WorldWideScience

Sample records for genome-wide transcriptome analysis

  1. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  2. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton.

    Science.gov (United States)

    Wu, Jianyong; Zhang, Meng; Zhang, Bingbing; Zhang, Xuexian; Guo, Liping; Qi, Tingxiang; Wang, Hailin; Zhang, Jinfa; Xing, Chaozhu

    2017-06-08

    Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC 8 F 1 ) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm.

  3. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential

  4. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Science.gov (United States)

    Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.

  5. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  6. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    Full Text Available The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS and of adenosine triphosphate (ATP. We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to

  7. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  8. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  9. Data analysis in the post-genome-wide association study era

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Wang

    2016-12-01

    Full Text Available Since the first report of a genome-wide association study (GWAS on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications. Keywords: Genome-wide association study, Data mining, Integrative data analysis, Polymorphism, Copy number variation

  10. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  11. Genome-Wide Transcriptome Analysis Reveals Extensive Alternative Splicing Events in the Protoscoleces of Echinococcus granulosus and Echinococcus multilocularis

    Science.gov (United States)

    Liu, Shuai; Zhou, Xiaosu; Hao, Lili; Piao, Xianyu; Hou, Nan; Chen, Qijun

    2017-01-01

    Alternative splicing (AS), as one of the most important topics in the post-genomic era, has been extensively studied in numerous organisms. However, little is known about the prevalence and characteristics of AS in Echinococcus species, which can cause significant health problems to humans and domestic animals. Based on high-throughput RNA-sequencing data, we performed a genome-wide survey of AS in two major pathogens of echinococcosis-Echinococcus granulosus and Echinococcus multilocularis. Our study revealed that the prevalence and characteristics of AS in protoscoleces of the two parasites were generally consistent with each other. A total of 6,826 AS events from 3,774 E. granulosus genes and 6,644 AS events from 3,611 E. multilocularis genes were identified in protoscolex transcriptomes, indicating that 33–36% of genes were subject to AS in the two parasites. Strikingly, intron retention instead of exon skipping was the predominant type of AS in Echinococcus species. Moreover, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway indicated that genes that underwent AS events were significantly enriched in multiple pathways mainly related to metabolism (e.g., purine, fatty acid, galactose, and glycerolipid metabolism), signal transduction (e.g., Jak-STAT, VEGF, Notch, and GnRH signaling pathways), and genetic information processing (e.g., RNA transport and mRNA surveillance pathways). The landscape of AS obtained in this study will not only facilitate future investigations on transcriptome complexity and AS regulation during the life cycle of Echinococcus species, but also provide an invaluable resource for future functional and evolutionary studies of AS in platyhelminth parasites. PMID:28588571

  12. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  13. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  14. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  15. Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato.

    Science.gov (United States)

    Lee, Jinsu; Shim, Donghwan; Moon, Suyun; Kim, Hyemin; Bae, Wonsil; Kim, Kyunghwan; Kim, Yang-Hoon; Rhee, Sung-Keun; Hong, Chang Pyo; Hong, Suk-Young; Lee, Ye-Jin; Sung, Jwakyung; Ryu, Hojin

    2018-06-01

    Brassinosteroids (BRs) are plant steroid hormones that play crucial roles in a range of growth and developmental processes. Although BR signal transduction and biosynthetic pathways have been well characterized in model plants, their biological roles in an important crop, tomato (Solanum lycopersicum), remain unknown. Here, cultivated tomato (WT) and a BR synthesis mutant, Micro-Tom (MT), were compared using physiological and transcriptomic approaches. The cultivated tomato showed higher tolerance to drought and osmotic stresses than the MT tomato. However, BR-defective phenotypes of MT, including plant growth and stomatal closure defects, were completely recovered by application of exogenous BR or complementation with a SlDWARF gene. Using genome-wide transcriptome analysis, 619 significantly differentially expressed genes (DEGs) were identified between WT and MT plants. Several DEGs were linked to known signaling networks, including those related to biotic/abiotic stress responses, lignification, cell wall development, and hormone responses. Consistent with the higher susceptibility of MT to drought stress, several gene sets involved in responses to drought and osmotic stress were differentially regulated between the WT and MT tomato plants. Our data suggest that BR signaling pathways are involved in mediating the response to abiotic stress via fine-tuning of abiotic stress-related gene networks in tomato plants. Copyright © 2018. Published by Elsevier Masson SAS.

  16. An Integrated Transcriptome-Wide Analysis of Cave and Surface Dwelling Astyanax mexicanus

    Science.gov (United States)

    Gross, Joshua B.; Furterer, Allison; Carlson, Brian M.; Stahl, Bethany A.

    2013-01-01

    Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F2 pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected in

  17. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    Science.gov (United States)

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  18. GWAMA: software for genome-wide association meta-analysis

    Directory of Open Access Journals (Sweden)

    Mägi Reedik

    2010-05-01

    Full Text Available Abstract Background Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions The GWAMA (Genome-Wide Association Meta-Analysis software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  19. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Directory of Open Access Journals (Sweden)

    Nagesh A. Kuravadi

    2015-08-01

    Full Text Available Neem (Azadirachta indica A. Juss is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC. Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

  20. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    Science.gov (United States)

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  1. Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets. Here, we describe an approach that combines the computational evaluation and objective, multifaceted assessment to systematically identify and prioritize targets for biological validation and therapeutic exploration. We first establish the reference gene expression profiles from breast cancer cell line MCF7 upon genome-wide RNA interference (RNAi of a total of 3689 genes, and the breast cancer query signatures using RNA-seq data generated from tissue samples of clinical breast cancer patients in the Cancer Genome Atlas (TCGA. Based on gene set enrichment analysis, we identified a set of 510 genes that when knocked down could significantly reverse the transcriptome of breast cancer state. We then perform multifaceted assessment to analyze the gene set to prioritize potential targets for gene therapy. We also propose drug repurposing opportunities and identify potentially druggable proteins that have been poorly explored with regard to the discovery of small-molecule modulators. Finally, we obtained a small list of candidate therapeutic targets for four major breast cancer subtypes, i.e., luminal A, luminal B, HER2+ and triple negative breast cancer. This RNAi transcriptome-based approach can be a helpful paradigm for relevant researches to identify and prioritize candidate targets for experimental validation.

  2. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum).

    Science.gov (United States)

    Mun, Seyoung; Kim, Yun-Ji; Markkandan, Kesavan; Shin, Wonseok; Oh, Sumin; Woo, Jiyoung; Yoo, Jongsu; An, Hyesuck; Han, Kyudong

    2017-06-01

    The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  4. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production

    Science.gov (United States)

    Yin, Xian; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-01-01

    Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed. PMID:28106122

  5. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  6. Transcriptome wide annotation of eukaryotic RNase III reactivity and degradation signals.

    Directory of Open Access Journals (Sweden)

    Jules Gagnon

    2015-02-01

    Full Text Available Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions.

  7. Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

    Science.gov (United States)

    Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou

    2015-01-01

    Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180

  8. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  9. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    Science.gov (United States)

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  11. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    KAUST Repository

    Khraiwesh, Basel

    2015-11-30

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

  12. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    Science.gov (United States)

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  13. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  14. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  15. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Science.gov (United States)

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  16. Genome and transcriptome analysis of the food-yeast Candida utilis.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Tomita

    Full Text Available The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis.

  17. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  18. Genome-wide transcriptome analysis of hippocampus in rats indicated that TLR/NLR signaling pathway was involved in the pathogenisis of depressive disorder induced by chronic restraint stress.

    Science.gov (United States)

    Wang, Yu; Jiang, Huili; Meng, Hong; Lu, Jun; Li, Jing; Zhang, Xuhui; Yang, Xinjing; Zhao, Bingcong; Sun, Yang; Bao, Tuya

    2017-09-01

    Data from clinical investigations and laboratory fundings have provided preliminary evidence for the effectiveness and safety of acupuncture therapy in depression. However, the mechanisms underlying the antidepressant response of acupuncture are not fully elucidated. To elucidate the potential effects of acupuncture for depression on the hippocampal genome-wide transcriptome at the molecular level, we evaluated the transcriptomic profile of depression rats under treatment of acupuncture, and fluoxetine. We identified a very significant effect of acupucture intervention, with 107 genes differentially expressed in acupuncture vs. model group; while 41 genes between fluoxetine vs. model group. Notably, the 54 differentially expressed genes between acupuncture and fluoxetine showed the significantly different effect between acupuncture and fluoxetine. Through GO (gene ontology) functional term and KEGG (kyoto encyclopedia of genes and genomes) pathway analysis, we identified that the upregulation of gene sets were related to inflammatory response, innate immunity and immune response. We found that toll-like receptor signalling pathway and NOD like receptor signalling pathway were associated with the function of inflammatory response, innate immunity and immune response. Importantly, acupuncture reversed the upregulation of gene sets that were related to inflammatory response, innate immunity and immune response (including toll-like receptor signalling pathway and NOD like receptor signalling pathway), which might be critical for the pathogenesis of depression and provide evidence for the antidepressive effects of acupuncture by regulating inflammatory response, innate immunity and immune response via toll-like receptor signalling pathway and NOD like receptor signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    Directory of Open Access Journals (Sweden)

    Zhen-Jian Chu

    Full Text Available Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI and of control (hptC for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  20. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  1. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.

    Science.gov (United States)

    Tzika, Athanasia C; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C

    2015-07-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the "Reptilian Transcriptomes Database 2.0," which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease

    NARCIS (Netherlands)

    Wes, Paul D; Holtman, Inge R; Boddeke, Erik W G M; Möller, Thomas; Eggen, Bart J L

    2015-01-01

    Genome-wide expression profiling technology has resulted in detailed transcriptome data for a wide range of tissues, conditions and diseases. In neuroscience, expression datasets were mostly generated using whole brain tissue samples, resulting in data from a mixture of cell types, including glial

  3. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia, a carnivorous plant with a minimal genome

    Directory of Open Access Journals (Sweden)

    Herrera-Estrella Alfredo

    2011-06-01

    Full Text Available Abstract Background The carnivorous plant Utricularia gibba (bladderwort is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution, and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS. Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey

  4. C-RAF function at the genome-wide transcriptome level: A systematic view.

    Science.gov (United States)

    Huang, Ying; Zhang, Xin-Yu; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Guo, Xiao-Xi; Xu, Tian-Rui

    2018-05-20

    C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Xiao Lihong

    2011-12-01

    Full Text Available Abstract Background Regulation of gene expression plays a pivotal role in controlling the development of multicellular plants. To explore the molecular mechanism of plant developmental-stage transition and cell-fate determination, a genome-wide analysis was undertaken of sequential developmental time-points and individual tissue types in the model moss Physcomitrella patens because of the short life cycle and relative structural simplicity of this plant. Results Gene expression was analyzed by digital gene expression tag profiling of samples taken from P. patens protonema at 3, 14 and 24 days, and from leafy shoot tissues at 30 days, after protoplast isolation, and from 14-day-old caulonemal and chloronemal tissues. In total, 4333 genes were identified as differentially displayed. Among these genes, 4129 were developmental-stage specific and 423 were preferentially expressed in either chloronemal or caulonemal tissues. Most of the differentially displayed genes were assigned to functions in organic substance and energy metabolism or macromolecule biosynthetic and catabolic processes based on gene ontology descriptions. In addition, some regulatory genes identified as candidates might be involved in controlling the developmental-stage transition and cell differentiation, namely MYB-like, HB-8, AL3, zinc finger family proteins, bHLH superfamily, GATA superfamily, GATA and bZIP transcription factors, protein kinases, genes related to protein/amino acid methylation, and auxin, ethylene, and cytokinin signaling pathways. Conclusions These genes that show highly dynamic changes in expression during development in P. patens are potential targets for further functional characterization and evolutionary developmental biology studies.

  6. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up.

    Science.gov (United States)

    Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik

    2017-05-15

    The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an interaction P asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.

  7. Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio)

    Science.gov (United States)

    2012-01-01

    Background Common carp (Cyprinus carpio) is thought to have undergone one extra round of genome duplication compared to zebrafish. Transcriptome analysis has been used to study the existence and timing of genome duplication in species for which genome sequences are incomplete. Large-scale transcriptome data for the common carp genome should help reveal the timing of the additional duplication event. Results We have sequenced the transcriptome of common carp using 454 pyrosequencing. After assembling the 454 contigs and the published common carp sequences together, we obtained 49,669 contigs and identified genes using homology searches and an ab initio method. We identified 4,651 orthologous pairs between common carp and zebrafish and found 129,984 paralogous pairs within the common carp. An estimation of the synonymous substitution rate in the orthologous pairs indicated that common carp and zebrafish diverged 120 million years ago (MYA). We identified one round of genome duplication in common carp and estimated that it had occurred 5.6 to 11.3 MYA. In zebrafish, no genome duplication event after speciation was observed, suggesting that, compared to zebrafish, common carp had undergone an additional genome duplication event. We annotated the common carp contigs with Gene Ontology terms and KEGG pathways. Compared with zebrafish gene annotations, we found that a set of biological processes and pathways were enriched in common carp. Conclusions The assembled contigs helped us to estimate the time of the fourth-round of genome duplication in common carp. The resource that we have built as part of this study will help advance functional genomics and genome annotation studies in the future. PMID:22424280

  8. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. CoryneCenter – An online resource for the integrated analysis of corynebacterial genome and transcriptome data

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2007-11-01

    Full Text Available Abstract Background The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. Results To facilitate the analysis of gene-regulatory networks, we have developed CoryneCenter, a web-based resource for the systematic integration and analysis of genome, transcriptome, and gene regulatory information for prokaryotes, especially corynebacteria. For this purpose, we extended and combined the following systems into a common platform: (1 GenDB, an open source genome annotation system, (2 EMMA, a MAGE compliant application for high-throughput transcriptome data storage and analysis, and (3 CoryneRegNet, an ontology-based data warehouse designed to facilitate the reconstruction and analysis of gene regulatory interactions. We demonstrate the potential of CoryneCenter by means of an application example. Using microarray hybridization data, we compare the gene expression of Corynebacterium glutamicum under acetate and glucose feeding conditions: Known regulatory networks are confirmed, but moreover CoryneCenter points out additional regulatory interactions. Conclusion CoryneCenter provides more than the sum of its parts. Its novel analysis and visualization features significantly simplify the process of obtaining new biological insights into complex regulatory systems. Although the platform currently focusses on corynebacteria, the integrated tools are by no means restricted to these species, and the presented approach offers a general strategy for the analysis and verification of gene regulatory networks. CoryneCenter provides freely accessible projects with the underlying genome annotation, gene expression, and gene regulation data. The system is publicly available at http://www.CoryneCenter.de.

  10. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes.

    Directory of Open Access Journals (Sweden)

    Sophie Garnier

    Full Text Available In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ~2,1 × 10(9 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >10(4-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2 × 10(-4 (~0.05/412, 193 haplotypic signals replicated. 1000 G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000 G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.

  11. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  12. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  13. Genome-wide analysis of LTR-retrotransposons in oil palm.

    Science.gov (United States)

    Beulé, Thierry; Agbessi, Mawussé Dt; Dussert, Stephane; Jaligot, Estelle; Guyot, Romain

    2015-10-15

    The oil palm (Elaeis guineensis Jacq.) is a major cultivated crop and the world's largest source of edible vegetable oil. The genus Elaeis comprises two species E. guineensis, the commercial African oil palm and E. oleifera, which is used in oil palm genetic breeding. The recent publication of both the African oil palm genome assembly and the first draft sequence of its Latin American relative now allows us to tackle the challenge of understanding the genome composition, structure and evolution of these palm genomes through the annotation of their repeated sequences. In this study, we identified, annotated and compared Transposable Elements (TE) from the African and Latin American oil palms. In a first step, Transposable Element databases were built through de novo detection in both genome sequences then the TE content of both genomes was estimated. Then putative full-length retrotransposons with Long Terminal Repeats (LTRs) were further identified in the E. guineensis genome for characterization of their structural diversity, copy number and chromosomal distribution. Finally, their relative expression in several tissues was determined through in silico analysis of publicly available transcriptome data. Our results reveal a congruence in the transpositional history of LTR retrotransposons between E. oleifera and E. guineensis, especially the Sto-4 family. Also, we have identified and described 583 full-length LTR-retrotransposons in the Elaeis guineensis genome. Our work shows that these elements are most likely no longer mobile and that no recent insertion event has occurred. Moreover, the analysis of chromosomal distribution suggests a preferential insertion of Copia elements in gene-rich regions, whereas Gypsy elements appear to be evenly distributed throughout the genome. Considering the high proportion of LTR retrotransposon in the oil palm genome, our work will contribute to a greater understanding of their impact on genome organization and evolution

  14. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-03-01

    Full Text Available The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes, DEAH-box (52 genes, or DExD/H-box (58 genes in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5% are within the identified syntenic blocks. Sixty-six (40.99% helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.

  15. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki

    2013-07-09

    The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with

  16. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853

    KAUST Repository

    Cao, Huiluo

    2017-06-12

    Pseudomonas aeruginosa ATCC 27853 was isolated from a hospital blood specimen in 1971 and has been widely used as a model strain to survey antibiotics susceptibilities, biofilm development, and metabolic activities of Pseudomonas spp.. Although four draft genomes of P. aeruginosa ATCC 27853 have been sequenced, the complete genome of this strain is still lacking, hindering a comprehensive understanding of its physiology and functional genome.Here we sequenced and assembled the complete genome of P. aeruginosa ATCC 27853 using the Pacific Biosciences SMRT (PacBio) technology and Illumina sequencing platform. We found that accessory genes of ATCC 27853 including prophages and genomic islands (GIs) mainly contribute to the difference between P. aeruginosa ATCC 27853 and other P. aeruginosa strains. Seven prophages were identified within the genome of P. aeruginosa ATCC 27853. Of the predicted 25 GIs, three contain genes that encode monoxoygenases, dioxygenases and hydrolases that could be involved in the metabolism of aromatic compounds. Surveying virulence-related genes revealed that a series of genes that encode the B-band O-antigen of LPS are lacking in ATCC 27853. Distinctive SNPs in genes of cellular adhesion proteins such as type IV pili and flagella biosynthesis were also observed in this strain. Colony morphology analysis confirmed an enhanced biofilm formation capability of ATCC 27853 on solid agar surface compared to Pseudomonas aeruginosa PAO1. We then performed transcriptome analysis of ATCC 27853 and PAO1 using RNA-seq and compared the expression of orthologous genes to understand the functional genome and the genomic details underlying the distinctive colony morphogenesis. These analyses revealed an increased expression of genes involved in cellular adhesion and biofilm maturation such as type IV pili, exopolysaccharide and electron transport chain components in ATCC 27853 compared with PAO1. In addition, distinctive expression profiles of the

  17. A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer

    International Nuclear Information System (INIS)

    Meyniel, Jean-Philippe; Alran, Séverine; Rapinat, Audrey; Gentien, David; Roman-Roman, Sergio; Mignot, Laurent; Sastre-Garau, Xavier; Cottu, Paul H; Decraene, Charles; Stern, Marc-Henri; Couturier, Jérôme; Lebigot, Ingrid; Nicolas, André; Weber, Nina; Fourchotte, Virginie

    2010-01-01

    The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer. Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip ® Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip ® Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors. In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis. In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available

  18. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2017-02-01

    Full Text Available The complexity of the traumatic brain injury (TBI pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing, and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain.

  19. Meta-analysis of Genome-Wide Association Studies for Extraversion

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, K. J. H.

    2016-01-01

    small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found...... at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero...

  20. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.

    Directory of Open Access Journals (Sweden)

    Zhenli Zhao

    Full Text Available Paulownia tomentosa is a fast-growing tree species with multiple uses. It is grown worldwide, but is native to China, where it is widely cultivated in saline regions. We previously confirmed that autotetraploid P. tomentosa plants are more stress-tolerant than the diploid plants. However, the molecular mechanism underlying P. tomentosa salinity tolerance has not been fully characterized. Using the complete Paulownia fortunei genome as a reference, we applied next-generation RNA-sequencing technology to analyze the effects of salt stress on diploid and autotetraploid P. tomentosa plants. We generated 175 million clean reads and identified 15,873 differentially expressed genes (DEGs from four P. tomentosa libraries (two diploid and two autotetraploid. Functional annotations of the differentially expressed genes using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that plant hormone signal transduction and photosynthetic activities are vital for plant responses to high-salt conditions. We also identified several transcription factors, including members of the AP2/EREBP, bHLH, MYB, and NAC families. Quantitative real-time PCR analysis validated the expression patterns of eight differentially expressed genes. Our findings and the generated transcriptome data may help to accelerate the genetic improvement of cultivated P. tomentosa and other plant species for enhanced growth in saline soils.

  1. Comparative genomics and transcriptomics of trait-gene association

    Directory of Open Access Journals (Sweden)

    Pierlé Sebastián

    2012-11-01

    Full Text Available Abstract Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs. We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis.

  2. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  3. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction

    Directory of Open Access Journals (Sweden)

    Jiaping Zhao

    2017-10-01

    Full Text Available A number of transcriptome datasets for differential expression (DE genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11% were stably expressed, at a threshold level of coefficient of variance (CV of FPKM < 20% and maximum fold change (MFC of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30% and MFC value of expression <2, and an expression level of 50–1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20

  4. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  5. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  6. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    Science.gov (United States)

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  7. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    Angela D. Millar

    2018-05-01

    Full Text Available Background: Draft and complete genome sequences from bacteria are key tools to understand genetic determinants involved in pathogenesis in several disease models. Piscirickettsia salmonis is a Gram-negative bacterium responsible for the Salmon Rickettsial Syndrome (SRS, a bacterial disease that threatens the sustainability of the Chilean salmon industry. In previous reports, complete and draft genome sequences have been generated and annotated. However, the lack of transcriptome data underestimates the genetic potential, does not provide information about transcriptional units and contributes to disseminate annotation errors. Results: Here we present the draft genome and transcriptome sequences of four P. salmonis strains. We have identified the transcriptional architecture of previously characterized virulence factors and trait-specific genes associated to cation uptake, metal efflux, antibiotic resistance, secretion systems and other virulence factors. Conclusions: This data has provided a refined genome annotation and also new insights on the transcriptional structures and coding potential of this fish pathogen.How to cite: Millar AD, Tapia P, Gomez FA, et al. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.04.002. Keywords: Bacterial genomes, Coding potential, Comparative analysis, Draft genome, Piscirickettsia salmonis, Reference transcriptome, Refined annotation, Salmon Rickettsial Syndrome, Salmonids

  8. Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Núñez Cinthia

    2009-07-01

    Full Text Available Abstract Background The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. Results An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III, which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. Conclusion The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of

  9. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity.

    Science.gov (United States)

    Tajaddod, Mansoureh; Tanzer, Andrea; Licht, Konstantin; Wolfinger, Michael T; Badelt, Stefan; Huber, Florian; Pusch, Oliver; Schopoff, Sandy; Janisiw, Michael; Hofacker, Ivo; Jantsch, Michael F

    2016-10-25

    Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.

  10. The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly

    Directory of Open Access Journals (Sweden)

    J. W. Clouse

    2016-03-01

    Full Text Available Amaranth ( L. is an emerging pseudocereal native to the New World that has garnered increased attention in recent years because of its nutritional quality, in particular its seed protein and more specifically its high levels of the essential amino acid lysine. It belongs to the Amaranthaceae family, is an ancient paleopolyploid that shows disomic inheritance (2 = 32, and has an estimated genome size of 466 Mb. Here we present a high-quality draft genome sequence of the grain amaranth. The genome assembly consisted of 377 Mb in 3518 scaffolds with an N of 371 kb. Repetitive element analysis predicted that 48% of the genome is comprised of repeat sequences, of which -like elements were the most commonly classified retrotransposon. A de novo transcriptome consisting of 66,370 contigs was assembled from eight different amaranth tissue and abiotic stress libraries. Annotation of the genome identified 23,059 protein-coding genes. Seven grain amaranths (, , and and their putative progenitor ( were resequenced. A single nucleotide polymorphism (SNP phylogeny supported the classification of as the progenitor species of the grain amaranths. Lastly, we generated a de novo physical map for using the BioNano Genomics’ Genome Mapping platform. The physical map spanned 340 Mb and a hybrid assembly using the BioNano physical maps nearly doubled the N of the assembly to 697 kb. Moreover, we analyzed synteny between amaranth and sugar beet ( L. and estimated, using analysis, the age of the most recent polyploidization event in amaranth.

  11. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    Science.gov (United States)

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  12. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  13. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    Science.gov (United States)

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  14. Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas wittichii RW1

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2012-08-01

    Full Text Available Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF. A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3 and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1 were expected, whereas others (in a gene cluster for phenylacetate degradation were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in

  15. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2012-04-01

    Full Text Available Abstract Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99 and 4b (CLIP80459, and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence

  16. The draft genome and transcriptome of Cannabis sativa.

    Science.gov (United States)

    van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E

    2011-10-20

    Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

  17. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    Science.gov (United States)

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  18. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-01-01

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  19. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  20. Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat.

    Science.gov (United States)

    Falkenberg, Katrina J; Gould, Cathryn M; Johnstone, Ricky W; Simpson, Kaylene J

    2014-01-01

    Identification of mechanisms of resistance to histone deacetylase inhibitors, such as vorinostat, is important in order to utilise these anticancer compounds more efficiently in the clinic. Here, we present a dataset containing multiple tiers of stringent siRNA screening for genes that when knocked down conferred sensitivity to vorinostat-induced cell death. We also present data from a miRNA overexpression screen for miRNAs contributing to vorinostat sensitivity. Furthermore, we provide transcriptomic analysis using massively parallel sequencing upon knockdown of 14 validated vorinostat-resistance genes. These datasets are suitable for analysis of genes and miRNAs involved in cell death in the presence and absence of vorinostat as well as computational biology approaches to identify gene regulatory networks.

  1. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach

    Directory of Open Access Journals (Sweden)

    Motohide Hori

    2016-06-01

    Full Text Available Lavender oil (LO is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO: GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  2. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  3. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  4. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  5. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    Science.gov (United States)

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  6. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L. Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    Directory of Open Access Journals (Sweden)

    Renesh Bedre

    Full Text Available Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L. pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  7. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  8. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  9. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    Full Text Available Abstract Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and

  10. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  11. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    Science.gov (United States)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  12. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  13. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  14. Genome-wide differential gene expression in children exposed to air pollution in the Czech Republic

    DEFF Research Database (Denmark)

    van Leeuwen, D M; van Herwijnen, M H M; Pedersen, Marie

    2006-01-01

    The Teplice area in the Czech Republic is a mining district where elevated levels of air pollution including airborne carcinogens, have been demonstrated, especially during winter time. This environmental exposure can impact human health; in particular children may be more vulnerable. To study....... This suggests an effect of air pollution on the primary structural unit of the condensed DNA. In addition, several other pathways were modulated. Based on the results of this study, we suggest that transcriptomic analysis represents a promising biomarker for environmental carcinogenesis....... the impact of air pollution in children at the transcriptional level, peripheral blood cells were subjected to whole genome response analysis, in order to identify significantly modulated biological pathways and processes as a result of exposure. Using genome-wide oligonucleotide microarrays, we investigated...

  15. SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Songbo eHuang

    2011-07-01

    Full Text Available RNA-Seq, a method using next generation sequencing technologies to sequence the transcriptome, facilitates genome-wide analysis of splice junction sites. In this paper, we introduce SOAPsplice, a robust tool to detect splice junctions using RNA-Seq data without using any information of known splice junctions. SOAPsplice uses a novel two-step approach consisting of first identifying as many reasonable splice junction candidates as possible, and then, filtering the false positives with two effective filtering strategies. In both simulated and real datasets, SOAPsplice is able to detect many reliable splice junctions with low false positive rate. The improvement gained by SOAPsplice, when compared to other existing tools, becomes more obvious when the depth of sequencing is low. SOAPsplice is freely available at http://soap.genomics.org.cn/soapsplice.html.

  16. Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples.

    Directory of Open Access Journals (Sweden)

    Elodie Caboux

    Full Text Available The quality of tissue samples and extracted mRNA is a major source of variability in tumor transcriptome analysis using genome-wide expression microarrays. During and immediately after surgical tumor resection, tissues are exposed to metabolic, biochemical and physical stresses characterized as "warm ischemia". Current practice advocates cryopreservation of biosamples within 30 minutes of resection, but this recommendation has not been systematically validated by measurements of mRNA decay over time. Using Illumina HumanHT-12 v3 Expression BeadChips, providing a genome-wide coverage of over 24,000 genes, we have analyzed gene expression variation in samples of 3 hepatocellular carcinomas (HCC and 3 lung carcinomas (LC cryopreserved at times up to 2 hours after resection. RNA Integrity Numbers (RIN revealed no significant deterioration of mRNA up to 2 hours after resection. Genome-wide transcriptome analysis detected non-significant gene expression variations of -3.5%/hr (95% CI: -7.0%/hr to 0.1%/hr; p = 0.054. In LC, no consistent gene expression pattern was detected in relation with warm ischemia. In HCC, a signature of 6 up-regulated genes (CYP2E1, IGLL1, CABYR, CLDN2, NQO1, SCL13A5 and 6 down-regulated genes (MT1G, MT1H, MT1E, MT1F, HABP2, SPINK1 was identified (FDR <0.05. Overall, our observations support current recommendation of time to cryopreservation of up to 30 minutes and emphasize the need for identifying tissue-specific genes deregulated following resection to avoid misinterpreting expression changes induced by warm ischemia as pathologically significant changes.

  17. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Olga Bajenova

    Full Text Available Сarcinoembryonic antigen (CEA, CEACAM5, CD66 is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8 and CEA negative (MIP 101 colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated. They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis.

  18. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery.

    Science.gov (United States)

    Moazzzam Jazi, Maryam; Seyedi, Seyed Mahdi; Ebrahimie, Esmaeil; Ebrahimi, Mansour; De Moro, Gianluca; Botanga, Christopher

    2017-08-17

    Pistachio (Pistacia vera L.) is one of the most important commercial nut crops worldwide. It is a salt-tolerant and long-lived tree, with the largest cultivation area in Iran. Climate change and subsequent increased soil salt content have adversely affected the pistachio yield in recent years. However, the lack of genomic/global transcriptomic sequences on P. vera impedes comprehensive researches at the molecular level. Hence, whole transcriptome sequencing is required to gain insight into functional genes and pathways in response to salt stress. RNA sequencing of a pooled sample representing 24 different tissues of two pistachio cultivars with contrasting salinity tolerance under control and salt treatment by Illumina Hiseq 2000 platform resulted in 368,953,262 clean 100 bp paired-ends reads (90 Gb). Following creating several assemblies and assessing their quality from multiple perspectives, we found that using the annotation-based metrics together with the length-based parameters allows an improved assessment of the transcriptome assembly quality, compared to the solely use of the length-based parameters. The generated assembly by Trinity was adopted for functional annotation and subsequent analyses. In total, 29,119 contigs annotated against all of five public databases, including NR, UniProt, TAIR10, KOG and InterProScan. Among 279 KEGG pathways supported by our assembly, we further examined the pathways involved in the plant hormone biosynthesis and signaling as well as those to be contributed to secondary metabolite biosynthesis due to their importance under salinity stress. In total, 11,337 SSRs were also identified, which the most abundant being dinucleotide repeats. Besides, 13,097 transcripts as candidate stress-responsive genes were identified. Expression of some of these genes experimentally validated through quantitative real-time PCR (qRT-PCR) that further confirmed the accuracy of the assembly. From this analysis, the contrasting expression pattern

  19. Meta-analysis of genome-wide association studies for personality

    NARCIS (Netherlands)

    M.H.M. de Moor; P.T. Costa Jr; A. Terracciano; R.F. Krueger; E.J.C. de Geus (Eco); T. Toshiko; B.W.J.H. Penninx (Brenda); T. Esko; P.A.F. Madden (Pamela); J. Derringer; N. Amin (Najaf); G.A.H.M. Willemsen (Gonneke); J.J. Hottenga (Jouke Jan); M.A. Distel (Marijn); M. Uda (Manuela); S. Sanna (Serena); P. Spinhoven; C.A. Hartman; P.F. Sullivan (Patrick); A. Realo; J. Allik; A.C. Heath; M.L. Pergadia; P. Lin; R. Grucza; T. Nutile; M. Ciullo; D. Rujescu (Dan); I. Giegling (Ina); B. Konte; E. Widen (Elisabeth); D.L. Cousminer (Diana); J.G. Eriksson; A. Palotie; L. Peltonen; M. Luciano (Michelle); A. Tenesa (Albert); G. Davies; L.M. Lopez; N.K. Hansell (Narelle); S.E. Medland (Sarah Elizabeth); L. Ferrucci; D. Schlessinger; G.W. Montgomery; M.J. Wright (Margaret); Y.S. Aulchenko (Yurii); A.C.J.W. Janssens (Cécile); B.A. Oostra (Ben); A. Metspalu (Andres); I.J. Deary; K. Räikkönen (Katri); L.J. Bierut (Laura); N.G. Martin; C.M. van Duijn (Cornelia); D.I. Boomsma (Dorret); G.R. Abecasis (Gonçalo); A. Agrawal (Arpana)

    2012-01-01

    textabstractPersonality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide

  20. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Science.gov (United States)

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  1. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Directory of Open Access Journals (Sweden)

    Marta Matvienko

    Full Text Available Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC, which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  2. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  3. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Ling Wei

    2016-02-01

    Full Text Available The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus, and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  4. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  5. Genome-wide analysis of disease progression in age-related macular degeneration.

    Science.gov (United States)

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  6. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.

    Directory of Open Access Journals (Sweden)

    Christel Cazalet

    2010-02-01

    Full Text Available Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these

  7. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  8. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  9. GST-PRIME: an algorithm for genome-wide primer design.

    Science.gov (United States)

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  10. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system.

    Science.gov (United States)

    Gribble, Kristin E; Mark Welch, David B

    2017-03-01

    Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by

  11. Transcriptome analysis in Concholepas concholepas (Gastropoda, Muricidae): mining and characterization of new genomic and molecular markers.

    Science.gov (United States)

    Cárdenas, Leyla; Sánchez, Roland; Gomez, Daniela; Fuenzalida, Gonzalo; Gallardo-Escárate, Cristián; Tanguy, Arnaud

    2011-09-01

    The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas.

    Directory of Open Access Journals (Sweden)

    Priscila Daniele Ramos Cirilo

    Full Text Available Uterine Leiomyomas (ULs are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs. Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs.We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC and gene expression microarrays (SAM. The CONEXIC algorithm was applied to integrate the data.The integrated analysis identified the top 30 significant genes (P<0.01, which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively and IGFBP5 (P = 0.0002 and P = 0.006, respectively were up-regulated in the tumours when compared with the adjacent normal myometrium.The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs.

  13. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  14. A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan Amazighs.

    Directory of Open Access Journals (Sweden)

    Youssef Idaghdour

    2008-04-01

    Full Text Available The different environments that humans experience are likely to impact physiology and disease susceptibility. In order to estimate the magnitude of the impact of environment on transcript abundance, we examined gene expression in peripheral blood leukocyte samples from 46 desert nomadic, mountain agrarian and coastal urban Moroccan Amazigh individuals. Despite great expression heterogeneity in humans, as much as one third of the leukocyte transcriptome was found to be associated with differences among regions. Genome-wide polymorphism analysis indicates that genetic differentiation in the total sample is limited and is unlikely to explain the expression divergence. Methylation profiling of 1,505 CpG sites suggests limited contribution of methylation to the observed differences in gene expression. Genetic network analysis further implies that specific aspects of immune function are strongly affected by regional factors and may influence susceptibility to respiratory and inflammatory disease. Our results show a strong genome-wide gene expression signature of regional population differences that presumably include lifestyle, geography, and biotic factors, implying that these can play at least as great a role as genetic divergence in modulating gene expression variation in humans.

  15. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Song, Xinqiang; Lin, Qingsong

    2017-08-01

    Rheumatoid arthritis is an autoimmune disease that affects several organs and tissues, predominantly the synovial joints. The pathogenesis of this disease is not completely understood, which maybe involved in the genomic variations, gene expression, protein translation and post-translational modifications. These system variations in genomics, transcriptomics and proteomics are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. However, various '-omics' techniques developed in recent years have opened up new possibilities for clarifying disease pathways and thereby facilitating early diagnosis and specific therapies. This review examines how recent advances in the fields of genomics, transcriptomics and proteomics have contributed to our understanding of rheumatoid arthritis.

  16. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  17. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; Medland, S.E.; Todt, U.; McArdle, W.L.; Quaye, L.; Koiranen, M.; Ikram, M.A.; Lehtimäki, T.; Stam, A.H.; Ligthart, R.S.L.; Wedenoja, J.; Dunham, I.; Neale, B. M.; Palta, P.; Hamalainen, E.; Schürks, M.; Rose, L.M.; Buring, J.E.; Ridker, P.M.; Steinberg, S.; Stefansson, H.; Jakobsson, F.; Lawlor, D.A.; Evans, D.M.; Ring, S.M.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Freilinger, T.; Schoenen, J.; Frants, R.R.; Pelzer, N.; Weller, C.M.; Zielman, R.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Borck, G.; Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Williams, F.M.; Hartikainen, A.-L.; Pouta, A.; van den Ende, J..; Uitterlinden, A.G.; Hofman, A.; Amin, N.; Hottenga, J.J.; Vink, J.M.; Heikkilä, K.; Alexander, M.; Muller-Myhsok, B.; Schreiber, S; Meitinger, T.; Wichmann, H. E.; Aromaa, A.; Eriksson, J.G.; Traynor, B.J.; Trabzuni, D.; Rossin, E.; Lage, K.; Jacobs, S.B.; Gibbs, J.R.; Birney, E.; Kaprio, J.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Raitakari, O.; Jarvelin, M.-R.; Zwart, J.A.; Cherkas, L.; Strachan, D.P.; Kubisch, C.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M.; Dichgans, M.; Wessman, M.; Smith, G.D.; Stefansson, K.; Daly, M.J.; Nyholt, DR; Chasman, D.I.; Palotie, A.

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  18. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) an...

  19. On the analysis of genome-wide association studies in family-based designs: a universal, robust analysis approach and an application to four genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Sungho Won

    2009-11-01

    Full Text Available For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1 in 4 genome-wide association studies.

  20. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    DEFF Research Database (Denmark)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang

    2017-01-01

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorpt...... a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.......-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p 

  1. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    Science.gov (United States)

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  2. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing...... in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing...

  3. Transcriptome-wide patterns of divergence during allopatric evolution.

    Science.gov (United States)

    Pereira, Ricardo J; Barreto, Felipe S; Pierce, N Tessa; Carneiro, Miguel; Burton, Ronald S

    2016-04-01

    Recent studies have revealed repeated patterns of genomic divergence associated with species formation. Such patterns suggest that natural selection tends to target a set of available genes, but is also indicative that closely related taxa share evolutionary constraints that limit genetic variability. Studying patterns of genomic divergence among populations within the same species may shed light on the underlying evolutionary processes. Here, we examine transcriptome-wide divergence and polymorphism in the marine copepod Tigriopus californicus, a species where allopatric evolution has led to replicate sets of populations with varying degrees of divergence and hybrid incompatibility. Our analyses suggest that relatively small effective population sizes have resulted in an exponential decline of shared polymorphisms during population divergence and also facilitated the fixation of slightly deleterious mutations within allopatric populations. Five interpopulation comparisons at three different stages of divergence show that nonsynonymous mutations tend to accumulate in a specific set of proteins. These include proteins with central roles in cellular metabolism, such as those encoded in mtDNA, but also include an additional set of proteins that repeatedly show signatures of positive selection during allopatric divergence. Although our results are consistent with a contribution of nonadaptive processes, such as genetic drift and gene expression levels, generating repeatable patterns of genomic divergence in closely related taxa, they also indicate that adaptive evolution targeting a specific set of genes contributes to this pattern. Our results yield insights into the predictability of evolution at the gene level. © 2016 John Wiley & Sons Ltd.

  4. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  5. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  6. Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader.

    Science.gov (United States)

    Richardson, Mark F; Sequeira, Fernando; Selechnik, Daniel; Carneiro, Miguel; Vallinoto, Marcelo; Reid, Jack G; West, Andrea J; Crossland, Michael R; Shine, Richard; Rollins, Lee A

    2018-01-01

    Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. © The Authors 2017. Published by Oxford University Press.

  7. Genome-Wide Analysis of Gene and microRNA Expression in Diploid and Autotetraploid Paulownia fortunei (Seem Hemsl. under Drought Stress by Transcriptome, microRNA, and Degradome Sequencing

    Directory of Open Access Journals (Sweden)

    Zhenli Zhao

    2018-02-01

    Full Text Available Drought is a common and recurring climatic condition in many parts of the world, and it can have disastrous impacts on plant growth and development. Many genes involved in the drought response of plants have been identified. Transcriptome, microRNA (miRNA, and degradome analyses are rapid ways of identifying drought-responsive genes. The reference genome sequence of Paulownia fortunei (Seem Hemsl. is now available, which makes it easier to explore gene expression, transcriptional regulation, and post-transcriptional in this species. In this study, four transcriptome, small RNA, and degradome libraries were sequenced by Illumina sequencing, respectively. A total of 258 genes and 11 miRNAs were identified for drought-responsive genes and miRNAs in P. fortunei. Degradome sequencing detected 28 miRNA target genes that were cleaved by members of nine conserved miRNA families and 12 novel miRNAs. The results here will contribute toward enriching our understanding of the response of Paulownia fortunei trees to drought stress and may provide new direction for further experimental studies related the development of molecular markers, the genetic map construction, and other genomic research projects in Paulownia.

  8. Analysis Of Transcriptomes In A Porcine Tissue Collection Using RNA-Seq And Genome Assembly 10

    DEFF Research Database (Denmark)

    Hornshøj, Henrik; Thomsen, Bo; Hedegaard, Jakob

    2011-01-01

    The release of Sus scrofa genome assembly 10 supports improvement of the pig genome annotation and in depth transcriptome analyses using next-generation sequencing technologies. In this study we analyze RNA-seq reads from a tissue collection, including 10 separate tissues from Duroc boars and 10...... short read alignment software we mapped the reads to the genome assembly 10. We extracted contig sequences of gene transcripts using the Cufflinks software. Based on this information we identified expressed genes that are present in the genome assembly. The portion of these genes being previously known...... was roughly estimated by sequence comparison to known genes. Similarly, we searched for genes that are expressed in the tissues but not present in the genome assembly by aligning the non-genome-mapped reads to known gene transcripts. For the genes predicted to have alternative transcript variants by Cufflinks...

  9. Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-03-01

    Full Text Available Abstract Background Low levels of oxygen in tissues, seen in situations such as chronic lung disease, necrotic tumors, and high altitude exposures, initiate a signaling pathway that results in active transcription of genes possessing a hypoxia response element (HRE. The aim of this study was to investigate whether a change in miRNA expression following hypoxia could account for changes in the cellular transcriptome based on currently available miRNA target prediction tools. Methods To identify changes induced by hypoxia, we conducted mRNA- and miRNA-array-based experiments in HT29 cells, and performed comparative analysis of the resulting data sets based on multiple target prediction algorithms. To date, few studies have investigated an environmental perturbation for effects on genome-wide miRNA levels, or their consequent influence on mRNA output. Results Comparison of miRNAs with predicted mRNA targets indicated a lower level of concordance than expected. We did, however, find preliminary evidence of combinatorial regulation of mRNA expression by miRNA. Conclusion Target prediction programs and expression profiling techniques do not yet adequately represent the complexity of miRNA-mediated gene repression, and new methods may be required to better elucidate these pathways. Our data suggest the physiologic impact of miRNAs on cellular transcription results from a multifaceted network of miRNA and mRNA relationships, working together in an interconnected system and in context of hundreds of RNA species. The methods described here for comparative analysis of cellular miRNA and mRNA will be useful for understanding genome wide regulatory responsiveness and refining miRNA predictive algorithms.

  10. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    NARCIS (Netherlands)

    Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; Fitzpatrick, K.; Kanakis, A.; Barrick, T.R.; Moynihan, B.; Lewis, C.M.; Boncoraglio, G.B.; Lemmens, R.; Thijs, V.; Sudlow, C.; Wardlaw, J.; Rothwell, P.M.; Meschia, J.F.; Worrall, B.B.; Levi, C.; Bevan, S.; Furie, K.L.; Dichgans, M.; Rosand, J.; Markus, H.S.; Rost, N.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

  11. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  12. Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A Polymerases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Kappel

    2015-08-01

    Full Text Available The poly(A tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.

  13. Chapter 4 genomics, transcriptomics, and epigenomics in traumatic brain injury research.

    Science.gov (United States)

    Puccio, Ava M; Alexander, Sheila

    2015-01-01

    The long-term effects and significant impact of the full spectrum of traumatic brain injury (TBI) has received increased attention in recent years. Despite increased research efforts, there has been little movement toward improving outcomes for the survivors of TBI. TBI is a heterogeneous condition with a complex biological response, and significant variability in human recovery contributes to the difficulty in identifying therapeutics that improve outcomes. Personalized medicine, identifying the best course of treatment for a given individual based on individual characteristics, has great potential to improve recovery for TBI survivors. The advances in medical genetics and genomics over the past 20 years have increased our understanding of many biological processes. A substantial amount of research has focused on the genomic, transcriptomic, and epigenomic profiles in many health and disease states, including recovery from TBI. The focus of this review chapter is to describe the current state of the science in genomic, transcriptomic, and epigenomic research in the TBI population. There have been some advancements toward understanding the genomic, transcriptomic, and epigenomic processes in humans, but much of this work remains at the preclinical stage. This current evidence does improve our understanding of TBI recovery, but also serves as an excellent platform upon which to build further study toward improved outcomes for this population.

  14. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    Science.gov (United States)

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  15. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types

    NARCIS (Netherlands)

    Franssen, Susanne U.; Gu, Jenny; Winters, Gidon; Huylmans, Ann-Kathrin; Wienpahl, Isabell; Sparwel, Maximiliane; Coyer, James; Olsen, Jeanine; Reusch, Thorsten; Bornberg-Bauer, Erich

    Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments

  16. A mega-analysis of genome-wide association studies for major depressive disorder.

    Science.gov (United States)

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  17. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  18. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Campbell, Raymond; Pont, Simon D A; Morris, Jenny A; McKenzie, Gaynor; Sharma, Sanjeev Kumar; Hedley, Pete E; Ramsay, Gavin; Bryan, Glenn J; Taylor, Mark A

    2014-09-01

    Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.

  19. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  20. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane  P.  G.; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A.; Guo, Wenbin; Spensley, Mark; Entizne, Juan Carlos; Lewandowska, Dominika; ten  Have, Sara; Frei  dit  Frey, Nicolas; Hirt, Heribert; James, Allan B.; Nimmo, Hugh G.; Barta, Andrea; Kalyna, Maria; Brown, John  W.  S.

    2017-01-01

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  1. Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice

    Directory of Open Access Journals (Sweden)

    Youko Oono

    2016-01-01

    Full Text Available Rice growth is severely affected by toxic concentrations of the nonessential heavy metal cadmium (Cd. To elucidate the molecular basis of the response to Cd stress, we performed mRNA sequencing of rice following our previous study on exposure to high concentrations of Cd (Oono et al., 2014. In this study, rice plants were hydroponically treated with low concentrations of Cd and approximately 211 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence. Many genes, including some identified under high Cd concentration exposure in our previous study, were found to be responsive to low Cd exposure, with an average of about 11,000 transcripts from each condition. However, genes expressed constitutively across the developmental course responded only slightly to low Cd concentrations, in contrast to their clear response to high Cd concentration, which causes fatal damage to rice seedlings according to phenotypic changes. The expression of metal ion transporter genes tended to correlate with Cd concentration, suggesting the potential of the RNA-Seq strategy to reveal novel Cd-responsive transporters by analyzing gene expression under different Cd concentrations. This study could help to develop novel strategies for improving tolerance to Cd exposure in rice and other cereal crops.

  2. Tools for the Validation of Genomes and Transcriptomes with Proteomics data

    DEFF Research Database (Denmark)

    Pang, Chi Nam Ignatius; Aya, Carlos; Tay, Aidan

    data generated from protein mass spectrometry. We are developing a set of tools which allow users to: •Co-visualise genomics, transcriptomics, and proteomics data using the Integrated Genomics Viewer (IGV).1 •Validate the existence of genes and mRNAs using peptides identified from mass spectrometry...

  3. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin (Najaf); K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao (Jing Hua); G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. van Duijn (Cornelia); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  4. Genomic selection: genome-wide prediction in plant improvement.

    Science.gov (United States)

    Desta, Zeratsion Abera; Ortiz, Rodomiro

    2014-09-01

    Association analysis is used to measure relations between markers and quantitative trait loci (QTL). Their estimation ignores genes with small effects that trigger underpinning quantitative traits. By contrast, genome-wide selection estimates marker effects across the whole genome on the target population based on a prediction model developed in the training population (TP). Whole-genome prediction models estimate all marker effects in all loci and capture small QTL effects. Here, we review several genomic selection (GS) models with respect to both the prediction accuracy and genetic gain from selection. Phenotypic selection or marker-assisted breeding protocols can be replaced by selection, based on whole-genome predictions in which phenotyping updates the model to build up the prediction accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, S.; O'Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; Kim, Y.; Lee, S.H.; Magnusson, P.K.; Sanchez, N.; Stahl, E.A.; Williams, S.; Wray, N.R.; Xia, K.; Bettella, F.; Borglum, A. D.; Bulik-Sullivan, B.K.; Cormican, P.; Craddock, N.; de Leeuw, C.A.; Durmishi, N.; Gill, M.; Golimbet, V.; Hamshere, M.L.; Holmans, P.; Hougaard, D. M.; Kendler, K.S.; Lin, K.; Morris, D. W.; Mors, O.; Mortensen, P.B.; Neale, B. M.; O'Neill, F. A.; Owen, M.J.; Milovancevic, M.P.; Posthuma, D.; Powell, J.; Richards, A.L.; Riley, B.P.; Ruderfer, D.; Rujescu, D.; Sigurdsson, E.; Silagadze, T.; Smit, A.B.; Stefansson, H.; Steinberg, S.; Suvisaari, J.; Tosato, S.; Verhage, M.; Walters, T.J.; Levinson, D.F.; Gejman, P.V.; Laurent, C.; Mowry, B. J.; O'Donovan, M.C.; Pulver, A. E.; Schwab, S.G.; Wildenauer, D. B.; Dudbridge, F.; Shi, J.; Albus, M.; Alexander, M.; Campion, D.; Cohen, D.; Dikeos, D.; Duan, J.; Eichhammer, P.; Godard, S.; Hansen, M.; Lerer, F.B.; Liang, K.Y.; Maier, W.; Mallet, J.; Nertney, D. A.; Nestadt, G.; Norton, N.; O'Neill, F.A.; Papadimitriou, G.N.; Ribble, R.; Sanders, A.R.; Silverman, J.M.; Wormley, B.; Arranz, M.J.; Bakker, S.; Bender, S.; Bramon, E.; Collier, D.; Crespo-Facorro, B.; Hall, J.; Iyegbe, C.; Jablensky, A.; Kahn, R.S.; Kalaydjieva, L.; Lawrie, S.M.; Lewis, C.M.; Linszen, D.H.; Mata, I.; McIntosh, A.; Murray, R.M.; Ophoff, R.A.; van Os, J.; Walshe, M.; Weisbrod, M.; Wiersma, D.; Donnely, P.; Barasso, I.; Blackwell, J.M.; Brown, M.A.; Casas, J.P.; Corvin, A.P.; Deloukas, P.; Duncanson, A.; Jankowski, J.; Markus, H.S.; Mathew, C.G.; Palmer, C.N.; Plomin, R.; Rautanen, A.; Sawcer, S.J.; Trembath, R.C.; Viswanathan, A.C.; Wood, N.W.; Spencer, C. C.; Band, G.; Bellenguez, C.; Freeman, C.; Hellenthal, G.; Giannoulatou, E.; Pirinen, M.; Pearson, R.D.; Strange, A.; Su, Z.; Vukcevic, D.; Langford, C.; Hunt, S.E.; Edkins, S.; Gwilliam, R.; Blackburn, H.; Bumpstead, S.; Dronov, S.; Gillman, M.; Gray, E.; Hammond, N.; Jayakumar, A.; McCann, O.T.; Liddle, J.; Potter, S.C.; Ravindrarajah, R.; Ricketts, M.; Tashakkori-Ghanbaria, A.; Waller, M.J.; Weston, P.; Widaa, S.; Whittaker, P.; Barrroso, I.; McCarthy, M.I.; Spencer, C.C.; Stefansson, K.; Scolnick, E.; Purcell, S.; McCarroll, S.A.; Sklar, P.; Hultman, C. M.; Sullivan, P.F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with

  6. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah E.; Collins, Ann L.; Crowley, James J.; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K. E.; Sanchez, Nick; Stahl, Eli A.; Williams, Stephanie; Wray, Naomi R.; Xia, Kai; Bettella, Francesco; Borglum, Anders D.; Bulik-Sullivan, Brendan K.; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L.; Holmans, Peter; Hougaard, David M.; Kendler, Kenneth S.; Lin, Kuang; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Neale, Benjamin M.; O'Neill, Francis A.; Owen, Michael J.; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L.; Riley, Brien P.; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B.; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T.; Levinson, Douglas F.; Gejman, Pablo V.; Laurent, Claudine; Mowry, Bryan J.; O'Donovan, Michael C.; Pulver, Ann E.; Schwab, Sibylle G.; Wildenauer, Dieter B.; Dudbridge, Frank; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F. Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A.; Nestadt, Gerald; Norton, Nadine; Papadimitriou, George N.; Ribble, Robert; Sanders, Alan R.; Silverman, Jeremy M.; Walsh, Dermot; Williams, Nigel M.; Wormley, Brandon; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S.; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M.; Linszen, Don H.; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M.; Ophoff, Roel A.; van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden P.; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D.; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J.; Weston, Paul; Widaa, Sara; Whittaker, Pamela; McCarthy, Mark I.; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A.; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with

  7. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  8. Genome-Wide Association Analysis of Ischemic Stroke in Young Adults

    OpenAIRE

    Cheng, Yu-Ching; O’Connell, Jeffrey R.; Cole, John W.; Stine, O. Colin; Dueker, Nicole; McArdle, Patrick F.; Sparks, Mary J.; Shen, Jess; Laurie, Cathy C.; Nelson, Sarah; Doheny, Kimberly F.; Ling, Hua; Pugh, Elizabeth W.; Brott, Thomas G.; Brown, Robert D.

    2011-01-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases...

  9. Balanced into array : genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis

    NARCIS (Netherlands)

    Feenstra, Ilse; Hanemaaijer, Nicolien; Sikkema-Raddatz, Birgit; Yntema, Helger; Dijkhuizen, Trijnie; Lugtenberg, Dorien; Verheij, Joke; Green, Andrew; Hordijk, Roel; Reardon, William; de Vries, Bert; Brunner, Han; Bongers, Ernie; de Leeuw, Nicole; van Ravenswaaij-Arts, Conny

    2011-01-01

    High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis

  10. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Maegi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W-K; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K-T; Luben, R. N.; Wang, J. J.; Mannisto, S.; Perala, M-M; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Doering, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellstrom, D.; Hottenga, J. J.; Prokopenko, I.; Toenjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H-J; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppoenen, E.; Jarvelin, M-R; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  12. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkilä, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Mägi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W.-K.; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaëlsson, K.; Morris, A.; Jensen, M.; Khaw, K.-T.; Luben, R. N.; Wang, J. J.; Männistö, S.; Perälä, M.-M.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Döring, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellström, D.; Hottenga, J. J.; Prokopenko, I.; Tönjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H.-J.; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppönen, E.; Järvelin, M.-R.; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.; Nalls, Michael A.; Plagnol, Vincent; Hernandez, Dena G.; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Hershey, Milton S.; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; O' Sullivan, Sean S.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Pollak, Pierre; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Martinez, Maria; Sabatier, Paul; Wood, Nicholas W.; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Box, P. O.

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  13. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe

    KAUST Repository

    Schlackow, M.

    2013-10-23

    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3\\' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3\\'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).

  14. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe

    KAUST Repository

    Schlackow, M.; Marguerat, S.; Proudfoot, N. J.; Bahler, J.; Erban, R.; Gullerova, M.

    2013-01-01

    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).

  15. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella

    OpenAIRE

    Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki

    2013-01-01

    Background The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to fa...

  16. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  17. Swine transcriptome characterization by combined Iso-Seq and RNA-seq for annotating the emerging long read-based reference genome

    Science.gov (United States)

    PacBio long-read sequencing technology is increasingly popular in genome sequence assembly and transcriptome cataloguing. Recently, a new-generation pig reference genome was assembled based on long reads from this technology. To finely annotate this genome assembly, transcriptomes of nine tissues fr...

  18. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    Science.gov (United States)

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia. Further research will be required to confirm these

  19. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    Science.gov (United States)

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  20. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  1. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics

    OpenAIRE

    Verma, Mohit; Kumar, Vinay; Patel, Ravi K.; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database fea...

  2. Transcriptome sequencing and De Novo analysis of Youngia japonica using the illumina platform.

    Directory of Open Access Journals (Sweden)

    Yulan Peng

    Full Text Available Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity. In this study, de novo transcriptome sequencing was conducted for the first time for the comprehensive analysis of the genetic diversity of Y. japonica. The Y. japonica transcriptome was sequenced using Illumina paired-end sequencing technology. We produced 21,847,909 high-quality reads for Y. japonica and assembled them into contigs. A total of 51,850 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 41,752 were annotated in the Swiss-Prot database. We mapped 9,125 unigenes onto 163 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 3,648 simple sequence repeats (SSRs were detected. Our data provide the most comprehensive transcriptome resource currently available for Y. japonica. C4 photosynthesis unigenes were found in the biological process of Y. japonica. There were 5596 unigenes related to defense response and 1344 ungienes related to signal transduction mechanisms (10.95%. These data provide insights into the genetic diversity of Y. japonica. Numerous SSRs contributed to the development of novel markers. These data may serve as a new valuable resource for genomic studies on Youngia and, more generally, Cichoraceae.

  3. Transcriptome analysis of the Asian honey bee Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Zi Long Wang

    Full Text Available BACKGROUND: The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE analysis. RESULTS: Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG with a cut-off E-value of 10(-5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. CONCLUSIONS: Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes.

  4. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  5. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis

    OpenAIRE

    Bojiang Li; Chao Dong; Pinghua Li; Zhuqing Ren; Han Wang; Fengxiang Yu; Caibo Ning; Kaiqing Liu; Wei Wei; Ruihua Huang; Jie Chen; Wangjun Wu; Honglin Liu

    2016-01-01

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing techn...

  6. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Colgan Thomas J

    2011-12-01

    Full Text Available Abstract Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers and a total of 1,610,742 expressed sequence tags (ESTs were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while

  7. Polyphenism in social insects: Insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    LENUS (Irish Health Repository)

    Colgan, Thomas J

    2011-12-20

    Abstract Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory

  8. [Genomics and transcriptomics of the Chinese liver fluke Clonorchis sinensis (Opisthorchiidae, Trematoda)].

    Science.gov (United States)

    Chelomina, G N

    2017-01-01

    The review summarizes the results of first genomic and transcriptomic investigations of the liver fluke Clonorchis sinensis (Opisthorchiidae, Trematoda). The studies mark the dawn of the genomic era for opisthorchiids, which cause severe hepatobiliary diseases in humans and animals. Their results aided in understanding the molecular mechanisms of adaptation to parasitism, parasite survival in mammalian biliary tracts, and genome dynamics in the individual development and the development of parasite-host relationships. Special attention is paid to the achievements in studying the codon usage bias and the roles of mobile genetic elements (MGEs) and small interfering RNAs (siRNAs). Interspecific comparisons at the genomic and transcriptomic levels revealed molecular differences, which may contribute to understanding the specialized niches and physiological needs of the respective species. The studies in C. sinensis provide a basis for further basic and applied research in liver flukes and, in particular, the development of efficient means to prevent, diagnose, and treat clonorchiasis.

  9. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

    Science.gov (United States)

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-10-17

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.

  10. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  11. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  12. Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum.

    Science.gov (United States)

    Bhattacharyya, Dipto; Hazra, Saptarshi; Banerjee, Anindyajit; Datta, Riddhi; Kumar, Deepak; Chakrabarti, Saikat; Chattopadhyay, Sharmila

    2016-09-01

    Podophyllotoxin (ptox) is a therapeutically important lignan derived from Podophyllum hexandrum and is used as a precursor for the synthesis of anticancer drugs etoposide, teniposide and etopophose. In spite of its enormous economic significance, genomic information on this endangered medicinal herb is scarce. We have performed de novo transcriptome analysis of methyl jasmonate (MeJA)-treated P. hexandrum cell cultures exhibiting enhanced ptox accumulation. The results revealed the maximum up-regulation of several isoforms of cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes the synthesis of coniferyl alcohol and sinapyl alcohol from coniferaldehyde (CAld) and sinapaldehyde respectively. Coniferyl alcohol can produce both lignin and lignan while sinapyl alcohol produces only lignin. To isolate the CAD isoforms favoring ptox, we deduced full length cDNA sequences of four CAD isoforms: PhCAD1, PhCAD2, PhCAD3 and PhCAD4 from the contigs of the transcriptome data. In vitro enzyme assays indicated a higher affinity for CAld over sinapaldehyde for each isoform. In silico molecular docking analyses also suggested that PhCAD3 has a higher binding preference with CAld over sinapaldehyde, followed by PhCAD4, PhCAD2, and PhCAD1, respectively. The transgenic cell cultures overexpressing these isoforms independently revealed that PhCAD3 favored the maximum accumulation of ptox as compared to lignin followed by PhCAD4 and PhCAD2, whereas, PhCAD1 favored both equally. Together, our study reveals transcriptome-wide identification and characterization of ptox specific CAD isoforms from P. hexandrum. It provides a useful resource for future research not only on the ptox biosynthetic pathway but on overall P. hexandrum, an endangered medicinal herb with immense therapeutic importance.

  13. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  14. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  15. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties.

    Science.gov (United States)

    Hittalmani, Shailaja; Mahesh, H B; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y R; Lohithaswa, H C; Mohanrao, A

    2017-06-15

    Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.

  16. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    Directory of Open Access Journals (Sweden)

    Xiaoshen Zhang

    2014-03-01

    Full Text Available Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx. About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.

  17. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  18. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

    NARCIS (Netherlands)

    Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Plagnol, Vincent; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner- Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Conley, Emily Drabant; Dorfman, Elizabeth; Tung, Joyce Y.; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lew, M.; Klein, C.; Golbe, L.; Growdon, J.; Wooten, G. F.; Watts, R.; Guttman, M.; Goldwurm, S.; Saint-Hilaire, M. H.; Baker, K.; Litvan, I.; Nicholson, G.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Sherman, S.; Roxburgh, R.; Slevin, J.; Perlmutter, J.; Mark, M. H.; Huggins, N.; Pezzoli, G.; Massood, T.; Itin, I.; Corbett, A.; Chinnery, P.; Ostergaard, K.; Snow, B.; Cambi, F.; Kay, D.; Samii, A.; Agarwal, P.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Montimurro, J.; Martinez, E.; Griffith, A.; Kusel, V.; Yearout, D.; Zabetian, C.; Clark, L. N.; Liu, X.; Lee, J. H.; Taub, R. Cheng; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; van Duijn, Cornelia M.; Verlinden, Vincent J.; Koudstaal, Peter J.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2014-01-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were

  19. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  20. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  1. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum transcriptome.

    Directory of Open Access Journals (Sweden)

    Silvan Oulion

    Full Text Available BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata, as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode. Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp. Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation

  2. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  3. The Carcinogenic Liver Fluke, Clonorchis sinensis: New Assembly, Reannotation and Analysis of the Genome and Characterization of Tissue Transcriptomes

    Science.gov (United States)

    Wang, Xiaoyun; Liu, Hailiang; Chen, Yangyi; Guo, Lei; Luo, Fang; Sun, Jiufeng; Mao, Qiang; Liang, Pei; Xie, Zhizhi; Zhou, Chenhui; Tian, Yanli; Lv, Xiaoli; Huang, Lisi; Zhou, Juanjuan; Hu, Yue; Li, Ran; Zhang, Fan; Lei, Huali; Li, Wenfang; Hu, Xuchu; Liang, Chi; Xu, Jin; Li, Xuerong; Yu, Xinbing

    2013-01-01

    Clonorchis sinensis (C. sinensis), an important food-borne parasite that inhabits the intrahepatic bile duct and causes clonorchiasis, is of interest to both the public health field and the scientific research community. To learn more about the migration, parasitism and pathogenesis of C. sinensis at the molecular level, the present study developed an upgraded genomic assembly and annotation by sequencing paired-end and mate-paired libraries. We also performed transcriptome sequence analyses on multiple C. sinensis tissues (sucker, muscle, ovary and testis). Genes encoding molecules involved in responses to stimuli and muscle-related development were abundantly expressed in the oral sucker. Compared with other species, genes encoding molecules that facilitate the recognition and transport of cholesterol were observed in high copy numbers in the genome and were highly expressed in the oral sucker. Genes encoding transporters for fatty acids, glucose, amino acids and oxygen were also highly expressed, along with other molecules involved in metabolizing these substrates. All genes involved in energy metabolism pathways, including the β-oxidation of fatty acids, the citrate cycle, oxidative phosphorylation, and fumarate reduction, were expressed in the adults. Finally, we also provide valuable insights into the mechanism underlying the process of pathogenesis by characterizing the secretome of C. sinensis. The characterization and elaborate analysis of the upgraded genome and the tissue transcriptomes not only form a detailed and fundamental C. sinensis resource but also provide novel insights into the physiology and pathogenesis of C. sinensis. We anticipate that this work will aid the development of innovative strategies for the prevention and control of clonorchiasis. PMID:23382950

  4. The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Clonorchis sinensis (C. sinensis, an important food-borne parasite that inhabits the intrahepatic bile duct and causes clonorchiasis, is of interest to both the public health field and the scientific research community. To learn more about the migration, parasitism and pathogenesis of C. sinensis at the molecular level, the present study developed an upgraded genomic assembly and annotation by sequencing paired-end and mate-paired libraries. We also performed transcriptome sequence analyses on multiple C. sinensis tissues (sucker, muscle, ovary and testis. Genes encoding molecules involved in responses to stimuli and muscle-related development were abundantly expressed in the oral sucker. Compared with other species, genes encoding molecules that facilitate the recognition and transport of cholesterol were observed in high copy numbers in the genome and were highly expressed in the oral sucker. Genes encoding transporters for fatty acids, glucose, amino acids and oxygen were also highly expressed, along with other molecules involved in metabolizing these substrates. All genes involved in energy metabolism pathways, including the β-oxidation of fatty acids, the citrate cycle, oxidative phosphorylation, and fumarate reduction, were expressed in the adults. Finally, we also provide valuable insights into the mechanism underlying the process of pathogenesis by characterizing the secretome of C. sinensis. The characterization and elaborate analysis of the upgraded genome and the tissue transcriptomes not only form a detailed and fundamental C. sinensis resource but also provide novel insights into the physiology and pathogenesis of C. sinensis. We anticipate that this work will aid the development of innovative strategies for the prevention and control of clonorchiasis.

  5. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains.

    Science.gov (United States)

    Lee, Soojin; Kim, Borim; Yang, Jeongmo; Jeong, Daun; Park, Soohyun; Shin, Sang Heum; Kook, Jun Ho; Yang, Kap-Seok; Lee, Jinwon

    2015-11-01

    The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.

  6. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.......Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  7. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  8. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    Science.gov (United States)

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  9. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.

    Science.gov (United States)

    Wang, Richard J; Payseur, Bret A

    2017-08-01

    Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.

  10. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    Directory of Open Access Journals (Sweden)

    Salcedo Mauricio

    2007-09-01

    Full Text Available Abstract Background Cervical carcinoma (CC is a leading cause of death among women worldwide. Human papilloma virus (HPV is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (at least 2-fold in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways. Conclusion This analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies.

  11. De novo Transcriptome Assemblies of Rana (Lithobates catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Inanc Birol

    Full Text Available In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates catesbeiana and the African clawed frog (Xenopus laevis. We used high throughput RNA sequencing (RNA-seq data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.

  12. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  13. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    Science.gov (United States)

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  14. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  15. Transcriptome-Wide Profiling and Expression Analysis of Diploid and Autotetraploid Paulownia tomentosa × Paulownia fortunei under Drought Stress

    Science.gov (United States)

    Xu, Enkai; Fan, Guoqiang; Niu, Suyan; Zhao, Zhenli; Deng, Minjie; Dong, Yanpeng

    2014-01-01

    Paulownia is a fast-growing deciduous hardwood species native to China, which has high ecological and economic value. In an earlier study, we reported ploidy-dependent differences in Paulownia drought tolerance by the microscopic observations of the leaves. Autotetraploid Paulownia has a higher resistance to drought stress than their diploid relatives. In order to obtain genetic information on molecular mechanisms responses of Paulownia plants to drought, Illumina/Solexa Genome sequencing platform was used to de novo assemble the transcriptomes of leaves from diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei seedlings (PTF2 and PTF4 respectively) grown under control conditions and under drought stress and obtained 98,671 nonredundant unigenes. A comparative transcriptome analysis revealed that hundreds of unigenes were predicted to be involved mainly in ROS-scavenging system, amino acid and carbohydrate metabolism, plant hormone biosynthesis and signal transduction, while these unigenes exhibited differential transcript alteration of the two accessions. This study provides a comprehensive map of how P. tomentosa × P. fortunei responds to drought stress at physiological and molecular levels, which may help in understanding the mechanisms involve in water-deficit response and will be useful for further study of drought tolerance in woody plants. PMID:25405758

  16. The utility of transcriptomics in fish conservation.

    Science.gov (United States)

    Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A

    2018-01-29

    There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.

  17. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    NARCIS (Netherlands)

    Postmus, Iris; Warren, Helen R.; Trompet, Stella; Arsenault, Benoit J.; Avery, Christy L.; Bis, Joshua C.; Chasman, Daniel I.; de Keyser, Catherine E.; Deshmukh, Harshal A.; Evans, Daniel S.; Feng, QiPing; Li, Xiaohui; Smit, Roelof A. J.; Smith, Albert V.; Sun, Fangui; Taylor, Kent D.; Arnold, Alice M.; Barnes, Michael R.; Barratt, Bryan J.; Betteridge, John; Boekholdt, S. Matthijs; Boerwinkle, Eric; Buckley, Brendan M.; Chen, Y.-D. Ida; de Craen, Anton J. M.; Cummings, Steven R.; Denny, Joshua C.; Dubé, Marie Pierre; Durrington, Paul N.; Eiriksdottir, Gudny; Ford, Ian; Guo, Xiuqing; Harris, Tamara B.; Heckbert, Susan R.; Hofman, Albert; Hovingh, G. Kees; Kastelein, John J. P.; Launer, Leonore J.; Liu, Ching-Ti; Liu, Yongmei; Lumley, Thomas; McKeigue, Paul M.; Munroe, Patricia B.; Neil, Andrew; Nickerson, Deborah A.; Nyberg, Fredrik; O'Brien, Eoin; O'Donnell, Christopher J.; Post, Wendy; Poulter, Neil; Vasan, Ramachandran S.; Rice, Kenneth; Rich, Stephen S.; Rivadeneira, Fernando; Sattar, Naveed; Sever, Peter; Shaw-Hawkins, Sue; Shields, Denis C.; Slagboom, P. Eline; Smith, Nicholas L.; Smith, Joshua D.; Sotoodehnia, Nona; Stanton, Alice; Stott, David J.; Stricker, Bruno H.; Stürmer, Til; Uitterlinden, André G.; Wei, Wei-Qi; Westendorp, Rudi G. J.; Whitsel, Eric A.; Wiggins, Kerri L.; Wilke, Russell A.; Ballantyne, Christie M.; Colhoun, Helen M.; Cupples, L. Adrienne; Franco, Oscar H.; Gudnason, Vilmundur; Hitman, Graham; Palmer, Colin N. A.; Psaty, Bruce M.; Ridker, Paul M.; Stafford, Jeanette M.; Stein, Charles M.; Tardif, Jean-Claude; Caulfield, Mark J.; Jukema, J. Wouter; Rotter, Jerome I.; Krauss, Ronald M.

    2016-01-01

    In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. We performed a meta-analysis of genome-wide

  18. Meta-analysis for genome-wide association studies using case-control design: application and practice.

    Science.gov (United States)

    Shim, Sungryul; Kim, Jiyoung; Jung, Wonguen; Shin, In-Soo; Bae, Jong-Myon

    2016-01-01

    This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy-Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The 'genhwcci' and 'metan' commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the 'metareg' command of STATA should be conducted to evaluate related factors of heterogeneities.

  19. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli

    Directory of Open Access Journals (Sweden)

    Weibo Qiao

    2018-01-01

    Full Text Available Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.

  20. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    Directory of Open Access Journals (Sweden)

    Wang Shengyue

    2011-02-01

    Full Text Available Abstract Background Clostridium acetobutylicum, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain C. acetobutylicum EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain C. acetobutylicum ATCC 824. Results Complete genome of C. acetobutylicum EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824, a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose. Conclusions Comparative analysis of C. acetobutylicum hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of C. acetobutylicum for more effective butanol production.

  1. Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae).

    Science.gov (United States)

    Nock, Catherine J; Baten, Abdul; Barkla, Bronwyn J; Furtado, Agnelo; Henry, Robert J; King, Graham J

    2016-11-17

    The large Gondwanan plant family Proteaceae is an early-diverging eudicot lineage renowned for its morphological, taxonomic and ecological diversity. Macadamia is the most economically important Proteaceae crop and represents an ancient rainforest-restricted lineage. The family is a focus for studies of adaptive radiation due to remarkable species diversification in Mediterranean-climate biodiversity hotspots, and numerous evolutionary transitions between biomes. Despite a long history of research, comparative analyses in the Proteaceae and macadamia breeding programs are restricted by a paucity of genetic information. To address this, we sequenced the genome and transcriptome of the widely grown Macadamia integrifolia cultivar 741. Over 95 gigabases of DNA and RNA-seq sequence data were de novo assembled and annotated. The draft assembly has a total length of 518 Mb and spans approximately 79% of the estimated genome size. Following annotation, 35,337 protein-coding genes were predicted of which over 90% were expressed in at least one of the leaf, shoot or flower tissues examined. Gene family comparisons with five other eudicot species revealed 13,689 clusters containing macadamia genes and 1005 macadamia-specific clusters, and provides evidence for linage-specific expansion of gene families involved in pathogen recognition, plant defense and monoterpene synthesis. Cyanogenesis is an important defense strategy in the Proteaceae, and a detailed analysis of macadamia gene homologues potentially involved in cyanogenic glycoside biosynthesis revealed several highly expressed candidate genes. The gene space of macadamia provides a foundation for comparative genomics, gene discovery and the acceleration of molecular-assisted breeding. This study presents the first available genomic resources for the large basal eudicot family Proteaceae, access to most macadamia genes and opportunities to uncover the genetic basis of traits of importance for adaptation and crop

  2. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  3. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    Science.gov (United States)

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion

  4. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution.

    Directory of Open Access Journals (Sweden)

    Stefanie Traeger

    Full Text Available Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721 was used to complement the S. macrospora

  5. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  6. Genome-wide Differences in DNA Methylation Changes in Two Contrasting Rice Genotypes in Response to Drought Conditions

    Directory of Open Access Journals (Sweden)

    Wensheng Wang

    2016-11-01

    Full Text Available Differences in drought stress tolerance within diverse rice genotypes have been attributed to genetic diversity and epigenetic alterations. DNA methylation is an important epigenetic modification that influences diverse biological processes, but its effects on rice drought stress tolerance are poorly understood. In this study, methylated DNA immunoprecipitation sequencing and an Affymetrix GeneChip rice genome array were used to profile the DNA methylation patterns and transcriptomes of the drought-tolerant introgression line DK151 and its drought-sensitive recurrent parent IR64 under drought and control conditions. The introgression of donor genomic DNA induced genome-wide DNA methylation changes in DK151 plants. A total of 1190 differentially methylated regions (DMRs were detected between the two genotypes under normal growth conditions, and the DMR-associated genes in DK151 plants were mainly related to stress response, programmed cell death, and nutrient reservoir activity, which are implicated to constitutive drought stress tolerance. A comparison of the DNA methylation changes in the two genotypes under drought conditions indicated that DK151 plants have a more stable methylome, with only 92 drought-induced DMRs, than IR64 plants with 506 DMRs. Gene ontology analyses of the DMR-associated genes in drought-stressed plants revealed that changes to the DNA methylation status of genotype-specific genes are associated with the epigenetic regulation of drought stress responses. Transcriptome analysis further helped to identify a set of 12 and 23 DMR-associated genes that were differentially expressed in DK151 and IR64, respectively, under drought stress compared with respective controls. Correlation analysis indicated that DNA methylation has various effects on gene expression, implying that it affects gene expression directly or indirectly through diverse regulatory pathways. Our results indicate that drought-induced alterations to DNA

  7. Meta-analysis for genome-wide association studies using case-control design: application and practice

    Directory of Open Access Journals (Sweden)

    Sungryul Shim

    2016-12-01

    Full Text Available This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA. The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–Weinberg equilibrium (HWE in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate related factors of heterogeneities.

  8. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease.

    Science.gov (United States)

    Yang, Hyun-Jin; Ratnapriya, Rinki; Cogliati, Tiziana; Kim, Jung-Woong; Swaroop, Anand

    2015-05-01

    Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases. Published by Elsevier Ltd.

  9. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  10. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    NARCIS (Netherlands)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A; Fischer, Krista; Hofer, Edith; Schraut, Katharina E; Clark, David W; Nutile, Teresa; Barnes, Catriona L K; Timmers, Paul R H J; Shen, Xia; Gandin, Ilaria; McDaid, Aaron F; Hansen, Thomas Folkmann; Gordon, Scott D; Giulianini, Franco; Boutin, Thibaud S; Abdellaoui, Abdel; Zhao, Wei; Medina-Gomez, Carolina; Bartz, Traci M; Trompet, Stella; Lange, Leslie A; Raffield, Laura; van der Spek, Ashley; Galesloot, Tessel E; Proitsi, Petroula; Yanek, Lisa R; Bielak, Lawrence F; Payton, Antony; Murgia, Federico; Concas, Maria Pina; Biino, Ginevra; Tajuddin, Salman M; Seppälä, Ilkka; Amin, Najaf; Boerwinkle, Eric; Børglum, Anders D; Campbell, Archie; Demerath, Ellen W; Demuth, Ilja; Faul, Jessica D; Ford, Ian; Gialluisi, Alessandro; Gögele, Martin; Graff, MariaElisa; Hingorani, Aroon; Hottenga, Jouke-Jan; Hougaard, David M; Hurme, Mikko A; Ikram, M Arfan; Jylhä, Marja; Kuh, Diana; Ligthart, Lannie; Lill, Christina M; Lindenberger, Ulman; Lumley, Thomas; Mägi, Reedik; Marques-Vidal, Pedro; Medland, Sarah E; Milani, Lili; Nagy, Reka; Ollier, William E R; Peyser, Patricia A; Pramstaller, Peter P; Ridker, Paul M; Rivadeneira, Fernando; Ruggiero, Daniela; Saba, Yasaman; Schmidt, Reinhold; Schmidt, Helena; Slagboom, P Eline; Smith, Blair H; Smith, Jennifer A; Sotoodehnia, Nona; Steinhagen-Thiessen, Elisabeth; van Rooij, Frank J A; Verbeek, André L; Vermeulen, Sita H; Vollenweider, Peter; Wang, Yunpeng; Werge, Thomas; Whitfield, John B; Zonderman, Alan B; Lehtimäki, Terho; Evans, Michele K; Pirastu, Mario; Fuchsberger, Christian; Bertram, Lars; Pendleton, Neil; Kardia, Sharon L R; Ciullo, Marina; Becker, Diane M; Wong, Andrew; Psaty, Bruce M; van Duijn, Cornelia M; Wilson, James G; Jukema, J Wouter; Kiemeney, Lambertus; Uitterlinden, André G; Franceschini, Nora; North, Kari E; Weir, David R; Metspalu, Andres; Boomsma, Dorret I; Hayward, Caroline; Chasman, Daniel; Martin, Nicholas G; Sattar, Naveed; Campbell, Harry; Esko, Tōnu; Kutalik, Zoltán; Wilson, James F

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE,

  11. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    NARCIS (Netherlands)

    P.K. Joshi (Peter); N. Pirastu (Nicola); Kentistou, K.A. (Katherine A.); K. Fischer (Krista); E. Hofer (Edith); Schraut, K.E. (Katharina E.); Clark, D.W. (David W.); Nutile, T. (Teresa); Barnes, C.L.K. (Catriona L. K.); Timmers, P.R.H.J. (Paul R. H. J.); Shen, X. (Xia); I. Gandin (Ilaria); McDaid, A.F. (Aaron F.); Hansen, T.F. (Thomas Folkmann); S.D. Gordon (Scott D.); F. Giulianini (Franco); T. Boutin (Thibaud); A. Abdellaoui (Abdel); W. Zhao (Wei); M.C. Medina-Gomez (Carolina); T.M. Bartz (Traci M.); S. Trompet (Stella); L.A. Lange (Leslie); Raffield, L. (Laura); A. van der Spek (Ashley); T.E. Galesloot (Tessel); Proitsi, P. (Petroula); L.R. Yanek (Lisa); L.F. Bielak (Lawrence F.); A. Payton (Antony); D. Murgia (Daniela); M.P. Concas (Maria Pina); G. Biino (Ginevra); Tajuddin, S.M. (Salman M.); I. Seppälä (Ilkka); Amin, N. (Najaf); Boerwinkle, E. (Eric); Børglum, A.D. (Anders D.); A. Campbell (Archie); E.W. Demerath (Ellen); I. Demuth (Ilja); J.D. Faul (Jessica D.); I. Ford (Ian); Gialluisi, A. (Alessandro); M. Gögele (Martin); M.J. Graff (Maud J.L.); A. Hingorani (Aroon); J.J. Hottenga (Jouke Jan); D.M. Hougaard (David); Hurme, M.A. (Mikko A.); M.K. Ikram (Kamran); Jylhä, M. (Marja); Kuh, D. (Diana); L. Ligthart (Lannie); C.M. Lill (Christina); U. Lindenberger (Ulman); T. Lumley (Thomas); R. Mägi (Reedik); P. Marques-Vidal (Pedro); S.E. Medland (Sarah Elizabeth); L. Milani (Lili); Nagy, R. (Reka); W.E.R. Ollier (William); P.A. Peyser (Patricia A.); P.P. Pramstaller (Peter Paul); P.M. Ridker (Paul); Rivadeneira, F. (Fernando); D. Ruggiero; Y. Saba (Yasaman); R. Schmidt (Reinhold); H. Schmidt (Helena); P.E. Slagboom (Eline); B.H. Smith; J.A. Smith (Jennifer A); N. Sotoodehnia (Nona); E. Steinhagen-Thiessen (Elisabeth); F.J.A. van Rooij (Frank); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); P. Vollenweider (Peter); Wang, Y. (Yunpeng); T.M. Werge (Thomas); J.B. Whitfield (John B.); A.B. Zonderman; T. Lehtimäki (Terho); M. Evans (Michele); M. Pirastu (Mario); C. Fuchsberger (Christian); L. Bertram (Lars); N. Pendleton (Neil); Kardia, S.L.R. (Sharon L. R.); Ciullo, M. (Marina); D.M. Becker (Diane); Wong, A. (Andrew); B.M. Psaty (Bruce M.); C.M. van Duijn (Cornelia); J.F. Wilson (James); J.W. Jukema (Jan Wouter); L.A.L.M. Kiemeney (Bart); A.G. Uitterlinden (André); N. Franceschini (Nora); K.E. North (Kari); Weir, D.R. (David R.); Metspalu, A. (Andres); D.I. Boomsma (Dorret); C. Hayward (Caroline); D.I. Chasman (Daniel); Martin, N.G. (Nicholas G.); N. Sattar (Naveed); H. Campbell (Harry); T. Esko (Tõnu); Z. Kutalik (Zoltán); J.F. Wilson (James)

    2017-01-01

    textabstractGenomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions

  12. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    DEFF Research Database (Denmark)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, ...

  13. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E.; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops. PMID:29672525

  14. Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm.

    Science.gov (United States)

    Rosli, Rozana; Amiruddin, Nadzirah; Ab Halim, Mohd Amin; Chan, Pek-Lan; Chan, Kuang-Lim; Azizi, Norazah; Morris, Priscilla E; Leslie Low, Eng-Ti; Ong-Abdullah, Meilina; Sambanthamurthi, Ravigadevi; Singh, Rajinder; Murphy, Denis J

    2018-01-01

    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.

  15. TRAM (Transcriptome Mapper: database-driven creation and analysis of transcriptome maps from multiple sources

    Directory of Open Access Journals (Sweden)

    Danieli Gian

    2011-02-01

    Full Text Available Abstract Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays, implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile, useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene

  16. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  17. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.

    Directory of Open Access Journals (Sweden)

    Clive J Hoggart

    2008-07-01

    Full Text Available Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.

  18. Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity.

    Science.gov (United States)

    Traverse, Charles C; Ochman, Howard

    2017-08-29

    Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola , which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions-errors that potentially have more dire effects on protein function-is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions

  19. Genome-Wide Meta-Analysis of Sciatica in Finnish Population.

    Science.gov (United States)

    Lemmelä, Susanna; Solovieva, Svetlana; Shiri, Rahman; Benner, Christian; Heliövaara, Markku; Kettunen, Johannes; Anttila, Verneri; Ripatti, Samuli; Perola, Markus; Seppälä, Ilkka; Juonala, Markus; Kähönen, Mika; Salomaa, Veikko; Viikari, Jorma; Raitakari, Olli T; Lehtimäki, Terho; Palotie, Aarno; Viikari-Juntura, Eira; Husgafvel-Pursiainen, Kirsti

    2016-01-01

    Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS) and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (psciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04). Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6-7%) than in other European populations (1-2%). Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.

  20. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  1. Genome-wide association study of pathological gambling.

    Science.gov (United States)

    Lang, M; Leménager, T; Streit, F; Fauth-Bühler, M; Frank, J; Juraeva, D; Witt, S H; Degenhardt, F; Hofmann, A; Heilmann-Heimbach, S; Kiefer, F; Brors, B; Grabe, H-J; John, U; Bischof, A; Bischof, G; Völker, U; Homuth, G; Beutel, M; Lind, P A; Medland, S E; Slutske, W S; Martin, N G; Völzke, H; Nöthen, M M; Meyer, C; Rumpf, H-J; Wurst, F M; Rietschel, M; Mann, K F

    2016-08-01

    Pathological gambling is a behavioural addiction with negative economic, social, and psychological consequences. Identification of contributing genes and pathways may improve understanding of aetiology and facilitate therapy and prevention. Here, we report the first genome-wide association study of pathological gambling. Our aims were to identify pathways involved in pathological gambling, and examine whether there is a genetic overlap between pathological gambling and alcohol dependence. Four hundred and forty-five individuals with a diagnosis of pathological gambling according to the Diagnostic and Statistical Manual of Mental Disorders were recruited in Germany, and 986 controls were drawn from a German general population sample. A genome-wide association study of pathological gambling comprising single marker, gene-based, and pathway analyses, was performed. Polygenic risk scores were generated using data from a German genome-wide association study of alcohol dependence. No genome-wide significant association with pathological gambling was found for single markers or genes. Pathways for Huntington's disease (P-value=6.63×10(-3)); 5'-adenosine monophosphate-activated protein kinase signalling (P-value=9.57×10(-3)); and apoptosis (P-value=1.75×10(-2)) were significant. Polygenic risk score analysis of the alcohol dependence dataset yielded a one-sided nominal significant P-value in subjects with pathological gambling, irrespective of comorbid alcohol dependence status. The present results accord with previous quantitative formal genetic studies which showed genetic overlap between non-substance- and substance-related addictions. Furthermore, pathway analysis suggests shared pathology between Huntington's disease and pathological gambling. This finding is consistent with previous imaging studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  3. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    Science.gov (United States)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  4. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    Science.gov (United States)

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  5. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi.

    Directory of Open Access Journals (Sweden)

    Timothy T Perkins

    2009-07-01

    Full Text Available High-density, strand-specific cDNA sequencing (ssRNA-seq was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi. By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3'- or 5'-untranslated regions (UTR. An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA-seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA-seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.

  6. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  7. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  8. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    Science.gov (United States)

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  9. Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and stress

    Directory of Open Access Journals (Sweden)

    Ridhi eGoel

    2016-03-01

    Full Text Available The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/ development including fruit ripening process respectively.

  10. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    KAUST Repository

    Casas, Laura

    2016-10-17

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  11. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I.E. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  12. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    NARCIS (Netherlands)

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We

  13. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  14. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    Science.gov (United States)

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  15. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar.

    Science.gov (United States)

    Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon

    2013-08-27

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.

  16. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available Specific gene expression in oocytes and its surrounding cumulus (CC and granulosa (GC cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10-4; of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2, higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK, higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology.

  17. Protein Interaction-Based Genome-Wide Analysis of Incident Coronary Heart Disease

    DEFF Research Database (Denmark)

    Jensen, Majken Karoline; Pers, Tune Hannes; Dworzynski, Piotr

    2011-01-01

    in genes associated with risk of coronary heart disease (CHD). Methods and Results-Genome-wide association analyses of approximately approximate to 700 000 single-nucleotide polymorphisms in 899 incident CHD cases and 1823 age-and sex-matched controls within the Nurses' Health and the Health Professionals...... complex. Conclusions-The integration of a GWA study with PPI data successfully identifies a set of candidate susceptibility genes for incident CHD that would have been missed in single-marker GWA analysis. (Circ Cardiovasc Genet. 2011; 4:549-556.)...

  18. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii: The Identification of Genes and Markers Associated with Reproduction

    Directory of Open Access Journals (Sweden)

    Hyungtaek Jung

    2016-05-01

    Full Text Available The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.

  19. Characterization of the Pathogenicity of Streptococcus intermedius TYG1620 Isolated from a Human Brain Abscess Based on the Complete Genome Sequence with Transcriptome Analysis and Transposon Mutagenesis in a Murine Subcutaneous Abscess Model.

    Science.gov (United States)

    Hasegawa, Noriko; Sekizuka, Tsuyoshi; Sugi, Yutaka; Kawakami, Nobuhiro; Ogasawara, Yumiko; Kato, Kengo; Yamashita, Akifumi; Takeuchi, Fumihiko; Kuroda, Makoto

    2017-02-01

    Streptococcus intermedius is known to cause periodontitis and pyogenic infections in the brain and liver. Here we report the complete genome sequence of strain TYG1620 (genome size, 2,006,877 bp; GC content, 37.6%; 2,020 predicted open reading frames [ORFs]) isolated from a brain abscess in an infant. Comparative analysis of S. intermedius genome sequences suggested that TYG1620 carries a notable type VII secretion system (T7SS), two long repeat regions, and 19 ORFs for cell wall-anchored proteins (CWAPs). To elucidate the genes responsible for the pathogenicity of TYG1620, transcriptome analysis was performed in a murine subcutaneous abscess model. The results suggest that the levels of expression of small hypothetical proteins similar to phenol-soluble modulin β1 (PSMβ1), a staphylococcal virulence factor, significantly increased in the abscess model. In addition, an experiment in a murine subcutaneous abscess model with random transposon (Tn) mutant attenuation suggested that Tn mutants with mutations in 212 ORFs in the Tn mutant library were attenuated in the murine abscess model (629 ORFs were disrupted in total); the 212 ORFs are putatively essential for abscess formation. Transcriptome analysis identified 37 ORFs, including paralogs of the T7SS and a putative glucan-binding CWAP in long repeat regions, to be upregulated and attenuated in vivo This study provides a comprehensive characterization of S. intermedius pathogenicity based on the complete genome sequence and a murine subcutaneous abscess model with transcriptome and Tn mutagenesis, leading to the identification of pivotal targets for vaccines or antimicrobial agents for the control of S. intermedius infections. Copyright © 2017 American Society for Microbiology.

  20. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  1. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Gómez Lozano, María

    and RNA sequencing (RNAseq) technologies. The latter approach, in particular, has revolutionized sRNA discovery by enabling interrogation of the transcriptome at unprecedented depths. The size and complexity of the P. aeruginosa genome suggests that it encodes many hitherto undetected sRNAs. In this study...

  3. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  4. Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome

    OpenAIRE

    Shen, Hao-ran; Qiu, Li-hua; Zhang, Zhi-qing; Qin, Yuan-yuan; Cao, Cong; Di, Wen

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder of uncertain etiology. Recent studies suggested that insulin resistance (IR) plays an important role in the development of PCOS. In the current study, we aimed to investigate the molecular mechanism of IR in PCOS. We employed genome-wide methylated DNA immunoprecipitation (MeDIP) analysis to characterize genes that are differentially methylated in PCOS patients vs. healthy controls. Besides, we also identified the different...

  5. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available The availability of complete genome sequence of soybean has allowed research community to design the 66 K Affymetrix Soybean Array GeneChip for genome-wide expression profiling of soybean. In this study, we carried out microarray analysis of leaf tissues of soybean plants, which were subjected to drought stress from late vegetative V6 and from full bloom reproductive R2 stages. Our data analyses showed that out of 46,093 soybean genes, which were predicted with high confidence among approximately 66,000 putative genes, 41,059 genes could be assigned with a known function. Using the criteria of a ratio change > = 2 and a q-value<0.05, we identified 1458 and 1818 upregulated and 1582 and 1688 downregulated genes in drought-stressed V6 and R2 leaves, respectively. These datasets were classified into 19 most abundant biological categories with similar proportions. There were only 612 and 463 genes that were overlapped among the upregulated and downregulated genes, respectively, in both stages, suggesting that both conserved and unconserved pathways might be involved in regulation of drought response in different stages of plant development. A comparative expression analysis using our datasets and that of drought stressed Arabidopsis leaves revealed the existence of both conserved and species-specific mechanisms that regulate drought responses. Many upregulated genes encode either regulatory proteins, such as transcription factors, including those with high homology to Arabidopsis DREB, NAC, AREB and ZAT/STZ transcription factors, kinases and two-component system members, or functional proteins, e.g. late embryogenesis-abundant proteins, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins. A detailed analysis of the GmNAC family and the hormone-related gene category showed that expression of many GmNAC and hormone-related genes was altered by drought in V6 and/or R2 leaves. Additionally, the downregulation of

  6. Genome-Wide Association Study (GWAS) and Genome-Wide Environment Interaction Study (GWEIS) of Depressive Symptoms in African American and Hispanic/Latina Women

    Science.gov (United States)

    Dunn, Erin C.; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M.; Gogarten, Stephanie M.; Sofer, Tamar; Faul, Jessica D.; Kardia, Sharon L.R.; Smith, Jennifer A.; Weir, David R.; Zhao, Wei; Soare, Thomas W.; Mirza, Saira S.; Hek, Karin; Tiemeier, Henning W.; Goveas, Joseph S.; Sarto, Gloria E.; Snively, Beverly M.; Cornelis, Marilyn; Koenen, Karestan C.; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J.; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W.

    2016-01-01

    Background Genome-wide association studies (GWAS) have been unable to identify variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (G×E) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide environment interaction study (GWEIS) of depressive symptoms. Methods Using data from the SHARe cohort of the Women’s Health Initiative, comprising African Americans (n=7179) and Hispanics/Latinas (n=3138), we examined genetic main effects and G×E with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. Results No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20kb from GPR139, p=5.75×10−8) and rs75407252 (intronic to CACNA2D3, p=6.99×10−7). In Hispanics/Latinas, the top signals were rs2532087 (located 27kb from CD38, p=2.44×10−7) and rs4542757 (intronic to DCC, p=7.31×10−7). In the GWEIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; p=4.10×10−10; located 14kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG=0.95), suggesting that common variation underlying depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Conclusions Our results underscore the need for larger samples, more GWEIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. PMID:27038408

  7. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  8. Biological effects of the olive polyphenol, hydroxytyrosol: An extra view from genome-wide transcriptome analysis.

    Science.gov (United States)

    Nan, Jia Nancy; Ververis, Katherine; Bollu, Sameera; Rodd, Annabelle L; Swarup, Oshi; Karagiannis, Tom C

    2014-01-01

    Epidemiological and clinical studies have established the health benefits of the Mediterranean diet, an important component of which are olives and olive oil derived from the olive tree (Olea Europea). It is now well-established that not only the major fatty acid constituents, but also the minor phenolic components, in olives and olive oil have important health benefits. Emerging research over the past decade has highlighted the beneficial effects of a range of phenolic compounds from olives and olive oil, particularly for cardiovascular diseases, metabolic syndrome and inflammatory conditions. Mechanisms of action include potent antioxidant and anti-inflammatory effects. Further, accumulating evidence indicates the potential of the polyphenols and potent antioxidants, hydroxytyrosol and oleuropein in oncology. Numerous studies, both in vitro and in vivo, have demonstrated the anticancer effects of hydroxytyrosol which include chemopreventive and cell-specific cytotoxic and apoptotic effects. Indeed, the precise molecular mechanisms accounting for the antioxidant, anti-inflammatory and anticancer properties are now becoming clear and this is, at least in part, due to high through-put gene transcription profiling. Initially, we constructed phylogenetic trees to visualize the evolutionary relationship of members of the Oleaceae family and secondly, between plants producing hydroxytyrosol to make inferences of potential similarities or differences in their medicinal properties and to identify novel plant candidates for the treatment and prevention of disease. Furthermore, given the recent interest in hydroxytyrosol as a potential anticancer agent and chemopreventative we utilized transcriptome analysis in the erythroleukemic cell line K562, to investigate the effects of hydroxytyrosol on three gene pathways: the complement system, The Warburg effect and chromatin remodeling to ascertain relevant gene candidates in the prevention of cancer.

  9. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  10. A genome-wide association study of aging.

    Science.gov (United States)

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in sea lamprey and Japanese lamprey.

    Science.gov (United States)

    Ren, Jianfeng; Chung-Davidson, Yu-Wen; Yeh, Chu-Yin; Scott, Camille; Brown, Titus; Li, Weiming

    2015-06-06

    Lampreys are extant representatives of the jawless vertebrate lineage that diverged from jawed vertebrates around 500 million years ago. Lamprey genomes contain information crucial for understanding the evolution of gene families in vertebrates. The ATP-binding cassette (ABC) gene family is found from prokaryotes to eukaryotes. The recent availability of two lamprey draft genomes from sea lamprey Petromyzon marinus and Japanese lamprey Lethenteron japonicum presents an opportunity to infer early evolutionary events of ABC genes in vertebrates. We conducted a genome-wide survey of the ABC gene family in two lamprey draft genomes. A total of 37 ABC transporters were identified and classified into seven subfamilies; namely seven ABCA genes, 10 ABCB genes, 10 ABCC genes, three ABCD genes, one ABCE gene, three ABCF genes, and three ABCG genes. The ABCA subfamily has expanded from three genes in sea squirts, seven and nine in lampreys and zebrafish, to 13 and 16 in human and mouse. Conversely, the multiple copies of ABCB1-, ABCG1-, and ABCG2-like genes found in sea squirts have contracted in the other species examined. ABCB2 and ABCB3 seem to be new additions in gnathostomes (not in sea squirts or lampreys), which coincides with the emergence of the gnathostome-specific adaptive immune system. All the genes in the ABCD, ABCE and ABCF subfamilies were conserved and had undergone limited duplication and loss events. In the sea lamprey transcriptomes, the ABCE and ABCF gene subfamilies were ubiquitously and highly expressed in all tissues while the members in other gene subfamilies were differentially expressed. Thirteen more lamprey ABC transporter genes were identified in this study compared with a previous study. By concatenating the same gene sequences from the two lampreys, more full length sequences were obtained, which significantly improved both the assignment of gene names and the phylogenetic trees compared with a previous analysis using partial sequences. The ABC

  12. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  13. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Science.gov (United States)

    Fonseca, Fernando Campos de Assis; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Souza Júnior, José Dijair Antonino; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima

    2015-01-01

    Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  14. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Directory of Open Access Journals (Sweden)

    Fernando Campos de Assis Fonseca

    Full Text Available Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus, a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB transcriptome, a number of aminopeptidase N (APN cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  15. Genome-wide identification and expression analysis of the CIPK gene family in cassava

    Directory of Open Access Journals (Sweden)

    Wei eHu

    2015-10-01

    Full Text Available Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava.

  16. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  17. Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Asker Noomi

    2009-07-01

    Full Text Available Abstract Background The teleost Zoarces viviparus (eelpout lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. Results In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.

  18. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The past, present, and future of Leishmania genomics and transcriptomics

    Science.gov (United States)

    Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J.; Otranto, Domenico

    2015-01-01

    It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite–host–vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the ‘One Health’ concept may open new avenues for the control of these devastating diseases. PMID:25638444

  20. Genome-Wide Meta-Analysis of Sciatica in Finnish Population.

    Directory of Open Access Journals (Sweden)

    Susanna Lemmelä

    Full Text Available Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (p<1x10-6 were replicated in 776 Finnish sciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981 at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08 and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively. The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04. Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6-7% than in other European populations (1-2%. Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109 were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB, which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.

  1. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

    Science.gov (United States)

    Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F

    2017-10-01

    Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Transcriptome Analysis of Two Different Developmental Stages of Paeonia lactiflora Seeds

    Directory of Open Access Journals (Sweden)

    Yonglei Ma

    2017-01-01

    Full Text Available Paeonia lactiflora is a herbaceous flower in the family Paeoniaceae with both hypocotyl and epicotyl dormant seeds. We used high-throughput transcriptome sequencing on two different developmental stages of P. lactiflora seeds to identify seed dormancy and germination-related genes. We performed de novo assembly and annotated a total of 123,577 unigenes, which encoded 24,688 putative proteins with 47 GO categories. A total of 10,714 unigenes were annotated in the KEGG database, and 258 pathways were involved in the annotations. A total of 1795 genes were differentially expressed in the functional enrichment analysis. The key genes for seed germination and dormancy, such as GAI1 and ARF, were confirmed by quantitative reverse transcription-polymerase chain reaction analysis. This is the first report of sequencing the P. lactiflora seed transcriptome. Our results provide fundamental frame work and technical support for further selective breeding and cultivation of Paeonia. Our transcriptomic data also serves as the basis for future genetics and genomics research on Paeonia and its closely related species.

  3. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L. under waterlogging stress.

    Directory of Open Access Journals (Sweden)

    Nepolean Thirunavukkarasu

    Full Text Available Waterlogging causes extensive damage to maize crops in tropical and subtropical regions. The identification of tolerance genes and their interactions at the molecular level will be helpful to engineer tolerant genotypes. A whole-genome transcriptome assay revealed the specific role of genes in response to waterlogging stress in susceptible and tolerant genotypes. Genes involved in the synthesis of ethylene and auxin, cell wall metabolism, activation of G-proteins and formation of aerenchyma and adventitious roots, were upregulated in the tolerant genotype. Many transcription factors, particularly ERFs, MYB, HSPs, MAPK, and LOB-domain protein were involved in regulation of these traits. Genes responsible for scavenging of ROS generated under stress were expressed along with those involved in carbohydrate metabolism. The physical locations of 21 genes expressed in the tolerant genotype were found to correspond with the marker intervals of known QTLs responsible for development of adaptive traits. Among the candidate genes, most showed synteny with genes of sorghum and foxtail millet. Co-expression analysis of 528 microarray samples including 16 samples from the present study generated seven functional modules each in the two genotypes, with differing characteristics. In the tolerant genotype, stress genes were co-expressed along with peroxidase and fermentation pathway genes.

  4. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

    Science.gov (United States)

    Sun, Liang; Lu, Zhilong; Li, Jianxiu; Sun, Feifei; Huang, Ribo

    2018-02-01

    Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log 2 fold-change ≥ 2) and 39 significantly down-regulated genes (log 2 fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.

  5. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum.

    Science.gov (United States)

    Huang, Shengxiong; Gao, Yongfeng; Liu, Jikai; Peng, Xiaoli; Niu, Xiangli; Fei, Zhangjun; Cao, Shuqing; Liu, Yongsheng

    2012-06-01

    The WRKY transcription factors have been implicated in multiple biological processes in plants, especially in regulating defense against biotic and abiotic stresses. However, little information is available about the WRKYs in tomato (Solanum lycopersicum). The recent release of the whole-genome sequence of tomato allowed us to perform a genome-wide investigation for tomato WRKY proteins, and to compare these positively identified proteins with their orthologs in model plants, such as Arabidopsis and rice. In the present study, based on the recently released tomato whole-genome sequences, we identified 81 SlWRKY genes that were classified into three main groups, with the second group further divided into five subgroups. Depending on WRKY domains' sequences derived from tomato, Arabidopsis and rice, construction of a phylogenetic tree demonstrated distinct clustering and unique gene expansion of WRKY genes among the three species. Genome mapping analysis revealed that tomato WRKY genes were enriched on several chromosomes, especially on chromosome 5, and 16 % of the family members were tandemly duplicated genes. The tomato WRKYs from each group were shown to share similar motif compositions. Furthermore, tomato WRKY genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various biotic and abiotic stresses. The expression of 18 selected tomato WRKY genes in response to drought and salt stresses and Pseudomonas syringae invasion, respectively, was validated by quantitative RT-PCR. Our results will provide a platform for functional identification and molecular breeding study of WRKY genes in tomato and probably other Solanaceae plants.

  6. Deep Insight into the Ganoderma lucidum by Comprehensive Analysis of Its Transcriptome

    Science.gov (United States)

    Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    Background Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. Methodology/Principal Findings We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Conclusions Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome

  7. DOGMA: domain-based transcriptome and proteome quality assessment.

    Science.gov (United States)

    Dohmen, Elias; Kremer, Lukas P M; Bornberg-Bauer, Erich; Kemena, Carsten

    2016-09-01

    Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  9. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults.

    Science.gov (United States)

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S; De Jager, Philip L; Yu, Lei; Singleton, Andrew B; Harris, Tamara; Mosley, Thomas H; Pinto, Jayant M; Bennett, David A; Chen, Honglei

    2015-11-01

    Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10; and rs2732614 in KIAA1267-LRRC37A, P = 6.65 × 10) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases.

  10. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

    DEFF Research Database (Denmark)

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis...... (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3...

  11. Transposable elements in the Anopheles funestus transcriptome.

    Science.gov (United States)

    Fernández-Medina, Rita D; Carareto, Claudia M A; Struchiner, Cláudio J; Ribeiro, José M C

    2017-06-01

    Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.

  12. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits.

    Directory of Open Access Journals (Sweden)

    Shuang Chen

    Full Text Available Locusts exhibit remarkable density-dependent phenotype (phase changes from the solitary to the gregarious, making them one of the most destructive agricultural pests. This phenotype polyphenism arises from a single genome and diverse transcriptomes in different conditions. Here we report a de novo transcriptome for the migratory locust and a comprehensive, representative core gene set. We carried out assembly of 21.5 Gb Illumina reads, generated 72,977 transcripts with N50 2,275 bp and identified 11,490 locust protein-coding genes. Comparative genomics analysis with eight other sequenced insects was carried out to identify the genomic divergence between hemimetabolous and holometabolous insects for the first time and 18 genes relevant to development was found. We further utilized the quantitative feature of RNA-seq to measure and compare gene expression among libraries. We first discovered how divergence in gene expression between two phases progresses as locusts develop and identified 242 transcripts as candidates for phase marker genes. Together with the detailed analysis of deep sequencing data of the 4(th instar, we discovered a phase-dependent divergence of biological investment in the molecular level. Solitary locusts have higher activity in biosynthetic pathways while gregarious locusts show higher activity in environmental interaction, in which genes and pathways associated with regulation of neurotransmitter activities, such as neurotransmitter receptors, synthetase, transporters, and GPCR signaling pathways, are strongly involved. Our study, as the largest de novo transcriptome to date, with optimization of sequencing and assembly strategy, can further facilitate the application of de novo transcriptome. The locust transcriptome enriches genetic resources for hemimetabolous insects and our understanding of the origin of insect metamorphosis. Most importantly, we identified genes and pathways that might be involved in locust development

  13. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  14. Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods.

    Science.gov (United States)

    Liscovitch-Brauer, Noa; Alon, Shahar; Porath, Hagit T; Elstein, Boaz; Unger, Ron; Ziv, Tamar; Admon, Arie; Levanon, Erez Y; Rosenthal, Joshua J C; Eisenberg, Eli

    2017-04-06

    RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    Science.gov (United States)

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Standl, Marie; Chen, Chih-Mei

    2011-01-01

    Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16...

  17. Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations

    NARCIS (Netherlands)

    C.M. O'Seaghdha (Conall); H. Wu (Hongsheng); Q. Yang (Qiong); K. Kapur (Karen); I. Guessous (Idris); P. Zuber (Patrick); A. Köttgen (Anna); C. Stoudmann (Candice); A. Teumer (Alexander); Z. Kutalik (Zoltán); M. Mangino (Massimo); A. Dehghan (Abbas); W. Zhang (Weihua); G. Eiriksdottir (Gudny); G. Li (Guo); T. Tanaka (Toshiko); L. Portas (Laura); L.M. Lopez (Lorna); C. Hayward (Caroline); K. Lohman (Kurt); K. Matsuda (Koichi); S. Padmanabhan (Sandosh); D. Firsov (Dmitri); R. Sorice; S. Ulivi (Shelia); A.C. Brockhaus (A. Catharina); M.E. Kleber (Marcus); A. Mahajan (Anubha); F.D.J. Ernst (Florian); V. Gudnason (Vilmundur); L.J. Launer (Lenore); A. Mace (Aurelien); E.A. Boerwinkle (Eric); D.E. Arking (Dan); C. Tanikawa (Chizu); Y. Nakamura (Yusuke); M.J. Brown (Morris); J.-M. Gaspoz (Jean-Michel); J.-M. Theler (Jean-Marc); D.S. Siscovick (David); B.M. Psaty (Bruce); S.M. Bergmann (Sven); P. Vollenweider (Peter); V. Vitart (Veronique); A.F. Wright (Alan); T. Zemunik (Tatijana); M. Boban (Mladen); I. Kolcic (Ivana); P. Navarro (Pau); E.M. Brown (Edward); K. Estrada Gil (Karol); J. Ding (Jingzhong); T.B. Harris (Tamara); S. Bandinelli (Stefania); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Girotto; D. Ruggiero; P. d' Adamo (Pio); A. Robino (Antonietta); T. Meitinger (Thomas); C. Meisinger (Christa); G. Davies (Gail); J.M. Starr (John); J.C. Chambers (John); B.O. Boehm (Bernhard); B. Winkelmann; J. Huang (Jian); D. Murgia (Daniela); S.H. Wild (Sarah); H. Campbell (Harry); A.D. Morris (Andrew); O.H. Franco (Oscar); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); U. Vol̈ker (Uwe); M. Hannemann (Mario); R. Biffar (Reiner); W. Hoffmann (Wolfgang); S.-Y. Shin; P. Lescuyer (Pierre); H. Henry (Hughes); C. Schurmann (Claudia); P. Munroe (Patricia); P. Gasparini (Paolo); N. Pirastu (Nicola); M. Ciullo; C. Gieger (Christian); W. März (Winfried); L. Lind (Lars); T.D. Spector (Timothy); G.D. Smith; I. Rudan (Igor); J.F. Wilson (James); O. Polasek (Ozren); I.J. Deary (Ian); M. Pirastu (Mario); L. Ferrucci (Luigi); Y. Liu (YongMei); B. Kestenbaum (Bryan); J.S. Kooner (Jaspal); J.C.M. Witteman (Jacqueline); M. Nauck (Matthias); W.H.L. Kao (Wen); H. Wallaschofski (Henri); O. Bonny (Olivier); C. Fox (Craig); M. Bochud (Murielle)

    2013-01-01

    textabstractCalcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17

  18. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    Science.gov (United States)

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  20. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress.

    Science.gov (United States)

    Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang

    2017-12-01

    Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.

  1. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci

    NARCIS (Netherlands)

    Franke, Andre; McGovern, Dermot P. B.; Barrett, Jeffrey C.; Wang, Kai; Radford-Smith, Graham L.; Ahmad, Tariq; Lees, Charlie W.; Balschun, Tobias; Lee, James; Roberts, Rebecca; Anderson, Carl A.; Bis, Joshua C.; Bumpstead, Suzanne; Ellinghaus, David; Festen, Eleonora M.; Georges, Michel; Green, Todd; Haritunians, Talin; Jostins, Luke; Latiano, Anna; Mathew, Christopher G.; Montgomery, Grant W.; Prescott, Natalie J.; Raychaudhuri, Soumya; Rotter, Jerome I.; Schumm, Philip; Sharma, Yashoda; Simms, Lisa A.; Taylor, Kent D.; Whiteman, David; Wijmenga, Cisca; Baldassano, Robert N.; Barclay, Murray; Bayless, Theodore M.; Brand, Stephan; Buening, Carsten; Cohen, Albert; Colombel, Jean-Frederick; Cottone, Mario; Stronati, Laura; Denson, Ted; De Vos, Martine; D'Inca, Renata; Dubinsky, Marla; Edwards, Cathryn; Florin, Tim; Franchimont, Denis; Gearry, Richard; Glas, Juergen; Van Gossum, Andre; Guthery, Stephen L.; Halfvarson, Jonas; Verspaget, Hein W.; Hugot, Jean-Pierre; Karban, Amir; Laukens, Debby; Lawrance, Ian; Lemann, Marc; Levine, Arie; Libioulle, Cecile; Louis, Edouard; Mowat, Craig; Newman, William; Panes, Julian; Phillips, Anne; Proctor, Deborah D.; Regueiro, Miguel; Russell, Richard; Rutgeerts, Paul; Sanderson, Jeremy; Sans, Miquel; Seibold, Frank; Steinhart, A. Hillary; Stokkers, Pieter C. F.; Torkvist, Leif; Kullak-Ublick, Gerd; Wilson, David; Walters, Thomas; Targan, Stephan R.; Brant, Steven R.; Rioux, John D.; D'Amato, Mauro; Weersma, Rinse K.; Kugathasan, Subra; Griffiths, Anne M.; Mansfield, John C.; Vermeire, Severine; Duerr, Richard H.; Silverberg, Mark S.; Satsangi, Jack; Schreiber, Stefan; Cho, Judy H.; Annese, Vito; Hakonarson, Hakon; Daly, Mark J.; Parkes, Miles

    2010-01-01

    We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new

  2. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  3. Analyzing AbrB-Knockout Effects through Genome and Transcriptome Sequencing of Bacillus licheniformis DW2

    Science.gov (United States)

    Shu, Cheng-Cheng; Wang, Dong; Guo, Jing; Song, Jia-Ming; Chen, Shou-Wen; Chen, Ling-Ling; Gao, Jun-Xiang

    2018-01-01

    As an industrial bacterium, Bacillus licheniformis DW2 produces bacitracin which is an important antibiotic for many pathogenic microorganisms. Our previous study showed AbrB-knockout could significantly increase the production of bacitracin. Accordingly, it was meaningful to understand its genome features, expression differences between wild and AbrB-knockout (ΔAbrB) strains, and the regulation of bacitracin biosynthesis. Here, we sequenced, de novo assembled and annotated its genome, and also sequenced the transcriptomes in three growth phases. The genome of DW2 contained a DNA molecule of 4,468,952 bp with 45.93% GC content and 4,717 protein coding genes. The transcriptome reads were mapped to the assembled genome, and obtained 4,102∼4,536 expressed genes from different samples. We investigated transcription changes in B. licheniformis DW2 and showed that ΔAbrB caused hundreds of genes up-regulation and down-regulation in different growth phases. We identified a complete bacitracin synthetase gene cluster, including the location and length of bacABC, bcrABC, and bacT, as well as their arrangement. The gene cluster bcrABC were significantly up-regulated in ΔAbrB strain, which supported the hypothesis in previous study of bcrABC transporting bacitracin out of the cell to avoid self-intoxication, and was consistent with the previous experimental result that ΔAbrB could yield more bacitracin. This study provided a high quality reference genome for B. licheniformis DW2, and the transcriptome data depicted global alterations across two strains and three phases offered an understanding of AbrB regulation and bacitracin biosynthesis through gene expression. PMID:29599755

  4. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  5. A pathology atlas of the human cancer transcriptome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Zhang, Xi-Cheng; Lee, Sunjae

    2017-01-01

    Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes o...

  6. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    Science.gov (United States)

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Genome-wide analysis of immune system genes by EST profiling

    Science.gov (United States)

    Giallourakis, Cosmas; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E.; Zukerberg, Lawrence R.; Daly, Mark J.; Rioux, John D.; Xavier, Ramnik J.

    2013-01-01

    Profiling studies of mRNA and miRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as ENCODE have demonstrated the benefit of coupling RNA-Seq analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including non-coding RNAs. As a result, we have established the Immunogene database, representing an integrated EST “road map” of gene expression in human immune cells, which can be used to further investigate the function of coding and non-coding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  8. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment.

    Science.gov (United States)

    Veneault-Fourrey, Claire; Commun, Carine; Kohler, Annegret; Morin, Emmanuelle; Balestrini, Raffaella; Plett, Jonathan; Danchin, Etienne; Coutinho, Pedro; Wiebenga, Ad; de Vries, Ronald P; Henrissat, Bernard; Martin, Francis

    2014-11-01

    Ectomycorrhizal fungi, living in soil forests, are required microorganisms to sustain tree growth and productivity. The establishment of mutualistic interaction with roots to form ectomycorrhiza (ECM) is not well known at the molecular level. In particular, how fungal and plant cell walls are rearranged to establish a fully functional ectomycorrhiza is poorly understood. Nevertheless, it is likely that Carbohydrate Active enZymes (CAZyme) produced by the fungus participate in this process. Genome-wide transcriptome profiling during ECM development was used to examine how the CAZome of Laccaria bicolor is regulated during symbiosis establishment. CAZymes active on fungal cell wall were upregulated during ECM development in particular after 4weeks of contact when the hyphae are surrounding the root cells and start to colonize the apoplast. We demonstrated that one expansin-like protein, whose expression is specific to symbiotic tissues, localizes within fungal cell wall. Whereas L. bicolor genome contained a constricted repertoire of CAZymes active on cellulose and hemicellulose, these CAZymes were expressed during the first steps of root cells colonization. L. bicolor retained the ability to use homogalacturonan, a pectin-derived substrate, as carbon source. CAZymes likely involved in pectin hydrolysis were mainly expressed at the stage of a fully mature ECM. All together, our data suggest an active remodelling of fungal cell wall with a possible involvement of expansin during ECM development. By contrast, a soft remodelling of the plant cell wall likely occurs through the loosening of the cellulose microfibrils by AA9 or GH12 CAZymes and middle lamella smooth remodelling through pectin (homogalacturonan) hydrolysis likely by GH28, GH12 CAZymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  10. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    Science.gov (United States)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  11. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Zhipeng Su

    Full Text Available Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumoniae, a highly contagious respiratory disease of swine. Although the genome of A. pleuropneumoniae was sequenced several years ago, limited information is available on the genome-wide transcriptional analysis to accurately annotate the gene structures and regulatory elements. High-throughput RNA sequencing (RNA-seq has been applied to study the transcriptional landscape of bacteria, which can efficiently and accurately identify gene expression regions and unknown transcriptional units, especially small non-coding RNAs (sRNAs, UTRs and regulatory regions. The aim of this study is to comprehensively analyze the transcriptome of A. pleuropneumoniae by RNA-seq in order to improve the existing genome annotation and promote our understanding of A. pleuropneumoniae gene structures and RNA-based regulation. In this study, we utilized RNA-seq to construct a single nucleotide resolution transcriptome map of A. pleuropneumoniae. More than 3.8 million high-quality reads (average length ~90 bp from a cDNA library were generated and aligned to the reference genome. We identified 32 open reading frames encoding novel proteins that were mis-annotated in the previous genome annotations. The start sites for 35 genes based on the current genome annotation were corrected. Furthermore, 51 sRNAs in the A. pleuropneumoniae genome were discovered, of which 40 sRNAs were never reported in previous studies. The transcriptome map also enabled visualization of 5'- and 3'-UTR regions, in which contained 11 sRNAs. In addition, 351 operons covering 1230 genes throughout the whole genome were identified. The RNA-Seq based transcriptome map validated annotated genes and corrected annotations of open reading frames in the genome, and led to the identification of many functional elements (e.g. regions encoding novel proteins, non-coding sRNAs and operon structures. The transcriptional units

  12. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations

    Science.gov (United States)

    Zhan, Qimin; Hu, Zhibin; He, Zhonghu; Jia, Weihua; Zhou, Yifeng; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Zhao, Xue-Ke; Gao, She-Gan; Yuan, Zhi-Qing; Zhou, Fu-You; Fan, Zong-Min; Cui, Ji-Li; Lin, Hong-Li; Han, Xue-Na; Li, Bei; Chen, Xi; Dawsey, Sanford M.; Liao, Linda; Lee, Maxwell P.; Ding, Ti; Qiao, You-Lin; Liu, Zhihua; Liu, Yu; Yu, Dianke; Chang, Jiang; Wei, Lixuan; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Han, Jing-Jing; Zhou, Sheng-Li; Zhang, Peng; Zhang, Dong-Yun; Yuan, Yuan; Huang, Ying; Liu, Chunling; Zhai, Kan; Qiao, Yan; Jin, Guangfu; Guo, Chuanhai; Fu, Jianhua; Miao, Xiaoping; Lu, Changdong; Yang, Haijun; Wang, Chaoyu; Wheeler, William A.; Gail, Mitchell; Yeager, Meredith; Yuenger, Jeff; Guo, Er-Tao; Li, Ai-Li; Zhang, Wei; Li, Xue-Min; Sun, Liang-Dan; Ma, Bao-Gen; Li, Yan; Tang, Sa; Peng, Xiu-Qing; Liu, Jing; Hutchinson, Amy; Jacobs, Kevin; Giffen, Carol; Burdette, Laurie; Fraumeni, Joseph F.; Shen, Hongbing; Ke, Yang; Zeng, Yixin; Wu, Tangchun; Kraft, Peter; Chung, Charles C.; Tucker, Margaret A.; Hou, Zhi-Chao; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Wang, Li; Yuan, Guo; Chen, Li-Sha; Liu, Xiao; Ma, Teng; Meng, Hui; Sun, Li; Li, Xin-Min; Li, Xiu-Min; Ku, Jian-Wei; Zhou, Ying-Fa; Yang, Liu-Qin; Wang, Zhou; Li, Yin; Qige, Qirenwang; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Yuan, Ling; Yue, Wen-Bin; Wang, Ran; Wang, Lu-Wen; Fan, Xue-Ping; Zhu, Fang-Heng; Zhao, Wei-Xing; Mao, Yi-Min; Zhang, Mei; Xing, Guo-Lan; Li, Ji-Lin; Han, Min; Ren, Jing-Li; Liu, Bin; Ren, Shu-Wei; Kong, Qing-Peng; Li, Feng; Sheyhidin, Ilyar; Wei, Wu; Zhang, Yan-Rui; Feng, Chang-Wei; Wang, Jin; Yang, Yu-Hua; Hao, Hong-Zhang; Bao, Qi-De; Liu, Bao-Chi; Wu, Ai-Qun; Xie, Dong; Yang, Wan-Cai; Wang, Liang; Zhao, Xiao-Hang; Chen, Shu-Qing; Hong, Jun-Yan; Zhang, Xue-Jun; Freedman, Neal D; Goldstein, Alisa M.; Lin, Dongxin; Taylor, Philip R.; Wang, Li-Dong; Chanock, Stephen J.

    2014-01-01

    We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region. PMID:25129146

  13. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    DEFF Research Database (Denmark)

    Postmus, Iris; Warren, Helen R; Trompet, Stella

    2016-01-01

    BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. METHODS AND RESULTS: We performed...... a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p

  14. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    Science.gov (United States)

    Hsu, Ju-Chun; Chien, Ting-Ying; Hu, Chia-Cheng; Chen, Mei-Ju May; Wu, Wen-Jer; Feng, Hai-Tung; Haymer, David S; Chen, Chien-Yu

    2012-01-01

    Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS). The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs). A total of 29,067 isotigs have putative homologues in the non-redundant (nr) protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also analyzed to

  15. Comprehensive Characterization for Ginsenosides Biosynthesis in Ginseng Root by Integration Analysis of Chemical and Transcriptome

    Directory of Open Access Journals (Sweden)

    Jing-Jing Zhang

    2017-05-01

    Full Text Available Herbgenomics provides a global platform to explore the genetics and biology of herbs on the genome level. Panax ginseng C.A. Meyer is an important medicinal plant with numerous pharmaceutical effects. Previous reports mainly discussed the transcriptome of ginseng at the organ level. However, based on mass spectrometry imaging analyses, the ginsenosides varied among different tissues. In this work, ginseng root was separated into three tissues—periderm, cortex and stele—each for five duplicates. The chemical analysis and transcriptome analysis were conducted simultaneously. Gene-encoding enzymes involved in ginsenosides biosynthesis and modification were studied based on gene and molecule data. Eight widely-used ginsenosides were distributed unevenly in ginseng roots. A total of 182,881 unigenes were assembled with an N50 contig size of 1374 bp. About 21,000 of these unigenes were positively correlated with the content of ginsenosides. Additionally, we identified 192 transcripts encoding enzymes involved in two triterpenoid biosynthesis pathways and 290 transcripts encoding UDP-glycosyltransferases (UGTs. Of these UGTs, 195 UGTs (67.2% were more highly expressed in the periderm, and that seven UGTs and one UGT were specifically expressed in the periderm and stele, respectively. This genetic resource will help to improve the interpretation on complex mechanisms of ginsenosides biosynthesis, accumulation, and transportation.

  16. De Novo Genome and Transcriptome Assembly of the Canadian Beaver (Castor canadensis

    Directory of Open Access Journals (Sweden)

    Si Lok

    2017-02-01

    Full Text Available The Canadian beaver (Castor canadensis is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 × long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 × and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon–gene models derived from 9805 full-length open reading frames (FL-ORFs constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.

  17. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  18. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  19. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao; Stegle, Oliver; Behr, Jonas; Steffen, Joshua G.; Drewe, Philipp; Hildebrand, Katie L.; Lyngsoe, Rune; Schultheiss, Sebastian J.; Osborne, Edward J.; Sreedharan, Vipin T.; Kahles, André ; Bohnert, Regina; Jean, Gé raldine; Derwent, Paul; Kersey, Paul; Belfield, Eric J.; Harberd, Nicholas P.; Kemen, Eric; Toomajian, Christopher; Kover, Paula X.; Clark, Richard M.; Rä tsch, Gunnar; Mott, Richard

    2011-01-01

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  20. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Directory of Open Access Journals (Sweden)

    Cornman R

    2012-06-01

    Full Text Available Abstract Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.

  1. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Science.gov (United States)

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  2. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin.

    Science.gov (United States)

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P; Gidenne, Thierry; Rogel-Gaillard, Claire

    2015-01-23

    Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. The LPS affected 15 to 20 times fewer genes than PMA-Ionomycin after both 4 hours (T4) and 24 hours (T24), of in vitro stimulation, in comparison with mock-stimulated PBMCs. LPS induced an inflammatory response as shown by a significant up-regulation of IL12A and CXCL11 at T4, followed by an increased transcription of IL6, IL1B, IL1A, IL36, IL37, TNF, and CCL4 at T24. Surprisingly, we could not find an up-regulation of IL8 either at T4 or at T24, and detected a down-regulation of DEFB1 and BPI at T24. A concerted up-regulation of SAA1, S100A12 and F3 was found upon stimulation by LPS. PMA-Ionomycin induced a very early expression of Th1, Th2, Treg, and Th17 responses by PBMCs at T4. The Th1 response increased at T24 as shown by the increase of the transcription of IFNG and by contrast to other cytokines which significantly decreased from T4 to T24 (IL2, IL4, IL10, IL13, IL17A, CD69) by comparison to mock-stimulation. The granulocyte-macrophage colony-stimulating factor (CSF2) was by far the most over-expressed gene at both T4 and T24 by comparison to mock-stimulated cells, confirming a major impact of PMA-Ionomycin on cell growth and proliferation. A significant down-regulation of IL16 was observed at T4 and T24, in agreement with a role of IL16 in PBMC apoptosis. We report new data on the responses of PBMCs to LPS and PMA-Ionomycin in the rabbit species, thus enlarging the set of mammalian species for which such reports exist. The availability of the rabbit genome assembly together with high throughput genomic tools should pave the way for more

  3. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    to protein: through epigenetic modifications, transcription regulators or post-transcriptional controls. The following papers concern several layers of gene regulation with questions answered by different HTS approaches. Genome-wide screening of epigenetic changes by ChIP-seq allowed us to study both spatial...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V...

  4. SQC: secure quality control for meta-analysis of genome-wide association studies.

    Science.gov (United States)

    Huang, Zhicong; Lin, Huang; Fellay, Jacques; Kutalik, Zoltán; Hubaux, Jean-Pierre

    2017-08-01

    Due to the limited power of small-scale genome-wide association studies (GWAS), researchers tend to collaborate and establish a larger consortium in order to perform large-scale GWAS. Genome-wide association meta-analysis (GWAMA) is a statistical tool that aims to synthesize results from multiple independent studies to increase the statistical power and reduce false-positive findings of GWAS. However, it has been demonstrated that the aggregate data of individual studies are subject to inference attacks, hence privacy concerns arise when researchers share study data in GWAMA. In this article, we propose a secure quality control (SQC) protocol, which enables checking the quality of data in a privacy-preserving way without revealing sensitive information to a potential adversary. SQC employs state-of-the-art cryptographic and statistical techniques for privacy protection. We implement the solution in a meta-analysis pipeline with real data to demonstrate the efficiency and scalability on commodity machines. The distributed execution of SQC on a cluster of 128 cores for one million genetic variants takes less than one hour, which is a modest cost considering the 10-month time span usually observed for the completion of the QC procedure that includes timing of logistics. SQC is implemented in Java and is publicly available at https://github.com/acs6610987/secureqc. jean-pierre.hubaux@epfl.ch. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  6. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  7. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  8. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    Science.gov (United States)

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  9. Genome-wide association analyses of expression phenotypes.

    Science.gov (United States)

    Chen, Gary K; Zheng, Tian; Witte, John S; Goode, Ellen L; Gao, Lei; Hu, Pingzhao; Suh, Young Ju; Suktitipat, Bhoom; Szymczak, Silke; Woo, Jung Hoon; Zhang, Wei

    2007-01-01

    A number of issues arise when analyzing the large amount of data from high-throughput genotype and expression microarray experiments, including design and interpretation of genome-wide association studies of expression phenotypes. These issues were considered by contributions submitted to Group 1 of the Genetic Analysis Workshop 15 (GAW15), which focused on the association of quantitative expression data. These contributions evaluated diverse hypotheses, including those relevant to cancer and obesity research, and used various analytic techniques, many of which were derived from information theory. Several observations from these reports stand out. First, one needs to consider the genetic model of the trait of interest and carefully select which single nucleotide polymorphisms and individuals are included early in the design stage of a study. Second, by targeting specific pathways when analyzing genome-wide data, one can generate more interpretable results than agnostic approaches. Finally, for datasets with small sample sizes but a large number of features like the Genetic Analysis Workshop 15 dataset, machine learning approaches may be more practical than traditional parametric approaches. (c) 2007 Wiley-Liss, Inc.

  10. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  11. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes

    DEFF Research Database (Denmark)

    Barrett, Jeffrey C; Clayton, David G; Concannon, Patrick

    2009-01-01

    Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7......,514 cases and 9,045 reference samples. Forty-one distinct genomic locations provided evidence for association with T1D in the meta-analysis (P

  12. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Zhi eZou

    2016-03-01

    Full Text Available Aquaporins (AQPs are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae, an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.. Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., 9 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 2 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs. Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger’s positions and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.

  13. Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Shiyong Mei

    2016-01-01

    Full Text Available Radish cytoplasmic male sterility (CMS has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs, indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR proteins, heat shock transcription factors (HSFs and heat shock proteins (HSPs, are

  14. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  15. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  16. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  17. Genome-wide association study of Tourette Syndrome

    Science.gov (United States)

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  18. Comparative Genomics and Transcriptomic Analysis of Mycobacterium Kansasii

    KAUST Repository

    Alzahid, Yara

    2014-04-01

    The group of Mycobacteria is one of the most intensively studied bacterial taxa, as they cause the two historical and worldwide known diseases: leprosy and tuberculosis. Mycobacteria not identified as tuberculosis or leprosy complex, have been referred to by ‘environmental mycobacteria’ or ‘Nontuberculous mycobacteria (NTM). Mycobacterium kansasii (M. kansasii) is one of the most frequent NTM pathogens, as it causes pulmonary disease in immuno-competent patients and pulmonary, and disseminated disease in patients with various immuno-deficiencies. There have been five documented subtypes of this bacterium, by different molecular typing methods, showing that type I causes tuberculosis-like disease in healthy individuals, and type II in immune-compromised individuals. The remaining types are said to be environmental, thereby, not causing any diseases. The aim of this project was to conduct a comparative genomic study of M. kansasii types I-V and investigating the gene expression level of those types. From various comparative genomics analysis, provided genomics evidence on why M. kansasii type I is considered pathogenic, by focusing on three key elements that are involved in virulence of Mycobacteria: ESX secretion system, Phospholipase c (plcb) and Mammalian cell entry (Mce) operons. The results showed the lack of the espA operon in types II-V, which renders the ESX- 1 operon dysfunctional, as espA is one of the key factors that control this secretion system. However, gene expression analysis showed this operon to be deleted in types II, III and IV. Furthermore, plcB was found to be truncated in types III and IV. Analysis of Mce operons (1-4) show that mce-1 operon is duplicated, mce-2 is absent and mce-3 and mce-4 is present in one copy in M. kansasii types I-V. Gene expression profiles of type I-IV, showed that the secreted proteins of ESX-1 were slightly upregulated in types II-IV when compared to type I and the secreted forms of ESX-5 were highly down

  19. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults

    OpenAIRE

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R.; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang

    2015-01-01

    Abstract Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from t...

  20. Transcriptome-wide Identification and Expression Analysis of Brachypodium distachyon Transposons in Response to Viral Infection

    Directory of Open Access Journals (Sweden)

    Tuğba Gürkök

    2017-10-01

    Full Text Available Transposable elements (TEs are the most abundant group of genomic elements in plants that can be found in genic or intergenic regions of their host genomes. Several stimuli such as biotic or abiotic stress have roles in either activating their transcription or transposition. Here the effect of the Panicum mosaic virus (PMV and its satellite virus (SPMV infection on the transposon transcription of the Brachypodium distachyon model plant was investigated. To evaluate the transcription activity of TEs, transcriptomic data of mock and virus inoculated plants were compared. Our results indicate that major components of TEs are retroelements in all RNA-seq libraries. The number of transcribed TEs detected in mock inoculated plants is higher than virus inoculated plants. In comparison with mock inoculated plants 13% of the TEs showed at least two folds alteration upon PMV infection and 21% upon PMV+SPMV infection. Rather than inoculation with PMV alone inoculation with PMV+SPMV together also increased various TE encoding transcripts expressions. MuDR-N78C_OS encoding transcript was strongly up-regulated against both PMV and PMV+SPMV infection. The synergism generated by PMV and SPMV together enhanced TE transcripts expressions than PMV alone. It was observed that viral infection induced the transcriptional activity of several transposons. The results suggest that increased expressions of TEs might have a role in response to biotic stress in B. distachyon. Identification of TEs which are taking part in stress can serve useful information for functional genomics and designing novel breeding strategies in developing stress resistance crops.

  1. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  2. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    Directory of Open Access Journals (Sweden)

    Christoph eSchmid

    2013-08-01

    Full Text Available Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues.A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella.Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation, while solitary plants placed more roots towards the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category ‘biotic stress’ using MapMan tools found the sub-category ‘pathogenesis-related proteins’ highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots.We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions.

  3. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  4. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  5. Transcriptome Dynamics during Maize Endosperm Development.

    Directory of Open Access Journals (Sweden)

    Jianzhou Qu

    Full Text Available The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP. We found that more than 11,000 protein-coding genes underwent alternative splicing (AS events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs, were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.

  6. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun

    2011-01-01

    steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (~26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n¿=¿880 to 3,070). By carrying out a fixed-effects meta......-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ~2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome......Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic...

  7. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  8. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice.

    Science.gov (United States)

    Yu, Haixin; Ji, Rui; Ye, Wenfeng; Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence

  9. Adiponectin Concentrations: A Genome-wide Association Study

    Science.gov (United States)

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda; Yoon, Sungjoo Kim; Jang, Yangsoo; Beaty, Terri H.

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10−15 in the initial sample, p = 6.58 × 10−39 in the second genome-wide sample, and p = 2.12 × 10−32 in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10−83. The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10−58) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults. PMID:20887962

  10. Characterization of Fusobacterium varium Fv113-g1 isolated from a patient with ulcerative colitis based on complete genome sequence and transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sekizuka

    Full Text Available Fusobacterium spp. present in the oral and gut flora is carcinogenic and is associated with the risk of pancreatic and colorectal cancers. Fusobacterium spp. is also implicated in a broad spectrum of human pathologies, including Crohn's disease and ulcerative colitis (UC. Here we report the complete genome sequence of Fusobacterium varium Fv113-g1 (genome size, 3.96 Mb isolated from a patient with UC. Comparative genome analyses totally suggested that Fv113-g1 is basically assigned as F. varium, in particular, it could be reclassified as notable F. varium subsp. similar to F. ulcerans because of partial shared orthologs. Compared with the genome sequences of F. varium ATCC 27725 (genome size, 3.30 Mb and other strains of Fusobacterium spp., Fv113-g1 possesses many accessary pan-genome sequences with noteworthy multiple virulence factors, including 44 autotransporters (type V secretion system, T5SS and 13 Fusobacterium adhesion (FadA paralogs involved in potential mucosal inflammation. Indeed, transcriptome analysis demonstrated that Fv113-g1-specific accessary genes, such as multiple T5SS and fadA paralogs, showed notably increased expression with D-MEM cultivation than with brain heart infusion broth. This implied that growth condition may enhance the expression of such potential virulence factors, leading to remarkable survival against other gut microorganisms and to the pathogenicity to human intestinal epithelium.

  11. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    Science.gov (United States)

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  12. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi

    Science.gov (United States)

    Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  13. Gigwa-Genotype investigator for genome-wide analyses.

    Science.gov (United States)

    Sempéré, Guilhem; Philippe, Florian; Dereeper, Alexis; Ruiz, Manuel; Sarah, Gautier; Larmande, Pierre

    2016-06-06

    Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.

  14. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    Science.gov (United States)

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT

  15. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    Science.gov (United States)

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study

  16. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    Science.gov (United States)

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were

  17. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  18. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  19. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Directory of Open Access Journals (Sweden)

    Zhifeng Xu

    Full Text Available The carmine spider mite (CSM, Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs, Kyoto Encyclopedia of Genes and Genomes (KEGG and Gene Ontology (GO. Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45% of the transcripts had significant (e-value <10-5 matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA analysis identified 435 core eukaryotic genes (CEGs in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  20. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci

    NARCIS (Netherlands)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-01

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and

  1. A meta-analysis of four genome-wide association studies of survival to age 90 years or older

    DEFF Research Database (Denmark)

    Newman, Anne B; Walter, Stefan; Lunetta, Kathryn L

    2010-01-01

    BACKGROUND: Genome-wide association studies (GWAS) may yield insights into longevity. METHODS: We performed a meta-analysis of GWAS in Caucasians from four prospective cohort studies: the Age, Gene/Environment Susceptibility-Reykjavik Study, the Cardiovascular Health Study, the Framingham Heart S...

  2. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Davila Olivas, Nelson H.; Kruijer, Willem; Gort, Gerrit; Wijnen, Cris L.; Loon, van Joop J.A.; Dicke, Marcel

    2017-01-01

    Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two

  3. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    NARCIS (Netherlands)

    Springelkamp, Henriët; Höhn, René; Mishra, Aniket; Hysi, Pirro G; Khor, Chiea-Chuen; Loomis, Stephanie J; Bailey, Jessica N Cooke; Gibson, Jane; Thorleifsson, Gudmar; Janssen, Sarah F; Luo, Xiaoyan; Ramdas, Wishal D; Vithana, Eranga; Nongpiur, Monisha E; Montgomery, Grant W; Xu, Liang; Mountain, Jenny E; Gharahkhani, Puya; Lu, Yi; Amin, Najaf; Karssen, Lennart C; Sim, Kar-Seng; van Leeuwen, Elisabeth M; Iglesias, Adriana I; Verhoeven, Virginie J M; Hauser, Michael A; Loon, Seng-Chee; Despriet, Dominiek D G; Nag, Abhishek; Venturini, Cristina; Sanfilippo, Paul G; Schillert, Arne; Kang, Jae H; Landers, John; Jonasson, Fridbert; Cree, Angela J; van Koolwijk, Leonieke M E; Rivadeneira, Fernando; Souzeau, Emmanuelle; Jonsson, Vesteinn; Menon, Geeta; Weinreb, Robert N; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Ennis, Sarah; Thorsteinsdottir, Unnur; Burdon, Kathryn P; Spector, Timothy D; Mirshahi, Alireza; Saw, Seang-Mei; Vingerling, Johannes R; Teo, Yik-Ying; Haines, Jonathan L; Wolfs, Roger C W; Lemij, Hans G; Tai, E-Shyong; Jansonius, Nomdo M; Jonas, Jost B; Cheng, Ching-Yu; Aung, Tin; Viswanathan, Ananth C; Klaver, Caroline C W; Craig, Jamie E; Macgregor, Stuart; Mackey, David A; Lotery, Andrew J; Stefansson, Kari; Bergen, Arthur A B; Young, Terri L; Wiggs, Janey L; Pfeiffer, Norbert; Wong, Tien-Yin; Pasquale, Louis R; Hewitt, Alex W; van Duijn, Cornelia M; Hammond, Christopher J

    2014-01-01

    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important

  4. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism

    NARCIS (Netherlands)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA

  5. Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts.

    Directory of Open Access Journals (Sweden)

    Vesna Boraska

    Full Text Available Brachial circumference (BC, also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05 in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.

  6. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes.

    Directory of Open Access Journals (Sweden)

    Elijah R Behr

    Full Text Available Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP, treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7, odds ratio = 2, 95% confidence intervals: 1.5-2.6. The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9. Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.

  7. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  9. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc; Phelan, Jody; Hill-Cawthorne, Grant A.; Nair, Mridul; Mallard, Kim; Ali, Shahjahan; Abdallah, Abdallah; Alghamdi, Saad; Alsomali, Mona; Ahmed, Abdallah O.; Portelli, Stephanie; Oppong, Yaa; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Caws, Maxine; Chatterjee, Anirvan; Crampin, Amelia C.; Dheda, Keertan; Furnham, Nicholas; Glynn, Judith R.; Grandjean, Louis; Minh Ha, Dang; Hasan, Rumina; Hasan, Zahra; Hibberd, Martin L.; Joloba, Moses; Jones-Ló pez, Edward C.; Matsumoto, Tomoshige; Miranda, Anabela; Moore, David J.; Mocillo, Nora; Panaiotov, Stefan; Parkhill, Julian; Penha, Carlos; Perdigã o, Joã o; Portugal, Isabel; Rchiad, ‍ Zineb; Robledo, Jaime; Sheen, Patricia; Shesha, Nashwa Talaat; Sirgel, Frik A.; Sola, Christophe; Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; Helden, Paul Van; Viveiros, Miguel; Warren, Robert M.; McNerney, Ruth; Pain, Arnab; Clark, Taane G.

    2018-01-01

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed

  10. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    Science.gov (United States)

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  11. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    Science.gov (United States)

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  12. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods

    Science.gov (United States)

    Väremo, Leif; Nielsen, Jens; Nookaew, Intawat

    2013-01-01

    Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should be preferred, and the variety of available GSA software and implementations pose a difficulty for the end-user who wants to try out different methods. To address this, we have developed the R package Piano that collects a range of GSA methods into the same system, for the benefit of the end-user. Further on we refine the GSA workflow by using modifications of the gene-level statistics. This enables us to divide the resulting gene set P-values into three classes, describing different aspects of gene expression directionality at gene set level. We use our fully implemented workflow to investigate the impact of the individual components of GSA by using microarray and RNA-seq data. The results show that the evaluated methods are globally similar and the major separation correlates well with our defined directionality classes. As a consequence of this, we suggest to use a consensus scoring approach, based on multiple GSA runs. In combination with the directionality classes, this constitutes a more thorough basis for an enriched biological interpretation. PMID:23444143

  13. Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

    Science.gov (United States)

    Medina, Ignacio; Montaner, David; Bonifaci, Nuria; Pujana, Miguel Angel; Carbonell, José; Tarraga, Joaquin; Al-Shahrour, Fatima; Dopazo, Joaquin

    2009-01-01

    Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap/ PMID:19502494

  14. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  15. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

    NARCIS (Netherlands)

    Hysi, Pirro G.; Cheng, Ching-Yu; Springelkamp, Henriet; Macgregor, Stuart; Bailey, Jessica N. Cooke; Wojciechowski, Robert; Vitart, Veronique; Nag, Abhishek; Hewitt, Alex W.; Hohn, Rene; Venturini, Cristina; Mirshahi, Alireza; Ramdas, Wishal D.; Thorleifsson, Gudmar; Vithana, Eranga; Khor, Chiea-Chuen; Stefansson, Arni B.; Liao, Jiemin; Haines, Jonathan L.; Amin, Najaf; Wang, Ya Xing; Wild, Philipp S.; Ozel, Ayse B.; Li, Jun Z.; Fleck, Brian W.; Zeller, Tanja; Staffieri, Sandra E.; Teo, Yik-Ying; Cuellar-Partida, Gabriel; Luo, Xiaoyan; Allingham, R. Rand; Richards, Julia E.; Senft, Andrea; Karssen, Lennart C.; Zheng, Yingfeng; Bellenguez, Celine; Xu, Liang; Iglesias, Adriana I.; Wilson, James F.; Kang, Jae H.; van Leeuwen, Elisabeth M.; Jonsson, Vesteinn; Thorsteinsdottir, Unnur; Despriet, Dominiek D. G.; Ennis, Sarah; Moroi, Sayoko E.; Martin, Nicholas G.; Jansonius, Nomdo M.; Yazar, Seyhan; Tai, E-Shyong

    2014-01-01

    Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma

  16. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    NARCIS (Netherlands)

    Sud, A. (Amit); Thomsen, H. (Hauke); Law, P.J. (Philip J.); A. Försti (Asta); Filho, M.I.D.S. (Miguel Inacio Da Silva); Holroyd, A. (Amy); P. Broderick (Peter); Orlando, G. (Giulia); Lenive, O. (Oleg); Wright, L. (Lauren); R. Cooke (Rosie); D.F. Easton (Douglas); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); J. Peto (Julian); F. Canzian (Federico); Eeles, R. (Rosalind); Z. Kote-Jarai; K.R. Muir (K.); Pashayan, N. (Nora); B.E. Henderson (Brian); C.A. Haiman (Christopher); S. Benlloch (Sara); F.R. Schumacher (Fredrick R); Olama, A.A.A. (Ali Amin Al); S.I. Berndt (Sonja); G. Conti (Giario); F. Wiklund (Fredrik); S.J. Chanock (Stephen); Stevens, V.L. (Victoria L.); C.M. Tangen (Catherine M.); Batra, J. (Jyotsna); Clements, J. (Judith); H. Grönberg (Henrik); Schleutker, J. (Johanna); D. Albanes (Demetrius); Weinstein, S. (Stephanie); K. Wolk (Kerstin); West, C. (Catharine); Mucci, L. (Lorelei); Cancel-Tassin, G. (Géraldine); Koutros, S. (Stella); Sorensen, K.D. (Karina Dalsgaard); L. Maehle; D. Neal (David); S.P.L. Travis (Simon); Hamilton, R.J. (Robert J.); S.A. Ingles (Sue); B.S. Rosenstein (Barry S.); Lu, Y.-J. (Yong-Jie); Giles, G.G. (Graham G.); A. Kibel (Adam); Vega, A. (Ana); M. Kogevinas (Manolis); Penney, K.L. (Kathryn L.); Park, J.Y. (Jong Y.); Stanford, J.L. (Janet L.); C. Cybulski (Cezary); B.G. Nordestgaard (Børge); Brenner, H. (Hermann); Maier, C. (Christiane); Kim, J. (Jeri); E.M. John (Esther); P.J. Teixeira; Neuhausen, S.L. (Susan L.); De Ruyck, K. (Kim); Razack, A. (Azad); Newcomb, L.F. (Lisa F.); Lessel, D. (Davor); Kaneva, R. (Radka); N. Usmani (Nawaid); F. Claessens; Townsend, P.A. (Paul A.); Dominguez, M.G. (Manuela Gago); Roobol, M.J. (Monique J.); F. Menegaux (Florence); P. Hoffmann (Per); M.M. Nöthen (Markus); K.-H. JöCkel (Karl-Heinz); Strandmann, E.P.V. (Elke Pogge Von); Lightfoot, T. (Tracy); Kane, E. (Eleanor); Roman, E. (Eve); Lake, A. (Annette); Montgomery, D. (Dorothy); Jarrett, R.F. (Ruth F.); A.J. Swerdlow (Anthony ); A. Engert (Andreas); N. Orr (Nick); K. Hemminki (Kari); Houlston, R.S. (Richard S.)

    2017-01-01

    textabstractSeveral susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and

  17. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus using RNA-sequencing

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-12-01

    Full Text Available The Chinese giant salamander (Andrias davidianus is an economically important animal on academic value. However, the genomic information of this species has been less studied. In our study, the transcripts of A. davidianus were obtained by RNA-seq to conduct a transcriptomic analysis. In total 132,912 unigenes were generated with an average length of 690 bp and N50 of 1263 bp by de novo assembly using Trinity software. Using a sequence similarity search against the nine public databases (CDD, KOG, NR, NT, PFAM, Swiss-prot, TrEMBL, GO and KEGG databases, a total of 24,049, 18,406, 36,711, 15,858, 20,500, 27,515, 36,705, 28,879 and 10,958 unigenes were annotated in databases, respectively. Of these, 6323 unigenes were annotated in all database and 39,672 unigenes were annotated in at least one database. Blasted with KEGG pathway, 10,958 unigenes were annotated, and it was divided into 343 categories according to different pathways. In addition, we also identified 29,790 SSRs. This study provided a valuable resource for understanding transcriptomic information of A. davidianus and laid a foundation for further research on functional gene cloning, genomics, genetic diversity analysis and molecular marker exploitation in A. davidianus.

  18. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    Science.gov (United States)

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  19. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L. Lam].

    Directory of Open Access Journals (Sweden)

    Xiang Tao

    Full Text Available BACKGROUND: Sweet potato (Ipomoea batatas L. [Lam.] ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. METHODOLOGY/PRINCIPAL FINDINGS: Illumina paired-end (PE RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp, which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. CONCLUSIONS/SIGNIFICANCE: The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots

  20. A genome-wide association study of cognitive function in Chinese adult twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Wu, Yili

    2017-01-01

    Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants....... Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive...

  1. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    NARCIS (Netherlands)

    K. Estrada Gil (Karol); U. Styrkarsdottir (Unnur); E. Evangelou (Evangelos); Y.-H. Hsu (Yi-Hsiang); E.L. Duncan (Emma); E.E. Ntzani (Evangelia); L. Oei (Ling); O.M.E. Albagha (Omar M.); N. Amin (Najaf); J.P. Kemp (John); D.L. Koller (Daniel); G. Li (Guo); C.-T. Liu (Ching-Ti); R.L. Minster (Ryan); A. Moayyeri (Alireza); L. Vandenput (Liesbeth); D. Willner (Dana); S.-M. Xiao (Su-Mei); L.M. Yerges-Armstrong (Laura); H.-F. Zheng (Hou-Feng); N. Alonso (Nerea); J. Eriksson (Joel); C.M. Kammerer (Candace); S. Kaptoge (Stephen); P.J. Leo (Paul); G. Thorleifsson (Gudmar); S.G. Wilson (Scott); J.F. Wilson (James); V. Aalto (Ville); T.A. van Alen (Theo); A.K. Aragaki (Aaron); T. Aspelund (Thor); J.R. Center (Jacqueline); Z. Dailiana (Zoe); C. Duggan; M. Garcia (Melissa); N. Garcia-Giralt (Natàlia); S. Giroux (Sylvie); G. Hallmans (Göran); L.J. Hocking (Lynne); L.B. Husted (Lise Bjerre); K. Jameson (Karen); R. Khusainova (Rita); G.S. Kim (Ghi Su); C. Kooperberg (Charles); T. Koromila (Theodora); M. Kruk (Marcin); M. Laaksonen (Marika); A.Z. LaCroix (Andrea); S.U. Lee (Seung); P.C. Leung (Ping); J.R. Lewis (Joshua); L. Masi (Laura); S. Mencej-Bedrac (Simona); T.V. Nguyen (Tuan); X. Nogues (Xavier); M.S. Patel (Millan); J. Prezelj (Janez); L.M. Rose (Lynda); S. Scollen (Serena); K. Siggeirsdottir (Kristin); G.D. Smith; O. Svensson (Olle); S. Trompet (Stella); O. Trummer (Olivia); N.M. van Schoor (Natasja); M.M. Woo (Margaret M.); K. Zhu (Kun); S. Balcells (Susana); M.L. Brandi; B.M. Buckley (Brendan M.); S. Cheng (Sulin); C. Christiansen; C. Cooper (Charles); G.V. Dedoussis (George); I. Ford (Ian); M. Frost (Morten); D. Goltzman (David); J. González-Macías (Jesús); M. Kähönen (Mika); M. Karlsson (Magnus); E.K. Khusnutdinova (Elza); J.-M. Koh (Jung-Min); P. Kollia (Panagoula); B.L. Langdahl (Bente); W.D. Leslie (William); P. Lips (Paul); O. Ljunggren (Östen); R. Lorenc (Roman); J. Marc (Janja); D. Mellström (Dan); B. Obermayer-Pietsch (Barbara); D. Olmos (David); U. Pettersson-Kymmer (Ulrika); D.M. Reid (David); J.A. Riancho (José); P.M. Ridker (Paul); M.F. Rousseau (Francois); P.E.S. Lagboom (P Eline); N.L.S. Tang (Nelson L.); R. Urreizti (Roser); W. Van Hul (Wim); J. Viikari (Jorma); M.T. Zarrabeitia (María); Y.S. Aulchenko (Yurii); M.C. Castaño Betancourt (Martha); E. Grundberg (Elin); L. Herrera (Lizbeth); T. Ingvarsson (Torvaldur); H. Johannsdottir (Hrefna); T. Kwan (Tony); R. Li (Rui); R.N. Luben (Robert); M.C. Medina-Gomez (Carolina); S. Th Palsson (Stefan); S. Reppe (Sjur); J.I. Rotter (Jerome); G. Sigurdsson (Gunnar); J.B.J. van Meurs (Joyce); D.J. Verlaan (Dominique); F.M. Williams (Frances); A.R. Wood (Andrew); Y. Zhou (Yanhua); K.M. Gautvik (Kaare); T. Pastinen (Tomi); S. Raychaudhuri (Soumya); J.A. Cauley (Jane); D.I. Chasman (Daniel); G.R. Clark (Graeme); S. Cummings; P. Danoy (Patrick); E.M. Dennison (Elaine); R. Eastell (Richard); J.A. Eisman (John); V. Gudnason (Vilmundur); A. Hofman (Albert); R.D. Jackson (Rebecca); G. Jones (Graeme); J.W. Jukema (Jan Wouter); K-T. Khaw (Kay-Tee); T. Lehtimäki (Terho); Y. Liu (YongMei); M. Lorentzon (Mattias); E.V. McCloskey (Eugene); B.D. Mitchell (Braxton); K. Nandakumar (Kannabiran); G.C. Nicholson (Geoffrey); B.A. Oostra (Ben); M. Peacock (Munro); H.A.P. Pols (Huib); R.L. Prince (Richard); O. Raitakari (Olli); I.R. Reid (Ian); J. Robbins (John); P.N. Sambrook (Philip); P.C. Sham (Pak); A.R. Shuldiner (Alan); F.A. Tylavsky (Frances); C.M. van Duijn (Cornelia); N.J. Wareham (Nick); L.A. Cupples (Adrienne); M.J. Econs (Michael); D.M. Evans (David); T.B. Harris (Tamara); A.W.C. Kung (Annie); B.M. Psaty (Bruce); J. Reeve (Jonathan); T.D. Spector (Timothy); E.A. Streeten (Elizabeth); M.C. Zillikens (Carola); U. Thorsteinsdottir (Unnur); C. Ohlsson (Claes); D. Karasik (David); J.B. Richards (Brent); M.A. Brown (Matthew); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); S.H. Ralston (Stuart); J.P.A. Ioannidis (John); D.P. Kiel (Douglas); F. Rivadeneira Ramirez (Fernando)

    2012-01-01

    textabstractBone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top

  2. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes

    Science.gov (United States)

    Tong, Ying; Zhang, Yang; Huang, Jiaomei; Xiao, Shu; Zhang, Yuehuan; Li, Jun; Chen, Jinhui; Yu, Ziniu

    2015-01-01

    Background The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs. Results The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.). Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs) and 1,699 simple sequence repeats (SSRs) were compiled. Conclusions Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research

  3. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes.

    Directory of Open Access Journals (Sweden)

    Ying Tong

    Full Text Available The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs.The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.. Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs and 1,699 simple sequence repeats (SSRs were compiled.Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve

  4. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,...

  5. Genome-wide meta-analysis of cognitive empathy : heritability, and correlates with sex, neuropsychiatric conditions and cognition

    NARCIS (Netherlands)

    Warrier, V; Grasby, K L; Uzefovsky, F; Toro, R.; Smith, P.; Chakrabarti, B; Khadake, J.; Mawbey-Adamson, E; Litterman, N; Hottenga, J-J; Lubke, G; Boomsma, D I; Martin, Nicholas G; Hatemi, P.K.; Medland, Sarah E; Hinds, D.A.; Bourgeron, T; Baron-Cohen, S.

    2017-01-01

    We conducted a genome-wide meta-analysis of cognitive empathy using the 'Reading the Mind in the Eyes' Test (Eyes Test) in 88,056 research volunteers of European Ancestry (44,574 females and 43,482 males) from 23andMe Inc., and an additional 1497 research volunteers of European Ancestry (891 females

  6. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression

    DEFF Research Database (Denmark)

    Ren, Shancheng; Wei, Gong-Hong; Liu, Dongbing

    2018-01-01

    BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic......-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment....... alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME...

  7. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    Science.gov (United States)

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  8. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development.

    Science.gov (United States)

    Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen

    2017-07-11

    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.

  9. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    DEFF Research Database (Denmark)

    Sud, Amit; Thomsen, Hauke; Law, Philip J.

    2017-01-01

    Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 co...

  10. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  11. Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS

    Directory of Open Access Journals (Sweden)

    Davis Simon J

    2007-09-01

    Full Text Available Abstract Background Deep transcriptome analysis will underpin a large fraction of post-genomic biology. 'Closed' technologies, such as microarray analysis, only detect the set of transcripts chosen for analysis, whereas 'open' e.g. tag-based technologies are capable of identifying all possible transcripts, including those that were previously uncharacterized. Although new technologies are now emerging, at present the major resources for open-type analysis are the many publicly available SAGE (serial analysis of gene expression and MPSS (massively parallel signature sequencing libraries. These technologies have never been compared for their utility in the context of deep transcriptome mining. Results We used a single LongSAGE library of 503,431 tags and a "classic" MPSS library of 1,744,173 tags, both prepared from the same T cell-derived RNA sample, to compare the ability of each method to probe, at considerable depth, a human cellular transcriptome. We show that even though LongSAGE is more error-prone than MPSS, our LongSAGE library nevertheless generated 6.3-fold more genome-matching (and therefore likely error-free tags than the MPSS library. An analysis of a set of 8,132 known genes detectable by both methods, and for which there is no ambiguity about tag matching, shows that MPSS detects only half (54% the number of transcripts identified by SAGE (3,617 versus 1,955. Analysis of two additional MPSS libraries shows that each library samples a different subset of transcripts, and that in combination the three MPSS libraries (4,274,992 tags in total still only detect 73% of the genes identified in our test set using SAGE. The fraction of transcripts detected by MPSS is likely to be even lower for uncharacterized transcripts, which tend to be more weakly expressed. The source of the loss of complexity in MPSS libraries compared to SAGE is unclear, but its effects become more severe with each sequencing cycle (i.e. as MPSS tag length increases

  12. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  13. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  14. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    NARCIS (Netherlands)

    Iglesias, A.I. (Adriana I.); A. Mishra (Aniket); V. Vitart (Veronique); Y. Bykhovskaya (Yelena); R. Höhn (René); H. Springelkamp (Henriët); G. Cuellar-Partida (Gabriel); P. Gharahkhani (Puya); Bailey, J.N.C. (Jessica N. Cooke); Willoughby, C.E. (Colin E.); X. Li (Xiaohui); S. Yazar (Seyhan); A. Nag (Abhishek); A.P. Khawaja (Anthony); O. Polasek (Ozren); D.S. Siscovick (David); Mitchell, P. (Paul); Y.C. Tham (Yih Chung); J.L. Haines (Jonathan); L.S. Kearns (Lisa S.); C. Hayward (Caroline); Shi, Y. (Yuan); Van Leeuwen, E.M. (Elisabeth M.); K.D. Taylor (Kent); Wang, J.J. (Jie Jin); E. Rochtchina (Elena); J. Attia (John); Scott, R. (Rodney); E.G. Holliday (Elizabeth); P.N. Baird (Paul); Xie, J. (Jing); Inouye, M. (Michael); Viswanathan, A. (Ananth); X. Sim (Xueling); P.W.M. Bonnemaijer (Pieter); J.I. Rotter (Jerome I.); Martin, N.G. (Nicholas G.); T. Zeller (Tanja); R.A. Mills (Richard); S.E. Staffieri (Sandra E.); Jonas, J.B. (Jost B.); Schmidtmann, I. (Irene); T. Boutin (Thibaud); Kang, J.H. (Jae H.); S.E.M. Lucas (Sionne E.M.); Wong, T.Y. (Tien Yin); Beutel, M.E. (Manfred E.); Wilson, J.F. (James F.); R.R. Allingham (R Rand); M.H. Brilliant (Murray H.); D.L. Budenz (Donald L.); W.G. Christen (William G.); J. Fingert (John); D.S. Friedman (David); Gaasterland, D. (Douglas); T. Gaasterland (Terry); M.A. Hauser (Michael); P. Kraft (Peter); Lee, R.K. (Richard K.); P.A. Lichter (Paul A.); Liu, Y. (Yutao); S.J. Loomis (Stephanie J.); S.E. Moroi (Sayoko); M.A. Pericak-Vance (Margaret); A. Realini (Anthony); Richards, J.E. (Julia E.); J.S. Schuman (Joel S.); W.K. Scott (William); K. Singh (Kuldev); A.J. Sit (Arthur J.); D. Vollrath (Douglas); R.N. Weinreb (Robert N.); G. Wollstein (Gadi); D.J. Zack (Donald); K. Zhang (Kang); Donnelly, P. (Peter); I.E. Barroso (Inês); Blackwell, J.M. (Jenefer M.); E. Bramon (Elvira); M.A. Brown (Matthew); J.P. Casas (Juan); A. Corvin (Aiden); Deloukas, P. (Panos); A. Duncanson (Audrey); Jankowski, J. (Janusz); H.S. Markus (Hugh); J. Mathew (Joseph); C.N.A. Palmer (Colin); R. Plomin (Robert); A. Rautanen (Anna); S.J. Sawcer (Stephen); R.C. Trembath (Richard); Wood, N.W. (Nicholas W.); C.C.A. Spencer (Chris C.); G. Band (Gavin); C. Bellenguez (Céline); Freeman, C. (Colin); F.A. Hellenthal; E. Giannoulatou (Eleni); M. Pirinen (Matti); R. Pearson (Ruth); A. Strange (Amy); Z. Su (Zhan); D. Vukcevic (Damjan); Langford, C. (Cordelia); Hunt, S.E. (Sarah E.); T. Edkins (Ted); R. Gwilliam (Rhian); H. Blackburn (Hannah); S. Bumpstead (Suzannah); S. Dronov (Serge); M. Gillman (Matthew); E. Gray (Emma); N. Hammond (Naomi); A. Jayakumar (Alagurevathi); O.T. McCann (Owen); J. Liddle (Jennifer); S.C. Potter (Simon); Ravindrarajah, R. (Radhi); Ricketts, M. (Michelle); P. Waller (Patrick); P. Weston (Paul); S. Widaa (Sara); Whittaker, P. (Pamela); A.G. Uitterlinden (André); E.N. Vithana (Eranga); P.J. Foster (Paul); P.G. Hysi (Pirro); Hewitt, A.W. (Alex W.); C.C. Khor; L.R. Pasquale (Louis); Montgomery, G.W. (Grant W.); C.C.W. Klaver (Caroline); T. Aung (Tin); A.F.H. Pfeiffer (Andreas); D.A. Mackey (David); C.J. Hammond (Christopher); Cheng, C.-Y. (Ching-Yu); J.E. Craig (Jamie); Y.S. Rabinowitz (Yaron); J.L. Wiggs (Janey L.); K.P. Burdon (Kathryn); C.M. van Duijn (Cornelia); MacGregor, S. (Stuart)

    2018-01-01

    textabstractCentral corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related

  15. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species.

    Science.gov (United States)

    Qiao, Xin; Li, Meng; Li, Leiting; Yin, Hao; Wu, Juyou; Zhang, Shaoling

    2015-01-21

    Heat shock transcription factors (Hsfs), which act as important transcriptional regulatory proteins in eukaryotes, play a central role in controlling the expression of heat-responsive genes. At present, the genomes of Chinese white pear ('Dangshansuli') and five other Rosaceae fruit crops have been fully sequenced. However, information about the Hsfs gene family in these Rosaceae species is limited, and the evolutionary history of the Hsfs gene family also remains unresolved. In this study, 137 Hsf genes were identified from six Rosaceae species (Pyrus bretschneideri, Malus × domestica, Prunus persica, Fragaria vesca, Prunus mume, and Pyrus communis), 29 of which came from Chinese white pear, designated as PbHsf. Based on the structural characteristics and phylogenetic analysis of these sequences, the Hsf family genes could be classified into three main groups (classes A, B, and C). Segmental and dispersed duplications were the primary forces underlying Hsf gene family expansion in the Rosaceae. Most of the PbHsf duplicated gene pairs were dated back to the recent whole-genome duplication (WGD, 30-45 million years ago (MYA)). Purifying selection also played a critical role in the evolution of Hsf genes. Transcriptome data demonstrated that the expression levels of the PbHsf genes were widely different. Six PbHsf genes were upregulated in fruit under naturally increased temperature. A comprehensive analysis of Hsf genes was performed in six Rosaceae species, and 137 full length Hsf genes were identified. The results presented here will undoubtedly be useful for better understanding the complexity of the Hsf gene family and will facilitate functional characterization in future studies.

  16. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Raees Khan

    Full Text Available The substantial use of triclosan (TCS has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231 and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17, and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79% and soil-borne plant pathogenic bacteria (98%. These included a variety of enoyl-acyl carrier protein reductase (ENRs homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously

  17. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    Science.gov (United States)

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  18. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    DEFF Research Database (Denmark)

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos

    2012-01-01

    Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associ...

  19. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri as reviewed by deepSuperSAGE analysis

    Directory of Open Access Journals (Sweden)

    Nuno Felipe Almeida

    2015-03-01

    Full Text Available Lathyrus sativus (grass pea is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.

  20. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  1. Genome-wide meta-analysis of common variant differences between men and women

    Science.gov (United States)

    Boraska, Vesna; Jerončić, Ana; Colonna, Vincenza; Southam, Lorraine; Nyholt, Dale R.; William Rayner, Nigel; Perry, John R.B.; Toniolo, Daniela; Albrecht, Eva; Ang, Wei; Bandinelli, Stefania; Barbalic, Maja; Barroso, Inês; Beckmann, Jacques S.; Biffar, Reiner; Boomsma, Dorret; Campbell, Harry; Corre, Tanguy; Erdmann, Jeanette; Esko, Tõnu; Fischer, Krista; Franceschini, Nora; Frayling, Timothy M.; Girotto, Giorgia; Gonzalez, Juan R.; Harris, Tamara B.; Heath, Andrew C.; Heid, Iris M.; Hoffmann, Wolfgang; Hofman, Albert; Horikoshi, Momoko; Hua Zhao, Jing; Jackson, Anne U.; Hottenga, Jouke-Jan; Jula, Antti; Kähönen, Mika; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Klopp, Norman; Kutalik, Zoltán; Lagou, Vasiliki; Launer, Lenore J.; Lehtimäki, Terho; Lemire, Mathieu; Lokki, Marja-Liisa; Loley, Christina; Luan, Jian'an; Mangino, Massimo; Mateo Leach, Irene; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Navis, Gerjan; Newnham, John; Nieminen, Markku S.; Palotie, Aarno; Panoutsopoulou, Kalliope; Peters, Annette; Pirastu, Nicola; Polašek, Ozren; Rehnström, Karola; Ripatti, Samuli; Ritchie, Graham R.S.; Rivadeneira, Fernando; Robino, Antonietta; Samani, Nilesh J.; Shin, So-Youn; Sinisalo, Juha; Smit, Johannes H.; Soranzo, Nicole; Stolk, Lisette; Swinkels, Dorine W.; Tanaka, Toshiko; Teumer, Alexander; Tönjes, Anke; Traglia, Michela; Tuomilehto, Jaakko; Valsesia, Armand; van Gilst, Wiek H.; van Meurs, Joyce B.J.; Smith, Albert Vernon; Viikari, Jorma; Vink, Jacqueline M.; Waeber, Gerard; Warrington, Nicole M.; Widen, Elisabeth; Willemsen, Gonneke; Wright, Alan F.; Zanke, Brent W.; Zgaga, Lina; Boehnke, Michael; d'Adamo, Adamo Pio; de Geus, Eco; Demerath, Ellen W.; den Heijer, Martin; Eriksson, Johan G.; Ferrucci, Luigi; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Hengstenberg, Christian; Hudson, Thomas J.; Järvelin, Marjo-Riitta; Kogevinas, Manolis; Loos, Ruth J.F.; Martin, Nicholas G.; Metspalu, Andres; Pennell, Craig E.; Penninx, Brenda W.; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Schreiber, Stefan; Schunkert, Heribert; Spector, Tim D.; Stumvoll, Michael; Uitterlinden, André G.; Ulivi, Sheila; van der Harst, Pim; Vollenweider, Peter; Völzke, Henry; Wareham, Nicholas J.; Wichmann, H.-Erich; Wilson, James F.; Rudan, Igor; Xue, Yali; Zeggini, Eleftheria

    2012-01-01

    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. PMID:22843499

  2. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  3. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures.

    Directory of Open Access Journals (Sweden)

    Moon Young Lee

    Full Text Available Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC, which serve as slow-wave electrical pacemakers for gastrointestinal (GI smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies.

  4. A Universal Genome Array and Transcriptome Atlas for Brachypodium Distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Mockler, Todd [Oregon State Univ., Corvallis, OR (United States)

    2017-04-17

    Brachypodium distachyon is the premier experimental model grass platform and is related to candidate feedstock crops for bioethanol production. Based on the DOE-JGI Brachypodium Bd21 genome sequence and annotation we designed a whole genome DNA microarray platform. The quality of this array platform is unprecedented due to the exceptional quality of the Brachypodium genome assembly and annotation and the stringent probe selection criteria employed in the design. We worked with members of the international community and the bioinformatics/design team at Affymetrix at all stages in the development of the array. We used the Brachypodium arrays to interrogate the transcriptomes of plants grown in a variety of environmental conditions including diurnal and circadian light/temperature conditions and under a variety of environmental conditions. We examined the transciptional responses of Brachypodium seedlings subjected to various abiotic stresses including heat, cold, salt, and high intensity light. We generated a gene expression atlas representing various organs and developmental stages. The results of these efforts including all microarray datasets are published and available at online public databases.

  5. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    Science.gov (United States)

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  6. Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence

    Science.gov (United States)

    Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.

    2013-01-01

    It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047

  7. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    Science.gov (United States)

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  8. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    Science.gov (United States)

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Multi-targeted priming for genome-wide gene expression assays

    Directory of Open Access Journals (Sweden)

    Adomas Aleksandra B

    2010-08-01

    Full Text Available Abstract Background Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. Results We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Conclusions Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and

  10. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition.

    Directory of Open Access Journals (Sweden)

    Kai Xing

    Full Text Available Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.

  11. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the

  12. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  13. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    Full Text Available BACKGROUND: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST database limited the quality of the original genome annotation. METHODOLOGY/PRINCIPAL FINDINGS: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs and an updated (larger size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. CONCLUSIONS/SIGNIFICANCE: RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular

  14. MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome data.

    Directory of Open Access Journals (Sweden)

    Brigitte Wägele

    Full Text Available Systems Biology is a field in biological science that focuses on the combination of several or all "omics"-approaches in order to find out how genes, transcripts, proteins and metabolites act together in the network of life. Metabolomics as analog to genomics, transcriptomics and proteomics is more and more integrated into biological studies and often transcriptomic and metabolomic experiments are combined in one setup. At a first glance both data types seem to be completely different, but both produce information on biological entities, either transcripts or metabolites. Both types can be overlaid on metabolic pathways to obtain biological information on the studied system. For the joint analysis of both data types the MassTRIX webserver was updated. MassTRIX is freely available at www.masstrix.org.

  15. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population.

    Directory of Open Access Journals (Sweden)

    Kejun Wang

    Full Text Available In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1, seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3, and one for average daily gain (COL27A1. Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.

  16. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique.

    Directory of Open Access Journals (Sweden)

    Chaozheng Li

    Full Text Available BACKGROUND: Pacific white shrimp (Litopenaeus vannamei, the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS: This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG categories, 8171 unigenes were assigned into 51 Gene ontology (GO functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE: The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.

  17. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    DEFF Research Database (Denmark)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE...... that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic...

  18. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  19. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  20. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  1. RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne).

    Science.gov (United States)

    Jung, Won Yong; Lee, Sang Sook; Kim, Chul Wook; Kim, Hyun-Soon; Min, Sung Ran; Moon, Jae Sun; Kwon, Suk-Yoon; Jeon, Jae-Heung; Cho, Hye Sun

    2014-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has long been cultivated as a vegetable and as a source of fructans (inulin) for pharmaceutical applications in diabetes and obesity prevention. However, transcriptomic and genomic data for Jerusalem artichoke remain scarce. In this study, Illumina RNA sequencing (RNA-Seq) was performed on samples from Jerusalem artichoke leaves, roots, stems and two different tuber tissues (early and late tuber development). Data were used for de novo assembly and characterization of the transcriptome. In total 206,215,632 paired-end reads were generated. These were assembled into 66,322 loci with 272,548 transcripts. Loci were annotated by querying against the NCBI non-redundant, Phytozome and UniProt databases, and 40,215 loci were homologous to existing database sequences. Gene Ontology terms were assigned to 19,848 loci, 15,434 loci were matched to 25 Clusters of Eukaryotic Orthologous Groups classifications, and 11,844 loci were classified into 142 Kyoto Encyclopedia of Genes and Genomes pathways. The assembled loci also contained 10,778 potential simple sequence repeats. The newly assembled transcriptome was used to identify loci with tissue-specific differential expression patterns. In total, 670 loci exhibited tissue-specific expression, and a subset of these were confirmed using RT-PCR and qRT-PCR. Gene expression related to inulin biosynthesis in tuber tissue was also investigated. Exsiting genetic and genomic data for H. tuberosus are scarce. The sequence resources developed in this study will enable the analysis of thousands of transcripts and will thus accelerate marker-assisted breeding studies and studies of inulin biosynthesis in Jerusalem artichoke.

  2. Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila

    Directory of Open Access Journals (Sweden)

    Yao Su

    2016-11-01

    Full Text Available Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.

  3. Transcriptomic analysis of endangered Chinese salamander: identification of immune, sex and reproduction-related genes and genetic markers.

    Directory of Open Access Journals (Sweden)

    Rongbo Che

    Full Text Available The Chinese salamander (Hynobius chinensis, an endangered amphibian species of salamander endemic to China, has attracted much attention because of its value of studying paleontology evolutionary history and decreasing population size. Despite increasing interest in the Hynobius chinensis genome, genomic resources for the species are still very limited. A comprehensive transcriptome of Hynobius chinensis, which will provide a resource for genome annotation, candidate genes identification and molecular marker development should be generated to supplement it.We performed a de novo assembly of Hynobius chinensis transcriptome by Illumina sequencing. A total of 148,510 nonredundant unigenes with an average length of approximately 580 bp were obtained. In all, 60,388 (40.66% unigenes showed homologous matches in at least one database and 33,537 (22.58% unigenes were annotated by all four databases. In total, 41,553 unigenes were categorized into 62 sub-categories by BLAST2GO search, and 19,468 transcripts were assigned to 140 KEGG pathways. A large number of unigenes involved in immune system, local adaptation, reproduction and sex determination were identified, as well as 31,982 simple sequence repeats (SSRs and 460,923 putative single nucleotide polymorphisms (SNPs.This dataset represents the first transcriptome analysis of the Chinese salamander (Hynobius chinensis, an endangered species, to be also the first time of hynobiidae. The transcriptome will provide valuable resource for further research in discovery of new genes, protection of population, adaptive evolution and survey of various pathways, as well as development of molecule markers in Chinese salamander; and reference information for closely related species.

  4. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    Science.gov (United States)

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  5. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  6. Research Guidelines in the Era of Large-scale Collaborations: An Analysis of Genome-wide Association Study Consortia

    Science.gov (United States)

    Austin, Melissa A.; Hair, Marilyn S.; Fullerton, Stephanie M.

    2012-01-01

    Scientific research has shifted from studies conducted by single investigators to the creation of large consortia. Genetic epidemiologists, for example, now collaborate extensively for genome-wide association studies (GWAS). The effect has been a stream of confirmed disease-gene associations. However, effects on human subjects oversight, data-sharing, publication and authorship practices, research organization and productivity, and intellectual property remain to be examined. The aim of this analysis was to identify all research consortia that had published the results of a GWAS analysis since 2005, characterize them, determine which have publicly accessible guidelines for research practices, and summarize the policies in these guidelines. A review of the National Human Genome Research Institute’s Catalog of Published Genome-Wide Association Studies identified 55 GWAS consortia as of April 1, 2011. These consortia were comprised of individual investigators, research centers, studies, or other consortia and studied 48 different diseases or traits. Only 14 (25%) were found to have publicly accessible research guidelines on consortia websites. The available guidelines provide information on organization, governance, and research protocols; half address institutional review board approval. Details of publication, authorship, data-sharing, and intellectual property vary considerably. Wider access to consortia guidelines is needed to establish appropriate research standards with broad applicability to emerging forms of large-scale collaboration. PMID:22491085

  7. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon

    2015-01-01

    . muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified...

  8. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  9. Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages

    Directory of Open Access Journals (Sweden)

    Man-Li He

    2016-11-01

    Full Text Available Abstract Background Psoroptic mange is a chronic, refractory, contagious and infectious disease mainly caused by the mange mite Psoroptes ovis, which can infect horses, sheep, buffaloes, rabbits, other domestic animals, deer, wild camels, foxes, minks, lemurs, alpacas, elks and other wild animals. Features of the disease include intense pruritus and dermatitis, depilation and hyperkeratosis, which ultimately result in emaciation or death caused by secondary bacterial infections. The infestation is usually transmitted by close contact between animals. Psoroptic mange is widespread in the world. In this paper, the transcriptome of P. ovis is described following sequencing and analysis of transcripts from samples of larvae (i.e. the Pso_L group and nymphs and adults (i.e. the Pso_N_A group. The study describes differentially expressed genes (DEGs and genes encoding allergens, which help understanding the biology of P. ovis and lay foundations for the development of vaccine antigens and drug target screening. Methods The transcriptome of P. ovis was assembled and analyzed using bioinformatic tools. The unigenes of P. ovis from each developmental stage and the unigenes differentially between developmental stages were compared with allergen protein sequences contained in the allergen database website to predict potential allergens. Results We identified 38,836 unigenes, whose mean length was 825 bp. On the basis of sequence similarity with seven databases, a total of 17,366 unigenes were annotated. A total of 1,316 DEGs were identified, including 496 upregulated and 820 downregulated in the Pso_L group compared with the Pso_N_A group. We predicted 205 allergens genes in the two developmental stages similar to genes from other mites and ticks, of these, 14 were among the upregulated DEGs and 26 among the downregulated DEGs. Conclusion This study provides a reference transcriptome of P. ovis in absence of a reference genome. The analysis of DEGs and

  10. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing.

    Science.gov (United States)

    Liu, Na; Yang, Jinghua; Fu, Xinxing; Zhang, Li; Tang, Kai; Guy, Kateta Malangisha; Hu, Zhongyuan; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2016-04-01

    Grafting is an important agricultural technique widely used to improve plant growth, yield, and adaptation to either biotic or abiotic stresses. However, the molecular mechanisms underlying grafting-induced physiological processes remain unclear. Watermelon (Citrullus lanatus L.) is an important horticultural crop worldwide. Grafting technique is commonly used in watermelon production for improving its tolerance to stresses, especially to the soil-borne fusarium wilt disease. In the present study, we used high-throughput sequencing to perform a genome-wide transcript analysis of scions from watermelon grafted onto bottle gourd and squash rootstocks. Our transcriptome and digital gene expression (DGE) profiling data provided insights into the molecular aspects of gene regulation in grafted watermelon. Compared with self-grafted watermelon, there were 787 and 3485 genes differentially expressed in watermelon grafted onto bottle gourd and squash rootstocks, respectively. These genes were associated with primary and secondary metabolism, hormone signaling, transcription factors, transporters, and response to stimuli. Grafting led to changes in expression of these genes, suggesting that they may play important roles in mediating the physiological processes of grafted seedlings. The potential roles of the grafting-responsive mRNAs in diverse biological and metabolic processes were discussed. Obviously, the data obtained in this study provide an excellent resource for unraveling the mechanisms of candidate genes function in diverse biological processes and in environmental adaptation in a graft system.

  11. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome...

  12. Transcriptome-wide analysis supports environmental adaptations of two Pinus pinaster populations from contrasting habitats.

    Science.gov (United States)

    Cañas, Rafael A; Feito, Isabel; Fuente-Maqueda, José Francisco; Ávila, Concepción; Majada, Juan; Cánovas, Francisco M

    2015-11-06

    Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.

  13. Transcriptome dynamics-based operon prediction in prokaryotes.

    Science.gov (United States)

    Fortino, Vittorio; Smolander, Olli-Pekka; Auvinen, Petri; Tagliaferri, Roberto; Greco, Dario

    2014-05-16

    Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available.

  14. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

    NARCIS (Netherlands)

    Scott, Robert A; Scott, Laura J; Mägi, Reedik; Marullo, Letizia; Gaulton, Kyle J; Kaakinen, Marika; Pervjakova, Natalia; Pers, Tune H; Johnson, Andrew D; Eicher, John D; Jackson, Anne U; Ferreira, Teresa; Lee, Yeji; Ma, Clement; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Van Zuydam, Natalie R; Mahajan, Anubha; Chen, Han; Almgren, Peter; Voight, Ben F; Grallert, Harald; Müller-Nurasyid, Martina; Ried, Janina S; Rayner, William N; Robertson, Neil; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Fuchsberger, Christian; Kwan, Phoenix; Teslovich, Tanya M; Chanda, Pritam; Li, Man; Lu, Yingchang; Dina, Christian; Thuillier, Dorothee; Yengo, Loic; Jiang, Longda; Sparso, Thomas; Kestler, Hans A; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Frånberg, Mattias; Strawbridge, Rona J; Benediktsson, Rafn; Hreidarsson, Astradur B; Kong, Augustine; Sigurðsson, Gunnar; Kerrison, Nicola D; Luan, Jian'an; Liang, Liming; Meitinger, Thomas; Roden, Michael; Thorand, Barbara; Esko, Tõnu; Mihailov, Evelin; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Isomaa, Bo; Lyssenko, Valeriya; Tuomi, Tiinamaija; Couper, David J; Pankow, James S; Grarup, Niels; Have, Christian T; Jørgensen, Marit E; Jørgensen, Torben; Linneberg, Allan; Cornelis, Marilyn C; van Dam, Rob M; Hunter, David J; Kraft, Peter; Sun, Qi; Edkins, Sarah; Owen, Katharine R; Perry, John Rb; Wood, Andrew R; Zeggini, Eleftheria; Tajes-Fernandes, Juan; Abecasis, Goncalo R; Bonnycastle, Lori L; Chines, Peter S; Stringham, Heather M; Koistinen, Heikki A; Kinnunen, Leena; Sennblad, Bengt; Mühleisen, Thomas W; Nöthen, Markus M; Pechlivanis, Sonali; Baldassarre, Damiano; Gertow, Karl; Humphries, Steve E; Tremoli, Elena; Klopp, Norman; Meyer, Julia; Steinbach, Gerald; Wennauer, Roman; Eriksson, Johan G; Mӓnnistö, Satu; Peltonen, Leena; Tikkanen, Emmi; Charpentier, Guillaume; Eury, Elodie; Lobbens, Stéphane; Gigante, Bruna; Leander, Karin; McLeod, Olga; Bottinger, Erwin P; Gottesman, Omri; Ruderfer, Douglas; Blüher, Matthias; Kovacs, Peter; Tonjes, Anke; Maruthur, Nisa M; Scapoli, Chiara; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; de Faire, Ulf; Hamsten, Anders; Stumvoll, Michael; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Ripatti, Samuli; Salomaa, Veikko; Pedersen, Nancy L; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Hansen, Torben; Pedersen, Oluf; Barroso, Inês; Lannfelt, Lars; Ingelsson, Erik; Lind, Lars; Lindgren, Cecilia M; Cauchi, Stephane; Froguel, Philippe; Loos, Ruth Jf; Balkau, Beverley; Boeing, Heiner; Franks, Paul W; Gurrea, Aurelio Barricarte; Palli, Domenico; van der Schouw, Yvonne T; Altshuler, David; Groop, Leif C; Langenberg, Claudia; Wareham, Nicholas J; Sijbrands, Eric; van Duijn, Cornelia M; Florez, Jose C; Meigs, James B; Boerwinkle, Eric; Gieger, Christian; Strauch, Konstantin; Metspalu, Andres; Morris, Andrew D; Palmer, Colin Na; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Dupuis, Josée; Morris, Andrew P; Boehnke, Michael; McCarthy, Mark I; Prokopenko, Inga

    2017-01-01

    To characterise type 2 diabetes (T2D) associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes multi-ethnic reference panel.

  15. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.

    Science.gov (United States)

    Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna

    2016-04-07

    DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.

  16. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sibylle Chantal Vonesch

    2016-01-01

    Full Text Available Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.

  17. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (number data, and causal mechanisms of the five pathways require further study.

  18. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Science.gov (United States)

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  19. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    Directory of Open Access Journals (Sweden)

    Dipti S. Hattangady

    2015-02-01

    Full Text Available Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL than strain 13136p−m+V5 (MIC = 8 µg/mL. Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.

  20. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  1. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  2. Comparative de novo transcriptome analysis of male and female Sea buckthorn.

    Science.gov (United States)

    Bansal, Ankush; Salaria, Mehul; Sharma, Tashil; Stobdan, Tsering; Kant, Anil

    2018-02-01

    Sea buckthorn is a dioecious medicinal plant found at high altitude. The plant has both male and female reproductive organs in separate individuals. In this article, whole transcriptome de novo assemblies of male and female flower bud samples were carried out using Illumina NextSeq 500 platform to determine the role of the genes involved in sex determination. Moreover, genes with differential expression in male and female transcriptomes were identified to understand the underlying sex determination mechanism. The current study showed 63,904 and 62,272 coding sequences (CDS) in female and male transcriptome data sets, respectively. 16,831 common CDS were screened out from both transcriptomes, out of which 625 were upregulated and 491 were found to be downregulated. To understand the potential regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways: KEGG mapping, gene ontology, and co-expression network analysis were performed. Comparison with Flowering Interactive Database (FLOR-ID) resulted in eight differentially expressed genes viz. CHD3-type chromatin-remodeling factor PICKLE ( PKL ), phytochrome-associated serine/threonine-protein phosphatase ( FYPP ), protein TOPLESS ( TPL ), sensitive to freezing 6 ( SFR6 ), lysine-specific histone demethylase 1 homolog 1 ( LDL1 ), pre-mRNA-processing-splicing factor 8A ( PRP8A ), sucrose synthase 4 ( SUS4 ), ubiquitin carboxyl-terminal hydrolase 12 ( UBP12 ), known to be broadly involved in flowering, photoperiodism, embryo development, and cold response pathways. Male and female flower bud transcriptome data of Sea buckthorn may provide comprehensive information at genomic level for the identification of genetic regulation involved in sex determination.

  3. Identification and analysis of common bean (Phaseolus vulgaris L. transcriptomes by massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Thimmapuram Jyothi

    2011-10-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt. These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC end sequences, and a total of 21% of the unigenes (12,724 including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs and transcription factors were also identified in this study. Conclusions This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and

  4. The genome of Prunus mume.

    Science.gov (United States)

    Zhang, Qixiang; Chen, Wenbin; Sun, Lidan; Zhao, Fangying; Huang, Bangqing; Yang, Weiru; Tao, Ye; Wang, Jia; Yuan, Zhiqiong; Fan, Guangyi; Xing, Zhen; Han, Changlei; Pan, Huitang; Zhong, Xiao; Shi, Wenfang; Liang, Xinming; Du, Dongliang; Sun, Fengming; Xu, Zongda; Hao, Ruijie; Lv, Tian; Lv, Yingmin; Zheng, Zequn; Sun, Ming; Luo, Le; Cai, Ming; Gao, Yike; Wang, Junyi; Yin, Ye; Xu, Xun; Cheng, Tangren; Wang, Jun

    2012-01-01

    Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.

  5. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    DEFF Research Database (Denmark)

    Wang, Zhaoming; McGlynn, Katherine A.; Rajpert-De Meyts, Ewa

    2017-01-01

    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the fi...

  6. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  7. The challenges of genome-wide interaction studies: lessons to learn from the analysis of HDL blood levels.

    Directory of Open Access Journals (Sweden)

    Elisabeth M van Leeuwen

    Full Text Available Genome-wide association studies (GWAS have revealed 74 single nucleotide polymorphisms (SNPs associated with high-density lipoprotein cholesterol (HDL blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS cohort I (RS-I using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III, we were able to filter 181 interaction terms with a p-value<1 · 10-8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011 when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098 and rs12442098 in SPATA8 (ENSG00000185594 being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.

  8. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens populations with different virulence levels in rice.

    Directory of Open Access Journals (Sweden)

    Haixin Yu

    Full Text Available BACKGROUND: The brown planthopper (BPH, Nilaparvata lugens (Stål, one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population and Mudgo (M population. In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. CONCLUSIONS/SIGNIFICANCE: This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies

  9. Transcriptome Analysis of Fat Bodies from Two Brown Planthopper (Nilaparvata lugens) Populations with Different Virulence Levels in Rice

    Science.gov (United States)

    Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. Methodology/Principal Findings In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. Conclusions/Significance This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful

  10. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  11. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, S.; Sanders, A. R.; Kendler, K. S.; Levinson, D. F.; Sklar, P.; Holmans, P. A.; Lin, D. Y.; Duan, J.; Ophoff, R. A.; Andreassen, O. A.; Scolnick, E.; Cichon, S.; St Clair, D.; Corvin, A.; Gurling, H.; Werge, T.; Rujescu, D.; Blackwood, D. H.; Pato, C. N.; Malhotra, A. K.; Purcell, S.; Dudbridge, F.; Neale, B. M.; Rossin, L.; Visscher, P. M.; Posthuma, D.; Ruderfer, D. M.; Fanous, A.; Stefansson, H.; Steinberg, S.; Mowry, B. J.; Golimbet, V.; de Hert, M.; Jonsson, E. G.; Bitter, I.; Pietilainen, O. P.; Collier, D. A.; Tosato, S.; Agartz, I.; Albus, M.; Alexander, M.; Amdur, R. L.; Amin, F.; Bass, N.; Bergen, S. E.; Black, D. W.; Borglum, A. D.; Brown, M. A.; Bruggeman, R.; Buccola, N. G.; Byerley, W. F.; Cahn, W.; Cantor, R. M.; Carr, V. J.; Catts, S. V.; Choudhury, K.; Cloninger, C. R.; Cormican, P.; Craddock, N.; Danoy, P. A.; Datta, S.; de Haan, L.; Demontis, D.; Dikeos, D.; Djurovic, S.; Donnely, P.; Donohoe, G.; Duong, L.; Dwyer, S.; Fink-Jensen, A.; Freedman, R.; Freimer, N. B.; Friedl, M.; Georgieva, L.; Giegling, I.; Gill, M.; Glenthoj, B.; Godard, S.; Hamshere, M.; Hansen, M.; Hartmann, A. M.; Henskens, F. A.; Hougaard, D. M.; Hultman, C. M.; Ingason, A.; Jablensky, A. V.; Jakobsen, K. D.; Jay, M.; Jurgens, G.; Kahn, R. S.; Keller, M. C.; Kenis, G.; Kenny, E.; Kim, Y.; Kirov, G. K.; Konnerth, H.; Konte, B.; Krabbendam, L.; Krasucki, R.; Lasseter, V. K.; Laurent, C.; Lawrence, J.; Lencz, T.; Lerer, F. B.; Liang, K. Y.; Lichtenstein, P.; Lieberman, J. A.; Linszen, D. H.; Lonnqvist, J.; Loughland, C. M.; Maclean, A. W.; Maher, B. S.; Maier, W.; Mallet, J.; Malloy, P.; Mattheisen, M.; Mattingsdal, M.; McGhee, K. A.; McGrath, J. J.; McIntosh, A.; McLean, D. E.; McQuillin, A.; Melle, I.; Michie, P. T.; Milanova, V.; Morris, D. W.; Mors, O.; Mortensen, P. B.; Moskvina, V.; Muglia, P.; Myin-Germeys, I.; Nertney, D. A.; Nestadt, G.; Nielsen, J.; Nikolov, I.; Nordentoft, M.; Norton, N.; Nothen, M. M.; O'Dushlaine, C. T.; Olincy, A.; Olsen, L.; O'Neill, F. A.; Orntoft, T. F.; Owen, M. J.; Pantelis, C.; Papadimitriou, G.; Pato, M. T.; Peltonen, L.; Petursson, H.; Pickard, B.; Pimm, J.; Pulver, A. E.; Puri, V.; Quested, D.; Quinn, E. M.; Rasmussen, H. B.; Rethelyi, J. M.; Ribble, R.; Rietschel, M.; Riley, B. P.; Ruggeri, M.; Schall, U.; Schulze, T. G.; Schwab, S. G.; Scott, R. J.; Shi, J.; Sigurdsson, E.; Silvermann, J. M.; Spencer, C. C.; Stefansson, K.; Strange, A.; Strengman, E.; Stroup, T. S.; Suvisaari, J.; Terenius, L.; Thirumalai, S.; Thygesen, J. H.; Timm, S.; Toncheva, D.; van den Oord, E.; van Os, J.; van Winkel, R.; Veldink, J.; Walsh, D.; Wang, A. G.; Wiersma, D.; Wildenauer, D. B.; Williams, H. J.; Williams, N. M.; Wormley, B.; Zammit, S.; Sullivan, P. F.; O'Donovan, M. C.; Daly, M. J.; Gejman, P. V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  12. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    Science.gov (United States)

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  13. Genome-wide analysis yields new loci associating with aortic valve stenosis

    DEFF Research Database (Denmark)

    Helgadottir, Anna; Thorleifsson, Gudmar; Gretarsdottir, Solveig

    2018-01-01

    Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls...

  14. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    Science.gov (United States)

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  15. A molecular scheme for Yersinia enterocolitica patho-serotyping derived from genome-wide analysis.

    Science.gov (United States)

    Garzetti, Debora; Susen, Rosa; Fruth, Angelika; Tietze, Erhard; Heesemann, Jürgen; Rakin, Alexander

    2014-05-01

    Yersinia enterocolitica is a food-borne, gastro-intestinal pathogen with world-wide distribution. Only 11 serotypes have been isolated from patients, with O:3, O:9, O:8 and O:5,27 being the serotypes most commonly associated with human yersiniosis. Serotype is an important characteristic of Y. enterocolitica strains, allowing differentiation for epidemiology, diagnosis and phylogeny studies. Conventional serotyping, performed by slide agglutination, is a tedious and laborious procedure whose interpretation tends to be subjective, leading to poor reproducibility. Here we present a PCR-based typing scheme for molecular identification and patho-serotyping of Y. enterocolitica. Genome-wide comparison of Y. enterocolitica sequences allowed analysis of the O-antigen gene clusters of different serotypes, uncovering their formerly unknown genomic locations, and selection of targets for serotype-specific amplification. Two multiplex PCRs and one additional PCR were designed and tested on various reference strains and isolates from different origins. Our genotypic assay proved to be highly specific for identification of Y. enterocolitica species, discrimination between virulent and non-virulent strains, distinguishing the main human-related serotypes, and typing of conventionally untypeable strains. This genotyping scheme could be applied in microbiology laboratories as an alternative or complementary method to the traditional phenotypic assays, providing data for epidemiological studies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.

    LENUS (Irish Health Repository)

    Sklar, Pamela

    2011-10-01

    We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10(-7)). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci.

  17. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  18. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  19. Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics

    Directory of Open Access Journals (Sweden)

    Xyrus X. Maurer-Alcalá

    2018-01-01

    Full Text Available Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera. In ciliates, germline-limited (i.e., micronuclear-specific DNA is eliminated during the development of a new somatic (i.e., macronuclear genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i large gene families contain a disproportionate number of genes from scrambled germline loci; (ii germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates.

  20. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  1. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows

    Directory of Open Access Journals (Sweden)

    Van Tassell Curtis P

    2011-08-01

    Full Text Available Abstract Background Genome-wide association analysis is a powerful tool for annotating phenotypic effects on the genome and knowledge of genes and chromosomal regions associated with dairy phenotypes is useful for genome and gene-based selection. Here, we report results of a genome-wide analysis of predicted transmitting ability (PTA of 31 production, health, reproduction and body conformation traits in contemporary Holstein cows. Results Genome-wide association analysis identified a number of candidate genes and chromosome regions associated with 31 dairy traits in contemporary U.S. Holstein cows. Highly significant genes and chromosome regions include: BTA13's GNAS region for milk, fat and protein yields; BTA7's INSR region and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate, somatic cell score and productive life; BTA2's LRP1B for somatic cell score; BTA14's DGAT1-NIBP region for fat percentage; BTA1's FKBP2 for protein yields and percentage, BTA26's MGMT and BTA6's PDGFRA for protein percentage; BTA18's 53.9-58.7 Mb region for service-sire and daughter calving ease and service-sire stillbirth; BTA18's PGLYRP1-IGFL1 region for a large number of traits; BTA18's LOC787057 for service-sire stillbirth and daughter calving ease; BTA15's CD82, BTA23's DST and the MOCS1-LRFN2 region for daughter stillbirth; and BTAX's LOC520057 and GRIA3 for daughter pregnancy rate. For body conformation traits, BTA11, BTAX, BTA10, BTA5, and BTA26 had the largest concentrations of SNP effects, and PHKA2 of BTAX and REN of BTA16 had the most significant effects for body size traits. For body shape traits, BTAX, BTA19 and BTA3 were most significant. Udder traits were affected by BTA16, BTA22, BTAX, BTA2, BTA10, BTA11, BTA20, BTA22 and BTA25, teat traits were affected by BTA6, BTA7, BTA9, BTA16, BTA11, BTA26 and BTA17, and feet/legs traits were affected by BTA11, BTA13, BTA18, BTA20, and BTA26. Conclusions Genome-wide association analysis identified a number of

  2. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    Directory of Open Access Journals (Sweden)

    Claire L Simpson

    Full Text Available Refractive error (RE is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness and hyperopia (farsightedness, which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8, which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11 and 8q12 (minimum p value 1.82×10(-11 previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al. and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  3. Genome-wide association study of antisocial personality disorder.

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-09-06

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53-3.14), P=1.9 × 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37-1.85), P=1.6 × 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.

  4. Genome-wide association study of antisocial personality disorder

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  5. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology

    OpenAIRE

    Springelkamp, Henriët; Mishra, Aniket; Hysi, Pirro G.; Gharahkhani, Puya; Höhn, René; Khor, Chiea-Chuen; Cooke Bailey, Jessica N.; Luo, Xiaoyan; Ramdas, Wishal D.; Vithana, Eranga; Koh, Victor; Yazar, Seyhan; Xu, Liang; Forward, Hannah; Kearns, Lisa S.

    2015-01-01

    Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asia...

  6. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  7. Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Taotao Li

    2017-02-01

    Full Text Available Citrinin is a toxic secondary metabolite of Penicillium citrinum and its contamination in many food items has been widely reported. However, research on the citrinin biosynthesis pathway and its regulation mechanism in P. citrinum is rarely reported. In this study, we investigated the effect of different carbon sources on citrinin production by P. citrinum and used transcriptome analysis to study the underlying molecular mechanism. Our results indicated that glucose, used as the sole carbon source, could significantly promote citrinin production by P. citrinum in Czapek’s broth medium compared with sucrose. A total of 19,967 unigenes were annotated by BLAST in Nr, Nt, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Transcriptome comparison between P. citrinum cultured with sucrose and glucose revealed 1085 differentially expressed unigenes. Among them, 610 were upregulated while 475 were downregulated under glucose as compared to sucrose. KEGG pathway and Gene ontology (GO analysis indicated that many metabolic processes (e.g., carbohydrate, secondary metabolism, fatty acid and amino acid metabolism were affected, and potentially interesting genes that encoded putative components of signal transduction, stress response and transcription factor were identified. These genes obviously had important impacts on their regulation in citrinin biosynthesis, which provides a better understanding of the molecular mechanism of citrinin biosynthesis by P. citrinum.

  8. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Directory of Open Access Journals (Sweden)

    Alix Armero

    Full Text Available The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L. is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut and a reference species (oil palm to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/.

  9. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    Science.gov (United States)

    Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique

    2017-01-01

    The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).

  10. CMS: a web-based system for visualization and analysis of genome-wide methylation data of human cancers.

    Science.gov (United States)

    Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong

    2013-01-01

    DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible

  11. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    OpenAIRE

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies?CYP93A?K, with t...

  12. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    Science.gov (United States)

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  13. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.; Ekholm, J.; Forabosco, P.; Franke, F.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenkel, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schäfer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.; Steinhausen, H.C.; van der Meulen, E.; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  14. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.P.; Ekholm, J.; Forabosco, P.; Franke, B.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenke, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schafer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Meulen, E. van der; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  15. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    Directory of Open Access Journals (Sweden)

    Nitsche Benjamin M

    2012-08-01

    Full Text Available Abstract Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292 of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The

  16. Analysis of codon usage patterns in Morus notabilis based on genome and transcriptome data.

    Science.gov (United States)

    Wen, Yan; Zou, Ziliang; Li, Hongshun; Xiang, Zhonghuai; He, Ningjia

    2017-06-01

    Codons play important roles in regulating gene expression levels and mRNA half-lives. However, codon usage and related studies in multicellular organisms still lag far behind those in unicellular organisms. In this study, we describe for the first time genome-wide patterns of codon bias in Morus notabilis (mulberry tree), and analyze genome-wide codon usage in 12 other species within the order Rosales. The codon usage of M. notabilis was affected by nucleotide composition, mutation pressure, nature selection, and gene expression level. Translational selection optimal codons were identified and highly expressed genes of M. notabilis tended to use the optimal codons. Genes with higher expression levels have shorter coding region and lower amino acid complexity. Housekeeping genes showed stronger translational selection, which, notably, was not caused by the large differences between the expression level of housekeeping genes and other genes.

  17. High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells

    NARCIS (Netherlands)

    Erk, M.J. van; Blom, W.A.M.; Ommen, B. van; Hendriks, H.F.J.

    2006-01-01

    Background: Application of transcriptomics technology in human nutrition intervention studies would allow for genome-wide screening of the effects of specific diets or nutrients and result in biomarker profiles. Objective: The aim was to evaluate the potential of gene expression profiling in blood

  18. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  19. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    Science.gov (United States)

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    DEFF Research Database (Denmark)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte

    2014-01-01

    Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better......Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies......, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap...

  1. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  2. Enriching Genomic Resources and Transcriptional Profile Analysis of Miscanthus sinensis under Drought Stress Based on RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-01-01

    Full Text Available Miscanthus × giganteus is wildly cultivated as a potential biofuel feedstock around the world; however, the narrow genetic basis and sterile characteristics have become a limitation for its utilization. As a progenitor of M. × giganteus, M. sinensis is widely distributed around East Asia providing well abiotic stress tolerance. To enrich the M. sinensis genomic databases and resources, we sequenced and annotated the transcriptome of M. sinensis by using an Illumina HiSeq 2000 platform. Approximately 316 million high-quality trimmed reads were generated from 349 million raw reads, and a total of 114,747 unigenes were obtained after de novo assembly. Furthermore, 95,897 (83.57% unigenes were annotated to at least one database including NR, Swiss-Prot, KEGG, COG, GO, and NT, supporting that the sequences obtained were annotated properly. Differentially expressed gene analysis indicates that drought stress 15 days could be a critical period for M. sinensis response to drought stress. The high-throughput transcriptome sequencing of M. sinensis under drought stress has greatly enriched the current genomic available resources. The comparison of DEGs under different periods of drought stress identified a wealth of candidate genes involved in drought tolerance regulatory networks, which will facilitate further genetic improvement and molecular studies of the M. sinensis.

  3. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei.

    Science.gov (United States)

    Zhou, Peng; Zhang, Guoqiang; Chen, Shangwu; Jiang, Zhengqiang; Tang, Yanbin; Henrissat, Bernard; Yan, Qiaojuan; Yang, Shaoqing; Chen, Chin-Fu; Zhang, Bing; Du, Zhenglin

    2014-04-21

    The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.

  4. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    Directory of Open Access Journals (Sweden)

    Zhongying Qiu

    2016-07-01

    Full Text Available Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr, NCBI non-redundant nucleotide sequences (Nt, a manually-annotated and reviewed protein sequence database (Swiss-Prot, Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s, 36 unigenes encoding carboxylesterases (CarEs and 36 unigenes encoding glutathione S-transferases (GSTs in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome.

  5. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  6. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans.

    Science.gov (United States)

    Liu, Junyan; Deng, Yang; Peters, Brian M; Li, Lin; Li, Bing; Chen, Lequn; Xu, Zhenbo; Shirtliff, Mark E

    2016-11-07

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA14528 under normal, mid-term and VPNC states were performed using RNA-sequencing (RNA-seq) and further bioinformatics analyses. GO function, COG category, and KEGG pathway enrichment analysis were conducted to investigate functional and related metabolic pathways of the differentially expressed genes. Functional and pathway enrichment analysis indicated that heightened stress response and reduction in genes associated with transport, metabolic process, and enzyme activity might play important roles in the formation of the VPNC state. This is the first transcriptomic analysis on the formation of the VPNC state of beer spoilage L. acetotolerans.

  7. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina.

    Directory of Open Access Journals (Sweden)

    Tingcai Cheng

    Full Text Available The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG and posterior silk gland (PSG. Three sericin genes (sericin 1, sericin 2, and sericin 3 were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25 were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs and 361 insertion-deletions (INDELs were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.

  8. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    Science.gov (United States)

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. © 2015 S. Karger AG, Basel.

  9. Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle.

    Science.gov (United States)

    Moisá, Sonia J; Shike, Daniel W; Graugnard, Daniel E; Rodriguez-Zas, Sandra L; Everts, Robin E; Lewin, Harris A; Faulkner, Dan B; Berger, Larry L; Loor, Juan J

    2013-01-01

    Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.

  10. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution.

    Science.gov (United States)

    Lakhwani, Deepika; Pandey, Ashutosh; Dhar, Yogeshwar Vikram; Bag, Sumit Kumar; Trivedi, Prabodh Kumar; Asif, Mehar Hasan

    2016-01-06

    AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening.

  11. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence...... data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...

  12. Sequencing and characterization of the guppy (Poecilia reticulata transcriptome

    Directory of Open Access Journals (Sweden)

    Rodd F Helen

    2011-04-01

    Full Text Available Abstract Background Next-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history. Results We generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs, and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in

  13. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Zhang, Na; Huang, Xing; Bao, Yaning; Wang, Bo; Zeng, Hongxia; Cheng, Weishun; Tang, Mi; Li, Yuhua; Ren, Jian; Sun, Yuhong

    2017-07-01

    The early auxin responsive SAUR family is an important gene family in auxin signal transduction. We here present the first report of a genome-wide identification of SAUR genes in watermelon genome. We successfully identified 65 ClaSAURs and provide a genomic framework for future study on these genes. Phylogenetic result revealed a Cucurbitaceae-specific SAUR subfamily and contribute to understanding of the evolutionary pattern of SAUR genes in plants. Quantitative RT-PCR analysis demonstrates the existed expression of 11 randomly selected SAUR genes in watermelon tissues. ClaSAUR36 was highly expressed in fruit, for which further study might bring a new prospective for watermelon fruit development. Moreover, correlation analysis revealed the similar expression profiles of SAUR genes between watermelon and Arabidopsis during shoot organogenesis. This work gives us a new support for the conserved auxin machinery in plants.

  14. Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica.

    Science.gov (United States)

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Huang, Yuan

    2017-05-01

    The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers. © 2016 John Wiley & Sons Ltd.

  15. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  16. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard

    2014-01-01

    provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  17. Genome-wide association analysis accounting for environmental factors through propensity-score matching: application to stressful live events in major depressive disorder.

    Science.gov (United States)

    Power, Robert A; Cohen-Woods, Sarah; Ng, Mandy Y; Butler, Amy W; Craddock, Nick; Korszun, Ania; Jones, Lisa; Jones, Ian; Gill, Michael; Rice, John P; Maier, Wolfgang; Zobel, Astrid; Mors, Ole; Placentino, Anna; Rietschel, Marcella; Aitchison, Katherine J; Tozzi, Federica; Muglia, Pierandrea; Breen, Gerome; Farmer, Anne E; McGuffin, Peter; Lewis, Cathryn M; Uher, Rudolf

    2013-09-01

    Stressful life events are an established trigger for depression and may contribute to the heterogeneity within genome-wide association analyses. With depression cases showing an excess of exposure to stressful events compared to controls, there is difficulty in distinguishing between "true" cases and a "normal" response to a stressful environment. This potential contamination of cases, and that from genetically at risk controls that have not yet experienced environmental triggers for onset, may reduce the power of studies to detect causal variants. In the RADIANT sample of 3,690 European individuals, we used propensity score matching to pair cases and controls on exposure to stressful life events. In 805 case-control pairs matched on stressful life event, we tested the influence of 457,670 common genetic variants on the propensity to depression under comparable level of adversity with a sign test. While this analysis produced no significant findings after genome-wide correction for multiple testing, we outline a novel methodology and perspective for providing environmental context in genetic studies. We recommend contextualizing depression by incorporating environmental exposure into genome-wide analyses as a complementary approach to testing gene-environment interactions. Possible explanations for negative findings include a lack of statistical power due to small sample size and conditional effects, resulting from the low rate of adequate matching. Our findings underscore the importance of collecting information on environmental risk factors in studies of depression and other complex phenotypes, so that sufficient sample sizes are available to investigate their effect in genome-wide association analysis. Copyright © 2013 Wiley Periodicals, Inc.

  18. Adiponectin Concentrations: A Genome-wide Association Study

    OpenAIRE

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP a...

  19. Detection of G-Quadruplex Structures Formed by G-Rich Sequences from Rice Genome and Transcriptome Using Combined Probes.

    Science.gov (United States)

    Chang, Tianjun; Li, Weiguo; Ding, Zhan; Cheng, Shaofei; Liang, Kun; Liu, Xiangjun; Bing, Tao; Shangguan, Dihua

    2017-08-01

    Putative G-quadruplex (G4) forming sequences (PQS) are highly prevalent in the genome and transcriptome of various organisms and are considered as potential regulation elements in many biological processes by forming G4 structures. The formation of G4 structures highly depends on the sequences and the environment. In most cases, it is difficult to predict G4 formation by PQS, especially PQS containing G2 tracts. Therefore, the experimental identification of G4 formation is essential in the study of G4-related biological functions. Herein, we report a rapid and simple method for the detection of G4 structures by using a pair of complementary reporters, hemin and BMSP. This method was applied to detect G4 structures formed by PQS (DNA and RNA) searched in the genome and transcriptome of Oryza sativa. Unlike most of the reported G4 probes that only recognize part of G4 structures, the proposed method based on combined probes positively responded to almost all G4 conformations, including parallel, antiparallel, and mixed/hybrid G4, but did not respond to non-G4 sequences. This method shows potential for high-throughput identification of G4 structures in genome and transcriptome. Furthermore, BMSP was observed to drive some PQS to form more stable G4 structures or induce the G4 formation of some PQS that cannot form G4 in normal physiological conditions, which may provide a powerful molecular tool for gene regulation.

  20. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    Science.gov (United States)

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  1. Connecting the dots, genome-wide association studies in substance use

    NARCIS (Netherlands)

    Nivard, M.G.; Verweij, K.J.H.; Minica, C.C.; Treur, J.L.; Vink, J.M.; Boomsma, D.I.

    2016-01-01

    The recent genome-wide association (GWA) meta-analysis of lifetime cannabis use by the International Cannabis Consortium marks a milestone in the study of the genetics of cannabis use. Similar milestones for the genetics of substance use were the GWA meta-analyses of four smoking related traits, of

  2. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    Science.gov (United States)

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic

  3. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Qin Song

    2010-03-01

    Full Text Available Abstract Background Cyanobacteria are an ancient group of photoautotrophic prokaryotes with wide variations in genome size and ecological habitat. Metacaspases (MCAs are cysteine proteinases that have sequence homology to caspases and play essential roles in programmed cell death (PCD. MCAs have been identified in several prokaryotes, fungi and plants; however, knowledge about cyanobacterial metacaspases still remains obscure. With the availability of sequenced genomes of 33 cyanobacteria, we perform a comparative analysis of metacaspases and explore their distribution, domain structure and evolution. Results A total of 58 putative MCAs were identified, which are abundant in filamentous diazotrophic cyanobacteria and Acaryochloris marina MBIC 11017 and absent in all Prochlorococcus and marine Synechococcus strains, except Synechococcus sp. PCC 7002. The Cys-His dyad of caspase superfamily is conserved, while mutations (Tyr in place of His and Ser/Asn/Gln/Gly instead of Cys are also detected in some cyanobacteria. MCAs can be classified into two major families (α and β based on the additional domain structure. Ten types and a total of 276 additional domains were identified, most of which involves in signal transduction. Apoptotic related NACHT domain was also found in two cyanobacterial MCAs. Phylogenetic tree of MCA catalytic P20 domains coincides well with the domain structure and the phylogenies based on 16s rRNA. Conclusions The existence and quantity of MCA genes in unicellular and filamentous cyanobacteria are a function of the genome size and ecological habitat. MCAs of family α and β seem to evolve separately and the recruitment of WD40 additional domain occurs later than the divergence of the two families. In this study, a general framework of sequence-structure-function connections for the metacaspases has been revealed, which may provide new targets for function investigation.

  4. De Novo Deep Transcriptome Analysis of Medicinal Plants for Gene Discovery in Biosynthesis of Plant Natural Products.

    Science.gov (United States)

    Han, R; Rai, A; Nakamura, M; Suzuki, H; Takahashi, H; Yamazaki, M; Saito, K

    2016-01-01

    Study on transcriptome, the entire pool of transcripts in an organism or single cells at certain physiological or pathological stage, is indispensable in unraveling the connection and regulation between DNA and protein. Before the advent of deep sequencing, microarray was the main approach to handle transcripts. Despite obvious shortcomings, including limited dynamic range and difficulties to compare the results from distinct experiments, microarray was widely applied. During the past decade, next-generation sequencing (NGS) has revolutionized our understanding of genomics in a fast, high-throughput, cost-effective, and tractable manner. By adopting NGS, efficiency and fruitful outcomes concerning the efforts to elucidate genes responsible for producing active compounds in medicinal plants were profoundly enhanced. The whole process involves steps, from the plant material sampling, to cDNA library preparation, to deep sequencing, and then bioinformatics takes over to assemble enormous-yet fragmentary-data from which to comb and extract information. The unprecedentedly rapid development of such technologies provides so many choices to facilitate the task, which can cause confusion when choosing the suitable methodology for specific purposes. Here, we review the general approaches for deep transcriptome analysis and then focus on their application in discovering biosynthetic pathways of medicinal plants that produce important secondary metabolites. © 2016 Elsevier Inc. All rights reserved.

  5. Transcriptomic data analysis and differential gene expression of antioxidant pathways in king penguin juveniles (Aptenodytes patagonicus) before and after acclimatization to marine life

    OpenAIRE

    Benjamin Rey; Cyril Dégletagne; Claude Duchamp

    2016-01-01

    In this article, we present differentially expressed gene profiles in the pectoralis muscle of wild juvenile king penguins that were either naturally acclimated to cold marine environment or experimentally immersed in cold water as compared with penguin juveniles that never experienced cold water immersion. Transcriptomic data were obtained by hybridizing penguins total cDNA on Affymetrix GeneChip Chicken Genome arrays and analyzed using maxRS algorithm, ?Transcriptome analysis in non-model s...

  6. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases.

    Directory of Open Access Journals (Sweden)

    Vincent Plagnol

    2011-08-01

    Full Text Available The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC human leukocyte antigen (HLA region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP data in type 1 diabetes (T1D patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506, insulinoma-associated antigen 2 (IA-2A, n = 2,498, antibodies to the autoimmune thyroid (Graves' disease (AITD autoantigen thyroid peroxidase (TPOA, n = 8,300, and antibodies against gastric parietal cells (PCA, n = 4,328 that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10: 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A.

  7. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis

    DEFF Research Database (Denmark)

    Yuan, Xiao Long; Zhang, Zhe; Li, Bin

    2017-01-01

    Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) contexts plays a critical role in biological functions of different tissues. However, the genome-wide DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually unex...

  9. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previousl...

  10. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    Science.gov (United States)

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  11. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    Science.gov (United States)

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  12. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    Science.gov (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  13. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Bruno, Vincent M.; Fang, Zhide; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Sherlock, Gavin; Snyder, Michael; Wang, Zhong

    2010-11-19

    Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied. Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95percent) and reconstruct full-length genes for the majority of the existing gene models (54.3percent). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics. Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome.

  14. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  15. Genome-wide identification and characterization of WRKY gene family in peanut

    Directory of Open Access Journals (Sweden)

    Hui eSong

    2016-04-01

    Full Text Available WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA and jasmonic acid (JA treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  16. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  17. Genome-wide analysis of Tol2 transposon reintegration in zebrafish.

    Science.gov (United States)

    Kondrychyn, Igor; Garcia-Lecea, Marta; Emelyanov, Alexander; Parinov, Sergey; Korzh, Vladimir

    2009-09-08

    Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.

  18. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  19. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    OpenAIRE

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-01-01

    Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eu...

  20. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug