PF and ICD PF. For example, the mean δ2H value of C29 n-alkane was -246 ± 13 ‰ (mean ± SD) for topsoil PF and -280 ± 12 ‰ for ICD PF. With a dynamic isotopic range (difference between two sources) of 34 to 50 ‰; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can thus serve as endmembers to distinguish between

  7. Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis.

    Science.gov (United States)

    Ren, Juanjuan; Zhao, Guoqing; Sun, Xiujia; Liu, Hongmei; Jiang, Ping; Chen, Jun; Wu, Zhiguo; Peng, Daihui; Fang, Yiru; Zhang, Chen

    2017-12-01

    It is important to differentiate between bipolar disorder (BD) and major depressive disorder (MDD) in the first depressive episode because of the potential treatment implications. Previous studies have mainly focused on the different clinical features or pathological biomarkers to distinguish these two diseases; however, a better understanding of the proteomics profiling of BD may help aid future therapeutic strategies. Here, we applied isobaric tags for relative and absolute quantification (iTRAQ) technology combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins between MDD and bipolar depression (BP). In total, 30 MDD, 30 BP and 30 healthy subjects were included. Proteins from depleted plasma samples were digested into peptides, individually labeled with iTRAQ reagents, combined and subjected to LC-MS/MS and further bioinformatics analyses. Our results showed that 9 proteins were significantly altered between MDD and BP. Briefly, B2RAN2, B4E1B2, APOA1, ENG, SBSN and QSOX2 were up-regulated, whereas ORM1, MRC2 and SLPI were down-regulated. Most identified proteins were related to the immune system. The bioinformatics analysis showed that B2RAN2 (highly similar to vanin-1) was involved in the significantly enriched KEGG pathways "pantothenate and CoA biosynthesis" (P=0.009). B2RAN2 and ENG may play important roles in depression. They may serve as candidate biomarkers for distinguishing MDD and BP. Further validation and investigation are required to illuminate the roles of B2RAN2 and ENG in MDD and BP. The current study provided a potential and novel biomarker panel that may, in turn, aid the diagnosis of BD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pan-Cancer Analysis of Genomic Sequencing Among the Elderly.

    Science.gov (United States)

    Wahl, Daniel R; Nguyen, Paul L; Santiago, Maria; Yousefi, Kasra; Davicioni, Elai; Shumway, Dean A; Speers, Corey; Mehra, Rohit; Feng, Felix Y; Osborne, Joseph R; Spratt, Daniel E

    2017-07-15

    We hypothesized that elderly patients might have age-specific genetic abnormalities yet be underrepresented in currently available sequencing repositories, which could limit the effect of sequencing efforts for this population. Leveraging The Cancer Genome Atlas (TCGA) data portal, 9 tumor types were analyzed. The frequency distribution of cancer by age was determined and compared with Surveillance, Epidemiology, and End Results data. Using the estimated median somatic mutational frequency of each tumor type, the samples needed beyond TCGA to detect a 10% mutational frequency were calculated. Microarray data from a separate prospective cohort were obtained from primary prostatectomy samples to determine whether elderly-specific transcriptomic alterations could be identified. Of the 5236 TCGA samples, 73% were from patients aged elderly patients with cancer were likely to harbor age-specific molecular abnormalities, we accessed transcriptomic data from a separate, larger database of >2000 prostate cancer samples. That analysis revealed significant differences in the expression of 10 genes in patients aged ≥70 years compared with those Elderly patients have been underrepresented in genomic sequencing studies. Our data suggest the presence of elderly-specific molecular alterations. Further dedicated efforts to understand the biology of cancer among the elderly will be important moving forward. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genome-Wide Analysis of Human Metapneumovirus Evolution.

    Directory of Open Access Journals (Sweden)

    Jin Il Kim

    Full Text Available Human metapneumovirus (HMPV has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2. A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

  10. Delineation of Steroid-Degrading Microorganisms through Comparative Genomic Analysis

    Directory of Open Access Journals (Sweden)

    Lee H. Bergstrand

    2016-03-01

    Full Text Available Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria.

  11. Pan-genome analysis of Senegalese and Gambian strains of ...

    African Journals Online (AJOL)

    In this work, the pan-genome of B. anthracis was studied based on nine strains and using bioinformatics tools as Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Thereafter, B. anthracis pan-genome having 2893 core genes and 85 accessory genes was estimated.

  12. Comparative genomic in situ hybridization analysis on the ...

    African Journals Online (AJOL)

    Comparative genomic in situ hybridization (cGISH) with biotin-labeled rice genomic DNA to the chromosomes of Zea mays, Hordeum vulgare, Sorghum bicolor, Setaria italic and Secale cereale were conducted to analyze genomic homology between rice and other grass (Gramineae) speices. At 75% stringency, the rice ...

  13. Complete genome sequence analysis of chicken astrovirus isolate from India.

    Science.gov (United States)

    Patel, Amrutlal K; Pandit, Ramesh J; Thakkar, Jalpa R; Hinsu, Ankit T; Pandey, Vinod C; Pal, Joy K; Prajapati, Kantilal S; Jakhesara, Subhash J; Joshi, Chaitanya G

    2017-03-01

    Chicken astroviruses have been known to cause severe disease in chickens leading to increased mortality and "white chicks" condition. Here we aim to characterize the causative agent of visceral gout suspected for astrovirus infection in broiler breeder chickens. Total RNA isolated from allantoic fluid of SPF embryo passaged with infected chicken sample was sequenced by whole genome shotgun sequencing using ion-torrent PGM platform. The sequence was analysed for the presence of coding and non-coding features, its similarity with reported isolates and epitope analysis of capsid structural protein. The consensus length of 7513 bp genome sequence of Indian isolate of chicken astrovirus was obtained after assembly of 14,121 high quality reads. The genome was comprised of 13 bp 5'-UTR, three open reading frames (ORFs) including ORF1a encoding serine protease, ORF1b encoding RNA dependent RNA polymerase (RdRp) and ORF2 encoding capsid protein, and 298 bp of 3'-UTR which harboured two corona virus stem loop II like "s2m" motifs and a poly A stretch of 19 nucleotides. The genetic analysis of CAstV/INDIA/ANAND/2016 suggested highest sequence similarity of 86.94% with the chicken astrovirus isolate CAstV/GA2011 followed by 84.76% with CAstV/4175 and 74.48%% with CAstV/Poland/G059/2014 isolates. The capsid structural protein of CAstV/INDIA/ANAND/2016 showed 84.67% similarity with chicken astrovirus isolate CAstV/GA2011, 81.06% with CAstV/4175 and 41.18% with CAstV/Poland/G059/2014 isolates. However, the capsid protein sequence showed high degree of sequence identity at nucleotide level (98.64-99.32%) and at amino acids level (97.74-98.69%) with reported sequences of Indian isolates suggesting their common origin and limited sequence divergence. The epitope analysis by SVMTriP identified two unique epitopes in our isolate, seven shared epitopes among Indian isolates and two shared epitopes among all isolates except Poland isolate which carried all distinct epitopes.

  14. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  15. The tiger genome and comparative analysis with lion and snow leopard genomes

    Science.gov (United States)

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-uk; Luo, Shu-Jin; Johnson, Warren E.; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A.; Marker, Laurie; Harper, Cindy; Miller, Susan M.; Jacobs, Wilhelm; Bertola, Laura D.; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O’Brien, Stephen J.; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world’s most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats’ hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species. PMID:24045858

  16. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  17. The tiger genome and comparative analysis with lion and snow leopard genomes.

    Science.gov (United States)

    Cho, Yun Sung; Hu, Li; Hou, Haolong; Lee, Hang; Xu, Jiaohui; Kwon, Soowhan; Oh, Sukhun; Kim, Hak-Min; Jho, Sungwoong; Kim, Sangsoo; Shin, Young-Ah; Kim, Byung Chul; Kim, Hyunmin; Kim, Chang-Uk; Luo, Shu-Jin; Johnson, Warren E; Koepfli, Klaus-Peter; Schmidt-Küntzel, Anne; Turner, Jason A; Marker, Laurie; Harper, Cindy; Miller, Susan M; Jacobs, Wilhelm; Bertola, Laura D; Kim, Tae Hyung; Lee, Sunghoon; Zhou, Qian; Jung, Hyun-Ju; Xu, Xiao; Gadhvi, Priyvrat; Xu, Pengwei; Xiong, Yingqi; Luo, Yadan; Pan, Shengkai; Gou, Caiyun; Chu, Xiuhui; Zhang, Jilin; Liu, Sanyang; He, Jing; Chen, Ying; Yang, Linfeng; Yang, Yulan; He, Jiaju; Liu, Sha; Wang, Junyi; Kim, Chul Hong; Kwak, Hwanjong; Kim, Jong-Soo; Hwang, Seungwoo; Ko, Junsu; Kim, Chang-Bae; Kim, Sangtae; Bayarlkhagva, Damdin; Paek, Woon Kee; Kim, Seong-Jin; O'Brien, Stephen J; Wang, Jun; Bhak, Jong

    2013-01-01

    Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.

  18. Genomic Analysis of Two Phylogenetically DistinctNitrospiraSpecies Reveals Their Genomic Plasticity and Functional Diversity.

    Science.gov (United States)

    Ushiki, Norisuke; Fujitani, Hirotsugu; Shimada, Yu; Morohoshi, Tomohiro; Sekiguchi, Yuji; Tsuneda, Satoshi

    2017-01-01

    The genus Nitrospira represents a dominant group of nitrite-oxidizing bacteria in natural and engineered ecosystems. This genus is phylogenetically divided into six lineages, for which vast phylogenetic and functional diversity has been revealed by recent molecular ecophysiological analyses. However, the genetic basis underlying these phenotypic differences remains largely unknown because of the lack of genome sequences representing their diversity. To gain a more comprehensive understanding of Nitrospira , we performed genomic comparisons between two Nitrospira strains (ND1 and NJ1 belonging to lineages I and II, respectively) previously isolated from activated sludge. In addition, the genomes of these strains were systematically compared with previously reported six Nitrospira genomes to reveal their similarity and presence/absence of several functional genes/operons. Comparisons of Nitrospira genomes indicated that their genomic diversity reflects phenotypic differences and versatile nitrogen metabolisms. Although most genes involved in key metabolic pathways were conserved between strains ND1 and NJ1, assimilatory nitrite reduction pathways of the two Nitrospira strains were different. In addition, the genomes of both strains contain a phylogenetically different urease locus and we confirmed their ureolytic activity. During gene annotation of strain NJ1, we found a gene cluster encoding a quorum-sensing system. From the enriched supernatant of strain NJ1, we successfully identified seven types of acyl-homoserine lactones with a range of C10-C14. In addition, the genome of strain NJ1 lacks genes relevant to flagella and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated genes) systems, whereas most nitrifying bacteria including strain ND1 possess these genomic elements. These findings enhance our understanding of genomic plasticity and functional diversity among members of the genus Nitrospira .

  19. Research study on analysis/use technologies of genome information; Genome joho kaidoku riyo gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For wide use of genome information in the industrial field, the required R and D was surveyed from the standpoints of biology and information science. To clarify the present state and issues of the international research on genome analysis, the genome map as well as sequence and function information are first surveyed. The current analysis/use technologies of genome information are analyzed, and the following are summarized: prediction and identification of gene regions in genome sequences, techniques for searching and selecting useful genes, and techniques for predicting the expression of gene functions and the gene-product structure and functions. It is recommended that R and D and data collection/interpretation necessary to clarify inter-gene interactions and information networks should be promoted by integrating Japanese advanced know-how and technologies. As examples of the impact of the research results on industry and society, the present state and future expected effect are summarized for medicines, diagnosis/analysis instruments, chemicals, foods, agriculture, fishery, animal husbandry, electronics, environment and information. 278 refs., 42 figs., 5 tabs.

  20. Exploring a Nonmodel Teleost Genome Through RAD Sequencing—Linkage Mapping in Common Pandora, Pagellus erythrinus and Comparative Genomic Analysis

    Directory of Open Access Journals (Sweden)

    Tereza Manousaki

    2016-03-01

    Full Text Available Common pandora (Pagellus erythrinus is a benthopelagic marine fish belonging to the teleost family Sparidae, and a newly recruited species in Mediterranean aquaculture. The paucity of genetic information relating to sparids, despite their growing economic value for aquaculture, provides the impetus for exploring the genomics of this fish group. Genomic tool development, such as genetic linkage maps provision, lays the groundwork for linking genotype to phenotype, allowing fine-mapping of loci responsible for beneficial traits. In this study, we applied ddRAD methodology to identify polymorphic markers in a full-sib family of common pandora. Employing the Illumina MiSeq platform, we sampled and sequenced a size-selected genomic fraction of 99 individuals, which led to the identification of 920 polymorphic loci. Downstream mapping analysis resulted in the construction of 24 robust linkage groups, corresponding to the karyotype of the species. The common pandora linkage map showed varying degrees of conserved synteny with four other teleost genomes, namely the European seabass (Dicentrarchus labrax, Nile tilapia (Oreochromis niloticus, stickleback (Gasterosteus aculeatus, and medaka (Oryzias latipes, suggesting a conserved genomic evolution in Sparidae. Our work exploits the possibilities of genotyping by sequencing to gain novel insights into genome structure and evolution. Such information will boost the study of cultured species and will set the foundation for a deeper understanding of the complex evolutionary history of teleosts.

  1. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    Science.gov (United States)

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  2. Genomic analysis suggests higher susceptibility of children to air pollution

    DEFF Research Database (Denmark)

    van Leeuwen, Danitsja M; Pedersen, Marie; Hendriksen, Peter J M

    2008-01-01

    Differences in biological responses to exposure to hazardous airborne substances between children and adults have been reported, suggesting children to be more susceptible. Aim of this study was to improve our understanding of differences in susceptibility in cancer risk associated with air...... pollution by comparing genome-wide gene expression profiles in peripheral blood of children and their parents. Gene expression analysis was performed in blood from children and parents living in two different regions in the Czech Republic with different levels of air pollution. Data were analyzed by two...... in relation to air pollution exposure at the transcriptome level. The findings underline the necessity of implementing environmental health policy measures specifically for protecting children's health....

  3. STINGRAY: system for integrated genomic resources and analysis.

    Science.gov (United States)

    Wagner, Glauber; Jardim, Rodrigo; Tschoeke, Diogo A; Loureiro, Daniel R; Ocaña, Kary A C S; Ribeiro, Antonio C B; Emmel, Vanessa E; Probst, Christian M; Pitaluga, André N; Grisard, Edmundo C; Cavalcanti, Maria C; Campos, Maria L M; Mattoso, Marta; Dávila, Alberto M R

    2014-03-07

    The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.

  4. Comparative Genome Analysis of Lolium-Festuca Complex Species

    DEFF Research Database (Denmark)

    Czaban, Adrian; Byrne, Stephen; Sharma, Sapna

    2015-01-01

    The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf Fescues. Plants belonging to this complex exhibit significant phenotypic plasticity for agriculturally important traits, such as annuality/perenniality, establishment potential, growth speed, nutritional value......, winter hardiness, drought tolerance and resistance to grazing. In this study we have sequenced and assembled the low copy fraction of the genomes of Lolium westerwoldicum, Lolium multiflorum, Festuca pratensis and Lolium temulentum. We have also generated de-novo transcriptome assemblies for each species....... Our dataset enabled us to perform comparative gene family analysis for CBF (C-Repeat Binding Factor) proteins, which are key regulators of cold acclimation and freezing tolerance in plants....

  5. Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Kane, Staci R; Chakicherla, Anu Y; Chain, Patrick S G; Schmidt, Radomir; Shin, Maria W; Legler, Tina C; Scow, Kate M; Larimer, Frank W; Lucas, Susan M; Richardson, Paul M; Hristova, Krassimira R

    2007-03-01

    Methylibium petroleiphilum PM1 is a methylotroph distinguished by its ability to completely metabolize the fuel oxygenate methyl tert-butyl ether (MTBE). Strain PM1 also degrades aromatic (benzene, toluene, and xylene) and straight-chain (C(5) to C(12)) hydrocarbons present in petroleum products. Whole-genome analysis of PM1 revealed an approximately 4-Mb circular chromosome and an approximately 600-kb megaplasmid, containing 3,831 and 646 genes, respectively. Aromatic hydrocarbon and alkane degradation, metal resistance, and methylotrophy are encoded on the chromosome. The megaplasmid contains an unusual t-RNA island, numerous insertion sequences, and large repeated elements, including a 40-kb region also present on the chromosome and a 29-kb tandem repeat encoding phosphonate transport and cobalamin biosynthesis. The megaplasmid also codes for alkane degradation and was shown to play an essential role in MTBE degradation through plasmid-curing experiments. Discrepancies between the insertion sequence element distribution patterns, the distributions of best BLASTP hits among major phylogenetic groups, and the G+C contents of the chromosome (69.2%) and plasmid (66%), together with comparative genome hybridization experiments, suggest that the plasmid was recently acquired and apparently carries the genetic information responsible for PM1's ability to degrade MTBE. Comparative genomic hybridization analysis with two PM1-like MTBE-degrading environmental isolates (approximately 99% identical 16S rRNA gene sequences) showed that the plasmid was highly conserved (ca. 99% identical), whereas the chromosomes were too diverse to conduct resequencing analysis. PM1's genome sequence provides a foundation for investigating MTBE biodegradation and exploring the genetic regulation of multiple biodegradation pathways in M. petroleiphilum and other MTBE-degrading beta-proteobacteria.

  6. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  7. Functional Analysis of Shewanella, a cross genome comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  8. Identification of conserved regulatory elements by comparative genome analysis

    Directory of Open Access Journals (Sweden)

    Jareborg Niclas

    2003-05-01

    Full Text Available Abstract Background For genes that have been successfully delineated within the human genome sequence, most regulatory sequences remain to be elucidated. The annotation and interpretation process requires additional data resources and significant improvements in computational methods for the detection of regulatory regions. One approach of growing popularity is based on the preferential conservation of functional sequences over the course of evolution by selective pressure, termed 'phylogenetic footprinting'. Mutations are more likely to be disruptive if they appear in functional sites, resulting in a measurable difference in evolution rates between functional and non-functional genomic segments. Results We have devised a flexible suite of methods for the identification and visualization of conserved transcription-factor-binding sites. The system reports those putative transcription-factor-binding sites that are both situated in conserved regions and located as pairs of sites in equivalent positions in alignments between two orthologous sequences. An underlying collection of metazoan transcription-factor-binding profiles was assembled to facilitate the study. This approach results in a significant improvement in the detection of transcription-factor-binding sites because of an increased signal-to-noise ratio, as demonstrated with two sets of promoter sequences. The method is implemented as a graphical web application, ConSite, which is at the disposal of the scientific community at http://www.phylofoot.org/. Conclusions Phylogenetic footprinting dramatically improves the predictive selectivity of bioinformatic approaches to the analysis of promoter sequences. ConSite delivers unparalleled performance using a novel database of high-quality binding models for metazoan transcription factors. With a dynamic interface, this bioinformatics tool provides broad access to promoter analysis with phylogenetic footprinting.

  9. Be-Breeder - an application for analysis of genomic data in plant breeding

    OpenAIRE

    Matias,Filipe Inácio; Granato,Italo Stefanine Correa; Dequigiovanni,Gabriel; Fritsche-Neto,Roberto

    2017-01-01

    Abstract Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker) analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genome selection, genome association, and genetic diversity in a simple manner on line. ...

  10. GENOME SIZE DETERMINATION AND RAPD ANALYSIS OF FOUR EDIBLE AROIDS OF NORTH EAST INDIA

    OpenAIRE

    Jyoti P. Saikia1*, Bolin K. Konwar 2 and Susmita Singh3

    2010-01-01

    Four edible aroid species were selected for the study. The genomic DNA of the plants was isolated and estimated. A part of the genomic DNA was used for analysis using six different primers from Operon Technologies, USA. The genome size determined for the aroids is in the order of Colocasia esculenta> Xanthosoma caracu> Xanthosoma sagittifolium > Amorphophallus paeonifolius. Amorphophallus species was found to be 50% similar to both Xanthosoma caracu and Colocasia esculenta. The analysis will ...

  11. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Directory of Open Access Journals (Sweden)

    Cuihua Gu

    2018-02-01

    Full Text Available Qat (Catha edulis, Celastraceae is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA genes, 8 ribosomal RNA (rRNA genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.

  12. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I and S. pasteurianus ATCC 43144 (biotype II.2. The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92% and 1607 (86% of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.

  13. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    Science.gov (United States)

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia. Further research will be required to confirm these

  14. Draft genome sequence of Cellulomonas carbonis T26T and comparative analysis of six Cellulomonas genomes

    OpenAIRE

    Zhuang, Weiping; Zhang, Shengzhe; Xia, Xian; Wang, Gejiao

    2015-01-01

    Most Cellulomonas strains are cellulolytic and this feature may be applied in straw degradation and bioremediation. In this study, Cellulomonas carbonis T26T, Cellulomonas bogoriensis DSM 16987T and Cellulomonas cellasea 20108T were sequenced. Here we described the draft genomic information of C. carbonis T26T and compared it to the related Cellulomonas genomes. Strain T26T has a 3,990,666?bp genome size with a G?+?C content of 73.4?%, containing 3418 protein-coding genes and 59 RNA genes. Th...

  15. GEnomes Management Application (GEM.app): a new software tool for large-scale collaborative genome analysis.

    Science.gov (United States)

    Gonzalez, Michael A; Lebrigio, Rafael F Acosta; Van Booven, Derek; Ulloa, Rick H; Powell, Eric; Speziani, Fiorella; Tekin, Mustafa; Schüle, Rebecca; Züchner, Stephan

    2013-06-01

    Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets (https://genomics.med.miami.edu/). GEM.app currently contains ∼1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user-friendly analysis for nonbioinformaticians to make next-generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across ∼1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease. © 2013 Wiley Periodicals, Inc.

  16. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information.

    Science.gov (United States)

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids.

  17. Comparative genome analysis and genome evolution of members of the magnaporthaceae family of fungi.

    Science.gov (United States)

    Okagaki, Laura H; Sailsbery, Joshua K; Eyre, Alexander W; Dean, Ralph A

    2016-02-25

    Magnaporthaceae, a family of ascomycetes, includes three fungi of great economic importance that cause disease in cereal and turf grasses: Magnaporthe oryzae (rice blast), Gaeumannomyces graminis var. tritici (take-all disease), and Magnaporthe poae (summer patch disease). Recently, the sequenced and assembled genomes for these three fungi were reported. Here, the genomes were compared for orthologous genes in order to identified genes that are unique to the Magnaporthaceae family of fungi. In addition, ortholog clustering was used to identify a core proteome for the Magnaporthaceae, which was examined for diversifying and purifying selection and evidence of two-speed genome evolution. A genome-scale comparative study was conducted across 74 fungal genomes to identify clusters of orthologous genes unique to the three Magnaporthaceae species as well as species specific genes. We found 1149 clusters that were unique to the Magnaporthaceae family of fungi with 295 of those containing genes from all three species. Gene clusters involved in metabolic and enzymatic activities were highly represented in the Magnaporthaceae specific clusters. Also highly represented in the Magnaporthaceae specific clusters as well as in the species specific genes were transcriptional regulators. In addition, we examined the relationship between gene evolution and distance to repetitive elements found in the genome. No correlations between diversifying or purifying selection and distance to repetitive elements or an increased rate of evolution in secreted and small secreted proteins were observed. Taken together, these data show that at the genome level, there is no evidence to suggest multi-speed genome evolution or that proximity to repetitive elements play a role in diversification of genes.

  18. Genome analysis and DNA marker-based characterisation of pathogenic trypanosomes

    NARCIS (Netherlands)

    Agbo, Edwin Chukwura

    2003-01-01

    The advances in genomics technologies and genome analysis methods that offer new leads for accelerating discovery of putative targets for developing overall control tools are reviewed in Chapter 1. In Chapter 2, a PCR typing method based on restriction fragment length polymorphism analysis of the

  19. Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis

    Directory of Open Access Journals (Sweden)

    J. E. Vonk

    2017-08-01

    Full Text Available Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC stored in permafrost (PF terrain. When permafrost thaws, its OC is remobilized into the (aquatic environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC.We here present compound-specific deuterium (δ2H analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD and from thawing Holocene permafrost (from near-surface soils. Bulk geochemistry (%OC; δ13C; %total nitrogen, TN was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33 and mid- to long-chain n-alkanoic acids (C16 to C30 extracted from both ICD-PF samples (n =  9 and modern vegetation and O-horizon (topsoil-PF samples (n =  9 from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC ∕ TN values and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker δ2H values are statistically different between topsoil PF and ICD PF. For example, the mean δ2H value of C29 n-alkane was −246 ± 13 ‰ (mean ± SD for topsoil PF and −280 ± 12 ‰ for ICD PF. With a dynamic isotopic range (difference between two sources of 34 to 50 ‰; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can

  20. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  1. Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

    Directory of Open Access Journals (Sweden)

    Mark R Wilson

    Full Text Available Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS to Salmonella subspecies enterica serotype Tennessee (S. Tennessee to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana, which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs, suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts

  2. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2018-02-01

    Full Text Available Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.

  3. Current Status of Echinoderm Genome Analysis - What do we Know?

    Science.gov (United States)

    Kondo, Mariko; Akasaka, Koji

    2012-01-01

    Echinoderms have long served as model organisms for a variety of biological research, especially in the field of developmental biology. Although the genome of the purple sea urchin Strongylocentrotus purpuratus has been sequenced, it is the only echinoderm whose whole genome sequence has been reported. Nevertheless, data is rapidly accumulating on the chromosomes and genomic sequences of all five classes of echinoderms, including the mitochondrial genomes and Hox genes. This blossoming new data will be essential for estimating the phylogenetic relationships among echinoderms, and also to examine the underlying mechanisms by which the diverse morphologies of echinoderms have arisen. PMID:23024605

  4. The distinguishing effects of low-intensity electromagnetic radiation of different extremely high frequencies on Enterococcus hirae: growth rate inhibition and scanning electron microscopy analysis.

    Science.gov (United States)

    Hovnanyan, K; Kalantaryan, V; Trchounian, A

    2017-09-01

    A low-intensity electromagnetic field of extremely high frequency has inhibitory and stimulatory effects on bacteria, including Enterococcus hirae. It was shown that the low-intensity (the incident power density of 0·06 mW cm -2 ) electromagnetic field at the frequencies of 51·8 GHz and 53 GHz inhibited E. hirae ATCC 9790 bacterial growth rate; a stronger effect was observed with 53 GHz, regardless of exposure duration (0·5 h, 1 h or 2 h). Scanning electron microscopy analysis of these effects has been done; the cells were of spherical shape. Electromagnetic field at 53 GHz, but not 51·8 GHz, changed the cell size-the diameter was enlarged 1·3 fold at 53 GHz. These results suggest the difference in mechanisms of action on bacteria for electromagnetic fields at 51·8 GHz and 53 GHz. A stronger inhibitory effect of low-intensity electromagnetic field on Enterococcus hirae ATCC 9790 bacterial growth rate was observed with 53 GHz vs 51·8 GHz, regardless of exposure duration. Scanning electron microscopy analysis showed that almost all irradiated cells in the population have spherical shapes similar to nonirradiated ones, but they have increased diameters in case of irradiated cells at 53 GHz, but not 51·8 GHz. The results are novel, showing distinguishing effects of low-intensity electromagnetic field of different frequencies. They could be applied in treatment of food and different products in medicine and veterinary, where E. hirae plays an important role. © 2017 The Society for Applied Microbiology.

  5. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  6. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis.

    Directory of Open Access Journals (Sweden)

    Wolfgang Schüler

    Full Text Available The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp and 13 plasmids (8 linear and 5 circular together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.

  7. Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

    Science.gov (United States)

    Schüler, Wolfgang; Bunikis, Ignas; Weber-Lehman, Jacqueline; Comstedt, Pär; Kutschan-Bunikis, Sabrina; Stanek, Gerold; Huber, Jutta; Meinke, Andreas; Bergström, Sven; Lundberg, Urban

    2015-01-01

    The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes. PMID:25798594

  8. CoCoNUT: an efficient system for the comparison and analysis of genomes

    Directory of Open Access Journals (Sweden)

    Kurtz Stefan

    2008-11-01

    Full Text Available Abstract Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit that allows solving several different tasks in a unified framework: (1 finding regions of high similarity among multiple genomic sequences and aligning them, (2 comparing two draft or multi-chromosomal genomes, (3 locating large segmental duplications in large genomic sequences, and (4 mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component, CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics.

  9. In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models

    DEFF Research Database (Denmark)

    Geng, Jun; Nielsen, Jens

    2017-01-01

    The arising prevalence of metabolic diseases calls for a holistic approach for analysis of the underlying nature of abnormalities in cellular functions. Through mathematic representation and topological analysis of cellular metabolism, GEnome scale metabolic Models (GEMs) provide a promising fram...

  10. Non-linear mapping for exploratory data analysis in functional genomics

    Directory of Open Access Journals (Sweden)

    Chesneau Alban

    2005-01-01

    Full Text Available Abstract Background Several supervised and unsupervised learning tools are available to classify functional genomics data. However, relatively less attention has been given to exploratory, visualisation-driven approaches. Such approaches should satisfy the following factors: Support for intuitive cluster visualisation, user-friendly and robust application, computational efficiency and generation of biologically meaningful outcomes. This research assesses a relaxation method for non-linear mapping that addresses these concerns. Its applications to gene expression and protein-protein interaction data analyses are investigated Results Publicly available expression data originating from leukaemia, round blue-cell tumours and Parkinson disease studies were analysed. The method distinguished relevant clusters and critical analysis areas. The system does not require assumptions about the inherent class structure of the data, its mapping process is controlled by only one parameter and the resulting transformations offer intuitive, meaningful visual displays. Comparisons with traditional mapping models are presented. As a way of promoting potential, alternative applications of the methodology presented, an example of exploratory data analysis of interactome networks is illustrated. Data from the C. elegans interactome were analysed. Results suggest that this method might represent an effective solution for detecting key network hubs and for clustering biologically meaningful groups of proteins. Conclusion A relaxation method for non-linear mapping provided the basis for visualisation-driven analyses using different types of data. This study indicates that such a system may represent a user-friendly and robust approach to exploratory data analysis. It may allow users to gain better insights into the underlying data structure, detect potential outliers and assess assumptions about the cluster composition of the data.

  11. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    Directory of Open Access Journals (Sweden)

    Gurusamy Raman

    Full Text Available Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC region (82,805 bp, with some variations in the inverted repeat region A (IRA/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19 was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA and ribosomal protein subunit L23 (rpl23 genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  12. Mainstreaming sex and gender analysis in public health genomics

    NARCIS (Netherlands)

    Verdonk, P.; Klinge, I.

    2012-01-01

    Background: The integration of genome-based knowledge into public health or public health genomics (PHG) aims to contribute to disease prevention, health promotion, and risk reduction associated with genetic disease susceptibility. Men and women differ, for instance, in susceptibilities for heart

  13. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides.

    NARCIS (Netherlands)

    Carvalho, B; Ouwerkerk, E; Meijer, G.A.; Ylstra, B.

    2004-01-01

    BACKGROUND: Currently, comparative genomic hybridisation array (array CGH) is the method of choice for studying genome wide DNA copy number changes. To date, either amplified representations of bacterial artificial chromosomes (BACs)/phage artificial chromosomes (PACs) or cDNAs have been spotted as

  14. Analysis of the ABCA4 genomic locus in Stargardt disease

    DEFF Research Database (Denmark)

    Zernant, Jana; Xie, Yajing Angela; Ayuso, Carmen

    2014-01-01

    was designed to find the missing disease-causing ABCA4 variation by a combination of next-generation sequencing (NGS), array-Comparative Genome Hybridization (aCGH) screening, familial segregation and in silico analyses. The entire 140 kb ABCA4 genomic locus was sequenced in 114 STGD patients with one known...

  15. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  16. A bibliometric analysis of global research on genome sequencing ...

    African Journals Online (AJOL)

    The results show that disease and protein related researches were the leading research focuses, and comparative genomics and evolution related research had strong potential in the near future. Key words: Genome sequencing, research trend, scientometrics, science citation index expanded (SCI-Expanded), word cluster ...

  17. Comparative Analysis of the First Complete Enterococcus faecium Genome

    Science.gov (United States)

    Lam, Margaret M. C.; Seemann, Torsten; Bulach, Dieter M.; Gladman, Simon L.; Chen, Honglei; Haring, Volker; Moore, Robert J.; Ballard, Susan; Grayson, M. Lindsay; Johnson, Paul D. R.; Howden, Benjamin P.

    2012-01-01

    Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen. PMID:22366422

  18. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  19. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    OpenAIRE

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia; Daum, Chris; Reddy, T.B.K.; Klenk, Hans-Peter; Spring, Stefan; G?ker, Markus; Reva, Oleg N.; Miroshnichenko, Margarita L.

    2017-01-01

    © 2017 Kublanov, Sigalova, Gavrilov, Lebedinsky, Rinke, Kovaleva, Chernyh, Ivanova, Daum, Reddy, Klenk, Spring, Göker, Reva, Miroshnichenko, Kyrpides, Woyke, Gelfand, Bonch-Osmolovskaya. The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to impl...

  20. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Drautz, Daniela I; Lesk, Arthur M

    2008-01-01

    We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis...... to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep....

  1. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Directory of Open Access Journals (Sweden)

    Meller Jaroslaw

    2007-03-01

    Full Text Available Abstract Background Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. Results We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance. In particular, Cinteny provides: i integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii flexibility to adjust the parameters and re-compute the results on-the-fly; iii ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at http://cinteny.cchmc.org. Conclusion Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances

  2. Draft genome sequence of Cellulomonas carbonis T26(T) and comparative analysis of six Cellulomonas genomes.

    Science.gov (United States)

    Zhuang, Weiping; Zhang, Shengzhe; Xia, Xian; Wang, Gejiao

    2015-01-01

    Most Cellulomonas strains are cellulolytic and this feature may be applied in straw degradation and bioremediation. In this study, Cellulomonas carbonis T26(T), Cellulomonas bogoriensis DSM 16987(T) and Cellulomonas cellasea 20108(T) were sequenced. Here we described the draft genomic information of C. carbonis T26(T) and compared it to the related Cellulomonas genomes. Strain T26(T) has a 3,990,666 bp genome size with a G + C content of 73.4 %, containing 3418 protein-coding genes and 59 RNA genes. The results showed good correlation between the genotypes and the physiological phenotypes. The information are useful for the better application of the Cellulomonas strains.

  3. Cloud Based Resource for Data Hosting, Visualization and Analysis Using UCSC Cancer Genomics Browser | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Cancer Analysis Virtual Machine (CAVM) project will leverage cloud technology, the UCSC Cancer Genomics Browser, and the Galaxy analysis workflow system to provide investigators with a flexible, scalable platform for hosting, visualizing and analyzing their own genomic data.

  4. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  5. Combining lead isotopes and cluster analysis to distinguish the Guarani and Serra Geral Aquifer Systems and contaminated waters in a highly industrialized area in Southern Brazil.

    Science.gov (United States)

    Kuhn, Isadora Aumond; Roisenberg, Ari

    2017-10-01

    The Rio dos Sinos Watershed area is located at the Middle-West region of the Rio Grande do Sul State, Southern Brazil, along thirty two municipalities and affecting 1.5 million inhabitants and many important industrial centers. Three main aquifers are recognized in the study area: the unconfined-fractured Serra Geral Aquifer System, the porous Guarani Aquifer System, and the Permian Aquitard. This study aims to understand groundwater, surface water and human activity interactions in the Rio dos Sinos Watershed, evaluating the application of stable lead isotopic ratios analyzed for this propose. Thirty six groundwater samples, 8 surface water samples and 5 liquid effluents of tanneries and landfills samples were measured using a Thermal Ionization Mass Spectrometer Thermo-Finnigan and a Neptune Multi-Collector Inductively Coupled Plasma Mass Spectrometer. Groundwater isotopic ratios have a wider range compared to the surface water, with less radiogenic averages 208 Pb/ 204 Pb = 38.1837 vs 38.4050 (standard deviation = 0.2921 vs 0.1343) and 206 Pb/ 204 Pb = 18.2947 vs 18.4766 (standard deviation = 0.2215 vs 0.1059), respectively. Industrial liquid effluents (tanneries and industrial landfill) have averages 208 Pb/ 204 Pb = 38.1956 and 206 Pb/ 204 Pb = 18.3169, distinct from effluent samples of domestic sanitary landfill (averages 208 Pb/ 204 Pb = 38.2353 and 206 Pb/ 204 Pb = 18.6607). Hierarchical cluster analysis led to distinguish six groups of groundwater, representing the three aquifers that occur in the area, two clusters suggesting groundwater mixtures and one demonstrating a highly contaminated groundwater. By analyzing the cluster results and wells' stratigraphic profiles it was possible to distinguish the different aquifers in the area. The Serra Geral Aquifer System has 206 Pb/ 204 Pb ratios between 18.4718 and 18.7089; 207 Pb/ 204 Pb between 15.6692 and 15.6777; 208 Pb/ 204 Pb between 38.6826 and 38.7616; 207 Pb/ 206 Pb between 0.8372 and 0

  6. Secure distributed genome analysis for GWAS and sequence comparison computation

    Science.gov (United States)

    2015-01-01

    Background The rapid increase in the availability and volume of genomic data makes significant advances in biomedical research possible, but sharing of genomic data poses challenges due to the highly sensitive nature of such data. To address the challenges, a competition for secure distributed processing of genomic data was organized by the iDASH research center. Methods In this work we propose techniques for securing computation with real-life genomic data for minor allele frequency and chi-squared statistics computation, as well as distance computation between two genomic sequences, as specified by the iDASH competition tasks. We put forward novel optimizations, including a generalization of a version of mergesort, which might be of independent interest. Results We provide implementation results of our techniques based on secret sharing that demonstrate practicality of the suggested protocols and also report on performance improvements due to our optimization techniques. Conclusions This work describes our techniques, findings, and experimental results developed and obtained as part of iDASH 2015 research competition to secure real-life genomic computations and shows feasibility of securely computing with genomic data in practice. PMID:26733307

  7. IDENTIFICATION AND ANALYSIS OF BACTERIAL GENOMIC METABOLIC SIGNATURES.

    Science.gov (United States)

    Bowerman, Nathaniel; Tintle, Nathan; Dejongh, Matthew; Best, Aaron A

    2017-01-01

    With continued rapid growth in the number and quality of fully sequenced and accurately annotated bacterial genomes, we have unprecedented opportunities to understand metabolic diversity. We selected 101 diverse and representative completely sequenced bacteria and implemented a manual curation effort to identify 846 unique metabolic variants present in these bacteria. The presence or absence of these variants act as a metabolic signature for each of the bacteria, which can then be used to understand similarities and differences between and across bacterial groups. We propose a novel and robust method of summarizing metabolic diversity using metabolic signatures and use this method to generate a metabolic tree, clustering metabolically similar organisms. Resulting analysis of the metabolic tree confirms strong associations with well-established biological results along with direct insight into particular metabolic variants which are most predictive of metabolic diversity. The positive results of this manual curation effort and novel method development suggest that future work is needed to further expand the set of bacteria to which this approach is applied and use the resulting tree to test broad questions about metabolic diversity and complexity across the bacterial tree of life.

  8. Functional genomic analysis of cassava proteins with TIR domains

    International Nuclear Information System (INIS)

    Roman Reyna, Veronica; Lopez, Camilo

    2012-01-01

    Proteins containing a TIR domain (toll interleukin receptor) are involved in plant and animal immunity. The aim of this work was to carry out an overall genomic analysis of cassava proteins with a TIR domain and discern their possible role in resistance to cassava bacterial blight. In total 46 proteins with a TIR domain were identified in the cassava proteome and were classed in four categories according the presence or absence of other domains: TIR (T), TIR -NB (TN), TIR - lRR (TL) and TIR - NB - lRR (TNL). 56.6 % of these 46 proteins have TIR, NB and lRR domains. Using multiple alignments it was possible to demonstrate that not all cassava TIR domains contain the AE region, involved in dimerization and activation of immune responses. Three of the four proteins categories (T, TNL and TN) presented a higher number of synonymous substitutions suggesting that they are not involved in recognition process. two TIR domains not presenting the ae region were analyzed by yeast two hybrid assays and by agro-infiltration, finding that both are able to form homo and heterodimers, but they do not trigger defense responses. With this study it was possible to conclude that TIR domains can function as adaptors in the signal transduction with other resistance proteins. In addition, it became clear that not always the AE region is important for TIR dimerization but it seems necessary to activate defense responses signals.

  9. Distinguishing Ichthyoses by Protein Profiling

    Science.gov (United States)

    Rice, Robert H.; Bradshaw, Katie M.; Durbin-Johnson, Blythe P.; Rocke, David M.; Eigenheer, Richard A.; Phinney, Brett S.; Schmuth, Matthias; Gruber, Robert

    2013-01-01

    To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back), demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG) deficiency), recessive X-linked ichthyosis (steroid sulfatase (STS) deficiency) and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1) deficiency). The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency) permitted correlation of alterations in protein profile with more complex genetic constellations. PMID:24130705

  10. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    Directory of Open Access Journals (Sweden)

    Huaming Zhong

    2017-08-01

    Full Text Available As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs in reptiles, we identified Tas2r genes in 19 genomes (species corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1 gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

  11. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  12. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Czech Academy of Sciences Publication Activity Database

    Vu, G.T.H.; Schmutzer, T.; Bull, F.; Cao, H.X.; Fuchs, J.; Tran, T.D.; Jovtchev, G.; Pistrick, K.; Stein, N.; Pečinka, A.; Neumann, Pavel; Novák, Petr; Macas, Jiří; Dear, P.H.; Blattner, F.R.; Scholz, U.; Schubert, I.

    2015-01-01

    Roč. 8, č. 3 (2015) ISSN 1940-3372 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Genlisea * genome * repetitive sequences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.509, year: 2015

  13. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    Directory of Open Access Journals (Sweden)

    Fowler Katie E

    2009-08-01

    Full Text Available Abstract Background The availability of the complete chicken (Gallus gallus genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo and the first analysis of copy number variants (CNVs in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos, an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots". Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.

  14. Analysis of pan-genome content and its application in microbial identification

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana

    the application of PanFunPro to a set of more than 2000 genomes; this paper aims to define set of protein families, which are conserved among all the genomes. Papers V demonstrates comparative genomics analysis of proteomes, belonging to Vibrio genus. In the last project, described in Chapter 5, both BLAST...... typing; and Paper VIII represents the application of PanFunPro approach for in silico taxonomy prediction. In summary, this thesis presents three projects that have contributed to identification and characterization of microbial organisms, and open new possibilities for comparative genomics...

  15. Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

    Science.gov (United States)

    Ma, Li-Jun; Ibrahim, Ashraf S.; Skory, Christopher; Grabherr, Manfred G.; Burger, Gertraud; Butler, Margi; Elias, Marek; Idnurm, Alexander; Lang, B. Franz; Sone, Teruo; Abe, Ayumi; Calvo, Sarah E.; Corrochano, Luis M.; Engels, Reinhard; Fu, Jianmin; Hansberg, Wilhelm; Kim, Jung-Mi; Kodira, Chinnappa D.; Koehrsen, Michael J.; Liu, Bo; Miranda-Saavedra, Diego; O'Leary, Sinead; Ortiz-Castellanos, Lucila; Poulter, Russell; Rodriguez-Romero, Julio; Ruiz-Herrera, José; Shen, Yao-Qing; Zeng, Qiandong; Galagan, James; Birren, Bruce W.

    2009-01-01

    Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments. PMID:19578406

  16. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    2017-09-01

    Full Text Available The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4% of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL, a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  17. Short-Read Sequencing for Genomic Analysis of the Brown Rot Fungus Fibroporia radiculosa

    Science.gov (United States)

    J. D. Tang; A. D. Perkins; T. S. Sonstegard; S. G. Schroeder; S. C. Burgess; S. V. Diehl

    2012-01-01

    The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment...

  18. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    NARCIS (Netherlands)

    Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; Fitzpatrick, K.; Kanakis, A.; Barrick, T.R.; Moynihan, B.; Lewis, C.M.; Boncoraglio, G.B.; Lemmens, R.; Thijs, V.; Sudlow, C.; Wardlaw, J.; Rothwell, P.M.; Meschia, J.F.; Worrall, B.B.; Levi, C.; Bevan, S.; Furie, K.L.; Dichgans, M.; Rosand, J.; Markus, H.S.; Rost, N.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

  19. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted f...

  20. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  1. Dissection of genomic correlation matrices of US Holsteins using multivariate factor analysis

    Science.gov (United States)

    Aim of the study was to compare correlation matrices between direct genomic predictions for 31 production, fitness and conformation traits both at genomic and chromosomal level in US Holstein bulls. Multivariate factor analysis was used to quantify basic features of correlation matrices. Factor extr...

  2. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    Science.gov (United States)

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  3. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia

    NARCIS (Netherlands)

    Law, Philip J; Berndt, Sonja I.; Speedy, Helen E; Camp, Nicola J; Sava, Georgina P; Skibola, Christine F.; Holroyd, Amy; Joseph, Vijai; Sunter, Nicola J; Nieters, Alexandra; Bea, Silvia; Monnereau, Alain; Martin-Garcia, David; Goldin, Lynn R; Clot, Guillem; Teras, Lauren R.; Quintela, Inés; Birmann, Brenda M.; Jayne, Sandrine; Cozen, Wendy; Majid, Aneela; Smedby, Karin E; Lan, Qing; Dearden, Claire; Brooks-Wilson, Angela R.; Hall, Andrew G; Purdue, Mark P.; Mainou-Fowler, Tryfonia; Vajdic, Claire M.; Jackson, Graham H; Cocco, Pierluigi; Marr, Helen; Zhang, Yawei; Zheng, Tongzhang; Giles, Graham G.; Lawrence, Charles; Call, Timothy G.; Liebow, Mark; Melbye, Mads; Glimelius, Bengt; Mansouri, Larry; Glenn, Martha; Curtin, Karen; Diver, W. Ryan; Link, Brian K.; Conde, Lucia; Bracci, Paige M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Albanes, Demetrius; Weinstein, Stephanie; Wang, Zhaoming; Caporaso, Neil E; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Vermeulen, Roel C H; Southey, Melissa C.; Milne, Roger L; Clavel, Jacqueline; Topka, Sabine; Spinelli, John; Kraft, Peter; Ennas, Maria Grazia; Summerfield, Geoffrey; Ferri, Giovanni M; Harris, Robert J; Miligi, Lucia; Pettitt, Andrew R; North, Kari E.; Allsup, David J; Fraumeni, Joseph F.; Bailey, James R; Offit, Kenneth; Pratt, Guy; Hjalgrim, Henrik; Pepper, Chris; Chanock, Stephen J.; Fegan, Chris; Rosenquist, Richard; De Sanjose, Silvia; Carracedo, Angel; Dyer, Martin J S; Catovsky, Daniel; Campo, Elias; Cerhan, James R.; Allan, James M; Rothman, Nathanial; Houlston, Richard S; Slager, Susan L.

    2017-01-01

    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling

  4. Phylogenomic analysis of 11 complete African swine fever virus genome sequences

    International Nuclear Information System (INIS)

    Villiers, Etienne P. de; Gallardo, Carmina; Arias, Marisa; Silva, Melissa da; Upton, Chris; Martin, Raquel; Bishop, Richard P.

    2010-01-01

    Viral molecular epidemiology has traditionally analyzed variation in single genes. Whole genome phylogenetic analysis of 123 concatenated genes from 11 ASFV genomes, including E75, a newly sequenced virulent isolate from Spain, identified two clusters. One contained South African isolates from ticks and warthog, suggesting derivation from a sylvatic transmission cycle. The second contained isolates from West Africa and the Iberian Peninsula. Two isolates, from Kenya and Malawi, were outliers. Of the nine genomes within the clusters, seven were within p72 genotype 1. The 11 genomes sequenced comprised only 5 of the 22 p72 genotypes. Comparison of synonymous and non-synonymous mutations at the genome level identified 20 genes subject to selection pressure for diversification. A novel gene of the E75 virus evolved by the fusion of two genes within the 360 multicopy family. Comparative genomics reveals high diversity within a limited sample of the ASFV viral gene pool.

  5. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  6. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    Directory of Open Access Journals (Sweden)

    Mahadevan Padmanabhan

    2009-08-01

    Full Text Available Abstract Background Viruses and small-genome bacteria (~2 megabases and smaller comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at http://binf.gmu.edu/geneorder.html as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins.

  7. Integrated proteomic and genomic analysis of colorectal cancer

    Science.gov (United States)

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  8. Genome Analysis and Phylogenetic Relatedness of Gallibacterium anatis Strains from Poultry

    Science.gov (United States)

    Johnson, Timothy J.; Danzeisen, Jessica L.; Trampel, Darrell; Nolan, Lisa K.; Seemann, Torsten; Bager, Ragnhild J.; Bojesen, Anders M.

    2013-01-01

    Peritonitis is the major disease problem of laying hens in commercial table egg and parent stock operations. Despite its importance, the etiology and pathogenesis of this disease have not been completely clarified. Although avian pathogenic Escherichia coli (APEC) isolates have been incriminated as the causative agent of laying hen peritonitis, Gallibacterium anatis are frequently isolated from peritonitis lesions. Despite recent studies suggesting a role for G. anatis in the pathogenesis of peritonitis, little is known about the organism’s virulence mechanisms, genomic composition and population dynamics. Here, we compared the genome sequences of three G. anatis isolates in an effort to understand its virulence mechanisms and identify novel antigenic traits. A multilocus sequence typing method was also established for G. anatis and used to characterize the genotypic relatedness of 71 isolates from commercial laying hens in Iowa and 18 international reference isolates. Genomic comparisons suggest that G. anatis is a highly diverse bacterial species, with some strains possessing previously described and potential virulence factors, but with a core genome containing several antigenic candidates. Multilocus sequence typing effectively distinguished 82 sequence types and several clonal complexes of G. anatis, and some clones seemed to predominate among G. anatis populations from commercial layers in Iowa. Biofilm formation and resistance to antimicrobial agents was also observed in several clades. Overall, the genomic diversity of G. anatis suggests that multiple lineages exist with differing pathogenic potential towards birds. PMID:23359626

  9. Genome analysis and phylogenetic relatedness of Gallibacterium anatis strains from poultry.

    Directory of Open Access Journals (Sweden)

    Timothy J Johnson

    Full Text Available Peritonitis is the major disease problem of laying hens in commercial table egg and parent stock operations. Despite its importance, the etiology and pathogenesis of this disease have not been completely clarified. Although avian pathogenic Escherichia coli (APEC isolates have been incriminated as the causative agent of laying hen peritonitis, Gallibacterium anatis are frequently isolated from peritonitis lesions. Despite recent studies suggesting a role for G. anatis in the pathogenesis of peritonitis, little is known about the organism's virulence mechanisms, genomic composition and population dynamics. Here, we compared the genome sequences of three G. anatis isolates in an effort to understand its virulence mechanisms and identify novel antigenic traits. A multilocus sequence typing method was also established for G. anatis and used to characterize the genotypic relatedness of 71 isolates from commercial laying hens in Iowa and 18 international reference isolates. Genomic comparisons suggest that G. anatis is a highly diverse bacterial species, with some strains possessing previously described and potential virulence factors, but with a core genome containing several antigenic candidates. Multilocus sequence typing effectively distinguished 82 sequence types and several clonal complexes of G. anatis, and some clones seemed to predominate among G. anatis populations from commercial layers in Iowa. Biofilm formation and resistance to antimicrobial agents was also observed in several clades. Overall, the genomic diversity of G. anatis suggests that multiple lineages exist with differing pathogenic potential towards birds.

  10. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  11. ARG-based genome-wide analysis of cacao cultivars

    OpenAIRE

    Utro, Filippo; Cornejo, Omar Eduardo; Livingstone, Donald; Motamayor, Juan Carlos; Parida, Laxmi

    2012-01-01

    Abstract Background Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relativel...

  12. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  13. Genome analysis of E. coli isolated from Crohn's disease patients.

    Science.gov (United States)

    Rakitina, Daria V; Manolov, Alexander I; Kanygina, Alexandra V; Garushyants, Sofya K; Baikova, Julia P; Alexeev, Dmitry G; Ladygina, Valentina G; Kostryukova, Elena S; Larin, Andrei K; Semashko, Tatiana A; Karpova, Irina Y; Babenko, Vladislav V; Ismagilova, Ruzilya K; Malanin, Sergei Y; Gelfand, Mikhail S; Ilina, Elena N; Gorodnichev, Roman B; Lisitsyna, Eugenia S; Aleshkin, Gennady I; Scherbakov, Petr L; Khalif, Igor L; Shapina, Marina V; Maev, Igor V; Andreev, Dmitry N; Govorun, Vadim M

    2017-07-19

    Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.

  14. Pan-Genome Analysis Links the Hereditary Variation of Leptospirillum ferriphilum With Its Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2018-03-01

    Full Text Available Niche adaptation has long been recognized to drive intra-species differentiation and speciation, yet knowledge about its relatedness with hereditary variation of microbial genomes is relatively limited. Using Leptospirillum ferriphilum species as a case study, we present a detailed analysis of genomic features of five recognized strains. Genome-to-genome distance calculation preliminarily determined the roles of spatial distance and environmental heterogeneity that potentially contribute to intra-species variation within L. ferriphilum species at the genome level. Mathematical models were further constructed to extrapolate the expansion of L. ferriphilum genomes (an ‘open’ pan-genome, indicating the emergence of novel genes with new sequenced genomes. The identification of diverse mobile genetic elements (MGEs (such as transposases, integrases, and phage-associated genes revealed the prevalence of horizontal gene transfer events, which is an important evolutionary mechanism that provides avenues for the recruitment of novel functionalities and further for the genetic divergence of microbial genomes. Comprehensive analysis also demonstrated that the genome reduction by gene loss in a broad sense might contribute to the observed diversification. We thus inferred a plausible explanation to address this observation: the community-dependent adaptation that potentially economizes the limiting resources of the entire community. Now that the introduction of new genes is accompanied by a parallel abandonment of some other ones, our results provide snapshots on the biological fitness cost of environmental adaptation within the L. ferriphilum genomes. In short, our genome-wide analyses bridge the relation between genetic variation of L. ferriphilum with its evolutionary adaptation.

  15. The complete mitochondrial genome of rabbit pinworm Passalurus ambiguus: genome characterization and phylogenetic analysis.

    Science.gov (United States)

    Liu, Guo-Hua; Li, Sheng; Zou, Feng-Cai; Wang, Chun-Ren; Zhu, Xing-Quan

    2016-01-01

    Passalurus ambiguus (Nematda: Oxyuridae) is a common pinworm which parasitizes in the caecum and colon of rabbits. Despite its significance as a pathogen, the epidemiology, genetics, systematics, and biology of this pinworm remain poorly understood. In the present study, we sequenced the complete mitochondrial (mt) genome of P. ambiguus. The circular mt genome is 14,023 bp in size and encodes of 36 genes, including 12 protein-coding, two ribosomal RNA, and 22 transfer RNA genes. The mt gene order of P. ambiguus is the same as that of Wellcomia siamensis, but distinct from that of Enterobius vermicularis. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) showed that P. ambiguus was more closely related to W. siamensis than to E. vermicularis. This mt genome provides novel genetic markers for studying the molecular epidemiology, population genetics, systematics of pinworm of animals and humans, and should have implications for the diagnosis, prevention, and control of passaluriasis in rabbits and other animals.

  16. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value

    Directory of Open Access Journals (Sweden)

    Donghyun Shin

    2017-03-01

    Full Text Available Objective Holsteins are known as the world’s highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein using Korean Holstein data. Methods This study was performed using single nucleotide polymorphism (SNP chip data (Illumina BovineSNP50 Beadchip of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. Results We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. Conclusion This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.

  17. Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value.

    Science.gov (United States)

    Shin, Donghyun; Lee, Chul; Park, Kyoung-Do; Kim, Heebal; Cho, Kwang-Hyeon

    2017-03-01

    Holsteins are known as the world's highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.

  18. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.

    Directory of Open Access Journals (Sweden)

    David Forgacs

    Full Text Available Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06. Spatial analysis of these mitochondrial DNA (mtDNA haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76. However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison and Canadian wood bison (B. b. athabascae. Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.

  19. Genomics and proteomics analysis of cultured primary rat hepatocytes.

    Science.gov (United States)

    Beigel, Juergen; Fella, Kerstin; Kramer, Peter-Juergen; Kroeger, Michaela; Hewitt, Philip

    2008-02-01

    The use of animal models in pharmaceutical research is a costly and sometimes misleading method of generating toxicity data and hence predicting human safety. Therefore, in vitro test systems, such as primary rat hepatocytes, and the developing genomics and proteomics technologies, are playing an increasingly important role in toxicological research. Gene and protein expression analysis were investigated in a time series (up to 5 days) of primary rat hepatocytes cultured on collagen coated dishes. Especially after 24h, a significant down-regulation of many important Phase I and Phase II enzymes (e.g., cytochrome P450's, glutathione-S-transferases, sulfotransferases) involved in xenobiotic metabolism, and antioxidative enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase) was observed. Acute-phase-response enzymes were frequently up-regulated (e.g., LPS binding protein, alpha-2-macro-globulin, ferritin, serine proteinase inhibitor B, haptoglobin), which is likely to be a result of cellular stress caused by the cell isolation procedure (perfusion) itself. A parallel observation was the increased expression of several structural genes (e.g., beta-actin, alpha-tubulin, vimentin), possibly caused by other proliferating cell types in the culture, such as fibroblasts or alternatively by hepatocyte dedifferentiation. In conclusion, the careful interpretation of data derived from this in vitro system indicates that primary hepatocytes can be successfully used for short-term toxicity studies up to 24h. However, culturing conditions need to be further optimized to reduce the massive changes of gene and protein expression of long-term cultured hepatocytes to allow practical applications as a long-term toxicity test system.

  20. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    Directory of Open Access Journals (Sweden)

    Freddy Asenjo

    2016-04-01

    Full Text Available Background. The honey bee (Apis mellifera is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2 from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and

  1. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica.

    Science.gov (United States)

    Jeong, Young-Min; Chung, Won-Hyong; Chung, Hee; Kim, Namshin; Park, Beom-Seok; Lim, Ki-Byung; Yu, Hee-Ju; Mun, Jeong-Hwan

    2014-09-01

    This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.

  2. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

    Science.gov (United States)

    Diego Martinez; Jean Challacombe; Ingo Morgenstern; David Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Duenas; Angel T. Martinez; Philip J. Kersten; Kenneth E. Hammel; Jill A. Gaskell; Daniel Cullen

    2009-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome,...

  3. Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69.

    Science.gov (United States)

    Iguchi, Atsushi; Thomson, Nicholas R; Ogura, Yoshitoshi; Saunders, David; Ooka, Tadasuke; Henderson, Ian R; Harris, David; Asadulghani, M; Kurokawa, Ken; Dean, Paul; Kenny, Brendan; Quail, Michael A; Thurston, Scott; Dougan, Gordon; Hayashi, Tetsuya; Parkhill, Julian; Frankel, Gad

    2009-01-01

    Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led to the discovery of the locus of enterocyte effacement-encoded type III secretion system (T3SS) and its cognate effectors, which play a vital role in attaching and effacing lesion formation on gut epithelial cells. In this study, we determined the complete genomic sequence of E2348/69 and performed genomic comparisons with other important E. coli strains. We identified 424 E2348/69-specific genes, most of which are carried on mobile genetic elements, and a number of genetic traits specifically conserved in phylogroup B2 strains irrespective of their pathotypes, including the absence of the ETT2-related T3SS, which is present in E. coli strains belonging to all other phylogroups. The genome analysis revealed the entire gene repertoire related to E2348/69 virulence. Interestingly, E2348/69 contains only 21 intact T3SS effector genes, all of which are carried on prophages and integrative elements, compared to over 50 effector genes in enterohemorrhagic E. coli O157. As E2348/69 is the most-studied pathogenic E. coli strain, this study provides a genomic context for the vast amount of existing experimental data. The unexpected simplicity of the E2348/69 T3SS provides the first opportunity to fully dissect the entire virulence strategy of attaching and effacing pathogens in the genomic context.

  4. Bradyrhizobium elkanii nod regulon: insights through genomic analysis

    Directory of Open Access Journals (Sweden)

    Luciane M. P. Passaglia

    2017-07-01

    Full Text Available Abstract A successful symbiotic relationship between soybean [Glycine max (L. Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs. Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.

  5. The complete mitochondrial genome analysis of the tiger (Panthera tigris).

    Science.gov (United States)

    Kitpipit, Thitika; Tobe, Shanan S; Linacre, Adrian

    2012-05-01

    The complete mitochondrial genomes of five tiger samples from three subspecies (P. t. sumatrae, P. t. altica, and P. t. tigris) were successfully obtained by using 26 specifically designed Panthera-specific primer sets. The genome organization and gene arrangement of the five tiger samples were similar to each other; however polymorphic tandem repeat sequences were observed in the control region (CR). This led to a difference in the genome lengths obtained from these five samples with an average size of 16,994 bp for the five tiger mitochondrial genomes. The nucleotide base composition was on average as follows: A, 31.8%; T, 27.0%; C, 26.6%; G, 14.6% and exhibited compositional asymmetry. Most of tiger mitochondrial genome characteristics are similar to those of other common vertebrate species; however, some distinctive features were observed in the CR. First, the repetitive sequence 2 (RS 2) contained two repeat units of 80 bp and the first 15 bp of what would be the third repeat motif. The repetitive sequence 3 (RS 3) contained 47-50 repeat motifs of a shorter 8 bp (ACGTAYAC)(n). Second, length heteroplasmy polycystosine (poly-C) stretches was observed at the end of the HV I locus in all tiger samples.

  6. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  7. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis.

    Directory of Open Access Journals (Sweden)

    Li-Hui Zuo

    confirmed with a further analysis of their nuclear genomes. This study is the first report on Ulmus chloroplast genomes, which has significance for understanding photosynthesis, evolution, and chloroplast transgenic engineering.

  8. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis.

    Science.gov (United States)

    Zuo, Li-Hui; Shang, Ai-Qin; Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    further analysis of their nuclear genomes. This study is the first report on Ulmus chloroplast genomes, which has significance for understanding photosynthesis, evolution, and chloroplast transgenic engineering.

  9. Cerebral Blood Flow and Aβ-Amyloid Estimates by WARM Analysis of [11C]PiB Uptake Distinguish among and between Neurodegenerative Disorders and Aging.

    Science.gov (United States)

    Rodell, Anders B; O'Keefe, Graeme; Rowe, Christopher C; Villemagne, Victor L; Gjedde, Albert

    2016-01-01

    Background: We report results of the novel Washout Allometric Reference Method (WARM) that uses estimates of cerebral blood flow and amyloid load from the same [ 11 C]Pittsburgh Compound B ([ 11 C]PiB) retention maps in brain to distinguish between patients with different forms dementia, including Alzheimer's disease, and healthy volunteers. The method introduces two approaches to the identification of brain pathology related to amyloid accumulation, (1) a novel analysis of amyloid binding based on the late washout of the tracer from brain tissue, and (2) the simultaneous estimation of absolute cerebral blood flow indices (sCBF) from the early accumulation of the tracer in brain tissue. Objective: We tested the hypothesis that a change of cerebral blood flow is correlated with the degree of tracer [ 11 C]PiB retention, reflecting dendritic spine pathology and consequent inhibition of brain energy metabolism and reduction of blood flow by neurovascular coupling in neurodegenerative disorders, including Alzheimer's disease. Methods: Previously reported images of [ 11 C]PiB retention in brain of 29 subjects with cognitive impairment or dementia [16 Alzheimer's Disease (AD), eight subjects with dementia with Lewy bodies (DLB), five patients with frontotemporal lobar degeneration (FTLD), five patients with mild cognitive impairment, and 29 age-matched healthy control subjects (HC)], underwent analysis of PiB delivery and retention by means of WARM for quantitation of [ 11 C]PiB's binding potentials ( BP ND ) and correlated surrogate cerebral blood flow (sCBF) estimates, based on the [ 11 C]PiB images, compared to estimates by conventional Standard Uptake Value Ratio (SUVR) of [ 11 C]PiB retention with cerebellum gray matter as reference. Receiver Operating Characteristics (ROC) revealed the power of discrimination among estimates. Results: For AD, the discriminatory power of [ 11 C]PiB binding potential ( BP ND ) by WARM exceeded the power of SUVR that in turn exceeded

  10. Genome-wide analysis of LTR-retrotransposons in oil palm.

    Science.gov (United States)

    Beulé, Thierry; Agbessi, Mawussé Dt; Dussert, Stephane; Jaligot, Estelle; Guyot, Romain

    2015-10-15

    The oil palm (Elaeis guineensis Jacq.) is a major cultivated crop and the world's largest source of edible vegetable oil. The genus Elaeis comprises two species E. guineensis, the commercial African oil palm and E. oleifera, which is used in oil palm genetic breeding. The recent publication of both the African oil palm genome assembly and the first draft sequence of its Latin American relative now allows us to tackle the challenge of understanding the genome composition, structure and evolution of these palm genomes through the annotation of their repeated sequences. In this study, we identified, annotated and compared Transposable Elements (TE) from the African and Latin American oil palms. In a first step, Transposable Element databases were built through de novo detection in both genome sequences then the TE content of both genomes was estimated. Then putative full-length retrotransposons with Long Terminal Repeats (LTRs) were further identified in the E. guineensis genome for characterization of their structural diversity, copy number and chromosomal distribution. Finally, their relative expression in several tissues was determined through in silico analysis of publicly available transcriptome data. Our results reveal a congruence in the transpositional history of LTR retrotransposons between E. oleifera and E. guineensis, especially the Sto-4 family. Also, we have identified and described 583 full-length LTR-retrotransposons in the Elaeis guineensis genome. Our work shows that these elements are most likely no longer mobile and that no recent insertion event has occurred. Moreover, the analysis of chromosomal distribution suggests a preferential insertion of Copia elements in gene-rich regions, whereas Gypsy elements appear to be evenly distributed throughout the genome. Considering the high proportion of LTR retrotransposon in the oil palm genome, our work will contribute to a greater understanding of their impact on genome organization and evolution

  11. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  12. Chloroplast genome analysis of Australian eucalypts--Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).

    Science.gov (United States)

    Bayly, Michael J; Rigault, Philippe; Spokevicius, Antanas; Ladiges, Pauline Y; Ades, Peter K; Anderson, Charlotte; Bossinger, Gerd; Merchant, Andrew; Udovicic, Frank; Woodrow, Ian E; Tibbits, Josquin

    2013-12-01

    We present a phylogenetic analysis and comparison of structural features of chloroplast genomes for 39 species of the eucalypt group (genera Eucalyptus, Corymbia, Angophora, and outgroups Allosyncarpia and Stockwellia). We use 41 complete chloroplast genome sequences, adding 39 finished-quality chloroplast genomes to two previously published genomes. Maximum parsimony and Bayesian analyses, based on >7000 variable nucleotide positions, produced one fully resolved phylogenetic tree (35 supported nodes, 27 with 100% bootstrap support). Eucalyptus and its sister lineage Angophora+Corymbia show a deep divergence. Within Eucalyptus, three lineages are resolved: the 'eudesmid', 'symphyomyrt' and 'monocalypt' groups. Corymbia is paraphyletic with respect to Angophora. Gene content and order do not vary among eucalypt chloroplasts; length mutations, especially frame shifts, are uncommon in protein-coding genes. Some non-synonymous mutations are highly incongruent with the overall phylogenetic signal, notably in rbcL, and may be adaptive. Application of custom informatics pipelines (GYDLE Inc.) enabled direct chloroplast genome assembly, resolving each genome to finished-quality with no need for PCR gap-filling or contig order resolution. Analysis of whole chloroplast genomes resolved major eucalypt clades and revealed variable regions of the genome that will be useful in lower-level genetic studies (including phylogeography and geneflow). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    Science.gov (United States)

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Be-Breeder – an application for analysis of genomic data in plant breeding

    Directory of Open Access Journals (Sweden)

    Filipe Inácio Matias

    2016-12-01

    Full Text Available Be-Breeder is an application directed toward genetic breeding of plants, developed through the Shiny package of the R software, which allows different phenotype and molecular (marker analysis to be undertaken. The section for analysis of molecular data of the Be-Breeder application makes it possible to achieve quality control of genotyping data, to obtain genomic kinship matrices, and to analyze genomic selection, genome association, and genetic diversity in a simple manner on line. This application is available for use in a network through the site of the Allogamous Plant Breeding Laboratory of ESALQ-USP (http://www.genetica.esalq.usp.br/alogamas/R.html.

  15. [ENCODE apophenia or a panglossian analysis of the human genome].

    Science.gov (United States)

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. © 2015 médecine/sciences – Inserm.

  16. Analysis of genomic imbalances and gene expression changes in transformed follicular lymphoma (FL)

    DEFF Research Database (Denmark)

    Obel, G.; Farinha, P.; Lam, W.

    2005-01-01

    American patients with transformed FL. Methods: High-resolution BAC-array comparative genomic hybridisation (CGH) was used to detect genomic imbalances. Gene expression profiling was performed using cDNA microarrays (Affymetrix). Results: Of 9 biopsy pairs identified so far, analysis results of the first 4......: The combined use of array-CGH and gene expression analysis will provide a more comprehensive picture of the transformation process in FL....

  17. Analysis of anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    Full Text Available Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.

  18. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma

    International Nuclear Information System (INIS)

    Man, Tsz-Kwong; Rao, Pulivarthi H; Lu, Xin-Yan; Jaeweon, Kim; Perlaky, Laszlo; Harris, Charles P; Shah, Shishir; Ladanyi, Marc; Gorlick, Richard; Lau, Ching C

    2004-01-01

    Osteosarcoma is a highly malignant bone neoplasm of children and young adults. It is characterized by extremely complex karyotypes and high frequency of chromosomal amplifications. Currently, only the histological response (degree of necrosis) to therapy represent gold standard for predicting the outcome in a patient with non-metastatic osteosarcoma at the time of definitive surgery. Patients with lower degree of necrosis have a higher risk of relapse and poor outcome even after chemotherapy and complete resection of the primary tumor. Therefore, a better understanding of the underlying molecular genetic events leading to tumor initiation and progression could result in the identification of potential diagnostic and therapeutic targets. We used a genome-wide screening method – array based comparative genomic hybridization (array-CGH) to identify DNA copy number changes in 48 patients with osteosarcoma. We applied fluorescence in situ hybridization (FISH) to validate some of amplified clones in this study. Clones showing gains (79%) were more frequent than losses (66%). High-level amplifications and homozygous deletions constitute 28.6% and 3.8% of tumor genome respectively. High-level amplifications were present in 238 clones, of which about 37% of them showed recurrent amplification. Most frequently amplified clones were mapped to 1p36.32 (PRDM16), 6p21.1 (CDC5L, HSPCB, NFKBIE), 8q24, 12q14.3 (IFNG), 16p13 (MGRN1), and 17p11.2 (PMP22 MYCD, SOX1,ELAC27). We validated some of the amplified clones by FISH from 6p12-p21, 8q23-q24, and 17p11.2 amplicons. Homozygous deletions were noted for 32 clones and only 7 clones showed in more than one case. These 7 clones were mapped to 1q25.1 (4 cases), 3p14.1 (4 cases), 13q12.2 (2 cases), 4p15.1 (2 cases), 6q12 (2 cases), 6q12 (2 cases) and 6q16.3 (2 cases). This study clearly demonstrates the utility of array CGH in defining high-resolution DNA copy number changes and refining amplifications. The resolution of array CGH

  19. Can Stable Isotope combined with Trace Element Analysis distinguish between pure and g.g.A. (protected geographical indication, P.G.I.) certified Pumpkin Seed Oils?

    Science.gov (United States)

    Meier-Augenstein, Wolfram; Kemp, Helen; Midwood, Andy

    2013-04-01

    genuine Styrian PSO as alien PSO and mixtures of Styrian PSO with alien PSO. To investigate the potential of multivariate stable isotope analysis as a means to correctly distinguish between genuine Syrian PSOs and other PSOs, we purchased 13 + 1 PSOs (13 different brands) from high-street and on-line shops. Samples were given alpha-numerical sample IDs and were analysed in a single-blinded fashion. Based on 2H, 13C and 18O abundance values alone sensitivity and specificity were 0.75 (1 false negative; 3 true positives) and 0.86 (1 false positive; 6 true negatives), respectively. However, when combining stable isotope data with trace element data, sensitivity and specificity both improved with no false negatives or false positives being detected. Chemometric statistical analysis clearly separated the 3 g.g.A. certified Styrian PSOs from all but one other PSO, which was also a genuine Styrian PSO in as much as it was pressed from genuine Styrian pumpkin seeds though not by a Styrian oil mill and thus not qualifying for the g.g.A. mark.

  20. Complete Genome Analysis ofThermus parvatiensisand Comparative Genomics ofThermusspp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes.

    Science.gov (United States)

    Tripathi, Charu; Mishra, Harshita; Khurana, Himani; Dwivedi, Vatsala; Kamra, Komal; Negi, Ram K; Lal, Rup

    2017-01-01

    Thermophilic environments represent an interesting niche. Among thermophiles, the genus Thermus is among the most studied genera. In this study, we have sequenced the genome of Thermus parvatiensis strain RL, a thermophile isolated from Himalayan hot water springs (temperature >96°C) using PacBio RSII SMRT technique. The small genome (2.01 Mbp) comprises a chromosome (1.87 Mbp) and a plasmid (143 Kbp), designated in this study as pTP143. Annotation revealed a high number of repair genes, a squeezed genome but containing highly plastic plasmid with transposases, integrases, mobile elements and hypothetical proteins (44%). We performed a comparative genomic study of the group Thermus with an aim of analysing the phylogenetic relatedness as well as niche specific attributes prevalent among the group. We compared the reference genome RL with 16 Thermus genomes to assess their phylogenetic relationships based on 16S rRNA gene sequences, average nucleotide identity (ANI), conserved marker genes (31 and 400), pan genome and tetranucleotide frequency. The core genome of the analyzed genomes contained 1,177 core genes and many singleton genes were detected in individual genomes, reflecting a conserved core but adaptive pan repertoire. We demonstrated the presence of metagenomic islands (chromosome:5, plasmid:5) by recruiting raw metagenomic data (from the same niche) against the genomic replicons of T. parvatiensis . We also dissected the CRISPR loci wide all genomes and found widespread presence of this system across Thermus genomes. Additionally, we performed a comparative analysis of competence loci wide Thermus genomes and found evidence for recent horizontal acquisition of the locus and continued dispersal among members reflecting that natural competence is a beneficial survival trait among Thermus members and its acquisition depicts unending evolution in order to accomplish optimal fitness.

  1. Analysis of B-genome derived simple sequence repeat (SSR ...

    African Journals Online (AJOL)

    A study was conducted to investigate the genetic variability between 40 Musa genotypes maintained at the Musa germplasm collection of the International Institute for Tropical Agriculture, Ibadan using nine B-genome derived simple sequence repeat (SSR) markers. The nine primers produced reproducible and discrete ...

  2. Analysis of phage Mu DNA transposition by whole-genome ...

    Indian Academy of Sciences (India)

    In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced ...

  3. Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    NARCIS (Netherlands)

    Adema, Coen M; Hillier, LaDeana W; Jones, Catherine S; Loker, Eric S; Knight, Matty; Minx, Patrick; Oliveira, Guilherme; Raghavan, Nithya; Shedlock, Andrew; do Amaral, Laurence Rodrigues; Arican-Goktas, Halime D; Assis, Juliana G; Baba, Elio Hideo; Baron, Olga L; Bayne, Christopher J; Bickham-Wright, Utibe; Biggar, Kyle K; Blouin, Michael; Bonning, Bryony C; Botka, Chris; Bridger, Joanna M; Buckley, Katherine M; Buddenborg, Sarah K; Lima Caldeira, Roberta; Carleton, Julia; Carvalho, Omar S; Castillo, Maria G; Chalmers, Iain W; Christensens, Mikkel; Clifton, Sandra; Cosseau, Celine; Coustau, Christine; Cripps, Richard M; Cuesta-Astroz, Yesid; Cummins, Scott F; di Stephano, Leon; Dinguirard, Nathalie; Duval, David; Emrich, Scott; Feschotte, Cédric; Feyereisen, Rene; FitzGerald, Peter; Fronick, Catrina; Fulton, Lucinda; Galinier, Richard; Gava, Sandra G; Geusz, Michael; Geyer, Kathrin K; Giraldo-Calderón, Gloria I; de Souza Gomes, Matheus; Gordy, Michelle A; Gourbal, Benjamin; Grunau, Christoph; Hanington, Patrick C; Hoffmann, Karl F; Hughes, Daniel; Humphries, Judith; Jackson, Daniel J; Jannotti-Passos, Liana K; de Jesus Jeremias, Wander; Jobling, Susan; Kamel, Bishoy; Kapusta, Aurélie; Kaur, Satwant; Koene, Joris M; Kohn, Andrea B; Lawson, Dan; Lawton, Scott P; Liang, D.C.; Limpanont, Yanin; Liu, Sijun; Lockyer, Anne E; Lovato, TyAnna L; Ludolf, Fernanda; Magrini, Vince; McManus, Donald P; Medina, Monica; Misra, Milind; Mitta, Guillaume; Mkoji, Gerald M; Montague, Michael J; Montelongo, Cesar; Moroz, Leonid L; Munoz-Torres, Monica C; Niazi, Umar; Noble, Leslie R; Oliveira, Francislon S; Pais, Fabiano S; Papenfuss, Anthony T; Peace, Rob; Pena, Janeth J; Pila, Emmanuel A; Quelais, Titouan; Raney, Brian J; Rast, Jonathan P; Rollinson, David; Rosse, Izinara C; Rotgans, Bronwyn; Routledge, Edwin J; Ryan, Kathryn M; Scholte, Larissa L S; Storey, Kenneth B; Swain, Martin; Tennessen, Jacob A; Tomlinson, Chad; Trujillo, Damian L; Volpi, Emanuela V; Walker, Anthony J; Wang, Tianfang; Wannaporn, Ittiprasert; Warren, Wesley C; Wu, Xiao-Jun; Yoshino, Timothy P; Yusuf, Mohammed; Zhang, Si-Ming; Zhao, Min; Wilson, Richard K

    2017-01-01

    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of

  4. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  5. Analysis of phage Mu DNA transposition by whole-genome ...

    Indian Academy of Sciences (India)

    by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or ... able elements (TEs) have learnt to balance self-propagation with host survival. ..... Genome wide mapping of Mu transposition targets and MuB binding on the E. coli chromosome. Top panel, an ...

  6. Nuclear genome size analysis of Agave tequilana Weber

    Czech Academy of Sciences Publication Activity Database

    Palomino, G.; Doležel, Jaroslav; Méndez, I.; Rubluo, A.

    2003-01-01

    Roč. 56, č. 1 (2003), s. 37-46 ISSN 0008-7114 Grant - others:Itálie(IT) Z5038910 Institutional research plan: CEZ:AV0Z5038910 Keywords : Flow cytometry * nuclear genome size * Agave tequilana Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.337, year: 2003

  7. Whole Genome Analysis of Epidemiologically Closely Related Staphylococcus aureus Isolates

    NARCIS (Netherlands)

    M. Schijffelen (Maarten); S.R. Konstantinov (Sergey); G. Lina (Gérard); I. Spiliopoulou (Iris); E. van Duijkeren (Engeline); E.C. Brouwer (Ellen); A.C. Fluit (Ad)

    2013-01-01

    textabstractThe change of the bacteria from colonizers to pathogens is accompanied by a drastic change in expression profiles. These changes may be due to environmental signals or to mutational changes. We therefore compared the whole genome sequences of four sets of S. aureus isolates. Three sets

  8. Genomic and metagenomic analysis of antibiotic resistance in dairy animals

    Science.gov (United States)

    The extent to which carriage of antibiotic resistant bacteria in food animals is responsible for the burden of antibiotic resistance in human infections is currently not well known. Thus, there is a need to further evaluate the genomic diversity of multidrug resistant (MDR) bacteria and the microbi...

  9. Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    DEFF Research Database (Denmark)

    Adema, Coen M; Hillier, Ladeana W; Jones, Catherine S

    2017-01-01

    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome...

  10. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  11. A Bibliometric Analysis of Global Research on Genome Sequencing ...

    African Journals Online (AJOL)

    YSHo

    This study was carried out to evaluate the global scientific production of genome sequencing research to assess the characteristics of the research performances and the research tendencies. Data were obtained from Science Citation Index Expanded database during 1991-2010. Conventional methods including document ...

  12. Analysis of dinucleotide signatures in HIV-1 subtype B genomes

    Indian Academy of Sciences (India)

    ... AIDS, have been carried out to analyse the variation in genome signatures of the virus from 1983 to 2007.We show statistically significant temporal variations in some dinucleotide patterns highlighting the selective evolution of the dinucleotide profiles of HIV-1 subtype B, possibly a consequence of host specific selection.

  13. Genomic analysis of the stress response of rainbow trout

    Science.gov (United States)

    Genomic analyses have the potential to impact selective breeding programs by identifying markers as proxies for traits which are expensive or difficult to measure. One such set of traits is the physiological responses of rainbow trout to the stresses of the aquaculture environment. Typical stresso...

  14. Comparative genomic analysis as a tool for biological discovery.

    Science.gov (United States)

    Nobrega, Marcelo A; Pennacchio, Len A

    2004-01-01

    The recent completion of the human genome sequence has enabled the identification of a large fraction of our gene catalogue and their physical chromosomal position. However, current efforts lag at defining the cis-regulatory sequences that control the spatial and temporal patterns of each gene's expression. This task remains difficult due to our lack of knowledge of the vocabulary controlling gene regulation and the vast genomic search space, with greater than 95% of our genome being noncoding. Recent comparative genomic-based strategies are beginning to aid in the identification of functional sequences based on their high levels of evolutionary conservation. This has proven successful for comparisons between closely related species such as human-primate or human-mouse, but also holds true for distant evolutionary comparisons, such as human-fish or human-bird. In this review we provide support for the utility of cross-species sequence comparisons by illustrating several applications of this strategy, including the identification of new genes and functional non-coding sequences. We also discuss emerging concepts as this field matures, such as how to properly select which species for comparison, which may differ significantly between independent studies.

  15. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  16. Meta-Analysis of Genome-Wide Linkage Scans of Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Zhou, Kaixin; Dempfle, Astrid; Arcos-Burgos, Mauricio; Bakker, Steven C.; Banaschewski, Tobias; Biederman, Joseph; Buitelaar, Jan; Castellanos, F.Xavier; Doyle, Alysa; Ebstein, Richard P.; Ekholm, Jenny; Forabosco, Paola; Franke, Barbara; Freitag, Christine; Friedel, Susann; Gill, Michael; Hebebrand, Johannes; Hinney, Anke; Jacob, Christian; Lesch, Klaus Peter; Loo, Sandra K.; Lopera, Francisco; McCracken, James T.; McGough, James J.; Meyer, Jobst; Mick, Eric; Miranda, Ana; Muenke, Maximilian; Mulas, Fernando; Nelson, Stanley F.; Nguyen, T.Trang; Oades, Robert D.; Ogdie, Matthew N.; Palacio, Juan David; Pineda, David; Reif, Andreas; Renner, Tobias J.; Roeyers, Herbert; Romanos, Marcel; Rothenberger, Aribert; Schäfer, Helmut; Sergeant, Joseph; Sinke, Richard J.; Smalley, Susan L.; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; van der Meulen, Emma; Walitza, Susanne; Warnke, Andreas; Lewis, Cathryn M; Faraone, Stephen V.; Asherson, Philip

    2010-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, there has been limited replications between the various independent datasets. The current study gathered the results from all seven of the ADHD linkage scans and performed a Genome Scan Meta Analysis (GSMA) to identify the genomic region with most consistent linkage evidence across the studies. Genome-wide significant linkage (PSR=0.00034, POR=0.04) was identified on chromosome 16 between 64 and 83 Mb. In addition there are nine other genomic regions from the GSMA showing nominal or suggestive evidence of linkage. All these linkage results may be informative and focus the search for novel ADHD susceptibility genes. PMID:18988193

  17. MD-SeeGH: a platform for integrative analysis of multi-dimensional genomic data

    Directory of Open Access Journals (Sweden)

    Ng Raymond T

    2008-05-01

    Full Text Available Abstract Background Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles. Due to the differences in data types it is difficult to conduct parallel analysis of multiple datasets from diverse platforms. Results To address this issue, we have developed an integrative genomic analysis platform MD-SeeGH, a software tool that allows users to rapidly and directly analyze genomic datasets spanning multiple genomic experiments. With MD-SeeGH, users have the flexibility to easily update datasets in accordance with new genomic builds, make a quality assessment of data using the filtering features, and identify genetic alterations within single or across multiple experiments. Multiple sample analysis in MD-SeeGH allows users to compare profiles from many experiments alongside tracks containing detailed localized gene information, microRNA, CpG islands, and copy number variations. Conclusion MD-SeeGH is a new platform for the integrative analysis of diverse microarray data, facilitating multiple profile analyses and group comparisons.

  18. Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to machine learning.

    Science.gov (United States)

    Dozmorov, Mikhail G

    2017-10-15

    One of the goals of functional genomics is to understand the regulatory implications of experimentally obtained genomic regions of interest (ROIs). Most sequencing technologies now generate ROIs distributed across the whole genome. The interpretation of these genome-wide ROIs represents a challenge as the majority of them lie outside of functionally well-defined protein coding regions. Recent efforts by the members of the International Human Epigenome Consortium have generated volumes of functional/regulatory data (reference epigenomic datasets), effectively annotating the genome with epigenomic properties. Consequently, a wide variety of computational tools has been developed utilizing these epigenomic datasets for the interpretation of genomic data. The purpose of this review is to provide a structured overview of practical solutions for the interpretation of ROIs with the help of epigenomic data. Starting with epigenomic enrichment analysis, we discuss leading tools and machine learning methods utilizing epigenomic and 3D genome structure data. The hierarchy of tools and methods reviewed here presents a practical guide for the interpretation of genome-wide ROIs within an epigenomic context. mikhail.dozmorov@vcuhealth.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. ARG-based genome-wide analysis of cacao cultivars

    Directory of Open Access Journals (Sweden)

    Utro Filippo

    2012-12-01

    Full Text Available Abstract Background Ancestral recombinations graph (ARG is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. Results While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1 genome-wide or multiple chromosomes, (2 multi-allelic and (3 extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG. As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR and are multi-allelic (sometimes as high as 30 distinct possible values at a locus. Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci

  20. ARG-based genome-wide analysis of cacao cultivars.

    Science.gov (United States)

    Utro, Filippo; Cornejo, Omar Eduardo; Livingstone, Donald; Motamayor, Juan Carlos; Parida, Laxmi

    2012-01-01

    Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG.As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases

  1. Ensemble Equivalence for Distinguishable Particles

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Peralta

    2016-07-01

    Full Text Available Statistics of distinguishable particles has become relevant in systems of colloidal particles and in the context of applications of statistical mechanics to complex networks. In this paper, we present evidence that a commonly used expression for the partition function of a system of distinguishable particles leads to huge fluctuations of the number of particles in the grand canonical ensemble and, consequently, to nonequivalence of statistical ensembles. We will show that the alternative definition of the partition function including, naturally, Boltzmann’s correct counting factor for distinguishable particles solves the problem and restores ensemble equivalence. Finally, we also show that this choice for the partition function does not produce any inconsistency for a system of distinguishable localized particles, where the monoparticular partition function is not extensive.

  2. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  3. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    Science.gov (United States)

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  4. [RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome].

    Science.gov (United States)

    Goriunova, S V; Chikida, N N; Kochieva, E Z

    2010-07-01

    RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01-0,2; proportion of polymorphic loci, 56.6-88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0-0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the U M-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.

  5. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  6. Full-length genomic analysis of korean porcine sapelovirus strains

    DEFF Research Database (Denmark)

    Son, Kyu-Yeol; Kim, Deok-Song; Kwon, Joseph

    2014-01-01

    the typical picornavirus genome organization; 5'untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3'UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5'UTR, a cis-replication element (CRE) in the 2C coding region and 3'UTR were identified...... and their structures were predicted. Interestingly, the structural features of the CRE and 3'UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV....

  7. Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia

    Directory of Open Access Journals (Sweden)

    Sofya K. Garushyants

    2018-04-01

    Full Text Available While most endosymbiotic bacteria are transmitted only vertically, Holospora spp., an alphaproteobacterium from the Rickettsiales order, can desert its host and invade a new one. All bacteria from the genus Holospora are intranuclear symbionts of ciliates Paramecium spp. with strict species and nuclear specificity. Comparative metabolic reconstruction based on the newly sequenced genome of Holospora curviuscula, a macronuclear symbiont of Paramecium bursaria, and known genomes of other Holospora species shows that even though all Holospora spp. can persist outside the host, they cannot synthesize most of the essential small molecules, such as amino acids, and lack some central energy metabolic pathways, including glycolysis and the citric acid cycle. As the main energy source, Holospora spp. likely rely on nucleotides pirated from the host. Holospora-specific genes absent from other Rickettsiales are possibly involved in the lifestyle switch from the infectious to the reproductive form and in cell invasion.

  8. Cloud computing for genomic data analysis and collaboration.

    Science.gov (United States)

    Langmead, Ben; Nellore, Abhinav

    2018-04-01

    Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

  9. BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics

    DEFF Research Database (Denmark)

    Zhao, Wenming; Wang, Jing; He, Ximiao

    2004-01-01

    the application of the rice genomic information and to provide a foundation for functional and evolutionary studies of other important cereal crops, we implemented our Rice Information System (BGI-RIS), the most up-to-date integrated information resource as well as a workbench for comparative genomic analysis....... In addition to comprehensive data from Oryza sativa L. ssp. indica sequenced by BGI, BGI-RIS also hosts carefully curated genome information from Oryza sativa L. ssp. japonica and EST sequences available from other cereal crops. In this resource, sequence contigs of indica (93-11) have been further assembled...

  10. Analysis of phage Mu DNA transposition by whole-genome ...

    Indian Academy of Sciences (India)

    labelled ChIP DNA and Cy3-labelled whole-genome DNA, both amplified by random primers. The 'ratio' value of each probe (fluorescence intensity of Cy5 over Cy3) is the relative enrichment of that probe sequence in the ChIP sample, referred to as the relative MuB binding preference, or BBP. A scatter plot of log2 BBP ...

  11. Genomic analysis of high-risk smoldering multiple myeloma

    OpenAIRE

    López-Corral, Lucía; Mateos, María Victoria; Corchete, Luis A.; Sarasquete, María Eugenia; de la Rubia, Javier; de Arriba, Felipe; Lahuerta, Juan-José; García-Sanz, Ramón; San Miguel, Jesús F.; Gutiérrez, Norma C.

    2012-01-01

    Smoldering myeloma is an asymptomatic plasma cell dyscrasia with a heterogeneous propensity to progress to active myeloma. In order to investigate the biology of smoldering myeloma patients with high risk of progression, we analyzed the genomic characteristics by FISH, SNP-arrays and gene expression profile of a group of patients with high-risk smoldering myeloma included in a multicenter randomized trial. Chromosomal abnormalities detected by FISH and SNP-arrays at diagnosis were not associa...

  12. General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Curreem Shirly O

    2011-04-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of L. hongkongensis and correlated them with its phenotypic characteristics. Results The L. hongkongensis genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in Neisseria gonorrhoeae, Neisseria meningitidis and Chromobacterium violaceum. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter. Conclusions The L. hongkongensis genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.

  13. Three-dimensional reconstruction for genomic analysis of prostate cancer

    Science.gov (United States)

    Wetzel, Arthur W.; Gilbertson, John; Zheng, Lei; Gilespie, John; Swalwell, Jennifer; Yagi, Yukako; Kim, Sujin; Emmert-Buck, Michael; Becich, Michael J.

    2000-05-01

    Prostate cancer is the second most common cause of cancer deaths and is the most frequently detected form of cancer of males in the US. Death rate scan be greatly reduced by early treatment. Consequently, it is important to understand the cause and progression of this disease in order to improve detection and treatment methods. As part of the Cancer Genome Anatomy Project work is underway to produce a 'molecular finger print' of prostate cancer.

  14. Genomic analysis of the symbiotic marine crenarchaeon, Cenarchaeumsymbiosum

    Energy Technology Data Exchange (ETDEWEB)

    Hallam, Steven J.; Konstantinidis, Konstantinos T.; Brochier,Celine; Putnam, Nik; Schleper, Christa; Watanabe, Yoh-ichi; Sugahara,Junichi; Preston, Christina; de la Torre, Jose; Richardson, Paul M.; DeLong, Edward F.

    2006-06-24

    Crenarchaea are ubiquitous and abundant microbial constituents of soils, sediments, lakes and ocean waters, yet relatively little is known about their fundamental evolutionary, ecological, and physiological properties. To better describe the ubiquitous nonthermophilic Crenarchaea, we analyzed the genome sequence of one representative, the uncultivated sponge symbiont, Cenarchaeum symbiosum. C. symbiosum genotypes coinhabiting the same host partitioned into two dominant populations, corresponding to previously described a- and b-type ribosomal RNA variants. Although synthetic, overlapping a- and b-type ribotypes harbored significant genetic variability. A single tiling path comprising the dominant a-type genotype was assembled, and used to explore the biological properties of C. symbiosum and its planktonic relatives. Out of a total of 2,066 predicted open reading frames, 36% were more highly conserved with other Archaea. The remainder partitioned between bacteria (18%), eukaryotes (1.5%) and viruses (0.1%). A total of 525 open reading frames were more highly conserved with sequences derived from marine environmental genomic surveys, most probably representing orthologous genes found in free-living planktonic Crenarchaea. The remaining genes partitioned between functional RNAs (2.4%), and hypotheticals (42%) with limited homology to known functional genes. The latter category likely contains genes specifically involved in mediated archaeal-sponge symbiosis. Phylogenetic analyses placed C. symbiosum as a basal crenarchaeon, sharing specific genomic features in common with either Crenarchaea, Euryarchaea, or both. The genome sequence of C. symbiosum reflect a unique and unusual evolutionary, physiological, and ecological history, one remarkably distinct from that of any other previously known microbial lineage.

  15. Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method.

    Science.gov (United States)

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-08-15

    Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular cytogenetic (FISH and genome analysis of diploid wheatgrasses and their phylogenetic relationship.

    Directory of Open Access Journals (Sweden)

    Gabriella Linc

    Full Text Available This paper reports detailed FISH-based karyotypes for three diploid wheatgrass species Agropyron cristatum (L. Beauv., Thinopyrum bessarabicum (Savul.&Rayss A. Löve, Pseudoroegneria spicata (Pursh A. Löve, the supposed ancestors of hexaploid Thinopyrum intermedium (Host Barkworth & D.R.Dewey, compiled using DNA repeats and comparative genome analysis based on COS markers. Fluorescence in situ hybridization (FISH with repetitive DNA probes proved suitable for the identification of individual chromosomes in the diploid JJ, StSt and PP genomes. Of the seven microsatellite markers tested only the (GAAn trinucleotide sequence was appropriate for use as a single chromosome marker for the P. spicata AS chromosome. Based on COS marker analysis, the phylogenetic relationship between diploid wheatgrasses and the hexaploid bread wheat genomes was established. These findings confirmed that the J and E genomes are in neighbouring clusters.

  17. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India

    Directory of Open Access Journals (Sweden)

    Sarwar Azam

    2016-01-01

    Full Text Available Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis.

  18. Genomic Profiles in Stage I Primary Non Small Cell Lung Cancer Using Comparative Genomic Hybridization Analysis of cDNA Microarrays

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2004-09-01

    Full Text Available To investigate the genomic aberrations that are involved in lung tumorigenesis and therefore may be developed as biomarkers for lung cancer diagnosis, we characterized the genomic copy number changes associated with individual genes in 14 tumors from patients with primary non small cell lung cancer (NSCLC. Six squamous cell carcinomas (SQCAs and eight adenocarcinomas (ADCAs were examined by high-resolution comparative genomic hybridization (CGH analysis of cDNA microarray. The SQCAs and ADCAs shared common frequency distributions of recurrent genomic gains of 63 genes and losses of 72 genes. Cluster analysis using 57 genes defined the genomic differences between these two major histologic types of NSCLC. Genomic aberrations from a set of 18 genes showed distinct difference of primary ADCAs from their paired normal lung tissues. The genomic copy number of four genes was validated by fluorescence in situ hybridization of 32 primary NSCLC tumors, including those used for cDNA microarray CGH analysis; a strong correlation with cDNA microarray CGH data emerged. The identified genomic aberrations may be involved in the initiation and progression of lung tumorigenesis and, most importantly, may be developed as new biomarkers for the early detection and classification of lung cancer.

  19. A single molecular marker to distinguish between species of Dioscorea.

    Science.gov (United States)

    Techen, Natascha; Parveen, Iffat; Khan, Ikhlas A

    2017-03-01

    Yams are species of the genus Dioscorea (family Dioscoreaceae), which consists of approximately 630 species. The majority of the world production of yams occurs in Africa with 58.8 million t annually, but they are also produced in the Americas and Asia. The saponins in yams have been reported to possess various properties to improve health. The tuber and aerial parts of various species often share morphological similarities, which can cause problems in the proper identification of sample material. For example, the rootstocks and aerial parts of Dioscorea villosa L. share similarities with Dioscorea polystachia Turcz. Dioscorea bulbifera L. may be mistaken for Dioscorea alata L. owing to similar morphologies. Various molecular analyses have been published to help with the identification of species and varieties within the genus Dioscorea. The multi-loci or single-locus analysis has resulted in varying success, some with only a limited discrimination rate. In the present study, a single nuclear genomic region, biparentally inherited, was analyzed for its usefulness as a molecular marker for species identification and discrimination between D. bulbifera, D. villosa, D. nipponica, D. alata, D. caucasica, and D. deltoidea samples. The results of this study show that the LFY genomic region can be useful as a molecular marker to distinguish between samples.

  20. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  1. USE OF NEXT-GENERATION SEQUENCING FOR GENOMIC ANALYSIS IN COMPLEX DISEASES

    OpenAIRE

    Sana, Maria Elena

    2013-01-01

    Since the early 1990s, Sanger method has been the gold standard methodology for sequencing analysis of DNA. Next-generation sequencing (NGS) approaches revolutionized the field of genomics over the last 5 years. These new sequencing technologies make feasible the direct and cost-effective sequencing of genomes at unprecedented scale and speed. Furthermore, the applications of these technologies are wide-spread and have been developed to explore the complex biological systems, among which RNA ...

  2. Comparative Genomic Analysis of Clinical and Environmental Vibrio Vulnificus Isolates Revealed Biotype 3 Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Yael eKotton

    2015-01-01

    Full Text Available In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59% and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 kbp to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C and environmental (E, all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins were present in all human pathogenic strains (both biotype 3 and non-biotype 3 and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and

  3. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling.

    Science.gov (United States)

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-07-03

    Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway. This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

  4. Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food.

    Science.gov (United States)

    Yu, Jihyun; Ahn, Sojin; Kim, Kwondo; Caetano-Anolles, Kelsey; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Yoon, Sook Hee; Kang, Dae-Kyung; Kim, Heebal

    2017-08-28

    As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum , which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.

  5. Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): An integrated case-control analysis pipeline.

    Science.gov (United States)

    Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J

    2016-03-01

    Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  6. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota.

    Science.gov (United States)

    Kublanov, Ilya V; Sigalova, Olga M; Gavrilov, Sergey N; Lebedinsky, Alexander V; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A; Ivanova, Natalia; Daum, Chris; Reddy, T B K; Klenk, Hans-Peter; Spring, Stefan; Göker, Markus; Reva, Oleg N; Miroshnichenko, Margarita L; Kyrpides, Nikos C; Woyke, Tanja; Gelfand, Mikhail S; Bonch-Osmolovskaya, Elizaveta A

    2017-01-01

    The genome of Caldithrix abyssi , the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2 , probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi : starch, cellobiose, glucomannan and xyloglucan. The genomic analysis

  7. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.

    Science.gov (United States)

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian

    2017-04-27

    The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.

  8. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications.

    Science.gov (United States)

    Goremykin, Vadim V; Holland, Barbara; Hirsch-Ernst, Karen I; Hellwig, Frank H

    2005-09-01

    Determining the phylogenetic relationships among the major lines of angiosperms is a long-standing problem, yet the uncertainty as to the phylogenetic affinity of these lines persists. While a number of studies have suggested that the ANITA (Amborella-Nymphaeales-Illiciales-Trimeniales-Aristolochiales) grade is basal within angiosperms, studies of complete chloroplast genome sequences also suggested an alternative tree, wherein the line leading to the grasses branches first among the angiosperms. To improve taxon sampling in the existing chloroplast genome data, we sequenced the chloroplast genome of the monocot Acorus calamus. We generated a concatenated alignment (89,436 positions for 15 taxa), encompassing almost all sequences usable for phylogeny reconstruction within spermatophytes. The data still contain support for both the ANITA-basal and grasses-basal hypotheses. Using simulations we can show that were the ANITA-basal hypothesis true, parsimony (and distance-based methods with many models) would be expected to fail to recover it. The self-evident explanation for this failure appears to be a long-branch attraction (LBA) between the clade of grasses and the out-group. However, this LBA cannot explain the discrepancies observed between tree topology recovered using the maximum likelihood (ML) method and the topologies recovered using the parsimony and distance-based methods when grasses are deleted. Furthermore, the fact that neither maximum parsimony nor distance methods consistently recover the ML tree, when according to the simulations they would be expected to, when the out-group (Pinus) is deleted, suggests that either the generating tree is not correct or the best symmetric model is misspecified (or both). We demonstrate that the tree recovered under ML is extremely sensitive to model specification and that the best symmetric model is misspecified. Hence, we remain agnostic regarding phylogenetic relationships among basal angiosperm lineages.

  9. Functional analysis of all salmonid genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture

    OpenAIRE

    Macqueen, Daniel J.; Primmer, Craig R.; Houston, Ross D.; Nowak, Barbara F.; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S.; Gallardo-Escarate, Christian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F.; Lien, Sigbjorn; Maass, Alejandro

    2017-01-01

    We describe an emerging initiative - the "Functional Analysis of All Salmonid Genomes" (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, through to improving the efficiency and sustainability of aqu...

  10. High Throughput Technologies for Functional Analysis of Archael Genomics

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Najib M. A.

    1998-09-25

    The specific aims of this project were as follows: (1) to design primers to each predicted open reading frame (ORF) in M. jannaschii and M. thermoautotrophicum to allow the amplification of a unique target sequence that will represent the corresponding coding region on a complete genome chip (2) to amplify each target sequence from M. jannaschii and M. thermoautotrophicum and verify that these PCR products are the expected DNA fragment (3) to establish a relational database that will track the production of target DNAs and the nucleotide sequence used to represent each ORF.

  11. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  12. Sensitive and reliable detection of genomic imbalances in human neuroblastomas using comparative genomic hybridisation analysis

    NARCIS (Netherlands)

    van Gele, M.; van Roy, N.; Jauch, A.; Laureys, G.; Benoit, Y.; Schelfhout, V.; de Potter, C. R.; Brock, P.; Uyttebroeck, A.; Sciot, R.; Schuuring, E.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions of the short arm of chromosome 1, extra copies of chromosome 17q and MYCN amplification are the most frequently encountered genetic changes in neuroblastomas. Standard techniques for detection of one or more of these genetic changes are karyotyping, FISH analysis and LOH analysis by

  13. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods.

    Directory of Open Access Journals (Sweden)

    Mayumi Kamada

    Full Text Available Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA, we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.

  14. Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench?

    Science.gov (United States)

    Seneca, Sara; Vancampenhout, Kim; Van Coster, Rudy; Smet, Joél; Lissens, Willy; Vanlander, Arnaud; De Paepe, Boel; Jonckheere, An; Stouffs, Katrien; De Meirleir, Linda

    2015-01-01

    Next-generation sequencing (NGS), an innovative sequencing technology that enables the successful analysis of numerous gene sequences in a massive parallel sequencing approach, has revolutionized the field of molecular biology. Although NGS was introduced in a rather recent past, the technology has already demonstrated its potential and effectiveness in many research projects, and is now on the verge of being introduced into the diagnostic setting of routine laboratories to delineate the molecular basis of genetic disease in undiagnosed patient samples. We tested a benchtop device on retrospective genomic DNA (gDNA) samples of controls and patients with a clinical suspicion of a mitochondrial DNA disorder. This Ion Torrent Personal Genome Machine platform is a high-throughput sequencer with a fast turnaround time and reasonable running costs. We challenged the chemistry and technology with the analysis and processing of a mutational spectrum composed of samples with single-nucleotide substitutions, indels (insertions and deletions) and large single or multiple deletions, occasionally in heteroplasmy. The output data were compared with previously obtained conventional dideoxy sequencing results and the mitochondrial revised Cambridge Reference Sequence (rCRS). We were able to identify the majority of all nucleotide alterations, but three false-negative results were also encountered in the data set. At the same time, the poor performance of the PGM instrument in regions associated with homopolymeric stretches generated many false-positive miscalls demanding additional manual curation of the data.

  15. The complexity of Rhipicephalus (Boophilus microplus genome characterised through detailed analysis of two BAC clones

    Directory of Open Access Journals (Sweden)

    Valle Manuel

    2011-07-01

    Full Text Available Abstract Background Rhipicephalus (Boophilus microplus (Rmi a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as Drosophila and Anopheles are too taxonomically distant for a reference in tick genomic sequence analysis. This study focuses on the de-novo assembly of two R. microplus BAC sequences from the understudied R microplus genome. Based on available R. microplus sequenced resources and comparative analysis, tick genomic structure and functional predictions identify complex gene structures and genomic targets expressed during tick-cattle interaction. Results In our BAC analyses we have assembled, using the correct positioning of BAC end sequences and transcript sequences, two challenging genomic regions. Cot DNA fractions compared to the BAC sequences confirmed a highly repetitive BAC sequence BM-012-E08 and a low repetitive BAC sequence BM-005-G14 which was gene rich and contained short interspersed elements (SINEs. Based directly on the BAC and Cot data comparisons, the genome wide frequency of the SINE Ruka element was estimated. Using a conservative approach to the assembly of the highly repetitive BM-012-E08, the sequence was de-convoluted into three repeat units, each unit containing an 18S, 5.8S and 28S ribosomal RNA (rRNA encoding gene sequence (rDNA, related internal transcribed spacer and complex intergenic region. In the low repetitive BM-005-G14, a novel gene complex was found between to 2 genes on the same strand. Nested in the second intron of a large 9 Kb papilin gene was a helicase gene. This helicase overlapped in two exonic regions with the papilin. Both these genes were shown expressed in different tick life stage important in ectoparasite interaction with the host. Tick specific sequence

  16. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes

    Science.gov (United States)

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approxima...

  17. Exploratory Data Analysis of Synthetic Aperture Radar (SAR Measurements to Distinguish the Sea Surface Expressions of Naturally-Occurring Oil Seeps from Human-Related Oil Spills in Campeche Bay (Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Gustavo de Araújo Carvalho

    2017-12-01

    Full Text Available An Exploratory Data Analysis (EDA aims to use Synthetic Aperture Radar (SAR measurements for discriminating between two oil slick types observed on the sea surface: naturally-occurring oil seeps versus human-related oil spills—the use of satellite sensors for this task is poorly documented in scientific literature. A long-term RADARSAT dataset (2008–2012 is exploited to investigate oil slicks in Campeche Bay (Gulf of Mexico. Simple Classification Algorithms to distinguish the oil slick type are designed based on standard multivariate data analysis techniques. Various attributes of geometry, shape, and dimension that describe the oil slick Size Information are combined with SAR-derived backscatter coefficients—sigma-(σo, beta-(βo, and gamma-(γo naught. The combination of several of these characteristics is capable of distinguishing the oil slick type with ~70% of overall accuracy, however, the sole and simple use of two specific oil slick’s Size Information (i.e., area and perimeter is equally capable of distinguishing seeps from spills. The data mining exercise of our EDA promotes a novel idea bridging petroleum pollution and remote sensing research, thus paving the way to further investigate the satellite synoptic view to express geophysical differences between seeped and spilled oil observed on the sea surface for systematic use.

  18. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety...... > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION: The combination of different......-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding....

  19. Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Ani A. Elias

    2018-01-01

    Full Text Available Cassava (Manihot esculenta Crantz is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant.

  20. Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.

    Science.gov (United States)

    Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-01-04

    Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.

  1. Genome-wide analysis of differential RNA editing in epilepsy

    Science.gov (United States)

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.

    2017-01-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018

  2. A Critical Review of Concepts and Methods Used in Classical Genome Analysis

    DEFF Research Database (Denmark)

    Seberg, Ole; Petersen, Gitte

    1998-01-01

    A short account of the development of classical genome analysis, the analysis of chromosome behaviour in metaphase I of meiosis, primarily in interspecific hybrids, is given. The application of the concept of homology to describe chromosome pairing between the respective chromosomes of a pair dur...

  3. Comparative genomic hybridization analysis of benign and invasive male breast neoplasms

    DEFF Research Database (Denmark)

    Ojopi, Elida Paula Benquique; Cavalli, Luciane Regina; Cavalieri, Luciane Mara Bogline

    2002-01-01

    Comparative genomic hybridization (CGH) analysis was performed for the identification of chromosomal imbalances in two benign gynecomastias and one malignant breast carcinoma derived from patients with male breast disease and compared with cytogenetic analysis in two of the three cases. CGH analy...

  4. Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. isolates from Yellowstone National Park.

    Science.gov (United States)

    Romano, Christine; D'Imperio, Seth; Woyke, Tanja; Mavromatis, Konstantinos; Lasken, Roger; Shock, Everett L; McDermott, Timothy R

    2013-05-01

    We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥ 99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized.

  5. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan

    2012-02-17

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse\\'s genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  6. Whole-Genome Analysis of Exserohilum rostratum from an Outbreak of Fungal Meningitis and Other Infections

    Science.gov (United States)

    Hurst, Steven; Gade, Lalitha; Frace, Michael A.; Hilsabeck, Remy; Schupp, James M.; Gillece, John D.; Roe, Chandler; Smith, David; Keim, Paul; Lockhart, Shawn R.; Changayil, Shankar; Weil, M. Ryan; MacCannell, Duncan R.; Brandt, Mary E.; Engelthaler, David M.

    2014-01-01

    Exserohilum rostratum was the cause of most cases of fungal meningitis and other infections associated with the injection of contaminated methylprednisolone acetate produced by the New England Compounding Center (NECC). Until this outbreak, very few human cases of Exserohilum infection had been reported, and very little was known about this dematiaceous fungus, which usually infects plants. Here, we report using whole-genome sequencing (WGS) for the detection of single nucleotide polymorphisms (SNPs) and phylogenetic analysis to investigate the molecular origin of the outbreak using 22 isolates of E. rostratum retrieved from 19 case patients with meningitis or epidural/spinal abscesses, 6 isolates from contaminated NECC vials, and 7 isolates unrelated to the outbreak. Our analysis indicates that all 28 isolates associated with the outbreak had nearly identical genomes of 33.8 Mb. A total of 8 SNPs were detected among the outbreak genomes, with no more than 2 SNPs separating any 2 of the 28 genomes. The outbreak genomes were separated from the next most closely related control strain by ∼136,000 SNPs. We also observed significant genomic variability among strains unrelated to the outbreak, which may suggest the possibility of cryptic speciation in E. rostratum. PMID:24951807

  7. Genomic Analysis of Bacillus sp. Strain B25, a Biocontrol Agent of Maize Pathogen Fusarium verticillioides.

    Science.gov (United States)

    Douriet-Gámez, Nadia R; Maldonado-Mendoza, Ignacio E; Ibarra-Laclette, Enrique; Blom, Jochen; Calderón-Vázquez, Carlos L

    2018-03-01

    Bacillus sp. B25 is an effective biocontrol agent against the maize pathogenic fungus Fusarium verticillioides (Fv). Previous in vitro assays have shown that B25 has protease, glucanase, and chitinase activities and siderophores production; however, specific mechanisms by which B25 controls Fv are still unknown. To determine the genetic traits involved in biocontrol, B25 genome was sequenced and analyzed. B25 genome is composed of 5,113,413 bp and 5251 coding genes. A multilocus phylogenetic analysis (MLPA) suggests that B25 is closely related to the Bacillus cereus group and a high percentage (70-75%) of the genetic information is conserved between B25 and related strains, which include most of the genes associated to fungal antagonism. Some of these genes are shared with some biocontrol agents of the Bacillus genus and less with Pseudomonas and Serratia strains. We performed a genomic comparison between B25 and five Bacillus spp., Pseudomonas and Serratia strains. B25 contains genes involved in a wide variety of antagonistic mechanisms including chitinases, glycoside hydrolases, siderophores, antibiotics, and biofilm production that could be implicated in root colonization. Also, 24 genomic islands and 3 CRISPR sequences were identified in the B25 genome. This is the first comparative genome analysis between strains belonging to the B. cereus group and biocontrol agents of phytopathogenic fungi. These results are the starting point for further studies on B25 gene expression during its interaction with Fv.

  8. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  10. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity.

    Directory of Open Access Journals (Sweden)

    Inês Soares

    Full Text Available Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs. Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.

  11. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  12. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    Science.gov (United States)

    Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges

    2016-01-01

    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735

  13. A guide to genome-wide association analysis and post-analytic interrogation.

    Science.gov (United States)

    Reed, Eric; Nunez, Sara; Kulp, David; Qian, Jing; Reilly, Muredach P; Foulkes, Andrea S

    2015-12-10

    This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open-source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as well as additional instructional resources, are publicly available through the Open Resources in Statistical Genomics project: http://www.stat-gen.org. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  14. Comprehensive genomic analysis of a BRCA2 deficient human pancreatic cancer.

    Science.gov (United States)

    Barber, Louise J; Rosa Rosa, Juan M; Kozarewa, Iwanka; Fenwick, Kerry; Assiotis, Ioannis; Mitsopoulos, Costas; Sims, David; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan

    2011-01-01

    Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function.

  15. Comprehensive genomic analysis of a BRCA2 deficient human pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Louise J Barber

    Full Text Available Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function.

  16. Assessment and improvement of the Plasmodium yoelii yoelii genome annotation through comparative analysis.

    Science.gov (United States)

    Vaughan, Ashley; Chiu, Sum-Ying; Ramasamy, Gowthaman; Li, Ling; Gardner, Malcolm J; Tarun, Alice S; Kappe, Stefan H I; Peng, Xinxia

    2008-07-01

    The sequencing of the Plasmodium yoelii genome, a model rodent malaria parasite, has greatly facilitated research for the development of new drug and vaccine candidates against malaria. Unfortunately, only preliminary gene models were annotated on the partially sequenced genome, mostly by in silico gene prediction, and there has been no major improvement of the annotation since 2002. Here we report on a systematic assessment of the accuracy of the genome annotation based on a detailed analysis of a comprehensive set of cDNA sequences and proteomics data. We found that the coverage of the current annotation tends to be biased toward genes expressed in the blood stages of the parasite life cycle. Based on our proteomic analysis, we estimate that about 15% of the liver stage proteome data we have generated is absent from the current annotation. Through comparative analysis we identified and manually curated a further 510 P. yoelii genes which have clear orthologs in the P. falciparum genome, but were not present or incorrectly annotated in the current annotation. This study suggests that improvements of the current P. yoelii genome annotation should focus on genes expressed in stages other than blood stages. Comparative analysis will be critically helpful for this re-annotation. The addition of newly annotated genes will facilitate the use of P. yoelii as a model system for studying human malaria. Supplementary data are available at Bioinformatics online.

  17. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  18. solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database

    Directory of Open Access Journals (Sweden)

    van der Knaap Esther

    2010-10-01

    Full Text Available Abstract Background A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL. Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a challenge remains: linking phenotypic variation to the underlying genomic variation. To identify candidate genes and understand the molecular basis underlying the phenotypic variation of traits, bioinformatic approaches are needed to exploit information such as genetic map, expression and whole genome sequence data of organisms in biological databases. Description The Sol Genomics Network (SGN, http://solgenomics.net is a primary repository for phenotypic, genetic, genomic, expression and metabolic data for the Solanaceae family and other related Asterids species and houses a variety of bioinformatics tools. SGN has implemented a new approach to QTL data organization, storage, analysis, and cross-links with other relevant data in internal and external databases. The new QTL module, solQTL, http://solgenomics.net/qtl/, employs a user-friendly web interface for uploading raw phenotype and genotype data to the database, R/QTL mapping software for on-the-fly QTL analysis and algorithms for online visualization and cross-referencing of QTLs to relevant datasets and tools such as the SGN Comparative Map Viewer and Genome Browser. Here, we describe the development of the solQTL module and demonstrate its application. Conclusions solQTL allows Solanaceae researchers to upload raw genotype and phenotype data to SGN, perform QTL analysis and dynamically cross-link to relevant genetic, expression and genome annotations. Exploration and synthesis of the relevant data is expected to help facilitate identification of candidate genes

  19. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-01-01

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  20. Insight into dynamic genome imaging: Canonical framework identification and high-throughput analysis.

    Science.gov (United States)

    Ronquist, Scott; Meixner, Walter; Rajapakse, Indika; Snyder, John

    2017-07-01

    The human genome is dynamic in structure, complicating researcher's attempts at fully understanding it. Time series "Fluorescent in situ Hybridization" (FISH) imaging has increased our ability to observe genome structure, but due to cell type and experimental variability this data is often noisy and difficult to analyze. Furthermore, computational analysis techniques are needed for homolog discrimination and canonical framework detection, in the case of time-series images. In this paper we introduce novel ideas for nucleus imaging analysis, present findings extracted using dynamic genome imaging, and propose an objective algorithm for high-throughput, time-series FISH imaging. While a canonical framework could not be detected beyond statistical significance in the analyzed dataset, a mathematical framework for detection has been outlined with extension to 3D image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal.

    Science.gov (United States)

    McGowan, Jamie; Fitzpatrick, David A

    2017-01-01

    The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate- Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales , Peronosporales , Pythiales , and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum , were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein

  2. Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages

    DEFF Research Database (Denmark)

    Mekonnen, Solomon A.; Palma Medina, Laura M.; Glasner, Corinna

    2017-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the common name for a heterogeneous group of highly drug-resistant staphylococci. Two major MRSA classes are distinguished based on epidemiology, namely community-associated (CA) and hospital-associated (HA) MRSA. Notably, the distinction of CA......- and HA-MRSA based on molecular traits remains difficult due to the high genomic plasticity of S. aureus. Here we sought to pinpoint global distinguishing features of CA- and HA-MRSA through a comparative genome and proteome analysis of the notorious MRSA lineage USA300. We show for the first time that CA......- and HA-MRSA isolates can be distinguished by 2 distinct extracellular protein abundance clusters that are predictive not only for epidemiologic behavior, but also for their growth and survival within epithelial cells. This ‘exoproteome profiling’ also groups more distantly related HA-MRSA isolates...

  3. Genomic Research Data Generation, Analysis and Sharing – Challenges in the African Setting

    Directory of Open Access Journals (Sweden)

    Nicola Mulder

    2017-11-01

    and expensive computing infrastructure which are often unavailable. Recently initiatives such as H3Africa and H3ABioNet which aim to build capacity for large-scale genomics projects in Africa have emerged. Here we describe such initiatives, including the challenges faced in the generation, analysis and sharing of genomic data and how these challenges are being overcome.

  4. Sequence analysis of Schmallenberg virus genomes detected in Hungary.

    Science.gov (United States)

    Fehér, Enikő; Marton, Szilvia; Tóth, Ádám György; Ursu, Krisztina; Wernike, Kerstin; Beer, Martin; Dán, Ádám; Bányai, Krisztián

    2017-12-01

    Since its emergence near the German-Dutch border in 2011, Schmallenberg virus (SBV) has been identified in many European countries. In this study, we determined the complete coding sequence of seven Hungarian SBV genomes to expand our knowledge about the genetic diversity of circulating field strains. The samples originated from the first case, an aborted cattle fetus without malformation collected in 2012, and from the blood samples of six adult cattle in 2014. The Hungarian SBV sequences shared ≥99.3% nucleotide (nt) and ≥97.8% amino acid (aa) identity with each other, and ≥98.9 nt and ≥96.7% aa identity with reference strains. Although phylogenetic analyses showed low resolution in general, the M sequences of cattle and sheep origin SBV strains seemed to cluster on different branches. Both common and unique mutation sites were observed in different groups of sequences that might help understanding the evolution of emerging SBV strains.

  5. Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    Science.gov (United States)

    Adema, Coen M.; Hillier, LaDeana W.; Jones, Catherine S.; Loker, Eric S.; Knight, Matty; Minx, Patrick; Oliveira, Guilherme; Raghavan, Nithya; Shedlock, Andrew; do Amaral, Laurence Rodrigues; Arican-Goktas, Halime D.; Assis, Juliana G.; Baba, Elio Hideo; Baron, Olga L.; Bayne, Christopher J.; Bickham-Wright, Utibe; Biggar, Kyle K.; Blouin, Michael; Bonning, Bryony C.; Botka, Chris; Bridger, Joanna M.; Buckley, Katherine M.; Buddenborg, Sarah K.; Lima Caldeira, Roberta; Carleton, Julia; Carvalho, Omar S.; Castillo, Maria G.; Chalmers, Iain W.; Christensens, Mikkel; Clifton, Sandra; Cosseau, Celine; Coustau, Christine; Cripps, Richard M.; Cuesta-Astroz, Yesid; Cummins, Scott F.; di Stefano, Leon; Dinguirard, Nathalie; Duval, David; Emrich, Scott; Feschotte, Cédric; Feyereisen, Rene; FitzGerald, Peter; Fronick, Catrina; Fulton, Lucinda; Galinier, Richard; Gava, Sandra G.; Geusz, Michael; Geyer, Kathrin K.; Giraldo-Calderón, Gloria I.; de Souza Gomes, Matheus; Gordy, Michelle A.; Gourbal, Benjamin; Grunau, Christoph; Hanington, Patrick C.; Hoffmann, Karl F.; Hughes, Daniel; Humphries, Judith; Jackson, Daniel J.; Jannotti-Passos, Liana K.; de Jesus Jeremias, Wander; Jobling, Susan; Kamel, Bishoy; Kapusta, Aurélie; Kaur, Satwant; Koene, Joris M.; Kohn, Andrea B.; Lawson, Dan; Lawton, Scott P; Liang, Di; Limpanont, Yanin; Liu, Sijun; Lockyer, Anne E.; Lovato, TyAnna L.; Ludolf, Fernanda; Magrini, Vince; McManus, Donald P.; Medina, Monica; Misra, Milind; Mitta, Guillaume; Mkoji, Gerald M.; Montague, Michael J.; Montelongo, Cesar; Moroz, Leonid L.; Munoz-Torres, Monica C.; Niazi, Umar; Noble, Leslie R.; Oliveira, Francislon S.; Pais, Fabiano S.; Papenfuss, Anthony T.; Peace, Rob; Pena, Janeth J.; Pila, Emmanuel A.; Quelais, Titouan; Raney, Brian J.; Rast, Jonathan P.; Rollinson, David; Rosse, Izinara C.; Rotgans, Bronwyn; Routledge, Edwin J.; Ryan, Kathryn M.; Scholte, Larissa L. S.; Storey, Kenneth B.; Swain, Martin; Tennessen, Jacob A.; Tomlinson, Chad; Trujillo, Damian L.; Volpi, Emanuela V.; Walker, Anthony J.; Wang, Tianfang; Wannaporn, Ittiprasert; Warren, Wesley C.; Wu, Xiao-Jun; Yoshino, Timothy P.; Yusuf, Mohammed; Zhang, Si-Ming; Zhao, Min; Wilson, Richard K.

    2017-01-01

    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis. PMID:28508897

  6. Analysis of genomic instability in bronchial cells from uranium miners

    International Nuclear Information System (INIS)

    Neft, R.E.; Belinsky, S.A.; Gilliland, F.D.; Lechner, J.F.

    1994-01-01

    Epidemiological studies show that underground uranium miners have a radon progeny exposure-dependent increased risk for developing lung cancer. The odds ratio for lung cancer in uranium miners increase for all cumulative exposures above 99 Working Level Months. In addition, there is a strong multiplicative effect of cigarette smoking on the development of lung cancer in uranium miners. The purpose of this investigation was to determine whether or not early genetic changes, as indicated by genomic instability, can be detected in bronchial cells from uranium miners. Investigations of this nature may serve as a means of discovering sub-clinical disease and could lead to earlier detection of lung cancer and a better prognosis for the patient

  7. Genomic analysis of high-risk smoldering multiple myeloma.

    Science.gov (United States)

    López-Corral, Lucía; Mateos, María Victoria; Corchete, Luis A; Sarasquete, María Eugenia; de la Rubia, Javier; de Arriba, Felipe; Lahuerta, Juan-José; García-Sanz, Ramón; San Miguel, Jesús F; Gutiérrez, Norma C

    2012-09-01

    Smoldering myeloma is an asymptomatic plasma cell dyscrasia with a heterogeneous propensity to progress to active myeloma. In order to investigate the biology of smoldering myeloma patients with high risk of progression, we analyzed the genomic characteristics by FISH, SNP-arrays and gene expression profile of a group of patients with high-risk smoldering myeloma included in a multicenter randomized trial. Chromosomal abnormalities detected by FISH and SNP-arrays at diagnosis were not associated to risk of progression to symptomatic myeloma. However, the overexpression of four SNORD genes (SNORD25, SNORD27, SNORD30 and SNORD31) was correlated with shorter time to progression (Psmoldering patients who progressed to symptomatic myeloma were sequentially analyzed, newly acquired lesions together with an increase in the proportion of plasma cells carrying a given abnormality were observed. These findings suggest that gene expression profiling is a valuable technique to identify smoldering myeloma patients with high risk of progression. (Clinical Trials NCT00443235).

  8. Genome-wide analysis of Polycomb targets in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  9. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    Science.gov (United States)

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  11. Distinguishing drought and water scarcity

    NARCIS (Netherlands)

    Loon, van A.

    2013-01-01

    Water resources can become strained by both natural factors such as drought and human factors such as unsustainable use. Water resource managers can develop practices to reduce overuse of water resources, but they cannot prevent droughts, so distinguishing the causes of water stress can be useful.

  12. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

    Directory of Open Access Journals (Sweden)

    Thao Thi Nguyen

    2018-02-01

    Full Text Available Type VI secretion system (T6SS has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM of T6SEs that possess markers for type VI effectors (MIX motif (MIX T6SEs, 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  13. Genome-Based Analysis of Enterococcus faecium Bacteremia Associated with Recurrent and Mixed-Strain Infection.

    Science.gov (United States)

    Raven, Kathy E; Gouliouris, Theodore; Parkhill, Julian; Peacock, Sharon J

    2018-03-01

    Vancomycin-resistant Enterococcus faecium (VREfm) bloodstream infections are associated with high recurrence rates. This study used genome sequencing to accurately distinguish the frequency of relapse and reinfection in patients with recurrent E. faecium bacteremia and to investigate strain relatedness in patients with apparent VREfm and vancomycin-susceptible E. faecium (VSEfm) mixed infection. A retrospective study was performed at the Cambridge University Hospitals NHS Foundation Trust (CUH) between November 2006 and December 2012. We analyzed the genomes of 44 E. faecium isolates from 21 patients (26 VREfm isolates from 12 patients with recurrent bacteremia and 18 isolates from 9 patients with putative VREfm/VSEfm mixed infection). Phenotypic antibiotic susceptibility was determined using a Vitek2 instrument. Genomes were compared with those of a further 263 E. faecium isolates associated with bacteremia in patients at CUH over the same time period. Pairwise comparison of core genomes indicated that 10 (71%) episodes of recurrent VREfm bacteremia were due to reinfection with a new strain, with reinfection being more likely with increasing time between the two positive cultures. The majority (78%) of patients with a mixed VREfm and VSEfm infection had unrelated strains. More than half (59%) of study isolates were closely related to another isolate associated with bacteremia from CUH. This included 60% of isolates associated with reinfection, indicating acquisition in the hospital. This study provides the first high-resolution insights into recurrence and mixed infection by E. faecium and demonstrates that reinfection with a new strain, often acquired from the hospital, is a driver of recurrence. Copyright © 2018 Raven et al.

  14. Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions.

    Directory of Open Access Journals (Sweden)

    Anatoly S Glukhov

    Full Text Available The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure--a blunt right end and a 4-nucleotide 3'-protruding left end--was observed. Secondly, 14 single-chain interruptions (nicks were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5'-TACT/RTGMC-3'. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.

  15. Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Paul C.; Donovan Post, M. Judith; Bruce-Gregorios, Jocelyn [University of Miami, Jackson Memorial Hospital, Miami, FL (United States); Oschatz, Elizabeth; Stadler, Alfred; Thurnher, Majda M. [Medical University of Vienna, Department of Radiology Neuroradiology Section, Vienna (Austria)

    2006-10-15

    Toxoplasmosis and lymphoma are common lesions of the central nervous system in patients with AIDS. It is often difficult to distinguish between these lesions both clinically and radiographically. Previous research has demonstrated restricted diffusion within cerebral lymphomas and bacterial abscesses. However, little work has been done to evaluate the diffusion characteristics of toxoplasmosis lesions. This study was designed to explore further the utility of diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps and values in making the distinction between toxoplasmosis and lymphoma. The magnetic resonance imaging (MRI) studies of 36 patients, including 22 with toxoplasmosis (all of whom had AIDS) and 14 with lymphoma (8 of whom had AIDS), at two institutions were reviewed retrospectively. The characteristics of the lesions on DWI were evaluated, and the ADC ratios of the lesions were calculated and compared. There was significant overlap of the ADC ratios of toxoplasma and lymphoma, most notably in the intermediate (1.0-1.6) range. There was variability in ADC ratios even among different lesions in the same patient. In only a minority of the lymphoma patients were the ADC ratios low enough to suggest the correct diagnosis. Our study showed that toxoplasmosis exhibits a wide spectrum of diffusion characteristics with ADC ratios which have significant overlap with those of lymphoma. Therefore, in the majority of patients, ADC ratios are not definitive in making the distinction between toxoplasmosis and lymphoma. (orig.)

  16. Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma

    International Nuclear Information System (INIS)

    Schroeder, Paul C.; Donovan Post, M. Judith; Bruce-Gregorios, Jocelyn; Oschatz, Elizabeth; Stadler, Alfred; Thurnher, Majda M.

    2006-01-01

    Toxoplasmosis and lymphoma are common lesions of the central nervous system in patients with AIDS. It is often difficult to distinguish between these lesions both clinically and radiographically. Previous research has demonstrated restricted diffusion within cerebral lymphomas and bacterial abscesses. However, little work has been done to evaluate the diffusion characteristics of toxoplasmosis lesions. This study was designed to explore further the utility of diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps and values in making the distinction between toxoplasmosis and lymphoma. The magnetic resonance imaging (MRI) studies of 36 patients, including 22 with toxoplasmosis (all of whom had AIDS) and 14 with lymphoma (8 of whom had AIDS), at two institutions were reviewed retrospectively. The characteristics of the lesions on DWI were evaluated, and the ADC ratios of the lesions were calculated and compared. There was significant overlap of the ADC ratios of toxoplasma and lymphoma, most notably in the intermediate (1.0-1.6) range. There was variability in ADC ratios even among different lesions in the same patient. In only a minority of the lymphoma patients were the ADC ratios low enough to suggest the correct diagnosis. Our study showed that toxoplasmosis exhibits a wide spectrum of diffusion characteristics with ADC ratios which have significant overlap with those of lymphoma. Therefore, in the majority of patients, ADC ratios are not definitive in making the distinction between toxoplasmosis and lymphoma. (orig.)

  17. Multilocus sequence typing and DNA similarity analysis implicates that a Borrelia valaisiana-related sp. isolated in Japan is distinguishable from European B. valaisiana.

    Science.gov (United States)

    Kawabata, Hiroki; Takano, Ai; Kadosaka, Teruki; Fujita, Hiromi; Nitta, Yoshiki; Gokuden, Mutsuyo; Honda, Toshiro; Tomida, Junko; Kawamura, Yoshiaki; Masuzawa, Toshiyuki; Ishiguro, Fubito; Takada, Nobuhiro; Yano, Yasuhiro; Andoh, Masako; Ando, Shuji; Sato, Kozue; Takahashi, Hideyuki; Ohnishi, Makoto

    2013-01-01

    Lyme disease Borrelia spp. are transmitted by Ixodes ticks, and more than 10 species of borreliae have been identified around the world. Recently, another Borrelia sp. has been reported in Asia (Japan, Korea, China, Taiwan and Thailand) as Borrelia valaisiana-related sp. In the present study, we obtained and genetically characterized 19 B. valaisiana-related sp. strains from mammals and ticks. Genetic analyses showed that the Borrelia strains were distinct from B. valaisiana found in Europe. Multilocus sequence typing revealed that these Borrelia isolates formed a monophyletic group with B. yangtze strains in China. Some of the strains were isolated from the bladders of small mammals, and also two strains were experimentally confirmed to be infectious in C3H/HeN mice. We observed that the Borrelia sp. was maintained in the Ixodes granulatus tick after molting. These results suggested that small mammals and I. granulatus were possible reservoir hosts and the vector tick for the Borrelia sp., respectively. B. valaisiana, originally found in Europe, was transmitted mainly by I. ricinus, and birds were mainly thought to be reservoir hosts. Our results suggested that Japanese isolates of B. yangtze (formerly B. valaisiana-related sp.) were distinguishable from B. valaisiana according to the reservoir host and its vector tick. In this study, we also deposited borrelia strain Okinawa-CW62 into bioresource centers as a reference strain of B. yangtze(=DSM 24625, JCM 17189).

  18. Population Structure Analysis of Bull Genomes of European and Western Ancestry

    DEFF Research Database (Denmark)

    Chung, Neo Christopher; Szyda, Joanna; Frąszczak, Magdalena

    2017-01-01

    for individual-specific allele frequencies that directly capture a wide range of complex structure from genome-wide genotypes. As measured by magnitude of differentiation, selection pressure on SNPs within genes is substantially greater than that on intergenic regions. Additionally, broad regions of chromosome 6...... harboring largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages. Our population structure analysis of bull...... genomes can support genetic management strategies that capture structural complexity and promote sustainable genetic breadth....

  19. Comparative analysis of genome sequences of the conifer tree pathogen, Heterobasidion annosum s.s.

    Directory of Open Access Journals (Sweden)

    Jaeyoung Choi

    2017-12-01

    Full Text Available The causal agent of root and butt rot of conifer trees, Heterobasidion annosum, is widespread in boreal forests and economically responsible for annual loss of approximately 50 million euros to forest industries in Finland alone and much more at European level. In order to further understand the pathobiology of this fungus at the genome level, a Finnish isolate of H. annosum sensu stricto (isolate 03012 was sequenced and analyzed with the genome sequences of 23 white-rot and 13 brown-rot fungi. The draft genome assembly of H. annosum has a size of 31.01 Mb, containing 11,453 predicted genes. Whole genome alignment showed that 84.38% of H. annosum genome sequences were aligned with those of previously sequenced H. irregulare TC 32-1 counterparts. The result is further supported by the protein sequence clustering analysis which revealed that the two genomes share 6719 out of 8647 clusters. When sequencing reads of H. annosum were aligned against the genome sequences of H. irregulare, six single nucleotide polymorphisms were found in every 1 kb, on average. In addition, 98.68% of SNPs were found to be homo-variants, suggesting that the two species have long evolved from different niches. Gene family analysis revealed that most of the white-rot fungi investigated had more gene families involved in lignin degradation or modification, including laccases and peroxidase. Comparative analysis of the two Heterobasidion spp. as well as white-/brown-rot fungi would provide new insights for understanding the pathobiology of the conifer tree pathogen.

  20. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Joelle Amselem

    2011-08-01

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these

  1. A genome-wide 20 K citrus microarray for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Gadea Jose

    2008-07-01

    Full Text Available Abstract Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database 1 was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global

  2. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Science.gov (United States)

    Benito, Ernesto P.; Couloux, Arnaud; Coutinho, Pedro M.; de Vries, Ronald P.; Dyer, Paul S.; Fillinger, Sabine; Fournier, Elisabeth; Gout, Lilian; Hahn, Matthias; Kohn, Linda; Lapalu, Nicolas; Plummer, Kim M.; Pradier, Jean-Marc; Quévillon, Emmanuel; Sharon, Amir; Simon, Adeline; ten Have, Arjen; Tudzynski, Bettina; Tudzynski, Paul; Wincker, Patrick; Andrew, Marion; Anthouard, Véronique; Beffa, Rolland; Benoit, Isabelle; Bouzid, Ourdia; Brault, Baptiste; Chen, Zehua; Choquer, Mathias; Collémare, Jérome; Cotton, Pascale; Danchin, Etienne G.; Da Silva, Corinne; Gautier, Angélique; Giraud, Corinne; Giraud, Tatiana; Gonzalez, Celedonio; Grossetete, Sandrine; Güldener, Ulrich; Henrissat, Bernard; Howlett, Barbara J.; Kodira, Chinnappa; Kretschmer, Matthias; Lappartient, Anne; Leroch, Michaela; Levis, Caroline; Mauceli, Evan; Neuvéglise, Cécile; Oeser, Birgitt; Pearson, Matthew; Poulain, Julie; Poussereau, Nathalie; Quesneville, Hadi; Rascle, Christine; Schumacher, Julia; Ségurens, Béatrice; Sexton, Adrienne; Silva, Evelyn; Sirven, Catherine; Soanes, Darren M.; Talbot, Nicholas J.; Templeton, Matt; Yandava, Chandri; Yarden, Oded; Zeng, Qiandong; Rollins, Jeffrey A.; Lebrun, Marc-Henri; Dickman, Marty

    2011-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and

  3. Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter

    Science.gov (United States)

    Sahl, Jason W.; Gillece, John D.; Schupp, James M.; Waddell, Victor G.; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul

    2013-01-01

    Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the

  4. Evolution of a pathogen: a comparative genomics analysis identifies a genetic pathway to pathogenesis in Acinetobacter.

    Directory of Open Access Journals (Sweden)

    Jason W Sahl

    Full Text Available Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better

  5. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity

    Directory of Open Access Journals (Sweden)

    Wilske Bettina

    2006-08-01

    Full Text Available Abstract Background At least three species of Borrelia burgdorferi sensu lato (Bbsl cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. Results To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. Conclusion The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia

  6. Genomics-enabled analysis of the emergent disease cotton bacterial blight.

    Directory of Open Access Journals (Sweden)

    Anne Z Phillips

    2017-09-01

    Full Text Available Cotton bacterial blight (CBB, an important disease of (Gossypium hirsutum in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.

  7. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Science.gov (United States)

    Traylor, Matthew; Zhang, Cathy R; Adib-Samii, Poneh; Devan, William J; Parsons, Owen E; Lanfranconi, Silvia; Gregory, Sarah; Cloonan, Lisa; Falcone, Guido J; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Barrick, Thomas R; Moynihan, Barry; Lewis, Cathryn M; Boncoraglio, Giorgio B; Lemmens, Robin; Thijs, Vincent; Sudlow, Cathie; Wardlaw, Joanna; Rothwell, Peter M; Meschia, James F; Worrall, Bradford B; Levi, Christopher; Bevan, Steve; Furie, Karen L; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S; Rost, Natalia

    2016-01-12

    For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease. © 2015 American Academy of Neurology.

  8. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Factor Database (VFDB specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome