WorldWideScience

Sample records for genome-wide transcriptional profiling

  1. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    Science.gov (United States)

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  2. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  3. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Science.gov (United States)

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  4. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    Full Text Available Non-coding RNAs (ncRNAs play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT, in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  5. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila

    OpenAIRE

    2004-01-01

    Genome-wide microarray analysis (Affymetrix array) was used (i) to determine whether only one gene, the cytochrome P450 enzyme Cyp6g1, is differentially transcribed in dichlorodiphenyltrichloroethane (DDT)-resistant vs. -susceptible Drosophila; and (ii) to profile common genes differentially transcribed across a DDT-resistant field isolate [Rst(2)DDTWisconsin] and a laboratory DDT-selected population [Rst(2)DDT91-R]. Statistical analysis (ANOVA model) identified 158 probe sets that were diffe...

  6. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.

    Science.gov (United States)

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  7. Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat.

    Science.gov (United States)

    Mikalsen, B; Fosby, B; Wang, J; Hammarström, C; Bjaerke, H; Lundström, M; Kasprzycka, M; Scott, H; Line, P-D; Haraldsen, G

    2010-07-01

    Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on days 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-gamma-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin, which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection.

  8. Genome-Wide Transcriptional Profiling of the Response of Staphylococcus aureus to Cryptotanshinone

    Directory of Open Access Journals (Sweden)

    Haihua Feng

    2009-01-01

    Full Text Available Staphylococcus aureus (S. aureus strains with multiple antibiotic resistances are increasingly widespread, and new agents are required for the treatment of S. aureus. Cryptotanshinone (CT, a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated effective in vitro antibacterial activity against all 21 S. aureus strains tested in this experiment. Affymetrix GeneChips were utilized to determine the global transcriptional response of S. aureus ATCC 25923 to treatment with subinhibitory concentrations of CT. Transcriptome profiling indicated that the antibacterial action of CT may be associated with its action as active oxygen radical generator; S. aureus undergoes an oxygen-limiting state upon exposure to CT.

  9. Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-03-01

    Full Text Available Abstract Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc, as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this

  10. Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Mandrup, Susanne

    2014-01-01

    The recent advances in high-throughput sequencing combined with various other technologies have allowed detailed and genome-wide insight into the transcriptional networks that control adipogenesis. Chromatin immunoprecipitation (ChIP) combined with high-throughput sequencing (ChIP-seq) is one...

  11. Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients

    Directory of Open Access Journals (Sweden)

    Ovidiu Balacescu

    2016-01-01

    Full Text Available Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients.

  12. Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration

    Directory of Open Access Journals (Sweden)

    Kfir Baruch Umansky

    2015-12-01

    Full Text Available In response to muscle damage the muscle adult stem cells are activated and differentiate into myoblasts that regenerate the damaged tissue. We have recently showed that following myopathic damage the level of the Runx1 transcription factor (TF is elevated and that during muscle regeneration this TF regulates the balance between myoblast proliferation and differentiation (Umansky et al.. We employed Runx1-dependent gene expression, Chromatin Immunoprecipitation sequencing (ChIP-seq, Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq and histone H3K4me1/H3K27ac modification analyses to identify a subset of Runx1-regulated genes that are co-occupied by the TFs MyoD and c-Jun and are involved in muscle regeneration (Umansky et al.. The data is available at the GEO database under the superseries accession number GSE56131.

  13. Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes.

    Directory of Open Access Journals (Sweden)

    Kinyui Alice Lo

    Full Text Available The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte

  14. Explore Small Molecule-induced Genome-wide Transcriptional Profiles for Novel Inflammatory Bowel Disease Drug

    Science.gov (United States)

    Cai, Xiaoshu; Chen, Yang; Gao, Zhen; Xu, Rong

    2016-01-01

    Abstract Inflammatory Bowel Disease (IBD) is a chronic and relapsing disorder, which affects millions people worldwide. Current drug options cannot cure the disease and may cause severe side effects. We developed a systematic framework to identify novel IBD drugs exploiting millions of genomic signatures for chemical compounds. Specifically, we searched all FDA-approved drugs for candidates that share similar genomic profiles with IBD. In the evaluation experiments, our approach ranked approved IBD drugs averagely within top 26% among 858 candidates, significantly outperforming a state-of-art genomics-based drug repositioning method (p-value < e-8). Our approach also achieved significantly higher average precision than the state-of-art approach in predicting potential IBD drugs from clinical trials (0.072 vs. 0.043, p<0.1) and off-label IBD drugs (0.198 vs. 0.138, p<0.1). Furthermore, we found evidences supporting the therapeutic potential of the top-ranked drugs, such as Naloxone, in literature and through analyzing target genes and pathways. PMID:27570643

  15. Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response

    Science.gov (United States)

    Wei, Yunxie; Hu, Wei; Xia, Feiyu; Zeng, Hongqiu; Li, Xiaolin; Yan, Yu; He, Chaozu; Shi, Haitao

    2016-01-01

    Banana (Musa acuminata) is one of the most popular fresh fruits. However, the rapid spread of fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) in tropical areas severely affected banana growth and production. Thus, it is very important to identify candidate genes involved in banana response to abiotic stress and pathogen infection, as well as the molecular mechanism and possible utilization for genetic breeding. Heat stress transcription factors (Hsfs) are widely known for their common involvement in various abiotic stresses and plant-pathogen interaction. However, no MaHsf has been identified in banana, as well as its possible role. In this study, genome-wide identification and further analyses of evolution, gene structure and conserved motifs showed closer relationship of them in every subgroup. The comprehensive expression profiles of MaHsfs revealed the tissue- and developmental stage-specific or dependent, as well as abiotic and biotic stress-responsive expressions of them. The common regulation of several MaHsfs by abiotic and biotic stress indicated the possible roles of them in plant stress responses. Taken together, this study extended our understanding of MaHsf gene family and identified some candidate MaHsfs with specific expression profiles, which may be used as potential candidates for genetic breeding in banana. PMID:27857174

  16. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Singh, Anil Kumar; Sharma, Vishal; Pal, Awadhesh Kumar; Acharya, Vishal; Ahuja, Paramvir Singh

    2013-08-01

    NAC [no apical meristem (NAM), Arabidopsis thaliana transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins belong to one of the largest plant-specific transcription factor (TF) families and play important roles in plant development processes, response to biotic and abiotic cues and hormone signalling. Our genome-wide analysis identified 110 StNAC genes in potato encoding for 136 proteins, including 14 membrane-bound TFs. The physical map positions of StNAC genes on 12 potato chromosomes were non-random, and 40 genes were found to be distributed in 16 clusters. The StNAC proteins were phylogenetically clustered into 12 subgroups. Phylogenetic analysis of StNACs along with their Arabidopsis and rice counterparts divided these proteins into 18 subgroups. Our comparative analysis has also identified 36 putative TNAC proteins, which appear to be restricted to Solanaceae family. In silico expression analysis, using Illumina RNA-seq transcriptome data, revealed tissue-specific, biotic, abiotic stress and hormone-responsive expression profile of StNAC genes. Several StNAC genes, including StNAC072 and StNAC101that are orthologs of known stress-responsive Arabidopsis RESPONSIVE TO DEHYDRATION 26 (RD26) were identified as highly abiotic stress responsive. Quantitative real-time polymerase chain reaction analysis largely corroborated the expression profile of StNAC genes as revealed by the RNA-seq data. Taken together, this analysis indicates towards putative functions of several StNAC TFs, which will provide blue-print for their functional characterization and utilization in potato improvement.

  17. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    Science.gov (United States)

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  18. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation.

    Science.gov (United States)

    Nguyen-Duc, Trong; van Oeffelen, Liesbeth; Song, Ningning; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge; Charlier, Daniel; Peeters, Eveline

    2013-11-25

    Gene regulatory processes are largely resulting from binding of transcription factors to specific genomic targets. Leucine-responsive Regulatory Protein (Lrp) is a prevalent transcription factor family in prokaryotes, however, little information is available on biological functions of these proteins in archaea. Here, we study genome-wide binding of the Lrp-like transcription factor Ss-LrpB from Sulfolobus solfataricus. Chromatin immunoprecipitation in combination with DNA microarray analysis (ChIP-chip) has revealed that Ss-LrpB interacts with 36 additional loci besides the four previously identified local targets. Only a subset of the newly identified binding targets, concentrated in a highly variable IS-dense genomic region, is also bound in vitro by pure Ss-LrpB. There is no clear relationship between the in vitro measured DNA-binding specificity of Ss-LrpB and the in vivo association suggesting a limited permissivity of the crenarchaeal chromatin for transcription factor binding. Of 37 identified binding regions, 29 are co-bound by LysM, another Lrp-like transcription factor in S. solfataricus. Comparative gene expression analysis in an Ss-lrpB mutant strain shows no significant Ss-LrpB-mediated regulation for most targeted genes, with exception of the CRISPR B cluster, which is activated by Ss-LrpB through binding to a specific motif in the leader region. The genome-wide binding profile presented here implies that Ss-LrpB is associated at additional genomic binding sites besides the local gene targets, but acts as a specific transcription regulator in the tested growth conditions. Moreover, we have provided evidence that two Lrp-like transcription factors in S. solfataricus, Ss-LrpB and LysM, interact in vivo.

  19. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Liang Wang

    Full Text Available BACKGROUND: Expression level of many genes shows abundant natural variation in human populations. The variations in gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs (miRNAs are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs. METHODOLOGY/PRINCIPAL FINDINGS: To examine miRNA regulatory effect on global gene expression under endogenous condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger RNAs (mRNAs in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q<0.01. Of those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b demonstrated significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of miRNAs in cell cycle regulation. CONCLUSIONS/SIGNIFICANCE: This study demonstrates feasibility of using naturally expressed transcript profiles to identify endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the miRNA-regulated genes and eventually in phenotypic variations of

  20. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.

    Science.gov (United States)

    Wu, Chi-Chung; Kruse, Fabian; Vasudevarao, Mohankrishna Dalvoy; Junker, Jan Philipp; Zebrowski, David C; Fischer, Kristin; Noël, Emily S; Grün, Dominic; Berezikov, Eugene; Engel, Felix B; van Oudenaarden, Alexander; Weidinger, Gilbert; Bakkers, Jeroen

    2016-01-11

    In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.

  1. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection

    Directory of Open Access Journals (Sweden)

    Cho Won

    2012-05-01

    Full Text Available Abstract Background Fusarium graminearum virus 1 strain-DK21 (FgV1-DK21 is a mycovirus that confers hypovirulence to F. graminearum, which is the primary phytopathogenic fungus that causes Fusarium head blight (FHB disease in many cereals. Understanding the interaction between mycoviruses and plant pathogenic fungi is necessary for preventing damage caused by F. graminearum. Therefore, we investigated important cellular regulatory processes in a host containing FgV1-DK21 as compared to an uninfected parent using a transcriptional approach. Results Using a 3′-tiling microarray covering all known F. graminearum genes, we carried out genome-wide expression analyses of F. graminearum at two different time points. At the early point of growth of an infected strain as compared to an uninfected strain, genes associated with protein synthesis, including ribosome assembly, nucleolus, and ribosomal RNA processing, were significantly up-regulated. In addition, genes required for transcription and signal transduction, including fungal-specific transcription factors and cAMP signaling, respectively, were actively up-regulated. In contrast, genes involved in various metabolic pathways, particularly in producing carboxylic acids, aromatic amino acids, nitrogen compounds, and polyamines, showed dramatic down-regulation at the early time point. Moreover, genes associated with transport systems localizing to transmembranes were down-regulated at both time points. Conclusion This is the first report of global change in the prominent cellular pathways in the Fusarium host containing FgV1-DK21. The significant increase in transcripts for transcription and translation machinery in fungal host cells seems to be related to virus replication. In addition, significant down-regulation of genes required for metabolism and transporting systems in a fungal host containing the virus appears to be related to the host defense mechanism and fungal virulence. Taken together

  2. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.: Genome-Wide Identification, Classification and Expression Profiling during Fruit Development

    Directory of Open Access Journals (Sweden)

    Yun Peng eCao

    2016-04-01

    Full Text Available The MYB family is one of the largest families of transcription factors in plants. Although some MYBs have been reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd. has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes. The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the twenty genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear.

  3. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  4. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    Full Text Available Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  5. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer.

    Science.gov (United States)

    Zhao, Chunyan; Qiao, Yichun; Jonsson, Philip; Wang, Jian; Xu, Li; Rouhi, Pegah; Sinha, Indranil; Cao, Yihai; Williams, Cecilia; Dahlman-Wright, Karin

    2014-07-15

    Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.

  6. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Charfeddine, Mariam; Saïdi, Mohamed Najib; Charfeddine, Safa; Hammami, Asma; Gargouri Bouzid, Radhia

    2015-04-01

    The ERF transcription factors belong to the AP2/ERF superfamily, one of the largest transcription factor families in plants. They play important roles in plant development processes, as well as in the response to biotic, abiotic, and hormone signaling. In the present study, 155 putative ERF transcription factor genes were identified from the potato (Solanum tuberosum) genome database, and compared with those from Arabidopsis thaliana. The StERF proteins are divided into ten phylogenetic groups. Expression analyses of five StERFs were carried out by semi-quantitative RT-PCR and compared with published RNA-seq data. These latter analyses were used to distinguish tissue-specific, biotic, and abiotic stress genes as well as hormone-responsive StERF genes. The results are of interest to better understand the role of the AP2/ERF genes in response to diverse types of stress in potatoes. A comprehensive analysis of the physiological functions and biological roles of the ERF family genes in S. tuberosum is required to understand crop stress tolerance mechanisms.

  7. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal.

    Science.gov (United States)

    Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua

    2016-01-01

    Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (-fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica.

  8. Genome wide transcription profiling of the effects of overexpression of Spc1 and its kinase dead mutant in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Madhurima Paul

    2015-12-01

    Full Text Available The Mitogen Activated Protein Kinase Spc1 (p38 homolog is a major player in stress responses of the unicellular fission yeast Schizosaccharomyces pombe. This pathway is therefore also known as the SAPK or Stress Activated Protein Kinase pathway. Spc1 is a known activator of transcription factors that control gene expression in response to extracellular stimuli and is also known to interact with the translation machinery [1–8]. Spc1 has also been implicated in cell cycle regulation and meiosis in S. pombe [1,2,9,10]. Given its documented role in modulating gene expression, we performed a microarray based identification of genes whose expression in unperturbed cells (absence of stress stimuli is dependent on Spc1. For this we overexpressed Spc1 in S. pombe. Additionally we also overexpressed Spc1K49R (a kinase dead mutant of Spc1 to understand the contribution of Spc1's kinase activity towards the observed gene expression changes. The microarray data are available at NCBI's Gene Expression Omnibus (GEO Series (accession number GSE73618. Here we report the annotation of the genes whose expression get altered by Spc1/Spc1K49R overexpression and also provide details related to sample processing and statistical analysis of our microarray data.

  9. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  10. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  11. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    Science.gov (United States)

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-08-19

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

  12. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    Science.gov (United States)

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  13. Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Directory of Open Access Journals (Sweden)

    Craigon Marie

    2009-08-01

    Full Text Available Abstract Background Interferons (IFNs are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs. Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs with a non-targeting (control siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000 prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated

  14. Genome-wide signatures of transcription factor activity: connecting transcription factors, disease, and small molecules.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Identifying transcription factors (TF involved in producing a genome-wide transcriptional profile is an essential step in building mechanistic model that can explain observed gene expression data. We developed a statistical framework for constructing genome-wide signatures of TF activity, and for using such signatures in the analysis of gene expression data produced by complex transcriptional regulatory programs. Our framework integrates ChIP-seq data and appropriately matched gene expression profiles to identify True REGulatory (TREG TF-gene interactions. It provides genome-wide quantification of the likelihood of regulatory TF-gene interaction that can be used to either identify regulated genes, or as genome-wide signature of TF activity. To effectively use ChIP-seq data, we introduce a novel statistical model that integrates information from all binding "peaks" within 2 Mb window around a gene's transcription start site (TSS, and provides gene-level binding scores and probabilities of regulatory interaction. In the second step we integrate these binding scores and regulatory probabilities with gene expression data to assess the likelihood of True REGulatory (TREG TF-gene interactions. We demonstrate the advantages of TREG framework in identifying genes regulated by two TFs with widely different distribution of functional binding events (ERα and E2f1. We also show that TREG signatures of TF activity vastly improve our ability to detect involvement of ERα in producing complex diseases-related transcriptional profiles. Through a large study of disease-related transcriptional signatures and transcriptional signatures of drug activity, we demonstrate that increase in statistical power associated with the use of TREG signatures makes the crucial difference in identifying key targets for treatment, and drugs to use for treatment. All methods are implemented in an open-source R package treg. The package also contains all data used in the analysis

  15. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  16. Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds.

    Science.gov (United States)

    Weissgerber, Thomas; Dobler, Nadine; Polen, Tino; Latus, Jeanette; Stockdreher, Yvonne; Dahl, Christiane

    2013-09-01

    The purple sulfur bacterium Allochromatium vinosum DSM 180(T) is one of the best-studied sulfur-oxidizing anoxygenic phototrophic bacteria, and it has been developed into a model organism for laboratory-based studies of oxidative sulfur metabolism. Here, we took advantage of the organism's high metabolic versatility and performed whole-genome transcriptional profiling to investigate the response of A. vinosum cells upon exposure to sulfide, thiosulfate, elemental sulfur, or sulfite compared to photoorganoheterotrophic growth on malate. Differential expression of 1,178 genes was observed, corresponding to 30% of the A. vinosum genome. Relative transcription of 551 genes increased significantly during growth on one of the different sulfur sources, while the relative transcript abundance of 627 genes decreased. A significant number of genes that revealed strongly enhanced relative transcription levels have documented sulfur metabolism-related functions. Among these are the dsr genes, including dsrAB for dissimilatory sulfite reductase, and the sgp genes for the proteins of the sulfur globule envelope, thus confirming former results. In addition, we identified new genes encoding proteins with appropriate subcellular localization and properties to participate in oxidative dissimilatory sulfur metabolism. Those four genes for hypothetical proteins that exhibited the strongest increases of mRNA levels on sulfide and elemental sulfur, respectively, were chosen for inactivation and phenotypic analyses of the respective mutant strains. This approach verified the importance of the encoded proteins for sulfur globule formation during the oxidation of sulfide and thiosulfate and thereby also documented the suitability of comparative transcriptomics for the identification of new sulfur-related genes in anoxygenic phototrophic sulfur bacteria.

  17. Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis.

    Science.gov (United States)

    Zhou, Guoxin; Wang, Xia; Yan, Feng; Wang, Xia; Li, Ran; Cheng, Jiaan; Lou, Yonggen

    2011-09-01

    How rice defends itself against pathogen infection is well documented, but little is known about how it defends itself against herbivore attack. We measured changes in the transcriptome and chemical profile of rice when the plant is infested by the striped stem borer (SSB) Chilo suppressalis. Infestation by SSBs resulted in changes in the expression levels of 4545 rice genes; this number accounts for about 8% of the genome and is made up of 18 functional groups with broad functions. The largest group comprised genes involved in metabolism, followed by cellular transport, transcription and cellular signaling. Infestation by SSBs modulated many genes responsible for the biosynthesis of plant hormones and plant signaling. Jasmonic acid (JA), salicylic acid (SA) and ethylene were the major hormones that shaped the SSB-induced defence responses of rice. Many secondary signal transduction components, such as those involved in Ca²⁺ signaling and G-protein signaling, receptor and non-receptor protein kinases, and transcription factors were involved in the SSB-induced responses of rice. Photosynthesis and ATP synthesis from photophosphorylation were restricted by SSB feeding. In addition, SSB infestation induced the accumulation of defence compounds, including trypsin proteinase inhibitors (TrypPIs) and volatile organic compounds. These results demonstrate that SSB-induced defences required rice to reconfigure a wide variety of its metabolic, physiological and biochemical processes.

  18. Genome-Wide Scan for Methylation Profiles in Keloids

    Directory of Open Access Journals (Sweden)

    Lamont R. Jones

    2015-01-01

    Full Text Available Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63% were hypomethylated and 56 (37% hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.

  19. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action

    Directory of Open Access Journals (Sweden)

    Dusica eVidovic

    2014-09-01

    Full Text Available The Library of Integrated Network-based Cellular Signatures (LINCS project is a large-scale coordinated effort to build a comprehensive systems biology reference resource. The goals of the program include the generation of a very large multidimensional data matrix and informatics and computational tools to integrate, analyze, and make the data readily accessible. LINCS data include genome-wide transcriptional signatures, biochemical protein binding profiles, cellular phenotypic response profiles and various other datasets for a wide range of cell model systems and molecular and genetic perturbations. Here we present a partial survey of this data facilitated by data standards and in particular a robust compound standardization workflow; we integrated several types of LINCS signatures and analyzed the results with a focus on mechanism of action and chemical compounds. We illustrate how kinase targets can be related to disease models and relevant drugs. We identified some fundamental trends that appear to link Kinome binding profiles and transcriptional signatures to chemical information and biochemical binding profiles to transcriptional responses independent of chemical similarity. To fill gaps in the datasets we developed and applied predictive models. The results can be interpreted at the systems level as demonstrated based on a large number of signaling pathways. We can identify clear global relationships, suggesting robustness of cellular responses to chemical perturbation. Overall, the results suggest that chemical similarity is a useful measure at the systems level, which would support phenotypic drug optimization efforts. With this study we demonstrate the potential of such integrated analysis approaches and suggest prioritizing further experiments to fill the gaps in the current data.

  20. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action.

    Science.gov (United States)

    Vidović, Dušica; Koleti, Amar; Schürer, Stephan C

    2014-01-01

    The Library of Integrated Network-based Cellular Signatures (LINCS) project is a large-scale coordinated effort to build a comprehensive systems biology reference resource. The goals of the program include the generation of a very large multidimensional data matrix and informatics and computational tools to integrate, analyze, and make the data readily accessible. LINCS data include genome-wide transcriptional signatures, biochemical protein binding profiles, cellular phenotypic response profiles and various other datasets for a wide range of cell model systems and molecular and genetic perturbations. Here we present a partial survey of this data facilitated by data standards and in particular a robust compound standardization workflow; we integrated several types of LINCS signatures and analyzed the results with a focus on mechanism of action (MoA) and chemical compounds. We illustrate how kinase targets can be related to disease models and relevant drugs. We identified some fundamental trends that appear to link Kinome binding profiles and transcriptional signatures to chemical information and biochemical binding profiles to transcriptional responses independent of chemical similarity. To fill gaps in the datasets we developed and applied predictive models. The results can be interpreted at the systems level as demonstrated based on a large number of signaling pathways. We can identify clear global relationships, suggesting robustness of cellular responses to chemical perturbation. Overall, the results suggest that chemical similarity is a useful measure at the systems level, which would support phenotypic drug optimization efforts. With this study we demonstrate the potential of such integrated analysis approaches and suggest prioritizing further experiments to fill the gaps in the current data.

  1. Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes

    OpenAIRE

    O'Farrelly, Cliona; Hokamp, Karsten

    2011-01-01

    PUBLISHED Background: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. I...

  2. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.

    Science.gov (United States)

    Torres-Quesada, Omar; Reinkensmeier, Jan; Schlüter, Jan-Philip; Robledo, Marta; Peregrina, Alexandra; Giegerich, Robert; Toro, Nicolás; Becker, Anke; Jiménez-Zurdo, Jose I

    2014-01-01

    The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.

  3. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti

    Science.gov (United States)

    Torres-Quesada, Omar; Reinkensmeier, Jan; Schlüter, Jan-Philip; Robledo, Marta; Peregrina, Alexandra; Giegerich, Robert; Toro, Nicolás; Becker, Anke; Jiménez-Zurdo, Jose I

    2014-01-01

    The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σE2 or σH1/2. Recovery rates of sRNAs in each of the CoIP–RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σE2-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5′ regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA–mRNA regulatory pairs. PMID:24786641

  4. Genome-wide transcriptional profiling and metabolic analysis uncover multiple molecular responses of the grass species Lolium perenne under low-intensity xenobiotic stress

    Directory of Open Access Journals (Sweden)

    Anne-Antonella eSerra

    2015-12-01

    Full Text Available Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signalling, to protein-kinase cascades, as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1-related kinases involved in sugar and stress signalling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signalling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signalling.

  5. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  6. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  7. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor;

    2006-01-01

    Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species....... We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... activity between duplicated segments of the genome. Collectively, our results provide the first whole-genome transcription map useful for further understanding the rice genome. Udgivelsesdato: 2006-Jan...

  8. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  9. Computational modelling of genome-wide [corrected] transcription assembly networks using a fluidics analogy.

    Directory of Open Access Journals (Sweden)

    Yousry Y Azmy

    Full Text Available Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets.

  10. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  11. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    Science.gov (United States)

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  12. Genome-wide analysis of light- and temperature-entrained circadian transcripts in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Alexander M van der Linden

    Full Text Available Most organisms have an endogenous circadian clock that is synchronized to environmental signals such as light and temperature. Although circadian rhythms have been described in the nematode Caenorhabditis elegans at the behavioral level, these rhythms appear to be relatively non-robust. Moreover, in contrast to other animal models, no circadian transcriptional rhythms have been identified. Thus, whether this organism contains a bona fide circadian clock remains an open question. Here we use genome-wide expression profiling experiments to identify light- and temperature-entrained oscillating transcripts in C. elegans. These transcripts exhibit rhythmic expression with temperature-compensated 24-h periods. In addition, their expression is sustained under constant conditions, suggesting that they are under circadian regulation. Light and temperature cycles strongly drive gene expression and appear to entrain largely nonoverlapping gene sets. We show that mutations in a cyclic nucleotide-gated channel required for sensory transduction abolish both light- and temperature-entrained gene expression, implying that environmental cues act cell nonautonomously to entrain circadian rhythms. Together, these findings demonstrate circadian-regulated transcriptional rhythms in C. elegans and suggest that further analyses in this organism will provide new information about the evolution and function of this biological clock.

  13. Genome-wide analysis of the MYB transcription factor superfamily in soybean

    Directory of Open Access Journals (Sweden)

    Du Hai

    2012-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max, including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in

  14. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription

    Science.gov (United States)

    Tavenet, Arounie; Suleau, Audrey; Dubreuil, Géraldine; Ferrari, Roberto; Ducrot, Cécile; Michaut, Magali; Aude, Jean-Christophe; Dieci, Giorgio; Lefebvre, Olivier; Conesa, Christine; Acker, Joël

    2009-01-01

    Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells. PMID:19706510

  15. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    Science.gov (United States)

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  16. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  17. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-01-01

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement...

  18. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  19. Profiling the genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite sequencing.

    Science.gov (United States)

    Yuan, Xiao-Long; Gao, Ning; Xing, Yan; Zhang, Hai-Bin; Zhang, Ai-Ling; Liu, Jing; He, Jin-Long; Xu, Yuan; Lin, Wen-Mian; Chen, Zan-Mou; Zhang, Hao; Zhang, Zhe; Li, Jia-Qi

    2016-02-25

    Substantial evidence has shown that DNA methylation regulates the initiation of ovarian and sexual maturation. Here, we investigated the genome-wide profile of DNA methylation in porcine ovaries at single-base resolution using reduced representation bisulfite sequencing. The biological variation was minimal among the three ovarian replicates. We found hypermethylation frequently occurred in regions with low gene abundance, while hypomethylation in regions with high gene abundance. The DNA methylation around transcriptional start sites was negatively correlated with their own CpG content. Additionally, the methylation level in the bodies of genes was higher than that in their 5' and 3' flanking regions. The DNA methylation pattern of the low CpG content promoter genes differed obviously from that of the high CpG content promoter genes. The DNA methylation level of the porcine ovary was higher than that of the porcine intestine. Analyses of the genome-wide DNA methylation in porcine ovaries would advance the knowledge and understanding of the porcine ovarian methylome.

  20. Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress.

    Science.gov (United States)

    Donati, Andrew J; Jeon, Jeong-Min; Sangurdekar, Dipen; So, Jae-Seong; Chang, Woo-Suk

    2011-06-01

    The rhizobial bacterium Bradyrhizobium japonicum functions as a nitrogen-fixing symbiont of the soybean plant (Glycine max). Plants are capable of producing an oxidative burst, a rapid proliferation of reactive oxygen species (ROS), as a defense mechanism against pathogenic and symbiotic bacteria. Therefore, B. japonicum must be able to resist such a defense mechanism to initiate nodulation. In this study, paraquat, a known superoxide radical-inducing agent, was used to investigate this response. Genome-wide transcriptional profiles were created for both prolonged exposure (PE) and fulminant shock (FS) conditions. These profiles revealed that 190 and 86 genes were up- and downregulated for the former condition, and that 299 and 105 genes were up- and downregulated for the latter condition, respectively (>2.0-fold; P ROS scavenging enzymes, such as superoxide dismutase and catalase, were not detected, suggesting constitutive expression of those genes by endogenous ROS. Various physiological tests, including exopolysaccharide (EPS), cellular protein, and motility characterization, were performed to corroborate the gene expression data. The results suggest that B. japonicum responds to tolerable oxidative stress during PE through enhanced motility, increased translational activity, and EPS production, in addition to the expression of genes involved in global stress responses, such as chaperones and sigma factors.

  1. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize

    Directory of Open Access Journals (Sweden)

    Zhu Su-Wen

    2011-01-01

    Full Text Available Abstract Background Heat shock response in eukaryotes is transcriptionally regulated by conserved heat shock transcription factors (Hsfs. Hsf genes are represented by a large multigene family in plants and investigation of the Hsf gene family will serve to elucidate the mechanisms by which plants respond to stress. In recent years, reports of genome-wide structural and evolutionary analysis of the entire Hsf gene family have been generated in two model plant systems, Arabidopsis and rice. Maize, an important cereal crop, has represented a model plant for genetics and evolutionary research. Although some Hsf genes have been characterized in maize, analysis of the entire Hsf gene family were not completed following Maize (B73 Genome Sequencing Project. Results A genome-wide analysis was carried out in the present study to identify all Hsfs maize genes. Due to the availability of complete maize genome sequences, 25 nonredundant Hsf genes, named ZmHsfs were identified. Chromosomal location, protein domain and motif organization of ZmHsfs were analyzed in maize genome. The phylogenetic relationships, gene duplications and expression profiles of ZmHsf genes were also presented in this study. Twenty-five ZmHsfs were classified into three major classes (class A, B, and C according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 10 subclasses. Moreover, phylogenetic analysis indicated that the orthologs from the three species (maize, Arabidopsis and rice were distributed in all three classes, it also revealed diverse Hsf gene family expression patterns in classes and subclasses. Chromosomal/segmental duplications played a key role in Hsf gene family expansion in maize by investigation of gene duplication events. Furthermore, the transcripts of 25 ZmHsf genes were detected in the leaves by heat shock using quantitative real-time PCR. The result demonstrated that ZmHsf genes exhibit different

  2. Acute Genome-wide effects of Rosiglitazone on PPARγ transcriptional networks in Adipocytes

    DEFF Research Database (Denmark)

    Haakonsson, Anders Kristian; Madsen, Maria Stahl; Nielsen, Ronni

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone...... on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does...... not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription...

  3. Genome-wide analysis of the homeobox C6 transcriptional network in prostate cancer.

    Science.gov (United States)

    McCabe, Colleen D; Spyropoulos, Demetri D; Martin, David; Moreno, Carlos S

    2008-03-15

    Homeobox transcription factors are developmentally regulated genes that play crucial roles in tissue patterning. Homeobox C6 (HOXC6) is overexpressed in prostate cancers and correlated with cancer progression, but the downstream targets of HOXC6 are largely unknown. We have performed genome-wide localization analysis to identify promoters bound by HOXC6 in prostate cancer cells. This analysis identified 468 reproducibly bound promoters whose associated genes are involved in functions such as cell proliferation and apoptosis. We have complemented these data with expression profiling of prostates from mice with homozygous disruption of the Hoxc6 gene to identify 31 direct regulatory target genes of HOXC6. We show that HOXC6 directly regulates expression of bone morphogenic protein 7, fibroblast growth factor receptor 2, insulin-like growth factor binding protein 3, and platelet-derived growth factor receptor alpha (PDGFRA) in prostate cells and indirectly influences the Notch and Wnt signaling pathways in vivo. We further show that inhibition of PDGFRA reduces proliferation of prostate cancer cells, and that overexpression of HOXC6 can overcome the effects of PDGFRA inhibition. HOXC6 regulates genes with both oncogenic and tumor suppressor activities as well as several genes such as CD44 that are important for prostate branching morphogenesis and metastasis to the bone microenvironment.

  4. Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells.

    Science.gov (United States)

    Feldmann, Radmila; Fischer, Cornelius; Kodelja, Vitam; Behrens, Sarah; Haas, Stefan; Vingron, Martin; Timmermann, Bernd; Geikowski, Anne; Sauer, Sascha

    2013-04-01

    Increased physiological levels of oxysterols are major risk factors for developing atherosclerosis and cardiovascular disease. Lipid-loaded macrophages, termed foam cells, are important during the early development of atherosclerotic plaques. To pursue the hypothesis that ligand-based modulation of the nuclear receptor LXRα is crucial for cell homeostasis during atherosclerotic processes, we analysed genome-wide the action of LXRα in foam cells and macrophages. By integrating chromatin immunoprecipitation-sequencing (ChIP-seq) and gene expression profile analyses, we generated a highly stringent set of 186 LXRα target genes. Treatment with the nanomolar-binding ligand T0901317 and subsequent auto-regulatory LXRα activation resulted in sequence-dependent sharpening of the genome-binding patterns of LXRα. LXRα-binding loci that correlated with differential gene expression revealed 32 novel target genes with potential beneficial effects, which in part explained the implications of disease-associated genetic variation data. These observations identified highly integrated LXRα ligand-dependent transcriptional networks, including the APOE/C1/C4/C2-gene cluster, which contribute to the reversal of cholesterol efflux and the dampening of inflammation processes in foam cells to prevent atherogenesis.

  5. Clinical implication of genome-wide profiling in diffuse large B-cell lymphoma and other subtypes of B-cell lymphoma

    DEFF Research Database (Denmark)

    Iqbal, Javeed; Joshi, Shantaram; Patel, Kavita N

    2007-01-01

    of Lymphoid Neoplasms (REAL) and World Health Organization (WHO) classifications. These classification methods were based on histological, immunophenotypic and cytogenetic markers and widely accepted by pathologists and oncologists worldwide. During last several decades, great progress has been made...... technology. The genome-wide transcriptional measurement, also called gene expression profile (GEP) can accurately define the biological phenotype of the tumor. In this review, important discoveries made by genome-wide GEP in understanding the biology of lymphoma and additionally the diagnostic and prognostic...

  6. Clinical implication of genome-wide profiling in diffuse large B-cell lymphoma and other subtypes of B-cell lymphoma

    DEFF Research Database (Denmark)

    Iqbal, Javeed; Joshi, Shantaram; Patel, Kavita N

    2007-01-01

    of Lymphoid Neoplasms (REAL) and World Health Organization (WHO) classifications. These classification methods were based on histological, immunophenotypic and cytogenetic markers and widely accepted by pathologists and oncologists worldwide. During last several decades, great progress has been made...... technology. The genome-wide transcriptional measurement, also called gene expression profile (GEP) can accurately define the biological phenotype of the tumor. In this review, important discoveries made by genome-wide GEP in understanding the biology of lymphoma and additionally the diagnostic and prognostic...

  7. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    OpenAIRE

    Thomas Esquerré; Marie Bouvier; Catherine Turlan; Carpousis, Agamemnon J.; Laurence Girbal; Muriel Cocaign-Bousquet

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype...

  8. Genome-Wide Identification and Evolutionary Analysis of the Animal Specific ETS Transcription Factor Family

    OpenAIRE

    Wang, Zhipeng; Zhang, Qin

    2009-01-01

    The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest (only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another ...

  9. Genome-wide transcriptional response of the archaeon Thermococcus gammatolerans to cadmium.

    Directory of Open Access Journals (Sweden)

    Arnaud Lagorce

    Full Text Available Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd, cobalt (Co and zinc (Zn, a weaker tolerance to nickel (Ni, copper (Cu and arsenate (AsO(4 and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM and a toxic (1 mM Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1 the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2 the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3 the induction of membrane-bound hydrogenase (Mbh and membrane-bound hydrogenlyase (Mhy2 subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays, and showed that the Cd transcriptional pattern is

  10. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    Directory of Open Access Journals (Sweden)

    Chuanjun Xu

    Full Text Available Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level.We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR analysis to confirm the expression profile analysis.Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  11. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    Science.gov (United States)

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  12. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  13. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators

    Directory of Open Access Journals (Sweden)

    Elisabetta Levati

    2016-01-01

    Full Text Available Transcription factors (TFs are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD modules. This allows to properly position their second domain, called “effector domain”, to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called “moonlighting” transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators, we describe both established (and usually well affordable as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome.

  14. Genome-Wide Analysis and Molecular Characterization of Heat Shock Transcription Factor Family in Glycine max

    Institute of Scientific and Technical Information of China (English)

    Eunsook Chung; Kyoung-Mi Kim; Jai-Heon Lee

    2013-01-01

    Heat shock transcription factors (Hsfs) play an essential role on the increased tolerance against heat stress by regulating the expression of heat-responsive genes.In this study,a genome-wide analysis was performed to identify all of the soybean (Glycine max) GmHsfgenes based on the latest soybean genome sequence.Chromosomal location,protein domain,motif organization,and phylogenetic relationships of 26 non-redundant GmHsf genes were analyzed compared with AtHsfs (Arabidopsis thaliana Hsfs).According to their structural features,the predicted members were divided into the previously defined classes A-C,as described for AtHsfs.Transcript levels and subcellular localization of five GmHsfs responsive to abiotic stresses were analyzed by real-time RT-PCR.These results provide a fundamental clue for understanding the complexity of the soybean GmHsfgene family and cloning the functional genes in future studies.

  15. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Science.gov (United States)

    Yildiz, Gokhan; Arslan-Ergul, Ayca; Bagislar, Sevgi; Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  16. Acute genome-wide effects of rosiglitazone on PPARγ transcriptional networks in adipocytes.

    Science.gov (United States)

    Haakonsson, Anders Kristian; Stahl Madsen, Maria; Nielsen, Ronni; Sandelin, Albin; Mandrup, Susanne

    2013-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription of nearby genes, indicating that rosiglitazone, in addition to activating the receptor, also promotes its association with DNA, and that this is causally linked to recruitment of mediator and activation of genes. Notably, both rosiglitazone-activated and -repressed genes are induced during adipogenesis. However, rosiglitazone-activated genes are markedly more associated with PPARγ than repressed genes and are highly dependent on PPARγ for expression in adipocytes. By contrast, repressed genes are associated with the other key adipocyte transcription factor CCAAT-enhancer binding proteinα (C/EBPα), and their expression is more dependent on C/EBPα. This suggests that the relative occupancies of PPARγ and C/EBPα are critical for whether genes will be induced or repressed by PPARγ agonist.

  17. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.

    Science.gov (United States)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-02-05

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement, and therefore, an altered redox metabolism. Identification of genes with significantly changed expression using a t-test and a Bonferroni correction yielded only 16 transcripts when accepting two false-positives, and 7 of these were Open Reading Frames (ORFs) with unknown function. Among the 16 transcripts the only one with a direct link to redox metabolism was GND1, encoding phosphogluconate dehydrogenase. To extract additional information we analyzed the transcription data for a gene subset consisting of all known genes encoding metabolic enzymes that use NAD(+) or NADP(+). The subset was analyzed for genes with significantly changed expression again with a t-test and correction for multiple testing. This approach was found to enrich the analysis since GND1, ZWF1 and ALD6, encoding the most important enzymes for regeneration of NADPH under anaerobic conditions, were down-regulated together with eight other genes encoding NADP(H)-dependent enzymes. This indicates a possible common redox-dependent regulation of these genes. Furthermore, we showed that it might be necessary to analyze the expression of a subset of genes to extract all available information from global transcription analysis.

  18. Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses.

    Science.gov (United States)

    Alic, Nazif; Felder, Thomas; Temple, Mark D; Gloeckner, Christian; Higgins, Vincent J; Briza, Peter; Dawes, Ian W

    2004-07-01

    Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.

  19. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Katiyar Amit

    2012-10-01

    Full Text Available Abstract Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and

  20. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.

    Directory of Open Access Journals (Sweden)

    Andrés Dekanty

    2010-06-01

    Full Text Available Hypoxia-inducible factors (HIFs are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1 gene, a central element of the microRNA (miRNA translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

  1. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.

    Directory of Open Access Journals (Sweden)

    Andrés Dekanty

    2010-06-01

    Full Text Available Hypoxia-inducible factors (HIFs are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1 gene, a central element of the microRNA (miRNA translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

  2. Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Wang

    Full Text Available Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru (67/248, or 27% is similar to the percentage of transcripts located within these inversions (31%. These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of

  3. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    Science.gov (United States)

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  4. An integrated pipeline for the genome-wide analysis of transcription factor binding sites from ChIP-Seq.

    Science.gov (United States)

    Mercier, Eloi; Droit, Arnaud; Li, Leping; Robertson, Gordon; Zhang, Xuekui; Gottardo, Raphael

    2011-02-16

    ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated, open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis, visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data.

  5. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  6. Genome-wide Analysis of Plant-specific Dof Transcription Factor Family in Tomato

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Cai; Yuyang Zhang; Chanjuan Zhang; Tingyan Zhang; Tixu Hu; Jie Ye; Junhong Zhang

    2013-01-01

    The Dof (DNA binding with One Finger) family encoding single zinc finger proteins has been known as a family of plant-specific transcription factors.These transcription factors are involved in a variety of functions of importance for different biological processes in plants.In the current study,we identified 34 Dof family genes in tomato (Solanum lycopersicum L.),distributed on 11 chromosomes.A complete overview of SIDof genes in tomato is presented,including the gene structures,chromosome locations,phylogeny,protein motifs and evolution pattern.Phylogenetic analysis of 34 SlDof proteins resulted in four classes constituting six clusters.In addition,a comparative analysis between these genes in tomato,Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.) was also performed.The tomato Dof family expansion has been dated to recent duplication events,and segmental duplication is predominant for the SlDof genes.Furthermore,the SlDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth conditions.This is the first step towards genome-wide analyses of the Dof genes in tomato.Our study provides a very useful reference for cloning and functional analysis of the members of this gene family in tomato and other species.

  7. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat

    2011-06-01

    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

  8. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    Directory of Open Access Journals (Sweden)

    Caiqin eLi

    2015-07-01

    Full Text Available The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn. causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2,730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1,867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors, protein ubiquitination, ROS response, calcium signal transduction and cell wall modification. These genes could be clustered into 4 groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to

  9. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation.

    Science.gov (United States)

    Smart, Katherine A

    2007-11-01

    The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.

  10. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    Directory of Open Access Journals (Sweden)

    Jesse R Raab

    2015-12-01

    Full Text Available Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer.

  11. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes

    Science.gov (United States)

    Raab, Jesse R.; Resnick, Samuel; Magnuson, Terry

    2015-01-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  12. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Directory of Open Access Journals (Sweden)

    Yuchun Guo

    Full Text Available An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM. GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the

  13. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Science.gov (United States)

    Guo, Yuchun; Mahony, Shaun; Gifford, David K

    2012-01-01

    An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial

  14. Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis.

    Science.gov (United States)

    Wang, Pengfei; Song, Hui; Li, Changsheng; Li, Pengcheng; Li, Aiqin; Guan, Hongshan; Hou, Lei; Wang, Xingjun

    2017-01-01

    Heat shock transcription factors (Hsfs) are important transcription factors (TFs) in protecting plants from damages caused by various stresses. The released whole genome sequences of wild peanuts make it possible for genome-wide analysis of Hsfs in peanut. In this study, a total of 16 and 17 Hsf genes were identified from Arachis duranensis and A. ipaensis, respectively. We identified 16 orthologous Hsf gene pairs in both peanut species; however HsfXs was only identified from A. ipaensis. Orthologous pairs between two wild peanut species were highly syntenic. Based on phylogenetic relationship, peanut Hsfs were divided into groups A, B, and C. Selection pressure analysis showed that group B Hsf genes mainly underwent positive selection and group A Hsfs were affected by purifying selection. Small scale segmental and tandem duplication may play important roles in the evolution of these genes. Cis-elements, such as ABRE, DRE, and HSE, were found in the promoters of most Arachis Hsf genes. Five AdHsfs and two AiHsfs contained fungal elicitor responsive elements suggesting their involvement in response to fungi infection. These genes were differentially expressed in cultivated peanut under abiotic stress and Aspergillus flavus infection. AhHsf2 and AhHsf14 were significantly up-regulated after inoculation with A. flavus suggesting their possible role in fungal resistance.

  15. Genome-wide Transcription Factor Gene Prediction and their Expressional Tissue-Specificities in Maize

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Biao Zeng; Hainan Zhao; Mei Zhang; Shaojun Xie; Jinsheng Lai

    2012-01-01

    Transcription factors (TFs) are important regulators of gene expression.To better understand TFencoding genes in maize (Zea mays L.),a genome-wide TF prediction was performed using the updated B73 reference genome.A total of 2 298 TF genes were identified,which can be classified into 56 families.The largest family,known as the MYB superfamily,comprises 322 MYB and MYB-related TF genes.The expression patterns of 2014 (87.64%) TF genes were examined using RNA-seq data,which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root,shoot,leaf,ear,tassel and kernel).Similarly,98 kernel-specific TF genes were further analyzed,and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage,while 69 of the genes were expressed in the late kernel developmental stage.Identification of these TFs,particularly the tissue-specific ones,provides important information for the understanding of development and transcriptional regulation of maize.

  16. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element.

    Science.gov (United States)

    Müller, Gerd A; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J; Stadler, Peter F; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  18. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Li, Dayong; Fu, Fuyou; Zhang, Huijuan; Song, Fengming

    2015-10-12

    Transcription factors of the basic leucine zipper (bZIP) family represent exclusively in eukaryotes and have been shown to regulate diverse biological processes in plant growth and development as well as in abiotic and biotic stress responses. However, little is known about the bZIP family in tomato (Solanum lycopersicum L.). The SlbZIP genes were identified using local BLAST and hidden Markov model profile searches. The phylogenetic trees, conserved motifs and gene structures were generated by MEGA6.06, MEME tool and gene Structure Display Server, respectively. The syntenic block diagrams were generated by the Circos software. The transcriptional gene expression profiles were obtained using Genevestigator tool and quantitative RT-PCR. In the present study, we carried out a genome-wide identification and systematic analyses of 69 SlbZIP genes that distributes unevenly on the tomato chromosomes. This family can be divided into 9 groups according to the phylogenetic relationship among the SlbZIP proteins. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs and their presence of the group specificity were also identified. Further, we predicted the DNA-binding patterns and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 24 distinct subfamilies. Within the SlbZIP family, a total of 40 SlbZIP genes are located in the segmental duplicate regions in the tomato genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the tomato SlbZIP family. Expression profiling analyses of 59 SlbZIP genes using quantitative RT-PCR and publicly available microarray data indicate that the tomato SlbZIP genes have distinct and diverse expression patterns in different tissues and developmental stages and many of the tomato bZIP genes

  19. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni

    Science.gov (United States)

    Anderson, Letícia; Gomes, Monete Rajão; daSilva, Lucas Ferreira; Pereira, Adriana da Silva Andrade; Mourão, Marina M.; Romier, Christophe; Pierce, Raymond

    2017-01-01

    Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression

  20. Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis

    DEFF Research Database (Denmark)

    Westergaard, Steen Lund; Bro, Christoffer; Olsson, Lisbeth

    2004-01-01

    The role of Grr1p in glucose sensing in Saccharomyces cerevisiae was elucidated through genome-wide transcription analysis. From triplicate analysis of a strain with deletion of the GRR1-gene from the genome and an isogenic reference strain, 68 genes were identified to have significantly altered...

  1. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Science.gov (United States)

    Ali Hassan, Nur Zarina; Mokhtar, Norfilza Mohd; Kok Sin, Teow; Mohamed Rose, Isa; Sagap, Ismail; Harun, Roslan; Jamal, Rahman

    2014-01-01

    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  2. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Directory of Open Access Journals (Sweden)

    Nur Zarina Ali Hassan

    Full Text Available Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV and gene expression in colorectal cancer (CRC samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  3. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale.

    Science.gov (United States)

    Michel, Audrey M; Baranov, Pavel V

    2013-01-01

    Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Genome-Wide Transcriptional and Physiological Responses of Bradyrhizobium japonicum to Paraquat-Mediated Oxidative Stress▿†

    Science.gov (United States)

    Donati, Andrew J.; Jeon, Jeong-Min; Sangurdekar, Dipen; So, Jae-Seong; Chang, Woo-Suk

    2011-01-01

    The rhizobial bacterium Bradyrhizobium japonicum functions as a nitrogen-fixing symbiont of the soybean plant (Glycine max). Plants are capable of producing an oxidative burst, a rapid proliferation of reactive oxygen species (ROS), as a defense mechanism against pathogenic and symbiotic bacteria. Therefore, B. japonicum must be able to resist such a defense mechanism to initiate nodulation. In this study, paraquat, a known superoxide radical-inducing agent, was used to investigate this response. Genome-wide transcriptional profiles were created for both prolonged exposure (PE) and fulminant shock (FS) conditions. These profiles revealed that 190 and 86 genes were up- and downregulated for the former condition, and that 299 and 105 genes were up- and downregulated for the latter condition, respectively (>2.0-fold; P ROS scavenging enzymes, such as superoxide dismutase and catalase, were not detected, suggesting constitutive expression of those genes by endogenous ROS. Various physiological tests, including exopolysaccharide (EPS), cellular protein, and motility characterization, were performed to corroborate the gene expression data. The results suggest that B. japonicum responds to tolerable oxidative stress during PE through enhanced motility, increased translational activity, and EPS production, in addition to the expression of genes involved in global stress responses, such as chaperones and sigma factors. PMID:21498770

  5. Genome-wide nucleosome occupancy and DNA methylation profiling of four human cell lines

    Directory of Open Access Journals (Sweden)

    Aaron L. Statham

    2015-03-01

    Full Text Available DNA methylation and nucleosome positioning are two key mechanisms that contribute to the epigenetic control of gene expression. During carcinogenesis, the expression of many genes is altered alongside extensive changes in the epigenome, with repressed genes often being associated with local DNA hypermethylation and gain of nucleosomes at their promoters. However the spectrum of alterations that occur at distal regulatory regions has not been extensively studied. To address this we used Nucleosome Occupancy and Methylation sequencing (NOMe-seq to compare the genome-wide DNA methylation and nucleosome occupancy profiles between normal and cancer cell line models of the breast and prostate. Here we describe the bioinformatic pipeline and methods that we developed for the processing and analysis of the NOMe-seq data published by (Taberlay et al., 2014 [1] and deposited in the Gene Expression Omnibus with accession GSE57498.

  6. Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice.

    Science.gov (United States)

    Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan

    2016-10-11

    Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This 'healthy' gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues.

  7. Genome-wide DNA methylation profiling with MeDIP-seq using archived dried blood spots

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas H; Starnawska, Anna; Nyegaard, Mette

    2016-01-01

    . The enrichment profile, sequence quality and distribution of reads across genetic regions were comparable between samples archived 16 years, 4 years and a freshly prepared control sample. CONCLUSIONS: In summary, we show that high-quality MeDIP-seq data is achievable from neonatal screening filter cards stored....... RESULTS: Here we demonstrate, as a proof of principle, that genome-wide interrogation of the methylome based on methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-seq) is feasible using a single 3.2 mm DBS punch (60 ng DNA) from filter cards archived for up to 16 years...... at room temperature, thereby providing information on annotated as well as on non-RefSeq genes and repetitive elements. Moreover, the quantity of DNA from one DBS punch proved sufficient allowing for multiple epigenome studies using one single DBS....

  8. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis.

    Science.gov (United States)

    Ma, Zhengang; Li, Chunfeng; Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for

  9. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  10. Genome-wide identification, phylogeny and expression profile of vesicle fusion components in Verticillium dahliae.

    Directory of Open Access Journals (Sweden)

    Xue Yang

    Full Text Available Vesicular trafficking plays a crucial role in protein localization and movement, signal transduction, and multiple developmental processes in eukaryotic cells. Vesicle fusion is the final and key step in vesicle-mediated trafficking and mainly relies on SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, the regulators including SM (Sec1/Munc18 family proteins, Rab GTPases and exocyst subunits. Verticillium dahliae is a widespread soil fungus that causes disruptive vascular diseases on a wide range of plants. To date, no genes involved in vesicular fusion process have been identified and characterized in V. dahliae. The recent publication of the draft genome sequence of V. dahliae allowed us to conduct a genome-wide identification, phylogeny and expression profile of genes encoding vesicular fusion components. Using compared genomics and phylogenetic methods, we identified 44 genes encoding vesicle fusion components in the V. dahliae genome. According to the structural features of their encoded proteins, the 44 V. dahliae genes were classified into 22 SNAREs (6 Qa-, 4 Qb-, 6 Qc-, 1 Qbc- and 5 R-types, 4 SM family proteins, 10 Rab GTPases and 8 exocyst proteins. Based on phylogeny and motif constitution analysis, orthologs of vesicle fusion component in filamentous fungi were generally clustered together into the same subclasses with well-supported bootstrap values. Analysis of the expression profiles of these genes indicated that many of them are significantly differentially expressed during vegetative growth and microsclerotia formation in V. dahliae. The analysis show that many components of vesicle fusion are well conserved in filamentous fungi and indicate that vesicle fusion plays a critical role in microsclerotia formation of smoke tree wilt fungus V. dahliae. The genome-wide identification and expression analysis of components involved in vesicle fusion should facilitate research in this gene family and give

  11. Genome-wide DNA methylation profiling of non-small cell lung carcinomas

    Directory of Open Access Journals (Sweden)

    Carvalho Rejane

    2012-06-01

    Full Text Available Abstract Background Non-small cell lung carcinoma (NSCLC is a complex malignancy that owing to its heterogeneity and poor prognosis poses many challenges to diagnosis, prognosis and patient treatment. DNA methylation is an important mechanism of epigenetic regulation involved in normal development and cancer. It is a very stable and specific modification and therefore in principle a very suitable marker for epigenetic phenotyping of tumors. Here we present a genome-wide DNA methylation analysis of NSCLC samples and paired lung tissues, where we combine MethylCap and next generation sequencing (MethylCap-seq to provide comprehensive DNA methylation maps of the tumor and paired lung samples. The MethylCap-seq data were validated by bisulfite sequencing and methyl-specific polymerase chain reaction of selected regions. Results Analysis of the MethylCap-seq data revealed a strong positive correlation between replicate experiments and between paired tumor/lung samples. We identified 57 differentially methylated regions (DMRs present in all NSCLC tumors analyzed by MethylCap-seq. While hypomethylated DMRs did not correlate to any particular functional category of genes, the hypermethylated DMRs were strongly associated with genes encoding transcriptional regulators. Furthermore, subtelomeric regions and satellite repeats were hypomethylated in the NSCLC samples. We also identified DMRs that were specific to two of the major subtypes of NSCLC, adenocarcinomas and squamous cell carcinomas. Conclusions Collectively, we provide a resource containing genome-wide DNA methylation maps of NSCLC and their paired lung tissues, and comprehensive lists of known and novel DMRs and associated genes in NSCLC.

  12. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  13. Genome-wide gene expression profiling of the Angelman syndrome mice with Ube3a mutation.

    Science.gov (United States)

    Low, Daren; Chen, Ken-Shiung

    2010-11-01

    Angelman syndrome (AS) is a human neurological disorder caused by lack of maternal UBE3A expression in the brain. UBE3A is known to function as both an ubiquitin-protein ligase (E3) and a coactivator for steroid receptors. Many ubiquitin targets, as well as interacting partners, of UBE3A have been identified. However, the pathogenesis of AS, and how deficiency of maternal UBE3A can upset cellular homeostasis, remains vague. In this study, we performed a genome-wide microarray analysis on the maternal Ube3a-deficient (Ube3a(m-/p+)) AS mouse to search for genes affected in the absence of Ube3a. We observed 64 differentially expressed transcripts (7 upregulated and 57 downregulated) showing more than 1.5-fold differences in expression (Pphenotype. We also show that the protein level of melanocortin 1 receptor (Mc1r) and nuclear receptor subfamily 4, group A, member 2 (Nr4a2) in the AS mice cerebellum is decreased relative to that of the wild-type mice. Consistent with this finding, expression of small-interfering RNA that targets Ube3a in P19 cells caused downregulation of Mc1r and Nr4a2, whereas overexpression of Ube3a results in the upregulation of Mc1r and Nr4a2. These observation help in providing insights into the genesis of neurodevelopmental phenotype of AS and highlight specific area for future research.

  14. Genome-wide effects of selenium and translational uncoupling on transcription in the termite gut symbiont Treponema primitia.

    Science.gov (United States)

    Matson, Eric G; Rosenthal, Adam Z; Zhang, Xinning; Leadbetter, Jared R

    2013-11-12

    When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis in T. primitia influences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes. A large body of literature demonstrates that the coupling of transcription and translation is a general and essential method by which bacteria regulate gene expression levels. However, the potential role of noncanonical amino acids in regulating transcriptional output via translational control remains, for the most part, undefined. Furthermore, the genome-wide transcriptional state in response to translational decoupling is not well quantified. The results presented here suggest that the

  15. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    Science.gov (United States)

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  16. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  17. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease.

  18. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  19. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress

    Directory of Open Access Journals (Sweden)

    Xuedong Yang

    2016-05-01

    Full Text Available The HSF (heat shock factor gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum, which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.

  20. Genome-wide identification, characterization and expression profiling of LIM family genes in Solanum lycopersicum L.

    Science.gov (United States)

    Khatun, Khadiza; Robin, Arif Hasan Khan; Park, Jong-In; Ahmed, Nasar Uddin; Kim, Chang Kil; Lim, Ki-Byung; Kim, Min-Bae; Lee, Do-Jin; Nou, Ill Sup; Chung, Mi-Young

    2016-11-01

    LIM domain proteins, some of which have been shown to be actin binding proteins, are involved in various developmental activities and cellular processes in plants. To date, the molecular defense-related functions of LIM family genes have not been investigated in any solanaceous vegetable crop species. In this study, we identified 15 LIM family genes in tomato (Solanum lycopersicum L.) through genome-wide analysis and performed expression profiling in different organs of tomato, including fruits at six different developmental stages. We also performed expression profiling of selected tomato LIM genes in plants under ABA, drought, cold, NaCl and heat stress treatment. The encoded proteins of the 15 tomato LIM genes were classified into two main groups, i.e., proteins similar to cysteine-rich proteins and plant-specific DAR proteins, based on differences in functional domains and variability in their C-terminal regions. The DAR proteins contain a so far poorly characterized zinc-finger-like motif that we propose to call DAR-ZF. Six of the 15 LIM genes were expressed only in flowers, indicating that they play flower-specific roles in plants. The other nine genes were expressed in all organs and at various stages of fruit development. SlβLIM1b was expressed relatively highly at the later stage of fruit development, but three other genes, SlWLIM2a, SlDAR2 and SlDAR4, were expressed at the early stage of fruit development. Seven genes were induced by ABA, five by cold, seven by drought, eight by NaCl and seven by heat treatment respectively, indicating their possible roles in abiotic stress tolerance. Our results will be useful for functional analysis of LIM genes during fruit development in tomato plants under different abiotic stresses. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  2. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2006-07-01

    Full Text Available Abstract Background A complete understanding of the regulatory mechanisms of gene expression is the next important issue of genomics. Many bioinformaticians have developed methods and algorithms for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding data. However, most of these studies involved the use of yeast which has much simpler regulatory networks than human and has many genome wide binding data and gene expression data under diverse conditions. Studies of genome wide transcriptional networks of human genomes currently lag behind those of yeast. Results We report herein a new method that combines gene expression data analysis with promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs were successfully used to represent the activity of TFBSs in a given microarray data set. A significant correlation between the Z scores of gene sets of TFBSs and individual genes across multiple conditions permitted successful identification of many known human transcriptional regulatory elements of genes as well as the prediction of numerous putative TFBSs of many genes which will constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs produced better predictions than the use of mRNA levels of a transcription factor itself, suggesting that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-acting TFBSs, were readily identified by our analysis. Conclusion By a strategic combination of gene set level analysis of gene expression data sets and promoter analysis, we were able to identify and predict many transcriptional regulatory elements of human genes. We conclude that this approach will aid in decoding

  3. Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa

    Directory of Open Access Journals (Sweden)

    Jiancan Du

    2017-09-01

    Full Text Available The teosinte branched1/cycloidea/proliferating cell factor (TCP gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips (Brassica rapa ssp. rapa. In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.

  4. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    Science.gov (United States)

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  5. Genome-Wide Analysis of the Role of Global Transcriptional Regulator GntR1 in Corynebacterium glutamicum

    OpenAIRE

    Tanaka, Yuya; Takemoto, Norihiko; Ito, Terukazu; Teramoto, Haruhiko; Yukawa, Hideaki; Inui, Masayuki

    2014-01-01

    The transcriptional regulator GntR1 downregulates the genes for gluconate catabolism and pentose phosphate pathway in Corynebacterium glutamicum. Gluconate lowers the DNA binding affinity of GntR1, which is probably the mechanism of gluconate-dependent induction of these genes. In addition, GntR1 positively regulates ptsG, a gene encoding a major glucose transporter, and pck, a gene encoding phosphoenolpyruvate carboxykinase. Here, we searched for the new target of GntR1 on a genome-wide scal...

  6. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium

    Directory of Open Access Journals (Sweden)

    Peracino Barbara

    2008-06-01

    Full Text Available Abstract Background Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. Results The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium, respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, aminoacid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could

  7. Genome-Wide Effects of Selenium and Translational Uncoupling on Transcription in the Termite Gut Symbiont Treponema primitia

    Science.gov (United States)

    Matson, Eric G.; Rosenthal, Adam Z.; Zhang, Xinning; Leadbetter, Jared R.

    2013-01-01

    ABSTRACT When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis in T. primitia influences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes. PMID:24222491

  8. Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development

    Directory of Open Access Journals (Sweden)

    Koushik Chakrabarty

    2012-05-01

    Meso-diencephalic dopaminergic (mdDA neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinson's disease (PD, schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits and the identification of novel transcription factors (Oc2 and 3 involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.

  9. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types

    DEFF Research Database (Denmark)

    Ecker, Simone; Chen, Lu; Pancaldi, Vera

    2017-01-01

    Background: A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. Results: We apply a novel analytical approach to measure and compare transcriptional and epigenetic v...

  10. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours

    DEFF Research Database (Denmark)

    Almstrup, K; Hoei-Hansen, C E; Nielsen, J E

    2005-01-01

    into CIS occurs early during foetal life. Progression into an overt tumour, however, typically first happens after puberty, where CIS cells transform into either a seminoma (SEM) or a nonseminoma (N-SEM). Here, we have compared the genome-wide gene expression of CIS cells to that of testicular SEM...

  11. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, F.; Wardenaar, R.; Colome-Tatche, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.; Timmers, H.T.; Cuppen, E.; Jansen, R.

    2010-01-01

    MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in epigen

  12. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli.

    Science.gov (United States)

    Leela, J Krishna; Syeda, Aisha H; Anupama, K; Gowrishankar, J

    2013-01-02

    Two pathways of transcription termination, factor-independent and -dependent, exist in bacteria. The latter pathway operates on nascent transcripts that are not simultaneously translated and requires factors Rho, NusG, and NusA, each of which is essential for viability of WT Escherichia coli. NusG and NusA are also involved in antitermination of transcription at the ribosomal RNA operons, as well as in regulating the rates of transcription elongation of all genes. We have used a bisulfite-sensitivity assay to demonstrate genome-wide increase in the occurrence of RNA-DNA hybrids (R-loops), including from antisense and read-through transcripts, in a nusG missense mutant defective for Rho-dependent termination. Lethality associated with complete deficiency of Rho and NusG (but not NusA) was rescued by ectopic expression of an R-loop-helicase UvsW, especially so on defined growth media. Our results suggest that factor-dependent transcription termination subserves a surveillance function to prevent translation-uncoupled transcription from generating R-loops, which would block replication fork progression and therefore be lethal, and that NusA performs additional essential functions as well in E. coli. Prevention of R-loop-mediated transcription-replication conflicts by cotranscriptional protein engagement of nascent RNA is emerging as a unifying theme among both prokaryotes and eukaryotes.

  13. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.

    Science.gov (United States)

    Arora, Rita; Agarwal, Pinky; Ray, Swatismita; Singh, Ashok Kumar; Singh, Vijay Pal; Tyagi, Akhilesh K; Kapoor, Sanjay

    2007-07-18

    MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Malpha, Mbeta and Mgamma groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mbeta group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development. Differential expression of seven

  14. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress

    Directory of Open Access Journals (Sweden)

    Tyagi Akhilesh K

    2007-07-01

    Full Text Available Abstract Background MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. Results A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Mα, Mβ and Mγ groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mβ group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development

  15. Genome-wide gene expression profile analyses identify CTTN as a potential prognostic marker in esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Pei Lu

    Full Text Available AIM: Esophageal squamous cell carcinoma (ESCC is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. METHODS: We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal tissues by cDNA microarrays representing 47,000 transcripts and variants. Candidate genes were then validated by semi quantitative reverse transcription-PCR (RT-PCR, tissue microarrays (TMAs and immunohistochemistry (IHC staining. RESULTS: Using an arbitrary cutoff line of signal log ratio of ≥1.5 or ≤-1.5, we observed 549 up-regulated genes and 766 down-regulated genes in ESCCs compared with normal esophageal tissues. The functions of 302 differentially expressed genes were associated with cell metabolism, cell adhesion and immune response. Several candidate deregulated genes including four overexpressed (CTTN, DMRT2, MCM10 and SCYA26 and two underexpressed (HMGCS2 and SORBS2 were subsequently verified, which can be served as biomarkers for ESCC. Moreover, overexpression of cortactin (CTTN was observed in 126/198 (63.6% of ESCC cases and was significantly associated with lymph node metastasis (P = 0.000, pathologic stage (P = 0.000 and poor survival (P<0.001 of ESCC patients. Furthermore, a significant correlation between CTTN overexpression and shorter disease-specific survival rate was found in different subgroups of ESCC patient stratified by the pathologic stage (P<0.05. CONCLUSION: Our data provide valuable information for establishing molecules as candidates for prognostic and/or as therapeutic targets.

  16. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2011-02-01

    Full Text Available Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6-0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription

  17. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each

  18. Genome-Wide Gene Expression Profile Analyses Identify CTTN as a Potential Prognostic Marker in Esophageal Cancer

    OpenAIRE

    2014-01-01

    Aim Esophageal squamous cell carcinoma (ESCC) is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. Methods We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal ti...

  19. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions

    DEFF Research Database (Denmark)

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil

    2006-01-01

    to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts...... with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator...

  20. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    Science.gov (United States)

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  1. Genome-wide assembly and analysis of alternative transcripts in mouse

    Science.gov (United States)

    Sharov, Alexei A.; Dudekula, Dawood B.; Ko, Minoru S.H.

    2005-01-01

    To build a mouse gene index with the most comprehensive coverage of alternative transcription/splicing (ATS), we developed an algorithm and a fully automated computational pipeline for transcript assembly from expressed sequences aligned to the genome. We identified 191,946 genomic loci, which included 27,497 protein-coding genes and 11,906 additional gene candidates (e.g., nonprotein-coding, but multiexon). Comparison of the resulting gene index with TIGR, UniGene, DoTS, and ESTGenes databases revealed that it had a greater number of transcripts, a greater average number of exons and introns with proper splicing sites per gene, and longer ORFs. The 27,497 protein-coding genes had 77,138 transcripts, i.e., 2.8 transcripts per gene on average. Close examination of transcripts led to a combinatorial table of 23 types of ATS units, only nine of which were previously described, i.e., 14 types of alternative splicing, seven types of alternative starts, and two types of alternative termination. The 47%, 18%, and 14% of 20,323 multiexon protein-coding genes with proper splice sites had alternative splicings, alternative starts, and alternative terminations, respectively. The gene index with the comprehensive ATS will provide a useful platform for analyzing the nature and mechanism of ATS, as well as for designing the accurate exon-based DNA microarrays. PMID:15867436

  2. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.

    Science.gov (United States)

    Yokomori, Rui; Shimai, Kotaro; Nishitsuji, Koki; Suzuki, Yutaka; Kusakabe, Takehiro G; Nakai, Kenta

    2016-01-01

    The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.

  3. Genome-wide assembly and analysis of alternative transcripts in mouse

    OpenAIRE

    Sharov, Alexei A; Dudekula, Dawood B.; Minoru S.H. Ko

    2005-01-01

    To build a mouse gene index with the most comprehensive coverage of alternative transcription/splicing (ATS), we developed an algorithm and a fully automated computational pipeline for transcript assembly from expressed sequences aligned to the genome. We identified 191,946 genomic loci, which included 27,497 protein-coding genes and 11,906 additional gene candidates (e.g., nonprotein-coding, but multiexon). Comparison of the resulting gene index with TIGR, UniGene, DoTS, and ESTGenes databas...

  4. Genome-Wide Transcriptional Responses to Carbon Starvation in Nongrowing Lactococcus lactis

    NARCIS (Netherlands)

    Ercan,O.; Wels, M.; Smid. E.J.; Kleerebezem, M.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h−1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a

  5. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis

    NARCIS (Netherlands)

    Ercan, O.; Wels, M.; Smid, E.J.; Kleerebezem, M.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (µ = 0.0001 h-1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a

  6. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.

    Science.gov (United States)

    Kim, Daesik; Bae, Sangsu; Park, Jeongbin; Kim, Eunji; Kim, Seokjoong; Yu, Hye Ryeong; Hwang, Jinha; Kim, Jong-Il; Kim, Jin-Soo

    2015-03-01

    Although RNA-guided genome editing via the CRISPR-Cas9 system is now widely used in biomedical research, genome-wide target specificities of Cas9 nucleases remain controversial. Here we present Digenome-seq, in vitro Cas9-digested whole-genome sequencing, to profile genome-wide Cas9 off-target effects in human cells. This in vitro digest yields sequence reads with the same 5' ends at cleavage sites that can be computationally identified. We validated off-target sites at which insertions or deletions were induced with frequencies below 0.1%, near the detection limit of targeted deep sequencing. We also showed that Cas9 nucleases can be highly specific, inducing off-target mutations at merely several, rather than thousands of, sites in the entire genome and that Cas9 off-target effects can be avoided by replacing 'promiscuous' single guide RNAs (sgRNAs) with modified sgRNAs. Digenome-seq is a robust, sensitive, unbiased and cost-effective method for profiling genome-wide off-target effects of programmable nucleases including Cas9.

  7. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    Directory of Open Access Journals (Sweden)

    William R Swindell

    Full Text Available Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1. While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  8. Genome-wide mapping of conserved microRNAs and their host transcripts in Tribolium castaneum

    Institute of Scientific and Technical Information of China (English)

    Qibin Luo; Qing Zhou; Xiaomin Yu; Hongbin Lin; Songnian Hu; Jun Yu

    2008-01-01

    MicroRNAs (miRNAs) are endogenous 22-nt RNAs, which play important regulatory roles by post-transcriptional gene silencing. A computational strategy has been developed for the identification of conserved miRNAs based on features of known metazoan miRNAs in red flour beetle (Tribolium castaneum), which is regarded as one of the major laboratory models of arthropods. Among 118 putative miRNAs, 47% and 53% of the predicted miRNAs from the red flour beetle are harbored by known protein-coding genes (intronic) and genes located outside (intergenic miRNA), respectively. There are 31 intronic miRNAs in the same transcriptional orientation as the host genes, which may share RNA polymerase Ⅱ and spliceosomal machinery with their host genes for their biogenesis. A hypothetical feedback model has been proposed based on the analysis of the relationship between intronic miRNAs and their host genes in the development of red flour beetle.

  9. Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Teresa Cortes

    2013-11-01

    Full Text Available Deciphering physiological changes that mediate transition of Mycobacterium tuberculosis between replicating and nonreplicating states is essential to understanding how the pathogen can persist in an individual host for decades. We have combined RNA sequencing (RNA-seq of 5′ triphosphate-enriched libraries with regular RNA-seq to characterize the architecture and expression of M. tuberculosis promoters. We identified over 4,000 transcriptional start sites (TSSs. Strikingly, for 26% of the genes with a primary TSS, the site of transcriptional initiation overlapped with the annotated start codon, generating leaderless transcripts lacking a 5′ UTR and, hence, the Shine-Dalgarno sequence commonly used to initiate ribosomal engagement in eubacteria. Genes encoding proteins with active growth functions were markedly depleted from the leaderless transcriptome, and there was a significant increase in the overall representation of leaderless mRNAs in a starvation model of growth arrest. The high percentage of leaderless genes may have particular importance in the physiology of nonreplicating M. tuberculosis.

  10. Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea

    Directory of Open Access Journals (Sweden)

    Raddatz Günter

    2007-11-01

    Full Text Available Abstract Background Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. Results A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. Conclusion For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns

  11. Genome-wide Expression Profiling Reveals S100B as Biomarker for Invasive Aspergillosis

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2016-03-01

    Full Text Available Invasive aspergillosis (IA is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy towards this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of haematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.

  12. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  13. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  14. Genome-wide transcriptional response of Silurana (Xenopus tropicalis to infection with the deadly chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Erica Bree Rosenblum

    Full Text Available Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing

  15. Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics.

    Science.gov (United States)

    Yant, Levi

    2012-02-01

    How does evolution forge adaptive responses? Are many changes required or few? Just how complex are the transcriptional networks that control development? Diverse questions like these are being newly addressed by next-generation sequencing-based techniques. Facilitating a mechanistic understanding, these approaches reveal the direct in vivo interactions between transcription factors and their physical targets, combined with genome-scale readouts to comprehensively map adaptive gene regulatory networks (GRNs). Here I focus on pioneering work from the last 3 years that has leveraged these data to investigate diverse aspects of GRN circuitry controlling the reproductive transition in plants. These approaches have revealed surprising new functions for long-investigated key players in developmental programs and laid bare the basis for pleiotropy in many others, suggesting widespread process integration at the transcriptional level. Evolutionary questions begged by the recent deluge of GRN mapping data are being assessed anew, both by emerging work outside Arabidopsis thaliana and novel analyses within. These studies have swiftly exposed the distinctive power and adaptability of genome-wide GRN mapping and illustrate that this unique data type holds tremendous promise for plant biology.

  16. Genome-wide transcriptional comparison of MPP+ treated human neuroblastoma cells with the state space model

    Directory of Open Access Journals (Sweden)

    Jin Hwan Do

    2015-10-01

    Full Text Available This study compared a parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+ response in two distinct phenotypes of human neuroblastoma cell lines: neuronal N-type SH-SY5Y cells and flat substrate-adherent S-type SH-EP cells. SH-SY5Y and SH-EP cells shared only 14% of their own MPP+ response genes, and their gene ontology (GO analysis revealed significant endoplasmic reticulum (ER stress by misfolded proteins. Gene modules, which are groups of transcriptionally co-expressed genes with similar biological functions, were identified for SH-SY5Y and SH-EP cells by using time-series microarray data with the state space model (SSM. All modules of SH-SY5Y and SH-EP cells showed strong positive auto-regulation that was often mediated via signal molecules and may cause bi-stability. Interactions in gene levels were calculated by using SSM parameters obtained in the process of module identification. Gene networks that were constructed from the gene interaction matrix showed different hub genes with high node degrees between SH-SY5Y and SH-EP cells. That is, key hub genes of SH-SY5Y cells were DCN, HIST1H2BK, and C5orf40, whereas those of SH-EP cells were MSH6, RBCK1, MTHFD2, ZNF26, CTH, and CARS. These results suggest that inhibition of the mitochondrial complex I by MPP+ might induce different downstream processes that are cell type dependent.

  17. Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties1[OPEN

    Science.gov (United States)

    Khanday, Imtiyaz; Das, Sanjukta; Chongloi, Grace L; Vijayraghavan, Usha

    2016-01-01

    OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5. This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development. PMID:27457124

  18. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile.

    Science.gov (United States)

    Oberstaller, Jenna; Joseph, Sandeep J; Kissinger, Jessica C

    2013-07-29

    There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5'-TGGCGCCA-3'); G-box (5'-G.GGGG-3'); a well-documented ApiAP2 binding motif (5'-TGCAT-3'), and an unknown motif (5'-[A/C] AACTA-3'). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.

  19. Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature.

    Science.gov (United States)

    Sánchez, Yolanda; Segura, Victor; Marín-Béjar, Oskar; Athie, Alejandro; Marchese, Francesco P; González, Jovanna; Bujanda, Luis; Guo, Shuling; Matheu, Ander; Huarte, Maite

    2014-12-19

    Despite the inarguable relevance of p53 in cancer, genome-wide studies relating endogenous p53 activity to the expression of lncRNAs in human cells are still missing. Here, by integrating RNA-seq with p53 ChIP-seq analyses of a human cancer cell line under DNA damage, we define a high-confidence set of 18 lncRNAs that are p53 transcriptional targets. We demonstrate that two of the p53-regulated lncRNAs are required for the efficient binding of p53 to some of its target genes, modulating the p53 transcriptional network and contributing to apoptosis induction by DNA damage. We also show that the expression of p53-lncRNAs is lowered in colorectal cancer samples, constituting a tumour suppressor signature with high diagnostic power. Thus, p53-regulated lncRNAs establish a positive regulatory feedback loop that enhances p53 tumour suppressor activity. Furthermore, the signature defined by p53-regulated lncRNAs supports their potential use in the clinic as biomarkers and therapeutic targets.

  20. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations.

    Science.gov (United States)

    Abbas, Saman; Sanders, Mathijs A; Zeilemaker, Annelieke; Geertsma-Kleinekoort, Wendy M C; Koenders, Jasper E; Kavelaars, Francois G; Abbas, Zabiollah G; Mahamoud, Souad; Chu, Isabel W T; Hoogenboezem, Remco; Peeters, Justine K; van Drunen, Ellen; van Galen, Janneke; Beverloo, H Berna; Löwenberg, Bob; Valk, Peter J M

    2014-05-01

    Acute myeloid leukemia is a neoplasm characterized by recurrent molecular aberrations traditionally demonstrated by cytogenetic analyses. We used high density genome-wide genotyping and gene expression profiling to reveal acquired cryptic abnormalities in acute myeloid leukemia. By genome-wide genotyping of 137 cases of primary acute myeloid leukemia, we disclosed a recurrent focal amplification on chromosome 14q32, which included the genes BCL11B, CCNK, C14orf177 and SETD3, in two cases. In the affected cases, the BCL11B gene showed consistently high mRNA expression, whereas the expression of the other genes was unperturbed. Fluorescence in situ hybridization on 40 cases of acute myeloid leukemia with high BCL11B mRNA expression [2.5-fold above median; 40 out of 530 cases (7.5%)] revealed 14q32 abnormalities in two additional cases. In the four BCL11B-rearranged cases the 14q32 locus was fused to different partner chromosomes. In fact, in two cases, we demonstrated that the focal 14q32 amplifications were integrated into transcriptionally active loci. The translocations involving BCL11B result in increased expression of full-length BCL11B protein. The BCL11B-rearranged acute myeloid leukemias expressed both myeloid and T-cell markers. These biphenotypic acute leukemias all carried FLT3 internal tandem duplications, a characteristic marker of acute myeloid leukemia. BCL11B mRNA expression in acute myeloid leukemia appeared to be strongly associated with expression of other T-cell-specific genes. Myeloid 32D(GCSF-R) cells ectopically expressing Bcl11b showed decreased proliferation rate and less maturation. In conclusion, by an integrated approach involving high-throughput genome-wide genotyping and gene expression profiling we identified BCL11B as a candidate oncogene in acute myeloid leukemia.

  1. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum.

    Science.gov (United States)

    Veluchamy, Alaguraj; Lin, Xin; Maumus, Florian; Rivarola, Maximo; Bhavsar, Jaysheel; Creasy, Todd; O'Brien, Kimberly; Sengamalay, Naomi A; Tallon, Luke J; Smith, Andrew D; Rayko, Edda; Ahmed, Ikhlak; Le Crom, Stéphane; Farrant, Gregory K; Sgro, Jean-Yves; Olson, Sue A; Bondurant, Sandra Splinter; Allen, Andrew E; Allen, Andrew; Rabinowicz, Pablo D; Sussman, Michael R; Bowler, Chris; Tirichine, Leïla

    2013-01-01

    DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.

  2. Genome-Wide Identification, Characterization and Expression Profiling of ADF Family Genes in Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    Khadiza Khatun

    2016-09-01

    Full Text Available The actin depolymerizing factor (ADF proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA, jasmonic acid (JA and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses.

  3. Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation

    Science.gov (United States)

    Piggott, Nina; Cook, Michael A.; Tyers, Mike; Measday, Vivien

    2011-01-01

    The ability of cells to respond to environmental changes and adapt their metabolism enables cell survival under stressful conditions. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is particularly well adapted to the harsh conditions of anaerobic wine fermentation. However, S. cerevisiae gene function has not been previously systematically interrogated under conditions of industrial fermentation. We performed a genome-wide study of essential and nonessential S. cerevisiae gene requirements during grape juice fermentation to identify deletion strains that are either depleted or enriched within the viable fermentative population. Genes that function in autophagy and ubiquitin-proteasome degradation are required for optimal survival during fermentation, whereas genes that function in ribosome assembly and peroxisome biogenesis impair fitness during fermentation. We also uncover fermentation phenotypes for 139 uncharacterized genes with no previously known cellular function. We demonstrate that autophagy is induced early in wine fermentation in a nitrogen-replete environment, suggesting that autophagy may be triggered by other forms of stress that arise during fermentation. These results provide insights into the complex fermentation process and suggest possible means for improvement of industrial fermentation strains. PMID:22384346

  4. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants*#

    Science.gov (United States)

    Li, Wen-xu; Wu, San-ling; Liu, Yan-hua; Jin, Gu-lei; Zhao, Hai-jun; Fan, Long-jiang; Shu, Qing-yao

    2016-01-01

    Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate “transgene-clean” targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855–5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338–1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2–6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA. PMID:27921404

  5. Genome-Wide Identification, Characterization and Expression Profiling of ADF Family Genes in Solanum lycopersicum L.

    Science.gov (United States)

    Khatun, Khadiza; Robin, Arif Hasan Khan; Park, Jong-In; Kim, Chang Kil; Lim, Ki-Byung; Kim, Min-Bae; Lee, Do-Jin; Nou, Ill Sup; Chung, Mi-Young

    2016-09-29

    The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA), jasmonic acid (JA) and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses.

  6. Novel amplifications in pediatric medulloblastoma identified by genome-wide copy number profiling.

    Science.gov (United States)

    Nord, Helena; Pfeifer, Susan; Nilsson, Pelle; Sandgren, Johanna; Popova, Svetlana; Strömberg, Bo; Alafuzoff, Irina; Nistér, Monica; Díaz de Ståhl, Teresita

    2012-03-01

    Medulloblastoma (MB) is a WHO grade IV, invasive embryonal CNS tumor that mainly affects children. The aggressiveness and response to therapy can vary considerably between cases, and despite treatment, ~30% of patients die within 2 years from diagnosis. Furthermore, the majority of survivors suffer long-term side-effects due to severe management modalities. Several distinct morphological features have been associated with differences in biological behavior, but improved molecular-based criteria that better reflect the underlying tumor biology are in great demand. In this study, we profiled a series of 25 MB with a 32K BAC array covering 99% of the current assembly of the human genome for the identification of genetic copy number alterations possibly important in MB. Previously known aberrations as well as several novel focally amplified loci could be identified. As expected, the most frequently observed alteration was the combination of 17p loss and 17q gain, which was detected in both high- and standard-risk patients. We also defined minimal overlapping regions of aberrations, including 16 regions of gain and 18 regions of loss in various chromosomes. A few noteworthy narrow amplified loci were identified on autosomes 1 (38.89-41.97 and 84.89-90.76 Mb), 3 (27.64-28.20 and 35.80-43.50 Mb), and 8 (119.66-139.79 Mb), aberrations that were verified with an alternative platform (Illumina 610Q chips). Gene expression levels were also established for these samples using Affymetrix U133Plus2.0 arrays. Several interesting genes encompassed within the amplified regions and presenting with transcript upregulation were identified. These data contribute to the characterization of this malignant childhood brain tumor and confirm its genetic heterogeneity.

  7. Molecular profiling of indolent human prostate cancer:tackling technical challenges to achieve high-fidelity genome-wide data

    Institute of Scientific and Technical Information of China (English)

    Thomas A. Dunn; Helen L. Fedor; Angelo M. De Marzo; Jun Luo

    2012-01-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men,and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases.Since progressive acquisition and accumulation of genomic alterations,both genetic and epigenetic,is a defining feature of all human cancers at different stages of disease progression,it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer.Approaches capable of detecting such alterations on a genome-wide level are the most promising.Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression,and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment.However,defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge,particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens.Here,we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies,identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues,and highlight recent progresses in efforts to address these technical challenges.

  8. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  9. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    jiahong yu

    2016-08-01

    Full Text Available The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps in plants, but little is known about this family in tomato (Solanum lycopersicum, an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20 gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83% were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root and reproductive organs (floral bud and flower, suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript

  10. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  11. Genome-wide copy number profiling using high-density SNP array in chickens.

    Science.gov (United States)

    Yi, G; Qu, L; Chen, S; Xu, G; Yang, N

    2015-04-01

    Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome-wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high-density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high-density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high-density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens. © 2015 Stichting International Foundation for Animal Genetics.

  12. Discovery and replication of microRNAs for breast cancer risk using genome-wide profiling.

    Science.gov (United States)

    Taslim, Cenny; Weng, Daniel Y; Brasky, Theodore M; Dumitrescu, Ramona G; Huang, Kun; Kallakury, Bhaskar V S; Krishnan, Shiva; Llanos, Adana A; Marian, Catalin; McElroy, Joseph; Schneider, Sallie S; Spear, Scott L; Troester, Melissa A; Freudenheim, Jo L; Geyer, Susan; Shields, Peter G

    2016-12-27

    Genome-wide miRNA expression may be useful for predicting breast cancer risk and/or for the early detection of breast cancer. A 41-miRNA model distinguished breast cancer risk in the discovery study (accuracy of 83.3%), which was replicated in the independent study (accuracy = 63.4%, P=0.09). Among the 41 miRNA, 20 miRNAs were detectable in serum, and predicted breast cancer occurrence within 18 months of blood draw (accuracy 53%, P=0.06). These risk-related miRNAs were enriched for HER-2 and estrogen-dependent breast cancer signaling. MiRNAs were assessed in two cross-sectional studies of women without breast cancer and a nested case-control study of breast cancer. Using breast tissues, a multivariate analysis was used to model women with high and low breast cancer risk (based upon Gail risk model) in a discovery study of women without breast cancer (n=90), and applied to an independent replication study (n=71). The model was then assessed using serum samples from the nested case-control study (n=410). Studying breast tissues of women without breast cancer revealed miRNAs correlated with breast cancer risk, which were then found to be altered in the serum of women who later developed breast cancer. These results serve as proof-of-principle that miRNAs in women without breast cancer may be useful for predicting breast cancer risk and/or as an adjunct for breast cancer early detection. The miRNAs identified herein may be involved in breast carcinogenic pathways because they were first identified in the breast tissues of healthy women.

  13. Genomic risk profiling of ischemic stroke: results of an international genome-wide association meta-analysis.

    Directory of Open Access Journals (Sweden)

    James F Meschia

    Full Text Available INTRODUCTION: Familial aggregation of ischemic stroke derives from shared genetic and environmental factors. We present a meta-analysis of genome-wide association scans (GWAS from 3 cohorts to identify the contribution of common variants to ischemic stroke risk. METHODS: This study involved 1464 ischemic stroke cases and 1932 controls. Cases were genotyped using the Illumina 610 or 660 genotyping arrays; controls, with Illumina HumanHap 550Kv1 or 550Kv3 genotyping arrays. Imputation was performed with the 1000 Genomes European ancestry haplotypes (August 2010 release as a reference. A total of 5,156,597 single-nucleotide polymorphisms (SNPs were incorporated into the fixed effects meta-analysis. All SNPs associated with ischemic stroke (P<1×10(-5 were incorporated into a multivariate risk profile model. RESULTS: No SNP reached genome-wide significance for ischemic stroke (P<5×10(-8. Secondary analysis identified a significant cumulative effect for age at onset of stroke (first versus fifth quintile of cumulative profiles based on SNPs associated with late onset, ß = 14.77 [10.85,18.68], P = 5.5×10(-12, as well as a strong effect showing increased risk across samples with a high propensity for stroke among samples with enriched counts of suggestive risk alleles (P<5×10(-6. Risk profile scores based only on genomic information offered little incremental prediction. DISCUSSION: There is little evidence of a common genetic variant contributing to moderate risk of ischemic stroke. Quintiles based on genetic loading of alleles associated with a younger age at onset of ischemic stroke revealed a significant difference in age at onset between those in the upper and lower quintiles. Using common variants from GWAS and imputation, genomic profiling remains inferior to family history of stroke for defining risk. Inclusion of genomic (rare variant information may be required to improve clinical risk profiling.

  14. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza saliva and Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    JI Qian; ZHANG Liang-sheng; WANG Yi-fei; WANG Jian

    2009-01-01

    The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza saliva) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family.

  15. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.

    Science.gov (United States)

    Shi, Pibiao; Guy, Kateta Malangisha; Wu, Weifang; Fang, Bingsheng; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-04-12

    The plant-specific TCP transcription factor family, which is involved in the regulation of cell growth and proliferation, performs diverse functions in multiple aspects of plant growth and development. However, no comprehensive analysis of the TCP family in watermelon (Citrullus lanatus) has been undertaken previously. A total of 27 watermelon TCP encoding genes distributed on nine chromosomes were identified. Phylogenetic analysis clustered the genes into 11 distinct subgroups. Furthermore, phylogenetic and structural analyses distinguished two homology classes within the ClTCP family, designated Class I and Class II. The Class II genes were differentiated into two subclasses, the CIN subclass and the CYC/TB1 subclass. The expression patterns of all members were determined by semi-quantitative PCR. The functions of two ClTCP genes, ClTCP14a and ClTCP15, in regulating plant height were confirmed by ectopic expression in Arabidopsis wild-type and ortholog mutants. This study represents the first genome-wide analysis of the watermelon TCP gene family, which provides valuable information for understanding the classification and functions of the TCP genes in watermelon.

  16. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation.

    Science.gov (United States)

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-09-08

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development.

  17. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells.

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C

    2017-05-02

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.

  18. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2.

    Science.gov (United States)

    Bochkis, Irina M; Schug, Jonathan; Ye, Diana Z; Kurinna, Svitlana; Stratton, Sabrina A; Barton, Michelle C; Kaestner, Klaus H

    2012-01-01

    Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq) that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution.

  19. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2.

    Directory of Open Access Journals (Sweden)

    Irina M Bochkis

    Full Text Available Gene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators. We determine by genome-wide location analysis (ChIP-Seq that, although Foxa1 and Foxa2 share a large fraction of binding sites in the liver, each protein also occupies distinct regulatory elements in vivo. Foxa1-only sites are enriched for p53 binding sites and are frequently found near genes important to cell cycle regulation, while Foxa2-restricted sites show only a limited match to the forkhead consensus and are found in genes involved in steroid and lipid metabolism. Thus, Foxa1 and Foxa2, while redundant during development, have evolved divergent roles in the adult liver, ensuring the maintenance of both genes during evolution.

  20. Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls

    DEFF Research Database (Denmark)

    Fei, Gao; Luo, Yonglun; Li, Shengting

    2011-01-01

    Animal breeding via Somatic Cell Nuclear Transfer (SCNT) has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural...... breeding or In-vitro fertilization (IVF). Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver), using Affymetrix Porcine expression array as well as modified methylation......-specific digital karyotyping (MMSDK) and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls...

  1. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.;

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehens...

  2. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains.

    Science.gov (United States)

    Van der Aa, Niels; Cheng, Jiqiu; Mateiu, Ligia; Zamani Esteki, Masoud; Kumar, Parveen; Dimitriadou, Eftychia; Vanneste, Evelyne; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2013-04-01

    Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell's copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.

  3. Genome-wide expression profiling during protection from colitis by regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Olsen, Jørgen; Gad, Monika

    2008-01-01

    Chip Mouse Genome 430 2.0 Array), which enabled an analysis of a complete set of RNA transcript levels in each sample. Array results were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS: Data were analyzed using combined projections to latent structures and functional...... annotation analysis. The colitic samples were clearly distinguishable from samples from normal mice by a vast number of inflammation- and growth factor-related transcripts. In contrast, the Treg-protected animals could not be distinguished from either the normal BALB/c mice or the normal SCID mice. mRNA......BACKGROUND: In the adoptive transfer model of colitis it has been shown that regulatory T cells (Treg) can hinder disease development and cure already existing mild colitis. The mechanisms underlying this regulatory effect of CD4(+)CD25(+) Tregs are not well understood. METHODS: To identify...

  4. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins.

    Science.gov (United States)

    Arefin, Badrul; Kucerova, Lucie; Dobes, Pavel; Markus, Robert; Strnad, Hynek; Wang, Zhi; Hyrsl, Pavel; Zurovec, Michal; Theopold, Ulrich

    2014-01-01

    Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) which infects its host by accessing the hemolymph where it releases endosymbiotic bacteria of the species Photorhabdus luminescens. We performed a genome-wide transcriptional analysis of the Drosophila response to EPN infection at the time point at which the nematodes reached the hemolymph either via the cuticle or the gut and the bacteria had started to multiply. Many of the most strongly induced genes have been implicated in immune responses in other infection models. Mapping of the complete set of differentially regulated genes showed the hallmarks of a wound response, but also identified a large fraction of EPN-specific transcripts. Several genes identified by transcriptome profiling or their homologues play protective roles during nematode infections. Genes that positively contribute to controlling nematobacterial infections encode: a homolog of thioester-containing complement protein 3, a basement membrane component (glutactin), a recognition protein (GNBP-like 3) and possibly several small peptides. Of note is that several of these genes have not previously been implicated in immune responses.

  5. Genome-Wide Association Study of the Child Behavior Checklist Dysregulation Profile

    Science.gov (United States)

    Mick, Eric; McGough, James; Loo, Sandra; Doyle, Alysa E.; Wozniak, Janet; Wilens, Timothy E.; Smalley, Susan; McCracken, James; Biederman, Joseph; Faraone, Stephen V.

    2011-01-01

    Objective: A potentially useful tool for understanding the distribution and determinants of emotional dysregulation in children is a Child Behavior Checklist profile, comprising the Attention Problems, Anxious/Depressed, and Aggressive Behavior clinical subscales (CBCL-DP). The CBCL-DP indexes a heritable trait that increases susceptibility for…

  6. Genome-Wide Association Study of the Child Behavior Checklist Dysregulation Profile

    Science.gov (United States)

    Mick, Eric; McGough, James; Loo, Sandra; Doyle, Alysa E.; Wozniak, Janet; Wilens, Timothy E.; Smalley, Susan; McCracken, James; Biederman, Joseph; Faraone, Stephen V.

    2011-01-01

    Objective: A potentially useful tool for understanding the distribution and determinants of emotional dysregulation in children is a Child Behavior Checklist profile, comprising the Attention Problems, Anxious/Depressed, and Aggressive Behavior clinical subscales (CBCL-DP). The CBCL-DP indexes a heritable trait that increases susceptibility for…

  7. VAP: a versatile aggregate profiler for efficient genome-wide data representation and discovery.

    Science.gov (United States)

    Coulombe, Charles; Poitras, Christian; Nordell-Markovits, Alexei; Brunelle, Mylène; Lavoie, Marc-André; Robert, François; Jacques, Pierre-Étienne

    2014-07-01

    The analysis of genomic data such as ChIP-Seq usually involves representing the signal intensity level over genes or other genetic features. This is often illustrated as a curve (representing the aggregate profile of a group of genes) or as a heatmap (representing individual genes). However, no specific resource dedicated to easily generating such profiles is currently available. We therefore built the versatile aggregate profiler (VAP), designed to be used by experimental and computational biologists to generate profiles of genomic datasets over groups of regions of interest, using either an absolute or a relative method. Graphical representation of the results is automatically generated, and subgrouping can be performed easily, based on the orientation of the flanking annotations. The outputs include statistical measures to facilitate comparisons between groups or datasets. We show that, through its intuitive design and flexibility, VAP can help avoid misinterpretations of genomics data. VAP is highly efficient and designed to run on laptop computers by using a memory footprint control, but can also be easily compiled and run on servers. VAP is accessible at http://lab-jacques.recherche.usherbrooke.ca/vap/.

  8. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--GMUCT 2.0.

    Science.gov (United States)

    Willmann, Matthew R; Berkowitz, Nathan D; Gregory, Brian D

    2014-05-01

    The advent of high-throughput sequencing has led to an explosion of studies into the diversity, expression, processing, and lifespan of RNAs. Recently, three different high-throughput sequencing-based methods have been developed to specifically study RNAs that are in the process of being degraded. All three methods-genome-wide mapping of uncapped and cleaved transcripts (GMUCT), parallel analysis of RNA ends (PARE), and degradome sequencing-take advantage of the fact that Illumina sequencing libraries use T4 RNA ligase 1 to ligate an adapter to the 5' end of RNAs that have a free 5'-monophosphate. This condition for T4 RNA ligase 1 substrates means that mature mRNAs are not substrates of the enzyme because they have a 5'-cap moiety. As a result, these sequencing libraries are specifically made up of clones of decapped or degrading mRNAs resulting from 5'-to-3' or nonsense-mediated decay (NMD) and the 3' fragment of cleaved microRNA (miRNA) and small interfering RNA (siRNA) target RNAs. Here, we present a massively streamlined protocol for GMUCT that takes 2-3days, can be initiated with as little as 5μg of starting total RNA, and involves only one gel size-selection step. We show that the resulting datasets are similar to those produced using the previous GMUCT and PARE protocols. In total, our results suggest that this method will be the preferable approach for future studies of RNA degradation intermediates and small RNA-mediated cleavage in eukaryotic transcriptomes.

  9. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    Science.gov (United States)

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  10. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth Tuck

    2015-11-01

    Full Text Available Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures. A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource.

  11. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  12. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder.

    Science.gov (United States)

    Sarachana, Tewarit; Hu, Valerie W

    2013-05-22

    We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as

  13. Genome-wide gene expression profiling of acute metal exposures in male zebrafish

    Directory of Open Access Journals (Sweden)

    Christine E. Baer

    2014-12-01

    Full Text Available To capture global responses to metal poisoning and mechanistic insights into metal toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate at concentrations corresponding to their respective 96 h LC20, LC40 and LC60 (i.e. 96 h concentrations at which 20%, 40% and 60% lethality is expected, respectively. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal exposure. Here we describe in detail the contents and quality controls for the gene expression and other data associated with the study published by Hussainzada and colleagues in BMC Pharmacology and Toxicology (Hussainzada et al., 2014 with the data uploaded to Gene Expression Omnibus (accession number GSE50648.

  14. Genome-wide gene expression profiling of acute metal exposures in male zebrafish

    Science.gov (United States)

    Baer, Christine E.; Ippolito, Danielle L.; Hussainzada, Naissan; Lewis, John A.; Jackson, David A.; Stallings, Jonathan D.

    2014-01-01

    To capture global responses to metal poisoning and mechanistic insights into metal toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate at concentrations corresponding to their respective 96 h LC20, LC40 and LC60 (i.e. 96 h concentrations at which 20%, 40% and 60% lethality is expected, respectively). Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal exposure. Here we describe in detail the contents and quality controls for the gene expression and other data associated with the study published by Hussainzada and colleagues in BMC Pharmacology and Toxicology (Hussainzada et al., 2014) with the data uploaded to Gene Expression Omnibus (accession number GSE50648). PMID:26484131

  15. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli.

    Directory of Open Access Journals (Sweden)

    Alfredo Mendoza-Vargas

    Full Text Available Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/ is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5' RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of sigma factors that control the expression of about 80% of these genes. As expected, the housekeeping sigma(70 was the most common type of promoter, followed by sigma(38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and

  16. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding......In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... decreased expression of NCE103, encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity...

  17. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles.

    Science.gov (United States)

    Song, Sarah; Nones, Katia; Miller, David; Harliwong, Ivon; Kassahn, Karin S; Pinese, Mark; Pajic, Marina; Gill, Anthony J; Johns, Amber L; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Newell, Felicity; Cowley, Mark J; Wu, Jianmin; Wilson, Peter; Fink, Lynn; Biankin, Andrew V; Waddell, Nic; Grimmond, Sean M; Pearson, John V

    2012-01-01

    Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.

  18. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles.

    Directory of Open Access Journals (Sweden)

    Sarah Song

    Full Text Available Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 ([Formula: see text]-value=0.0001 between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 ([Formula: see text]-value [Formula: see text] 2.2e-16 between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 ([Formula: see text]-value=0.004 between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.

  19. Genome-wide identification and expression profiling of auxin response factor (ARF gene family in maize

    Directory of Open Access Journals (Sweden)

    Zhang Yirong

    2011-04-01

    Full Text Available Abstract Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes has not been characterized in detail. Results In this study, 31 maize (Zea mays L. genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30. The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes as compared to Arabidopsis (23 genes and rice (25 genes. The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may

  20. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast.

    Directory of Open Access Journals (Sweden)

    Matthew North

    Full Text Available Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ, catechol (CAT and 1,2,4-benzenetriol (BT, in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(PH:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.

  1. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    Science.gov (United States)

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  3. Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms.

    Science.gov (United States)

    Marchese, Enrico; Vignati, A; Albanese, A; Nucci, C G; Sabatino, G; Tirpakova, B; Lofrese, G; Zelano, G; Maira, G

    2010-01-01

    aneurysms, a different expression was also detected regarding gene coding the tissue inhibitor of matrix metalloproteinases 3 (TIMP-3), which appeared markedly downregulated in unruptured aneurysms, where its expression in unruptured aneurysms was similar to that observed in controls. Another gene differently expressed is nitric oxide synthase (iNOS), which appeared overexpressed in ruptured aneurysms when compared to unruptured aneurysms. Our study is the first, to our knowledge, that compares gene expression profiles (genoma-wide) in intracranial aneurysms. The results of our study suggest that the inhibitor of the metalloproteinase, the pathway of nitric oxide and the apoptotic process play a key-role in reducing the resistance of the arterial wall, that can result in formation and rupture of the intracranial aneurysms.

  4. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Science.gov (United States)

    Hsu, Yi-Hsiang; Zillikens, M Carola; Wilson, Scott G; Farber, Charles R; Demissie, Serkalem; Soranzo, Nicole; Bianchi, Estelle N; Grundberg, Elin; Liang, Liming; Richards, J Brent; Estrada, Karol; Zhou, Yanhua; van Nas, Atila; Moffatt, Miriam F; Zhai, Guangju; Hofman, Albert; van Meurs, Joyce B; Pols, Huibert A P; Price, Roger I; Nilsson, Olle; Pastinen, Tomi; Cupples, L Adrienne; Lusis, Aldons J; Schadt, Eric E; Ferrari, Serge; Uitterlinden, André G; Rivadeneira, Fernando; Spector, Timothy D; Karasik, David; Kiel, Douglas P

    2010-06-10

    Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13); SOX6, p = 6.4x10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the

  5. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Hsu

    2010-06-01

    Full Text Available Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD at the lumbar spine (LS and femoral neck (FN, as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW. A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6x10(-8, 2q11.2 (TBC1D8, and 18q11.2 (OSBPL1A, and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6x10(-13; SOX6, p = 6.4x10(-10 associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant

  6. Analysis of the interaction of Clavibacter michiganensis subsp. michiganensis with its host plant tomato by genome-wide expression profiling.

    Science.gov (United States)

    Flügel, Monika; Becker, Anke; Gartemann, Karl-Heinz; Eichenlaub, Rudolf

    2012-07-31

    Genome-wide expression profiles of the phytopathogenic actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) strain NCPPB382 were analyzed using a 70mer oligonucleotide microarray. Cmm causes bacterial wilt and canker of tomato, a systemic disease leading to substantial economic losses worldwide. Global gene expression was monitored in vitro after long- and short-term incubation with tomato homogenate to simulate conditions in planta and in vivo ten days after inoculation of tomatoes. Surprisingly, both in the presence of tomato homogenate and in planta known virulence genes (celA, chpC, ppaA/C) were down-regulated indicating that the encoded extracellular enzymes are dispensable in late infection stages where plant tissue has already been heavily destroyed. In contrast, some genes of the tomA-region which are involved in sugar metabolism showed an enhanced RNA-level after permanent growth in supplemented medium. Therefore, these genes may be important for utilization of plant derived nutrients. In the plant Cmm exhibited an expression profile completely different from that in vitro. Especially, the strong expression of genes of the wco-cluster (extracellular polysaccharide II), 10 genes encoding surface or pilus assembly proteins, and CMM_2382, coding for a putative perforin suggest a possible role of these genes in the plant-pathogenic interaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available Animal breeding via Somatic Cell Nuclear Transfer (SCNT has enormous potential in agriculture and biomedicine. However, concerns about whether SCNT animals are as healthy or epigenetically normal as conventionally bred ones are raised as the efficiency of cloning by SCNT is much lower than natural breeding or In-vitro fertilization (IVF. Thus, we have conducted a genome-wide gene expression and DNA methylation profiling between phenotypically normal cloned pigs and control pigs in two tissues (muscle and liver, using Affymetrix Porcine expression array as well as modified methylation-specific digital karyotyping (MMSDK and Solexa sequencing technology. Typical tissue-specific differences with respect to both gene expression and DNA methylation were observed in muscle and liver from cloned as well as control pigs. Gene expression profiles were highly similar between cloned pigs and controls, though a small set of genes showed altered expression. Cloned pigs presented a more different pattern of DNA methylation in unique sequences in both tissues. Especially a small set of genomic sites had different DNA methylation status with a trend towards slightly increased methylation levels in cloned pigs. Molecular network analysis of the genes that contained such differential methylation loci revealed a significant network related to tissue development. In conclusion, our study showed that phenotypically normal cloned pigs were highly similar with normal breeding pigs in their gene expression, but moderate alteration in DNA methylation aspects still exists, especially in certain unique genomic regions.

  8. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers.

    Science.gov (United States)

    Lee, Hwan Young; An, Ja Hyun; Jung, Sang-Eun; Oh, Yu Na; Lee, Eun Young; Choi, Ajin; Yang, Woo Ick; Shin, Kyoung-Jin

    2015-07-01

    The identification of body fluids found at crime scenes can contribute to solving crimes by providing important insights into crime scene reconstruction. In the present study, body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array. A total of 64 CpG sites were selected as body fluid-specific marker candidates by having more than 20% discrepancy in DNA methylation status between a certain type of body fluid and other types of body fluids and to have methylation or unmethylation pattern only in a particular type of body fluid. From further locus-specific methylation analysis in additional samples, 1 to 3 CpG sites were selected for each body fluid. Then, a multiplex methylation SNaPshot reaction was constructed to analyze methylation status of 8 body fluid-specific CpG sites. The developed multiplex reaction positively identifies blood, saliva, semen and the body fluid which originates from female reproductive organ in one reaction, and produces successful DNA methylation profiles in aged or mixed samples. Although it remains to be investigated whether this approach is more sensitive, more practical than RNA- or peptide-based assays and whether it can be successfully applied to forensic casework, the results of the present study will be useful for the forensic investigators dealing with body fluid samples.

  9. 'Drawing' a Molecular Portrait of CIN and Cervical Cancer: a Review of Genome-Wide Molecular Profiling Data.

    Science.gov (United States)

    Kurmyshkina, Olga V; Kovchur, Pavel I; Volkova, Tatyana O

    2015-01-01

    In this review we summarize the results of studies employing high-throughput methods of profiling of HPV-associated cervical intraepithelial neoplasia (CIN) and squamous cell cervical cancers at key intracellular regulatory levels to demonstrate the unique identity of the landscape of molecular changes underlying this oncopathology, and to show how these changes are related to the 'natural history' of cervical cancer progression and the formation of clinically significant properties of tumors. A step-wise character of cervical cancer progression is a morphologically well-described fact and, as evidenced by genome-wide screenings, it is indeed the consistent change of the molecular profiles of HPV-infected epithelial cells through which they progressively acquire the phenotypic hallmarks of cancerous cells. In this sense, CIN/cervical cancer is a unique model for studying the driving forces and mechanisms of carcinogenesis. Recent research has allowed definition of the whole-genome spectrum of both random and regular molecular alterations, as well as changes either common to processes of carcinogenesis or specific for cervical cancer. Despite the existence of questions that are still to be investigated, these findings are of great value for the future development of approaches for the diagnostics and treatment of cervical neoplasms.

  10. Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).

    Science.gov (United States)

    Matteau, Dominick; Rodrigue, Sébastien

    2015-01-01

    Transcription start sites are commonly used to locate promoter elements in bacterial genomes. TSS were previously studied one gene at a time, often through 5'-rapid amplification of cDNA ends (5'-RACE). This technique has now been adapted for high-throughput sequencing and can be used to precisely identify TSS in a genome-wide fashion for practically any bacterium, which greatly contributes to our understanding of gene regulatory networks in microorganisms.

  11. Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues.

    Science.gov (United States)

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Lee, Bok-Sim; Kim, Jungeun; Ahmad, Raza; Kim, Hyun A; Yi, So Young; Hur, Cheol-Goo; Kwon, Suk-Yoon

    2012-07-01

    Constitutive overexpression of transgenes occasionally interferes with normal growth and developmental processes in plants. Thus, the development of tissue-specific promoters that drive transgene expression has become agriculturally important. To identify tomato tissue-specific promoters, tissue-specific genes were screened using a series of in silico-based and experimental procedures, including genome-wide orthologue searches of tomato and Arabidopsis databases, isolation of tissue-specific candidates using an Arabidopsis microarray database, and validation of tissue specificity by reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter assay. Using these procedures, we found 311 tissue-specific candidate genes and validated 10 tissue-specific genes by RT-PCR. Among these identified genes, histochemical analysis of five isolated promoter::GUS transgenic tomato and Arabidopsis plants revealed that their promoters have different but distinct tissue-specific activities in anther, fruit, and root, respectively. Therefore, it appears these in silico-based screening approaches in addition to the identification of new tissue-specific genes and promoters will be helpful for the further development of tailored crop development.

  12. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma

    Directory of Open Access Journals (Sweden)

    Halaban Ruth

    2010-02-01

    Full Text Available Abstract Background Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes. Methods It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing. Results We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes. Conclusions Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier

  13. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.

    Science.gov (United States)

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-08-11

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  14. Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid

    Directory of Open Access Journals (Sweden)

    Haiping Ding

    2014-08-01

    Full Text Available Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17 and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex, five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity, and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization. Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an

  15. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    Science.gov (United States)

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  16. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis.

    Directory of Open Access Journals (Sweden)

    Zhan-Chun Li

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA and osteoarthritis (OA are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS: We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. RESULTS AND CONCLUSION: We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.

  17. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.

    Science.gov (United States)

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A; Lee, Yong-Hwan

    2015-02-24

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis.

  18. Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway

    Science.gov (United States)

    Flaherty, Maria Sol; Zavadil, Jiri; Ekas, Laura A.; Bach, Erika A.

    2010-01-01

    Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally-relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially-regulated genes, including known targets domeless, socs36E and wingless. Other differentially-regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously-unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets. PMID:19504457

  19. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways

    Directory of Open Access Journals (Sweden)

    Schmitz Alexander

    2007-07-01

    Full Text Available Abstract Background Human natural killer (NK cells are the key contributors of innate immune response and the effector functions of these cells are enhanced by cytokines such as interleukine 2 (IL2. We utilized genome-wide transcriptional profiling to identify gene expression signatures and pathways in resting and IL2 activated NK cell isolated from peripheral blood of healthy donors. Results Gene expression profiling of resting NK cells showed high expression of a number of cytotoxic factors, cytokines, chemokines and inhibitory and activating surface NK receptors. Resting NK cells expressed many genes associated with cellular quiescence and also appeared to have an active TGFβ (TGFB1 signaling pathway. IL2 stimulation induced rapid downregulation of quiescence associated genes and upregulation of genes associated with cell cycle progression and proliferation. Numerous genes that may enhance immune function and responsiveness including activating receptors (DNAM1, KLRC1 and KLRC3, death receptor ligand (TNFSF6 (FASL and TRAIL, chemokine receptors (CX3CR1, CCR5 and CCR7, interleukin receptors (IL2RG, IL18RAB and IL27RA and members of secretory pathways (DEGS1, FKBP11, SSR3, SEC61G and SLC3A2 were upregulated. The expression profile suggested PI3K/AKT activation and NF-κB activation through multiple pathways (TLR/IL1R, TNF receptor induced and TCR-like possibly involving BCL10. Activation of NFAT signaling was supported by increased expression of many pathway members and downstream target genes. The transcription factor GATA3 was expressed in resting cells while T-BET was upregulated on activation concurrent with the change in cytokine expression profile. The importance of NK cells in innate immune response was also reflected by late increased expression of inflammatory chemotactic factors and receptors and molecules involved in adhesion and lymphocyte trafficking or migration. Conclusion This analysis allowed us to identify genes implicated in

  20. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  1. Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer.

    Science.gov (United States)

    Jia, Wenhui; Wu, Yuanzhe; Zhang, Qin; Gao, Ge; Zhang, Chenyu; Xiang, Yang

    2013-07-01

    Serum microRNAs (miRNAs), with their remarkable stability and unique concentration profiles in patients with various diseases, are promising non-invasive biomarkers for tumor detection. The present study investigated the altered profiles of serum microRNAs in patients with endometrioid endometrial cancer (EEC) in order to predict the malignancy of the disease at a relatively early stage. TaqMan(®) low-density arrays (TDLAs) were used to perform an analysis in the initial screening phase using serum samples pooled from seven EEC patients and 20 controls. The differential expression was validated using a hydrolysis probe-based stem-loop quantitative reverse transcription polymerase chain reaction (qRT-PCR) in samples taken from 26 EEC patients and 22 age- and gender-matched healthy controls. The data obtained from the TLDAs demonstrated that 22 serum miRNAs were markedly upregulated in the EEC patients compared with the controls. The qRT-PCR analysis further identified a profile of four serum miRNAs (miR-222, miR-223, miR-186 and miR-204) as a fingerprint for EEC detection. The area under the receiver operating characteristic (ROC) curve of this four-serum miRNA signature was 0.927, which was markedly higher than that of carbohydrate antigen 125 (CA-125; 0.673). The four-miRNA signature identified by genome-wide serum miRNA expression profiling analysis provides a novel, non-invasive approach for EEC diagnosis.

  2. Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue.

    Directory of Open Access Journals (Sweden)

    Stéphanie Devignot

    Full Text Available BACKGROUND: Deciphering host responses contributing to dengue shock syndrome (DSS, the life-threatening form of acute viral dengue infections, is required to improve both the differential prognosis and the treatments provided to DSS patients, a challenge for clinicians. METHODOLOGY/PRINCIPAL FINDINGS: Based on a prospective study, we analyzed the genome-wide expression profiles of whole blood cells from 48 matched Cambodian children: 19 progressed to DSS while 16 and 13 presented respectively classical dengue fever (DF or dengue hemorrhagic fever grades I/II (DHF. Using multi-way analysis of variance (ANOVA and adjustment of p-values to control the False Discovery Rate (FDR<10%, we identified a signature of 2959 genes differentiating DSS patients from both DF and DHF, and showed a strong association of this DSS-gene signature with the dengue disease phenotype. Using a combined approach to analyse the molecular patterns associated with the DSS-gene signature, we provide an integrative overview of the transcriptional responses altered in DSS children. In particular, we show that the transcriptome of DSS children blood cells is characterized by a decreased abundance of transcripts related to T and NK lymphocyte responses and by an increased abundance of anti-inflammatory and repair/remodeling transcripts. We also show that unexpected pro-inflammatory gene patterns at the interface between innate immunity, inflammation and host lipid metabolism, known to play pathogenic roles in acute and chronic inflammatory diseases associated with systemic vascular dysfunction, are transcriptionnally active in the blood cells of DSS children. CONCLUSIONS/SIGNIFICANCE: We provide a global while non exhaustive overview of the molecular mechanisms altered in of DSS children and suggest how they may interact to lead to final vascular homeostasis breakdown. We suggest that some mechanisms identified should be considered putative therapeutic targets or biomarkers of

  3. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    Directory of Open Access Journals (Sweden)

    Sang Woo Seo

    2015-08-01

    Full Text Available Three transcription factors (TFs, OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids, cell wall synthesis (lipid A biosynthesis and peptidoglycan growth, and divalent metal ion transport (Mn2+, Zn2+, and Mg2+. Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  4. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange.

    Directory of Open Access Journals (Sweden)

    Xiao-Jin Hou

    Full Text Available MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB. Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus.

  5. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange.

    Science.gov (United States)

    Hou, Xiao-Jin; Li, Si-Bei; Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2014-01-01

    MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus.

  6. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  7. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  8. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    Science.gov (United States)

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  9. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper

    Science.gov (United States)

    Kang, Won-Hee; Kim, Seungill; Lee, Hyun-Ah; Choi, Doil; Yeom, Seon-In

    2016-01-01

    The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species. PMID:27653666

  10. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis).

    Science.gov (United States)

    Huang, X Y; Tao, P; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-03-27

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetable crops grown worldwide, and various methods exist for selection, propagation, and cultivation. The entire Chinese cabbage genome has been sequenced, and the heat shock transcription factor family (Hsfs) has been found to play a central role in plant growth and development and in the response to biotic and abiotic stress conditions, particularly in acquired thermotolerance. We analyzed heat tolerance mechanisms in Chinese cabbage. In this study, 30 Hsfs were identified from the Chinese cabbage genome database. The classification, phylogenetic reconstruction, chromosome distribution, conserved motifs, expression analysis, and interaction networks of the Hsfs were predicted and analyzed. Thirty BrHsfs were classified into 3 major classes (class A, B, and C) according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 8 subclasses. Distribution mapping results showed that Hsf genes were located on 10 Chinese cabbage chromosomes. The expression profile indicated that Hsfs play differential roles in 5 organs in Chinese cabbage, and likely participate in the development of underground parts and regulation of reproductive growth. An orthologous gene interaction network was constructed, and included MBF1C, ROF1, TBP2, CDC2, and HSP70 5 genes, which are closely related to heat stress. Our results contribute to the understanding of the complexity of Hsfs in Chinese cabbage and provide a basis for further functional gene research.

  11. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system.

    Science.gov (United States)

    Umetani, Miki; Hosokawa, Norimune; Kitayama, Yohko; Iwasaki, Hideo

    2014-02-01

    Cyanobacteria are unique organisms with remarkably stable circadian oscillations. These are controlled by a network architecture that comprises two regulatory factors: posttranslational oscillation (PTO) and a transcription/translation feedback loop (TTFL). The clock proteins KaiA, KaiB, and KaiC are essential for the circadian rhythm of the unicellular species Synechococcus elongatus PCC 7942. Temperature-compensated autonomous cycling of KaiC phosphorylation has been proposed as the primary oscillator mechanism that maintains the circadian clock, even in the dark, and it controls genome-wide gene expression rhythms under continuous-light conditions (LL). However, the kaiC(EE) mutation (where "EE" represents the amino acid changes Ser431Glu and Thr432Glu), where phosphorylation cycling does not occur in vivo, has a damped but clear kaiBC expression rhythm with a long period. This suggests that there must be coupling between the robust PTO and the "slave" unstable TTFL. Here, we found that the kaiC(EE) mutant strain in LL was hypersensitive to the dark acclimation required for phase shifting. Twenty-three percent of the genes in the kaiC(EE) mutant strain exhibited genome-wide transcriptional rhythms with a period of 48 h in LL. The circadian phase distribution was also conserved significantly in most of the wild-type and kaiC(EE) mutant strain cycling genes, which suggests that the output mechanism was not damaged severely even in the absence of KaiC phosphorylation cycles. These results strongly suggest that the KaiC phosphorylation cycle is not essential for generating the genome-wide rhythm under light conditions, whereas it is important for appropriate circadian timing in the light and dark.

  12. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers.

    Directory of Open Access Journals (Sweden)

    Yongsheng Hu

    Full Text Available INTRODUCTION: Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRR(h; WRR(l and that of Xinhua Chickens (XH(h; XH(l at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200-300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRR(h Vs. WRR(l, 5,599 of XH(h Vs. XH(l, 4,204 of WRR(h Vs. XH(h, as well as 7,301 of WRR(l Vs. XH(l. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRR(h Vs. WRR(l and XH(h Vs. XH(l, whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRR(h Vs. XH(h and WRR(l Vs. XH(l. Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. CONCLUSIONS: This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation

  13. Comparison of the Genome-Wide DNA Methylation Profiles between Fast-Growing and Slow-Growing Broilers

    Science.gov (United States)

    Li, Zhenhui; Zheng, Xuejuan; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan

    2013-01-01

    Introduction Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRRh; WRRl) and that of Xinhua Chickens (XHh; XHl) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200–300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRRh Vs. WRRl, 5,599 of XHh Vs. XHl, 4,204 of WRRh Vs. XHh, as well as 7,301 of WRRl Vs. XHl. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRRh Vs. WRRl and XHh Vs. XHl), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRRh Vs. XHh and WRRl Vs. XHl). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. Conclusions This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level. PMID:23441189

  14. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue.

    Science.gov (United States)

    Palace, Samantha G; Proulx, Megan K; Lu, Shan; Baker, Richard E; Goguen, Jon D

    2014-08-19

    knowledge of this aspect of bacterial biology is important as a potential pathway to the development of novel therapeutics. Yersinia pestis, the plague bacterium, is highly virulent due to its rapid dissemination and growth in deep tissues, making it a good model for discovering bacterial adaptations that promote rapid growth during infection. Using Tn-seq, a genome-wide fitness profiling technique, we identified several functions required for fitness of Y. pestis in vivo that were not previously known to be important. Most of these functions are needed to acquire or synthesize nutrients. Interference with these critical nutrient acquisition pathways may be an effective strategy for designing novel antibiotics and vaccines. Copyright © 2014 Palace et al.

  15. Genome-Wide Expression Profiling Deciphers Host Responses Altered during Dengue Shock Syndrome and Reveals the Role of Innate Immunity in Severe Dengue

    OpenAIRE

    Devignot, Stéphanie; Sapet, Cédric; Duong, Veasna; Bergon, Aurélie; Rihet, Pascal; Ong, Sivuth; Patrich T Lorn; Chroeung, Norith; Ngeav, Sina; Tolou, Hugues J.; Buchy, Philippe; Couissinier-Paris, Patricia

    2010-01-01

    Background Deciphering host responses contributing to dengue shock syndrome (DSS), the life-threatening form of acute viral dengue infections, is required to improve both the differential prognosis and the treatments provided to DSS patients, a challenge for clinicians. Methodology/Principal Findings Based on a prospective study, we analyzed the genome-wide expression profiles of whole blood cells from 48 matched Cambodian children: 19 progressed to DSS while 16 and 13 presented respectively ...

  16. Genome-wide DNA binding pattern of the homeodomain transcription factor Sine oculis (So in the developing eye of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Barbara Jusiak

    2014-12-01

    Full Text Available The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of animal development, and many genes that regulate Drosophila eye formation have homologs implicated in human development and disease. Among these is the homeobox gene sine oculis (so, which encodes a homeodomain transcription factor (TF that is both necessary for eye development and sufficient to reprogram a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis of So binding to DNA prepared from developing Drosophila eye tissue in order to identify candidate direct targets of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available from NCBI Gene Expression Omnibus (GEO with the accession number GSE52943. Here we describe the methods, data analysis, and quality control of our So ChIP-seq dataset.

  17. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles.

    Science.gov (United States)

    Wang, Su; Zang, Chongzhi; Xiao, Tengfei; Fan, Jingyu; Mei, Shenglin; Qin, Qian; Wu, Qiu; Li, Xujuan; Xu, Kexin; He, Housheng Hansen; Brown, Myles; Meyer, Clifford A; Liu, X Shirley

    2016-10-01

    Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-regulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersensitive sites identified from published human and mouse DNase-seq data. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of historical epigenetic data for genomic studies of transcriptional regulation. © 2016 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress

    OpenAIRE

    Hwang, Indeok; Manoharan, Ranjith Kumar; Kang, Jong-Goo; Chung, Mi-Young; Kim, Young-Wook; Nou, Ill-Sup

    2016-01-01

    Cabbages (Brassica oleracea L.) are an important vegetable crop around world, and cold temperature is among the most significant abiotic stresses causing agricultural losses, especially in cabbage crops. Plant bZIP transcription factors play diverse roles in biotic/abiotic stress responses. In this study, 119 putative BolbZIP transcription factors were identified using amino acid sequences from several bZIP domain consensus sequences. The BolbZIP members were classified into 63 categories bas...

  19. Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples.

    Directory of Open Access Journals (Sweden)

    Elodie Caboux

    Full Text Available The quality of tissue samples and extracted mRNA is a major source of variability in tumor transcriptome analysis using genome-wide expression microarrays. During and immediately after surgical tumor resection, tissues are exposed to metabolic, biochemical and physical stresses characterized as "warm ischemia". Current practice advocates cryopreservation of biosamples within 30 minutes of resection, but this recommendation has not been systematically validated by measurements of mRNA decay over time. Using Illumina HumanHT-12 v3 Expression BeadChips, providing a genome-wide coverage of over 24,000 genes, we have analyzed gene expression variation in samples of 3 hepatocellular carcinomas (HCC and 3 lung carcinomas (LC cryopreserved at times up to 2 hours after resection. RNA Integrity Numbers (RIN revealed no significant deterioration of mRNA up to 2 hours after resection. Genome-wide transcriptome analysis detected non-significant gene expression variations of -3.5%/hr (95% CI: -7.0%/hr to 0.1%/hr; p = 0.054. In LC, no consistent gene expression pattern was detected in relation with warm ischemia. In HCC, a signature of 6 up-regulated genes (CYP2E1, IGLL1, CABYR, CLDN2, NQO1, SCL13A5 and 6 down-regulated genes (MT1G, MT1H, MT1E, MT1F, HABP2, SPINK1 was identified (FDR <0.05. Overall, our observations support current recommendation of time to cryopreservation of up to 30 minutes and emphasize the need for identifying tissue-specific genes deregulated following resection to avoid misinterpreting expression changes induced by warm ischemia as pathologically significant changes.

  20. Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples.

    Science.gov (United States)

    Caboux, Elodie; Paciencia, Maria; Durand, Geoffroy; Robinot, Nivonirina; Wozniak, Magdalena B; Galateau-Salle, Françoise; Byrnes, Graham; Hainaut, Pierre; Le Calvez-Kelm, Florence

    2013-01-01

    The quality of tissue samples and extracted mRNA is a major source of variability in tumor transcriptome analysis using genome-wide expression microarrays. During and immediately after surgical tumor resection, tissues are exposed to metabolic, biochemical and physical stresses characterized as "warm ischemia". Current practice advocates cryopreservation of biosamples within 30 minutes of resection, but this recommendation has not been systematically validated by measurements of mRNA decay over time. Using Illumina HumanHT-12 v3 Expression BeadChips, providing a genome-wide coverage of over 24,000 genes, we have analyzed gene expression variation in samples of 3 hepatocellular carcinomas (HCC) and 3 lung carcinomas (LC) cryopreserved at times up to 2 hours after resection. RNA Integrity Numbers (RIN) revealed no significant deterioration of mRNA up to 2 hours after resection. Genome-wide transcriptome analysis detected non-significant gene expression variations of -3.5%/hr (95% CI: -7.0%/hr to 0.1%/hr; p = 0.054). In LC, no consistent gene expression pattern was detected in relation with warm ischemia. In HCC, a signature of 6 up-regulated genes (CYP2E1, IGLL1, CABYR, CLDN2, NQO1, SCL13A5) and 6 down-regulated genes (MT1G, MT1H, MT1E, MT1F, HABP2, SPINK1) was identified (FDR <0.05). Overall, our observations support current recommendation of time to cryopreservation of up to 30 minutes and emphasize the need for identifying tissue-specific genes deregulated following resection to avoid misinterpreting expression changes induced by warm ischemia as pathologically significant changes.

  1. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution.

    Science.gov (United States)

    Hu, Jinchuan; Adar, Sheera; Selby, Christopher P; Lieb, Jason D; Sancar, Aziz

    2015-05-01

    We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine-pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells.

  2. Genome-wide mapping of transcription start sites yields novel insights into the primary transcriptome of Pseudomonas putida

    DEFF Research Database (Denmark)

    D'Arrigo, Isotta; Bojanovic, Klara; Yang, Xiaochen

    2016-01-01

    was examined using an in vivo assay with GFP-fusion vectors and shown to function via a translational repression mechanism. Furthermore, 56 novel intergenic small RNAs and 8 putative actuaton transcripts were detected, as well as 8 novel open reading frames (ORFs). This study illustrates how global mapping...... elements of P. putida strain KT2440. A total of 7937 putative transcription start sites (TSSs) were identified, where over two-thirds were located either on the opposite strand or internal to annotated genes. For TSSs associated with mRNAs, sequence analysis revealed a clear Shine–Dalgarno sequence...... but a lack of conserved overrepresented promoter motifs. These TSSs defined approximately 50 leaderless transcripts and an abundance of mRNAs with long leader regions of which 18 contain RNA regulatory elements from the Rfam database. The thiamine pyrophosphate riboswitch upstream of the thiC gene...

  3. RNA-Seq analysis of stuA mutants in Fusarium verticillioides indicates dramatic genomic wide transcriptional reprogramming

    Science.gov (United States)

    StuA, first discovered in Aspergillus nidulans and a member of the APSES class of transcription factors, regulates several essential developmental stages in fungi such as virulence, sporulation and toxin production in phytopathogenic fungi. Fusarium verticillioides (Fv), a maize phytopathogen, produ...

  4. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Xiaofei; Li, Lei; Zola, Jaroslaw; Aluru, Maneesha; Ye, Huaxun; Foudree, Andrew; Guo, Hongqing; Anderson, Sarah; Aluru, Srinivas; Liu, Peng; Rodermel, Steve; Yin, Yanhai

    2011-02-01

    Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.

  5. A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development

    NARCIS (Netherlands)

    Fu, H.; Cai, J.; Clevers, H.; Fast, E.; Gray, S.; Greenberg, R.; Jain, M.K.; Ma, Q.; Qiu, M.; Rowitch, D.H.; Taylor, C.; Stiles, C.D.

    2009-01-01

    Forward genetic screens in genetically accessible invertebrate organisms such as Drosophila melanogaster have shed light on transcription factors that specify formation of neurons in the vertebrate CNS. However, invertebrate models have, to date, been uninformative with respect to genes that specify

  6. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells.

    Directory of Open Access Journals (Sweden)

    Satohiko Murayama

    Full Text Available The amino acid sequence of the RNA polymerase (RNAP α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.

  7. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus.

    Science.gov (United States)

    Liu, Wei; Fu, Rao; Li, Qiang; Li, Jing; Wang, Lina; Ren, Zhonghai

    2013-12-01

    The HD-Zip proteins comprise one of the largest families of transcription factors in plants. HD-Zip genes have been grouped into four different classes: HD-Zip I to IV. In this study, we described the identification and structural characterization of Class I HD-Zip genes in cucumber. A complete set of 13 HD-Zip I genes were identified in the cucumber genome using Blast search tools and phylogeny. The cucumber HD-Zip I family contained a smaller number of identified genes compared to other higher plants such as Arabidopsis and maize due to the absence of recent gene duplication events. Chromosomal location of these genes revealed that they are distributed unevenly across 5 of 7 chromosomes. Tissue-specific expression profiles showed that 13 cucumber HD-Zip I genes were expressed in at least one of the tissues, which suggested that cucumber HD-Zip I genes took part in many cellular processes. The transcript abundance level analysis during abiotic stress conditions (NaCl, ABA and low temperature treatments) identified a group of HD-Zip I genes that responded to one or more treatments.

  8. Genome-Wide Analysis and Expression Profiling of the Phospholipase C Gene Family in Soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Fawei Wang

    Full Text Available Phosphatidylinositol-specific phospholipase C (PI-PLC hydrolyses phosphatidylinositol-4,5-bisphosphate to produce diacylglycerol and inositol 1,4,5-trisphosphate. It plays an important role in plant development and abiotic stress responses. However, systematic analysis and expression profiling of the phospholipase C (PLC gene family in soybean have not been reported. In this study, 12 putative PLC genes were identified in the soybean genome. Soybean PLCs were found on chromosomes 2, 11, 14 and 18 and encoded 58.8-70.06 kD proteins. Expression pattern analysis by RT-PCR demonstrated that expression of the GmPLCs was induced by PEG, NaCl and saline-alkali treatments in roots and leaves. GmPLC transcripts accumulated specifically in roots after ABA treatment. Furthermore, GmPLC transcripts were analyzed in various tissues. The results showed that GmPLC7 was highly expressed in most tissues, whereas GmPLC12 was expressed in early pods specifically. In addition, subcellular localization analysis was carried out and confirmed that GmPLC10 was localized in the plasma membrane in Nicotiana benthamiana. Our genomic analysis of the soybean PLC family provides an insight into the regulation of abiotic stress responses and development. It also provides a solid foundation for the functional characterization of the soybean PLC gene family.

  9. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage.

    Science.gov (United States)

    Walia, Harkamal; Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M; Condamine, Pascal; Close, Timothy J

    2007-03-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage.

  10. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  11. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

    Science.gov (United States)

    Dellino, Gaetano Ivan; Cittaro, Davide; Piccioni, Rossana; Luzi, Lucilla; Banfi, Stefania; Segalla, Simona; Cesaroni, Matteo; Mendoza-Maldonado, Ramiro; Giacca, Mauro; Pelicci, Pier Giuseppe

    2013-01-01

    We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.

  12. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A

    Directory of Open Access Journals (Sweden)

    Sanguinetti Maurizio

    2011-05-01

    Full Text Available Abstract Background Fluconazole (FLC, a triazole antifungal drug, is widely used for the maintenance therapy of cryptococcal meningoencephalitis, the most common opportunistic infection in AIDS patients. In this study, we examined changes in the gene expression profile of the C. neoformans reference strain H99 (serotype A following FLC treatment in order to investigate the adaptive cellular responses to drug stress. Results Simultaneous analysis of over 6823 transcripts revealed that 476 genes were responsive to FLC. As expected up-regulation of genes involved in ergosterol biosynthesis was observed, including the azole target gene ERG11 and ERG13, ERG1, ERG7, ERG25, ERG2, ERG3 and ERG5. In addition, SRE1 which is a gene encoding a well-known regulator of sterol homeostasis in C. neoformans was up-regulated. Several other genes such as those involved in a variety of important cellular processes (i.e. lipid and fatty acid metabolism, cell wall maintenance, stress and virulence were found to be up-regulated in response to FLC treatment. Conversely, expression of AFR1, the major transporter of azoles in C. neoformans, was not regulated by FLC. Conclusions Short-term exposure of C. neoformans to FLC resulted in a complex altered gene expression profile. Some of the observed changes could represent specific adaptive responses to the antifungal agent in this pathogenic yeast.

  13. Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen Leptospira interrogans

    Science.gov (United States)

    Zhukova, Anna; Fernandes, Luis Guilherme; Hugon, Perrine; Pappas, Christopher J.; Sismeiro, Odile; Coppée, Jean-Yves; Becavin, Christophe; Malabat, Christophe; Eshghi, Azad; Zhang, Jun-Jie; Yang, Frank X.; Picardeau, Mathieu

    2017-01-01

    Leptospira are emerging zoonotic pathogens transmitted from animals to humans typically through contaminated environmental sources of water and soil. Regulatory pathways of pathogenic Leptospira spp. underlying the adaptive response to different hosts and environmental conditions remains elusive. In this study, we provide the first global Transcriptional Start Site (TSS) map of a Leptospira species. RNA was obtained from the pathogen Leptospira interrogans grown at 30°C (optimal in vitro temperature) and 37°C (host temperature) and selectively enriched for 5′ ends of native transcripts. A total of 2865 and 2866 primary TSS (pTSS) were predicted in the genome of L. interrogans at 30 and 37°C, respectively. The majority of the pTSSs were located between 0 and 10 nucleotides from the translational start site, suggesting that leaderless transcripts are a common feature of the leptospiral translational landscape. Comparative differential RNA-sequencing (dRNA-seq) analysis revealed conservation of most pTSS at 30 and 37°C. Promoter prediction algorithms allow the identification of the binding sites of the alternative sigma factor sigma 54. However, other motifs were not identified indicating that Leptospira consensus promoter sequences are inherently different from the Escherichia coli model. RNA sequencing also identified 277 and 226 putative small regulatory RNAs (sRNAs) at 30 and 37°C, respectively, including eight validated sRNAs by Northern blots. These results provide the first global view of TSS and the repertoire of sRNAs in L. interrogans. These data will establish a foundation for future experimental work on gene regulation under various environmental conditions including those in the host. PMID:28154810

  14. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2007-06-01

    Full Text Available Abstract Background Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses. Results Transcriptome data from isogenic wild type and crp- strains grown in Luria-Bertani medium (LB or LB + 4 g/L glucose (LB+G were analyzed to identify differentially transcribed genes. We detected 180 and 200 genes displaying increased and reduced relative transcript levels in the presence of glucose, respectively. The observed expression pattern in LB was consistent with a gluconeogenic metabolic state including active transport and interconversion of small molecules and macromolecules, induction of protease-encoding genes and a partial heat shock response. In LB+G, catabolic repression was detected for transport and metabolic interconversion activities. We also detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. Cluster analysis of a subset of genes revealed that CRP mediates catabolite repression for most of the genes displaying reduced transcript levels in LB+G, whereas Fis participates in the upregulation of genes under this condition. An analysis of the regulatory network, in terms of topological functional units, revealed 8 interconnected modules which again exposed the importance of Fis and CRP as directly responsible for the coordinated response of the cell. This effect was also seen with other not extensively connected transcription factors such as FruR and PdhR, which showed a consistent response considering media composition. Conclusion This work allowed the identification of eight interconnected regulatory network modules that includes CRP, Fis and other transcriptional factors that respond directly or indirectly to the

  15. Genome-wide ChIP-seq profiling of PPARγ/RXR target sites and gene program during adipogenesis

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Pedersen, Thomas Åskov; Hagenbeek, Dik

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which bind to DNA as heterodimers with members of the retinoid X receptor family. PPARγ is an important regulator of adipocyte differentiation and function. In addition to driving the adipogenic process, PPARγ activates...... directly a large number of genes involved in lipid metabolism. Using ChIP combined with deep sequencing we have generated a genome-wide map of PPARγ-RXR binding to chromatin as well as the activation of associated target genes during differentiation of murine 3T3-L1 adipocytes. Our analysis shows...... that target sites/genes attain RXR and PPARγ occupancy at different time points and that sites are often co-occupied by C/EBP factors. Coupling this analysis with RNAPII occupancy throughout adipogenesis revealed that PPARg:RXR is specifically associated with induced genes involved in diverse processes...

  16. Genome-wide Analysis of BP1 Transcriptional Targets in Breast Cancer Cell Line Hs578T

    Directory of Open Access Journals (Sweden)

    Yongchun Song, Chengxue Dang, Yebo Fu, Yi Lian, Jenny Hottel, Xuelan Li, Tim McCaffrey, Sidney W. Fu

    2009-01-01

    Full Text Available Homeobox genes are known to be critically important in tumor development and progression. The BP1 (Beta Protein 1 gene, an isoform of DLX4, belongs to the Distal-less (DLX subfamily of homeobox genes and encodes a homeodomain-containing transcription factor. Our studies have shown that the BP1 gene was overexpressed in 81% of primary breast cancer and its expression was closely correlated with the progression of breast cancer. However, the exact role of BP1 in breast has yet to be elucidated. Therefore, it is important to explore the potential transcriptional targets of BP1 via whole genome-scale screening. In this study, we used the chromatin immunoprecipitation on chip (ChIP-on-chip and gene expression microarray assays to identify candidate target genes and gene networks, which are directly regulated by BP1 in ER negative (ER- breast cancer cells. After rigorous bioinformatic and statistical analysis for both ChIP-on-chip and expression microarray gene lists, 18 overlapping genes were noted and verified. Those potential target genes are involved in a variety of tumorigenic pathways, which sheds light on the functional mechanisms of BP1 in breast cancer development and progression.

  17. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Stéphane Delmas

    Full Text Available A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall-degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA. Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions.

  18. Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species.

    Science.gov (United States)

    Ueki, Toshiyuki; Lovley, Derek R

    2010-01-01

    Geobacter species play important roles in bioremediation of contaminated environments and in electricity production from waste organic matter in microbial fuel cells. To better understand physiology of Geobacter species, expression and function of citrate synthase, a key enzyme in the TCA cycle that is important for organic acid oxidation in Geobacter species, was investigated. Geobacter sulfurreducens did not require citrate synthase for growth with hydrogen as the electron donor and fumarate as the electron acceptor. Expression of the citrate synthase gene, gltA, was repressed by a transcription factor under this growth condition. Functional and comparative genomics approaches, coupled with genetic and biochemical assays, identified a novel transcription factor termed HgtR that acts as a repressor for gltA. Further analysis revealed that HgtR is a global regulator for genes involved in biosynthesis and energy generation in Geobacter species. The hgtR gene was essential for growth with hydrogen, during which hgtR expression was induced. These findings provide important new insights into the mechanisms by which Geobacter species regulate their central metabolism under different environmental conditions.

  19. Identification of differentially expressed genes associated with flower color in peach using genome-wide transcriptional analysis.

    Science.gov (United States)

    Zhou, Y; Wu, X X; Zhang, Z; Gao, Z H

    2015-05-11

    Flower color is an important trait of the ornamental peach (Prunus persica L.). However, the mechanism responsible for the different colors that appear in the same genotype remains unclear. In this study, red samples showed higher anthocyanins content (0.122 ± 0.009 mg/g), which was significantly different from that in white samples (0.066 ± 0.010 mg/g). Similarly to carotenoids content, red extract (0.058 ± 0.004 mg/L) was significantly higher in white extract (0.015 ± 0.004 mg/L). We estimated gene expression using Illumina sequencing technology in libraries from white and red flower buds. A total of 3,599,960 and 3,464,141 tags were sequenced from the 2 libraries, respectively. Moreover, we identified 106 significantly differentially expressed genes between the 2 libraries. Among these, 78 and 28 represented transcripts with a higher or lower abundance of more than 2-fold than in the white flower library, respectively. GO annotation indicated that highly ranked genes were involved in the pigment biosynthetic process. Expression patterns of 11 genes were verified using quantitative reverse transcription-polymerase chain reaction assays. The results suggest that hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase, 2-oxoglutarate-dependent dioxygenase, isoflavone reductase, riboflavin kinase, zeta-carotene desaturase, and ATP binding cassette transporter may be associated with the flower color formation. Our results may be useful for scientists focusing on Prunus persica floral development and biotechnology.

  20. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000.

    Directory of Open Access Journals (Sweden)

    Melanie J Filiatrault

    Full Text Available RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5'-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5'-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5'RACE. As expected, many 5'-ends were positioned a short distance upstream of annotated genes. We also captured 5'-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5'-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels.

  1. A Genome-Wide Expression Profile of Salt-Responsive Genes in the Apple Rootstock Malus zumi

    Directory of Open Access Journals (Sweden)

    Jin Kong

    2013-10-01

    Full Text Available In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl. To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.

  2. Molecular markers associated with nonepithelial ovarian cancer in formalin-fixed, paraffin-embedded specimens by genome wide expression profiling

    Directory of Open Access Journals (Sweden)

    Koon Vui-Kee

    2012-05-01

    Full Text Available Nonepithelial ovarian cancer (NEOC is a rare cancer that is often misdiagnosed as other malignant tumors. Research on this cancer using fresh tissues is nearly impossible because of its limited number of samples within a limited time provided. The study is to identify potential genes and their molecular pathways related to NEOC using formalin-fixed paraffin embedded samples. Total RNA was extracted from eight archived NEOCs and seven normal ovaries. The RNA samples with RNA integrity number >2.0, purity >1.7 and cycle count value <28 cycles were hybridized to the Illumina Whole-Genome DASL assay (cDNA-mediated annealing, selection, extension, and ligation. We analyzed the results using the GeneSpring GX11.0 and FlexArray software to determine the differentially expressed genes. Microarray results were validated using an immunohistochemistry method. Statistical analysis identified 804 differentially expressed genes with 443 and 361 genes as overexpressed and underexpressed in cancer, respectively. Consistent findings were documented for the overexpression of eukaryotic translation elongation factor 1 alpha 1, E2F transcription factor 2, and fibroblast growth factor receptor 3, except for the down-regulated gene, early growth response 1 (EGR1. The immunopositivity staining for EGR1 was found in the majority of cancer tissues. This finding suggested that the mRNA level of a transcript did not always match with the protein expression in tissues. The current gene profile can be the platform for further exploration of the molecular mechanism of NEOC.

  3. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.

    Science.gov (United States)

    Pillai, Smitha; Chellappan, Srikumar P

    2015-01-01

    Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.

  4. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development.

    Science.gov (United States)

    Zhou, Quan; Wang, Zhangxun; Zhang, Jun; Meng, Huimin; Huang, Bo

    2012-11-01

    Metarhizium anisopliae is one of the most common species of entopathogenic fungi. It has economic and social benefits in many countries where used in agriculture as an important biological control agent of insect pests. M. anisopliae can exist as multiple cell types, which suggests that this fungus has a complex way of gene regulation. MicroRNAs (miRNAs) are endogenous small noncoding RNAs. They play a crucial role in the regulation of gene expression and cell function in plants, animals, and in fungi where they were termed miRNA-like RNAs (milRNAs). In this study, we aimed to identify potential milRNAs in M. anisopliae that may regulate the processes of mycelium growth and conidiogenesis (CO). Two small RNA (sRNA) libraries were constructed and submitted to Solexa sequencing. Fifteen milRNAs were identified using deep-sequencing and computational analysis; most of these milRNAs originated from single genes. Database searches revealed that these novel milRNAs had no homologues in other organisms and were, therefore, M. anisopliae-specific. Many of the milRNAs had differential expression profiles for either mycelium growth or CO. The expression of the selected milRNAs was validated by quantitative reverse transcription polymerase chain reaction. Seventy-eight potential target mRNAs for 14 of the milRNAs were identified successfully by computational analysis. These milRNAs may play an important role in the regulation of mycelial growth and conidiation in M. anisopliae. To our knowledge, this study is the first report of milRNA profiles of organisms in the order Hypocreales. This information could be used to study the regulation of genes and their networks in M. anisopliae.

  5. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard;

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, an...

  6. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Zezhong Yang

    2017-05-01

    Full Text Available Sugar transporters (STs play pivotal roles in the growth, development, and stress responses of phloem-sucking insects, such as the whitefly, Bemisia tabaci. In this study, 137 sugar transporters (STs were identified based on analysis of the genome and transcriptome of B. tabaci MEAM1. B. tabaci MEAM1 encodes a larger number of STs than other selected insects. Phylogenetic and molecular evolution analysis showed that the 137 STs formed three expanded clades and that the genes in Sternorrhyncha expanded clades had accelerated rates of evolution. B. tabaci sugar transporters (BTSTs were divided into three groups based on their expression profiles across developmental stages; however, no host-specific BTST was found in B. tabaci fed on different host plants. Feeding of B. tabaci adults with feeding diet containing dsRNA significantly reduced the transcript level of the target genes in B. tabaci and mortality was significantly improved in B. tabaci fed on dsRNA compared to the control, which indicates the sugar transporters may be used as potential RNAi targets for B. tabaci bio-control. These results provide a foundation for further studies of STs in B. tabaci.

  7. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Yang, Zezhong; Xia, Jixing; Pan, Huipeng; Gong, Cheng; Xie, Wen; Guo, Zhaojiang; Zheng, Huixin; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Zhang, Youjun

    2017-01-01

    Sugar transporters (STs) play pivotal roles in the growth, development, and stress responses of phloem-sucking insects, such as the whitefly, Bemisia tabaci. In this study, 137 sugar transporters (STs) were identified based on analysis of the genome and transcriptome of B. tabaci MEAM1. B. tabaci MEAM1 encodes a larger number of STs than other selected insects. Phylogenetic and molecular evolution analysis showed that the 137 STs formed three expanded clades and that the genes in Sternorrhyncha expanded clades had accelerated rates of evolution. B. tabaci sugar transporters (BTSTs) were divided into three groups based on their expression profiles across developmental stages; however, no host-specific BTST was found in B. tabaci fed on different host plants. Feeding of B. tabaci adults with feeding diet containing dsRNA significantly reduced the transcript level of the target genes in B. tabaci and mortality was significantly improved in B. tabaci fed on dsRNA compared to the control, which indicates the sugar transporters may be used as potential RNAi targets for B. tabaci bio-control. These results provide a foundation for further studies of STs in B. tabaci.

  8. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.

    Science.gov (United States)

    Song, Jian; Guo, Baojian; Song, Fangwei; Peng, Huiru; Yao, Yingyin; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2011-08-15

    Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.

  9. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Asmar, Fazila; Punj, Vasu; Christensen, Jesper Aagaard;

    2013-01-01

    The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers......% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P...

  10. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation.

    Science.gov (United States)

    Bogomazova, A N; Vassina, E M; Goryachkovskaya, T N; Popik, V M; Sokolov, A S; Kolchanov, N A; Lagarkova, M A; Kiselev, S L; Peltek, S E

    2015-01-13

    Terahertz (THz) radiation was proposed recently for use in various applications, including medical imaging and security scanners. However, there are concerns regarding the possible biological effects of non-ionising electromagnetic radiation in the THz range on cells. Human embryonic stem cells (hESCs) are extremely sensitive to environmental stimuli, and we therefore utilised this cell model to investigate the non-thermal effects of THz irradiation. We studied DNA damage and transcriptome responses in hESCs exposed to narrow-band THz radiation (2.3 THz) under strict temperature control. The transcription of approximately 1% of genes was subtly increased following THz irradiation. Functional annotation enrichment analysis of differentially expressed genes revealed 15 functional classes, which were mostly related to mitochondria. Terahertz irradiation did not induce the formation of γH2AX foci or structural chromosomal aberrations in hESCs. We did not observe any effect on the mitotic index or morphology of the hESCs following THz exposure.

  11. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-bin; QIAN Yuan-shu; MA Lian; GU Hong-ni

    2007-01-01

    Background Candida albicans is the most frequently seen opportunistic human fungal pathogen. Terbinafine is an allylamine antifungal agent that has been proven to have high clinical efficacy in the therapy of fungal infections, the mechanism of action of terbinafine involves the specific inhibition of fungal squalene epoxidase, resulting in ergosterol deficiency and accumulation of intracellular squalene. We used cDNA microarray analysis technology to monitor global expression profile changes of Candida albicans genes in response to terbinafine treatment, and we anticipated a panoramic view of the responses of Candida albicans cells to the representatives of allylamine antifungal agents at the molecular level in an effort to identify drug class-specific and mechanism-independent changes in gene expression.Methods Candida albicans strain ATCC 90028 was exposed to either medium alone or terbinafine at a concentration equivalent to the 1/2 minimal inhibitory concentrations (MICs, 4 mg/L) for 90 minutes. RNA was isolated and gene expression profiles were compared to identify the changes in the gene expression profile using a cDNA microarray analysis. Differential expression of 10 select genes detected by cDNA microarray analysis was confirmed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).Results A total of 222 genes were found to be responsive to terbinafine, including 121 up-regulated genes and 101 down-regulated genes. These included genes encoding membrane transport proteins belonging to the members of the ATP-binding cassette (ABC) or major facilitator superfamily (MFS; CDR1, AGP2, GAP6, PHO84, HOL3, FCY23, VCX1),genes involved in stress response and detoxification (CDR1, AGP2, HOL3), and gene involved in the ergosterol biosynthesis pathway (ERG12). The results of semi-quantitative RT-PCR were consistent with that of the cDNA microarray analysis.Conclusions The up-regulation of the gene encoding the multidrug resistance efflux pump

  12. Genome-wide transcriptional response of the Arctic bacterium Pseudoalteromonas sp. A2 to oxidative stress induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    LIN Xuezheng; WANG Zhen; LI Yang; LI Jiang

    2016-01-01

    Oxidative stress is one of the major challenges faced by Arctic marine bacteria due to the high oxygen concentration of seawater, low temperatures and UV radiations. Transcriptome sequencing was performed to obtain the key functional genes involved in the adaptation to oxidative stress induced by hydrogen peroxide in the Arctic bacteriumPseudoalteromonas sp. A2. Exposure to 1 mmol/L H2O2 resulted in large alterations of the transcriptome profile, including significant up-regulation of 109 genes and significant down-regulation of 174 genes. COG functional classification revealed that among the significantly regulated genes with known function categories, more genes belonging to posttranslational modification, protein turnover and chaperones were significantly up-regulated, and more genes affiliated with chaperones and amino acid transport and metabolism were significantly down-regulated. It was notable that the expressions of eighteen genes affiliated with flagella and four genes affiliated with heat shock proteins were significantly up-regulated. Meanwhile, the expression of nine genes belonging to cytochrome and cytochrome oxidase, and five genes belonging to TonB-dependent receptor, were significantly down-regulated. Among the eighteen genes with antioxidant activity categorized by GO analysis, the expression of one gene was significantly up-regulated; however, the expressions of two genes were significantly down-regulated. Briefly, RNA-Seq indicated that, except for the classical anti-oxidative genes and stress proteins, genes affiliated with flagella and function unknown played important roles in coping with oxidative stress inPseudoalteromonas sp. A2. This overall survey of transcriptome and oxidative stress-relevant genes can contribute to understand the adaptive mechanism of Arctic bacteria.

  13. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts.

    Science.gov (United States)

    Park, Lara K; Maione, Anna G; Smith, Avi; Gerami-Naini, Behzad; Iyer, Lakshmanan K; Mooney, David J; Veves, Aristidis; Garlick, Jonathan A

    2014-10-01

    Diabetic foot ulcers (DFUs) are a serious complication of diabetes. Previous exposure to hyperglycemic conditions accelerates a decline in cellular function through metabolic memory despite normalization of glycemic control. Persistent, hyperglycemia-induced epigenetic patterns are considered a central mechanism that activates metabolic memory; however, this has not been investigated in patient-derived fibroblasts from DFUs. We generated a cohort of patient-derived lines from DFU fibroblasts (DFUF), and site- and age-matched diabetic foot fibroblasts (DFF) and non-diabetic foot fibroblasts (NFF) to investigate global and genome-wide DNA methylation patterns using liquid chromatography/mass spectrometry and the Illumina Infinium HumanMethylation450K array. DFFs and DFUFs demonstrated significantly lower global DNA methylation compared to NFFs (p = 0.03). Hierarchical clustering of differentially methylated probes (DMPs, p = 0.05) showed that DFFs and DFUFs cluster together and separately from NFFs. Twenty-five percent of the same probes were identified as DMPs when individually comparing DFF and DFUF to NFF. Functional annotation identified enrichment of DMPs associated with genes critical to wound repair, including angiogenesis (p = 0.07) and extracellular matrix assembly (p = 0.035). Identification of sustained DNA methylation patterns in patient-derived fibroblasts after prolonged passage in normoglycemic conditions demonstrates persistent metabolic memory. These findings suggest that epigenetic-related metabolic memory may also underlie differences in wound healing phenotypes and can potentially identify therapeutic targets.

  14. Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model

    Science.gov (United States)

    2013-01-01

    Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that

  15. Genome-wide Expansion and Expression Divergence of the Basic Leucine Zipper Transcription Factors in Higher Plants with an Emphasis on Sorghum

    Institute of Scientific and Technical Information of China (English)

    Jizhou Wang; Junxia Zhou; Baolan Zhang; Jeevanandam Vanitha; Srinivasan Ramachandran; Shu-Ye Jiang

    2011-01-01

    Plant bZIP transcription factors play crucial roles in multiple biological processes. However,little is known about the sorghum bZIP gene family although the sorghum genome has been completely sequenced. In this study,we have carried out a genome-wide identification and characterization of this gene family in sorghum.Our data show that the genome encodes at least 92 bZIP transcription factors. These bZIP genes have been expanded mainly by segmental duplication. Such an expansion mechanism has also been observed in rice,arabidopsis and many other plant organisms,suggesting a common expansion mode of this gene family in plants. Further investigation shows that most of the bZIP members have been present in the most recent common ancestor of sorghum and rice and the major expansion would occur before the sorghum-rice split era. Although these bZIP genes have been duplicated with a long history,they exhibited limited functional divergence as shown by nonsynonymous substitutions (Ka)/synonymous substitutions (Ks) analyses. Their retention was mainly due to the high percentages of expression divergence. Our data also showed that this gene family might play a role in multiple developmental stages and tissues and might be regarded as important regulators of various abiotic stresses and sugar signaling.

  16. Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes co-regulated by histone modification patterns.

    Directory of Open Access Journals (Sweden)

    Yayoi Natsume-Kitatani

    Full Text Available N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs, which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (http://www.mathworks.com/, is available from the supporting page for this paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm.

  17. Integrated Analysis of Genome-Wide Copy Number Alterations and Gene Expression Profiling of Lung Cancer in Xuanwei, China

    Science.gov (United States)

    Zhang, Yanliang; Xue, Qiuyue; Pan, Guoqing; Meng, Qing H.; Tuo, Xiaoyu; Cai, Xuemei; Chen, Zhenghui; Li, Ya; Huang, Tao; Duan, Xincen; Duan, Yong

    2017-01-01

    Objectives Lung cancer in Xuanwei (LCXW), China, is known throughout the world for its distinctive characteristics, but little is known about its pathogenesis. The purpose of this study was to screen potential novel “driver genes” in LCXW. Methods Genome-wide DNA copy number alterations (CNAs) were detected by array-based comparative genomic hybridization and differentially expressed genes (DEGs) by gene expression microarrays in 8 paired LCXW and non-cancerous lung tissues. Candidate driver genes were screened by integrated analysis of CNAs and DEGs. The candidate genes were further validated by real-time quantitative polymerase chain reaction. Results Large numbers of CNAs and DEGs were detected, respectively. Some of the most frequently occurring CNAs included gains at 5p15.33-p15.32, 5p15.1-p14.3, and 5p14.3-p14.2 and losses at 11q24.3, 21q21.1, 21q22.12-q22.13, and 21q22.2. Integrated analysis of CNAs and DEGs identified 24 candidate genes with frequent copy number gains and concordant upregulation, which were considered potential oncogenes, including CREB3L4, TRIP13, and CCNE2. In addition, the analysis identified 19 candidate genes with a negative association between copy number change and expression change, considered potential tumor suppressor genes, including AHRR, NKD2, and KLF10. One of the most studied oncogenes, MYC, may not play a carcinogenic role in LCXW. Conclusions This integrated analysis of CNAs and DEGs identified several potential novel LCXW-related genes, laying an important foundation for further research on the pathogenesis of LCXW and identification of novel biomarkers or therapeutic targets. PMID:28056099

  18. Growth on mannitol-rich media elicits a genome-wide transcriptional response in Burkholderia multivorans that impacts on multiple virulence traits in an exopolysaccharide-independent manner.

    Science.gov (United States)

    Denman, Carmen C; Robinson, Matthew T; Sass, Andrea M; Mahenthiralingam, Eshwar; Brown, Alan R

    2014-01-01

    In common with other members of the Burkholderia cepacia complex (BCC), Burkholderia multivorans is capable of producing exopolysaccharide (EPS) when grown on certain mannitol-rich media. The significance of the resulting mucoid phenotype and the genome-wide response to mannitol has never been characterized despite its clinical relevance following the approval of a dried-powder preparation of mannitol as an inhaled osmolyte therapy for cystic fibrosis (CF) patients. In the present study we defined the transcriptional response of B. multivorans ATCC 17616, a model genome-sequenced strain of environmental origin, to growth on mannitol-rich yeast extract media (MYEM). EPS-dependent and -independent impact of MYEM on virulence-associated traits was assessed in both strain ATCC 17616 and the CF isolate B. multivorans C1576. Our studies revealed a significant transcriptional response to MYEM encompassing approximately 23 % of predicted genes within the genome. Strikingly, this transcriptional response identified that EPS induction occurs in ATCC 17616 without the upregulation of the bce-I and bce-II EPS gene clusters, despite their pivotal role in EPS biosynthesis. Of approximately 20 differentially expressed putative virulence factors, 16 exhibited upregulation including flagella, ornibactin, oxidative stress proteins and phospholipases. MYEM-grown B. multivorans also exhibited enhanced motility, biofilm formation and epithelial cell invasion. In contrast to these potential virulence enhancements, MYEM-grown B. multivorans C1576 showed attenuated virulence in the Galleria mellonella infection model. All of the observed phenotypic responses occurred independently of EPS production, highlighting the profound impact that mannitol-based growth has on the physiology and virulence of B. multivorans.

  19. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

    Science.gov (United States)

    Morillo-Huesca, Macarena; Clemente-Ruiz, Marta; Andújar, Eloísa; Prado, Félix

    2010-08-12

    The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta), if it forms but cannot bind to chromatin (swc2Delta) or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G). These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.

  20. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    Full Text Available The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta, if it forms but cannot bind to chromatin (swc2Delta or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G. These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.

  1. Genome-Wide lncRNA Microarray Profiling Identifies Novel Circulating lncRNAs for Detection of Gastric Cancer

    Science.gov (United States)

    Zhang, Kecheng; Shi, Hongzhi; Xi, Hongqing; Wu, Xiaosong; Cui, Jianxin; Gao, Yunhe; Liang, Wenquan; Hu, Chong; Liu, Yi; Li, Jiyang; Wang, Ning; Wei, Bo; Chen, Lin

    2017-01-01

    Long non-coding RNAs (lncRNAs) can serve as blood-based biomarkers for cancer detection. To identify novel lncRNA biomarkers for gastric cancer (GC), we conducted, for the first time, genome-wide lncRNA screening analysis in two sets of samples: five paired preoperative and postoperative day 14 plasma samples from GC patients, and tissue samples from tumor and adjacent normal tissues. Candidate tumor-related lncRNAs were then quantitated and evaluated in three independent phases comprising 321 participants. The expression levels of lncRNAs were also measured in GC cell lines and the corresponding culture medium. Biomarker panels, lncRNA-based Index I and carcinoembryonic antigen (CEA)-based Index II, were constructed using logistic regression, and their diagnostic performance compared. Fagan's nomogram was plotted to facilitate clinical application. As a result, we identified five novel plasma lncRNAs (TINCR, CCAT2, AOC4P, BANCR and LINC00857), which, when combined in the lncRNA-based Index I, outperformed the CEA-based Index II (P < 0.001) and could distinguish GC patients from healthy controls with an area under the receiver-operating curve (AUC) of 0.91 (95% confidence interval (CI): 0.88-0.95). The lncRNA-based index decreased significantly by postoperative day 14 (P = 0.016), indicating its ability to monitor tumor dynamics. High values of the lncRNA-based index were correlated with tumor size (P = 0.036), depth of invasion (P = 0.025), lymphatic metastasis (P = 0.012) and more advanced tumor stages (P = 0.003). The lncRNA-based index was also able to discriminate GC patients from precancerous individuals and patients with gastrointestinal stromal tumor with AUC values of 0.82 (95% CI: 0.71-0.92) and 0.80 (95% CI: 0.68-0.91), respectively. Taken together, our findings demonstrate that this panel of five plasma lncRNAs could serve as a set of novel diagnostic biomarkers for GC detection. PMID:28042329

  2. Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members.

    Science.gov (United States)

    Ariani, Pietro; Regaiolo, Alice; Lovato, Arianna; Giorgetti, Alejandro; Porceddu, Andrea; Camiolo, Salvatore; Wong, Darren; Castellarin, Simone; Vandelle, Elodie; Polverari, Annalisa

    2016-12-02

    The Arabidopsis Tóxicos en Levadura (ATL) protein family is a class of E3 ubiquitin ligases with a characteristic RING-H2 Zn-finger structure that mediates diverse physiological processes and stress responses in plants. We carried out a genome-wide survey of grapevine (Vitis vinifera L.) ATL genes and retrieved 96 sequences containing the canonical ATL RING-H2 domain. We analysed their genomic organisation, gene structure and evolution, protein domains and phylogenetic relationships. Clustering revealed several clades, as already reported in Arabidopsis thaliana and rice (Oryza sativa), with an expanded subgroup of grapevine-specific genes. Most of the grapevine ATL genes lacked introns and were scattered among the 19 chromosomes, with a high level of duplication retention. Expression profiling revealed that some ATL genes are expressed specifically during early or late development and may participate in the juvenile to mature plant transition, whereas others may play a role in pathogen and/or abiotic stress responses, making them key candidates for further functional analysis. Our data offer the first genome-wide overview and annotation of the grapevine ATL family, and provide a basis for investigating the roles of specific family members in grapevine physiology and stress responses, as well as potential biotechnological applications.

  3. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation.

    Science.gov (United States)

    Qiu, Hongfang; Chereji, Răzvan V; Hu, Cuihua; Cole, Hope A; Rawal, Yashpal; Clark, David J; Hinnebusch, Alan G

    2016-02-01

    Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.

  4. A genome-wide identification and analysis of the basic helix-loop-helix transcription factors in the ponerine ant, Harpegnathos saltator

    Directory of Open Access Journals (Sweden)

    Liu Ake

    2012-08-01

    Full Text Available Abstract Background The basic helix-loop-helix (bHLH transcription factors and their homologs form a superfamily that plays essential roles in transcriptional networks of multiple developmental processes. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, human and mouse. Result In this study, we conducted a genome-wide survey for bHLH sequences, and identified 57 bHLH sequences encoded in complete genome sequence of the ponerine ant, Harpegnathos saltator. Phylogenetic analysis of the bHLH domain sequences classified these genes into 38 bHLH families with 23, 14, 10, 1, 8 and 1 members in group A, B, C, D, E and F, respectively. The number of PabHLHs (ponerine ant bHLHs with introns is higher than many other insect species, and they are found to have introns with average lengths only inferior to those of pea aphid. In addition, two H. saltator bHLHs named PaCrp1 and PaSide locate on two separate contigs in the genome. Conclusions A putative full set of PabHLH genes is comparable with other insect species and genes encoding Oligo, MyoRb and Figα were not found in genomes of all insect species of which bHLH family members have been identified. Moreover, in-family phylogenetic analyses indicate that the PabHLH genes are more closely related with Apis mellifera than others. The present study will serve as a solid foundation for further investigations into the structure and function of bHLH proteins in the regulation of H. saltator development.

  5. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators and protein kinases

    Science.gov (United States)

    Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...

  6. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and function. We and others have previously mapped PPARγ binding at a genome-wide level in murine and human adipocyte cell lines and in primary human adipocytes. However, little is known about...... how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from...... epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...

  7. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported...

  8. Genome-wide transcriptional analysis of apoptosis-related genes and pathways regulated by H2AX in lung cancer A549 cells.

    Science.gov (United States)

    Lu, Chengrong; Xiong, Min; Luo, Yuan; Li, Jing; Zhang, Yanjun; Dong, Yaqiong; Zhu, Yanjun; Niu, Tianhui; Wang, Zhe; Duan, Lianning

    2013-09-01

    Histone H2AX is a novel tumor suppressor protein and plays an important role in apoptosis of cancer cells. However, the role of H2AX in lung cancer cells is unclear. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. We showed that H2AX was involved in apoptosis of lung cancer A549 cells as in other tumor cells. Knockdown of H2AX strongly suppressed apoptosis of A549 cells. We clarified the molecular mechanisms of apoptosis regulated by H2AX based on genome-wide transcriptional analysis. Microarray data analysis demonstrated that H2AX knockdown in A549 cells affected expression of 3,461 genes, including upregulation of 1,435 and downregulation of 2,026. These differentially expressed genes were subjected to bioinformatic analysis for exploring biological processes regulated by H2AX in lung cancer cells. Gene ontology analysis showed that H2AX affected expression of many genes, through which, many important functions including response to stimuli, gene expression, and apoptosis were involved in apoptotic regulation of lung cancer cells. Pathway analysis identified the mitogen-activated protein kinase signaling pathway and apoptosis as the most important pathways targeted by H2AX. Signal transduction pathway networks analysis and chromatin immunoprecipitation assay showed that two core genes, NFKB1 and JUN, were involved in apoptosis regulated by H2AX in lung cancer cells. Taken together, these data provide compelling clues for further exploration of H2AX function in cancer cells.

  9. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple.

    Science.gov (United States)

    Su, Hongyan; Zhang, Shizhong; Yuan, Xiaowei; Chen, Changtian; Wang, Xiao-Fei; Hao, Yu-Jin

    2013-10-01

    NAC (NAM, ATAF1,2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors. To date, little is known about the NAC genes in the apple (Malus domestica). In this study, a total of 180 NAC genes were identified in the apple genome and were phylogenetically clustered into six groups (I-VI) with the NAC genes from Arabidopsis and rice. The predicted apple NAC genes were distributed across all of 17 chromosomes at various densities. Additionally, the gene structure and motif compositions of the apple NAC genes were analyzed. Moreover, the expression of 29 selected apple NAC genes was analyzed in different tissues and under different abiotic stress conditions. All of the selected genes, with the exception of four genes, were expressed in at least one of the tissues tested, which indicates that the NAC genes are involved in various aspects of the physiological and developmental processes of the apple. Encouragingly, 17 of the selected genes were found to respond to one or more of the abiotic stress treatments, and these 17 genes included not only the expected 7 genes that were clustered with the well-known stress-related marker genes in group IV but also 10 genes located in other subgroups, none of which contains members that have been reported to be stress-related. To the best of our knowledge, this report describes the first genome-wide analysis of the apple NAC gene family, and the results should provide valuable information for understanding the classification and putative functions of this family.

  10. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database

    Directory of Open Access Journals (Sweden)

    Simon Horst H

    2009-01-01

    Full Text Available Abstract Midbrain dopaminergic neurons are involved in control of emotion, motivation and motor behavior. The loss of one of the subpopulations, substantia nigra pars compacta, is the pathological hallmark of one of the most prominent neurological disorders, Parkinson's disease. Several groups have looked at the molecular identity of midbrain dopaminergic neurons and have suggested the gene expression profile of these neurons. Here, after determining the efficiency of each screen, we provide a linked database of the genes, expressed in this neuronal population, by combining and comparing the results of six previous studies and verification of expression of each gene in dopaminergic neurons, using the collection of in situ hybridization in the Allen Brain Atlas.

  11. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response.

    Science.gov (United States)

    Ghosh, Ajit; Islam, Tahmina

    2016-04-16

    Glyoxalase pathway consists of two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) which detoxifies a highly cytotoxic metabolite methylglyoxal (MG) to its non-toxic form. MG may form advanced glycation end products with various cellular macro-molecules such as proteins, DNA and RNA; that ultimately lead to their inactivation. Role of glyoxalase enzymes has been extensively investigated in various plant species which showed their crucial role in salinity, drought and heavy metal stress tolerance. Previously genome-wide analysis of glyoxalase genes has been conducted in model plants Arabidopsis and rice, but no such study was performed in any legume species. In the present study, a comprehensive genome database analysis of soybean was performed and identified a total of putative 41 GLYI and 23 GLYII proteins encoded by 24 and 12 genes, respectively. Detailed analysis of these identified members was conducted including their nomenclature and classification, chromosomal distribution and duplication, exon-intron organization, and protein domain(s) and motifs identification. Expression profiling of these genes has been performed in different tissues and developmental stages as well as under salinity and drought stresses using publicly available RNAseq and microarray data. The study revealed that GmGLYI-7 and GmGLYII-8 have been expressed intensively in all the developmental stages and tissues; while GmGLYI-6, GmGLYI-9, GmGLYI-20, GmGLYII-5 and GmGLYII-10 were highly abiotic stress responsive members. The present study identifies the largest family of glyoxalase proteins to date with 41 GmGLYI and 23 GmGLYII members in soybean. Detailed analysis of GmGLYI and GmGLYII genes strongly indicates the genome-wide segmental and tandem duplication of the glyoxalase members. Moreover, this study provides a strong basis about the biological role and function of GmGLYI and GmGLYII members in soybean growth, development and stress physiology.

  12. Genome-wide DNA methylation profiles according to Chlamydophila psittaci infection and the response to doxycycline treatment in ocular adnexal lymphoma.

    Science.gov (United States)

    Lee, Min Joung; Min, Byung-Joo; Choung, Ho-Kyung; Kim, Namju; Kim, Young A; Khwarg, Sang In

    2014-01-01

    To compare genome-wide DNA methylation profiles according to Chlamydophila psittaci (Cp) infection status and the response to doxycycline treatment in Korean patients with ocular adnexal extranodal marginal zone B-cell lymphoma (EMZL). Twelve ocular adnexal EMZL cases were classified into two groups (six Cp-positive cases and six Cp-negative cases). Among the 12 cases, eight were treated with doxycycline as first-line therapy, and they were divided into two groups according to their response to the treatment (four doxy-responders and four doxy-nonresponders). The differences in the DNA methylation states of 27,578 methylation sites in 14,000 genes were evaluated using Illumina bead assay technology. We also validated the top-ranking differentially methylated genes (DMGs) with bisulfite direct sequencing or pyrosequencing. The Infinium methylation chip assay revealed 180 DMGs in the Cp-positive group (74 hypermethylated genes and 106 hypomethylated genes) compared to the Cp-negative group. Among the 180 DMGs, DUSP22, which had two significantly hypomethylated loci, was validated, and the correlation was significant for one CpG site (Spearman coefficient=0.6478, p=0.0262). Regarding the response to doxycycline treatment, a total of 778 DMGs were revealed (389 hypermethylated genes and 336 hypomethylated genes in the doxy-responder group). In a subsequent replication study for representative hypomethylated (IRAK1) and hypermethylated (CXCL6) genes, the correlation between the bead chip analysis and pyrosequencing was significant (Spearman coefficient=0.8961 and 0.7619, respectively, p<0.05). Ocular adnexal EMZL showed distinct methylation patterns according to Cp infection and the response to doxycycline treatment in this genome-wide methylation study. Among the candidate genes, DUSP22 has a methylation status that was likely attributable to Cp infection. Our data also suggest that the methylation statuses of IRAK1 and CXCL6 may reflect the response to doxycycline

  13. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite.

    Science.gov (United States)

    Lin, Hsiang-Yin; Chen, Jhun-Chen; Wei, Miao-Ju; Lien, Yi-Chen; Li, Huang-Hsien; Ko, Swee-Suak; Liu, Zin-Huang; Fang, Su-Chiung

    2014-01-01

    Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.

  14. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes.

    Science.gov (United States)

    del Rey, M; O'Hagan, K; Dellett, M; Aibar, S; Colyer, H A A; Alonso, M E; Díez-Campelo, M; Armstrong, R N; Sharpe, D J; Gutiérrez, N C; García, J L; De Las Rivas, J; Mills, K I; Hernández-Rivas, J M

    2013-03-01

    Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.

  15. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    Science.gov (United States)

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.

  16. The genome-wide expression profile of Scrophularia ningpoensis-treated thapsigargin-stimulated U-87MG cells.

    Science.gov (United States)

    Sohn, Sung-Hwa; Ko, Eunjung; Jeon, Sung-Bae; Lee, Beom-Joon; Kim, Sung-Hoon; Dong, Mi-Sook; Lee, Dong-Ung; Kwak, Jong-Hwan; Kim, Yangseok; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2009-05-01

    The endoplasmic reticulum (ER) is a principal site for protein synthesis, protein folding, calcium storage, and calcium signaling. Thapsigargin (TG), an inducer of ER stress, inhibits ER-associated Ca(2+)-ATPase and disrupts Ca(2+) homeostasis. ER stress plays an important pathogenetic role in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease, and prion protein diseases. This study was conducted to evaluate the protective mechanisms of Scrophularia ningpoensis (SN) extracts and chemicals on TG-stimulated U-87MG cells. In this study, the recovery activities of E-harpagoside (EHA), harpagide (HA), 8-O-E-p-methoxycinnamoylharpagide (MH), aucubin (AB), cinnamic acid (CA), p-coumaric acid (pCA), p-methoxycinnamic acid methyl ester (MME), caffeic acid (CFA), ferulic acid (FA), and (E)-p-methoxycinnamic acid (MA) on TG-stimulated U-87MG cells were evaluated. The results revealed that SN, MME, CFA, and MH showed considerable recovery effects. Therefore, SN, MME, CFA, and MH were selected to evaluate the gene expression profile of U-87MG cells by using microarray analysis and real-time RT-PCR. The results of this analysis revealed that cell cycle, proliferation, protein folding, and anti-apoptosis-related genes were up-regulated in SN, MME, CFA, and MH-treated U-87MG cells. In addition, significant decreases in apoptosis, the MAPK signaling pathway, and mitochondria-related gene expressions were observed in SN-, MME-, CFA-, and MH-treated U-87MG cells. Thus, SN, MME, CFA, and MH might affect neurodegenerative diseases.

  17. Genome-wide profiles of H2AX and γ-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells.

    Science.gov (United States)

    Seo, Jungmin; Kim, Sang Cheol; Lee, Heun-Sik; Kim, Jung Kyu; Shon, Hye Jin; Salleh, Nur Lina Mohd; Desai, Kartiki Vasant; Lee, Jae Ho; Kang, Eun-Suk; Kim, Jin Sung; Choi, Jung Kyoon

    2012-07-01

    Phosphorylation of the histone variant H2AX forms γ-H2AX that marks DNA double-strand break (DSB). Here, we generated the sequencing-based maps of H2AX and γ-H2AX positioning in resting and proliferating cells before and after ionizing irradiation. Genome-wide locations of possible endogenous and exogenous DSBs were identified based on γ-H2AX distribution in dividing cancer cells without irradiation and that in resting cells upon irradiation, respectively. γ-H2AX-enriched regions of endogenous origin in replicating cells included sub-telomeres and active transcription start sites, apparently reflecting replication- and transcription-mediated stress during rapid cell division. Surprisingly, H2AX itself, prior to phosphorylation, was specifically located at these endogenous hotspots. This phenomenon was only observed in dividing cancer cells but not in resting cells. Endogenous H2AX was concentrated on the transcription start site of actively transcribed genes but was irrelevant to pausing of RNA polymerase II (pol II), which precisely coincided with γ-H2AX of endogenous origin. γ-H2AX enrichment upon irradiation also coincided with actively transcribed regions, but unlike endogenous γ-H2AX, it extended into the gene body and was not specifically concentrated on the pausing site of pol II. Sub-telomeres were less responsive to external DNA damage than to endogenous stress. Our findings provide insight into DNA repair programs of cancer and may have implications for cancer therapy.

  18. Comparison on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion using a genome-wide toxicogenomics approach.

    Science.gov (United States)

    Su, Guanyong; Zhang, Xiaowei; Giesy, John P; Musarrat, Javed; Saquib, Quaiser; Alkhedhairy, Abdulaziz A; Yu, Hongxia

    2015-11-01

    Increasing production and applications of nano zinc oxide particles (nano-ZnO) enhances the probability of its exposure in occupational and environmental settings, but toxicity studies are still limited. Taking the free Zn ion (Zn(2+)) as a control, cytotoxicity of a commercially available nano-ZnO was assessed with a 6-h exposure in Escherichia coli (E. coli). The fitted dose-cytotoxicity curve for ZnCl2 was significantly sharper than that from nano-ZnO. Then, a genome-wide gene expression profile following exposure to nano-ZnO was conducted by use of a live cell reporter assay system with library of 1820 modified green fluorescent protein (GFP)-expressing promoter reporter vectors constructed from E. coli K12 strains, which resulted in 387 significantly altered genes in bacterial (p 2) was different from the profile following exposure to 6 mg/L of free zinc ion. The result indicates that these two Zn forms might cause toxicity to bacterial in different modes of action. Our results underscore the importance of understanding the adverse effects elicited by nano-ZnO after entering aquatic environment.

  19. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    Science.gov (United States)

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

  20. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Ayyappan, Vasudevan; Kalavacharla, Venu; Thimmapuram, Jyothi; Bhide, Ketaki P; Sripathi, Venkateswara R; Smolinski, Tomasz G; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.

  1. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  2. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma.

    Science.gov (United States)

    Schick, Bernhard; Wemmert, Silke; Willnecker, Vivienne; Dlugaiczyk, Julia; Nicolai, Piero; Siwiec, Henryk; Thiel, Christian T; Rauch, Anita; Wendler, Olaf

    2011-11-01

    Juvenile angiofibroma (JA) is a unique fibrovascular tumor, which is almost exclusively found in the posterior nasal cavity of adolescent males. Although histologically classified as benign, the tumor often shows an aggressive growth pattern and has been associated with chromosomal imbalances, amplification of oncogenes and epigenetic dysregulation. We present the first genome-wide profiling of JAs (n=14) with a 100K single nucleotide polymorphism (SNP) microarray. Among the 30 novel JA-specific amplifications detected on autosomal chromosomes with this technique, the genes encoding the cancer-testis antigen BORIS (brother of the regulator of imprinted sites) and the developmental regulator protein TSHZ1 (teashirt zinc finger homeobox 1) were selected for further analysis. Gains for both BORIS (20q13.3) and TSHZ1 (18q22.3) were confirmed by quantitative genomic PCR. Furthermore, quantitative RT-PCR revealed a significant up-regulation of BORIS (ptool for identifying novel disease-related genes in JAs and newly implicates BORIS and TSHZ1 overexpression in the pathogenesis of JAs. Detection of BORIS in JAs is described with special regard to tumor proliferation and epigenetic dysregulation, and the finding of TSHZ1 amplifications is discussed with special respect to the hypothesis of JAs as malformations of the first branchial arch artery.

  3. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  4. RGS2 expression predicts amyloid-β sensitivity, MCI and Alzheimer's disease: genome-wide transcriptomic profiling and bioinformatics data mining

    Science.gov (United States)

    Hadar, A; Milanesi, E; Squassina, A; Niola, P; Chillotti, C; Pasmanik-Chor, M; Yaron, O; Martásek, P; Rehavi, M; Weissglas-Volkov, D; Shomron, N; Gozes, I; Gurwitz, D

    2016-01-01

    Alzheimer's disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P=0.0085) in LCLs from healthy individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P=0.0008) in AD LCLs compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients' cognitive function. Lower RGS2 expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside other genes) toward early AD detection and future disease modifying therapeutics. PMID:27701409

  5. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments.

    Directory of Open Access Journals (Sweden)

    Xiaojian Peng

    Full Text Available BACKGROUND: CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L. by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68 were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments. CONCLUSIONS: The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.

  6. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments.

    Science.gov (United States)

    Peng, Xiaojian; Zhao, Yang; Cao, Jiangang; Zhang, Wei; Jiang, Haiyang; Li, Xiaoyu; Ma, Qing; Zhu, Suwen; Cheng, Beijiu

    2012-01-01

    CCCH-type zinc finger proteins comprise a large protein family. Increasing evidence suggests that members of this family are RNA-binding proteins with regulatory functions in mRNA processing. Compared with those in animals, functions of CCCH-type zinc finger proteins involved in plant growth and development are poorly understood. Here, we performed a genome-wide survey of CCCH-type zinc finger genes in maize (Zea mays L.) by describing the gene structure, phylogenetic relationships and chromosomal location of each family member. Promoter sequences and expression profiles of putative stress-responsive members were also investigated. A total of 68 CCCH genes (ZmC3H1-68) were identified in maize and divided into seven groups by phylogenetic analysis. These 68 genes were found to be unevenly distributed on 10 chromosomes with 15 segmental duplication events, suggesting that segmental duplication played a major role in expansion of the maize CCCH family. The Ka/Ks ratios suggested that the duplicated genes of the CCCH family mainly experienced purifying selection with limited functional divergence after duplication events. Twelve maize CCCH genes grouped with other known stress-responsive genes from Arabidopsis were found to contain putative stress-responsive cis-elements in their promoter regions. Seven of these genes chosen for further quantitative real-time PCR analysis showed differential expression patterns among five representative maize tissues and over time in response to abscisic acid and drought treatments. The results presented in this study provide basic information on maize CCCH proteins and form the foundation for future functional studies of these proteins, especially for those members of which may play important roles in response to abiotic stresses.

  7. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States.

    Directory of Open Access Journals (Sweden)

    Magdalena B Wozniak

    Full Text Available Gene expression microarray and next generation sequencing efforts on conventional, clear cell renal cell carcinoma (ccRCC have been mostly performed in North American and Western European populations, while the highest incidence rates are found in Central/Eastern Europe. We conducted whole-genome expression profiling on 101 pairs of ccRCC tumours and adjacent non-tumour renal tissue from Czech patients recruited within the "K2 Study", using the Illumina HumanHT-12 v4 Expression BeadChips to explore the molecular variations underlying the biological and clinical heterogeneity of this cancer. Differential expression analysis identified 1650 significant probes (fold change ≥2 and false discovery rate <0.05 mapping to 630 up- and 720 down-regulated unique genes. We performed similar statistical analysis on the RNA sequencing data of 65 ccRCC cases from the Cancer Genome Atlas (TCGA project and identified 60% (402 of the downregulated and 74% (469 of the upregulated genes found in the K2 series. The biological characterization of the significantly deregulated genes demonstrated involvement of downregulated genes in metabolic and catabolic processes, excretion, oxidation reduction, ion transport and response to chemical stimulus, while simultaneously upregulated genes were associated with immune and inflammatory responses, response to hypoxia, stress, wounding, vasculature development and cell activation. Furthermore, genome-wide DNA methylation analysis of 317 TCGA ccRCC/adjacent non-tumour renal tissue pairs indicated that deregulation of approximately 7% of genes could be explained by epigenetic changes. Finally, survival analysis conducted on 89 K2 and 464 TCGA cases identified 8 genes associated with differential prognostic outcomes. In conclusion, a large proportion of ccRCC molecular characteristics were common to the two populations and several may have clinical implications when validated further through large clinical cohorts.

  8. Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood.

    Directory of Open Access Journals (Sweden)

    Ralph Burkhardt

    2015-09-01

    Full Text Available Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2,107 adults and performed genome-wide association (GWA to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6; rs12210538, rs17657775, propionylcarnitine (chromosome 10; rs12779637, 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700, stearoylcarnitine (chromosome 1; rs3811444, and aspartic acid traits (chromosome 8; rs750472. Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine. In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed

  9. Genome-wide identification and expression profiling analysis of the Aux/IAA gene family in Medicago truncatula during the early phase of Sinorhizobium meliloti infection.

    Directory of Open Access Journals (Sweden)

    Chenjia Shen

    Full Text Available BACKGROUND: Auxin/indoleacetic acid (Aux/IAA genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. PRINCIPAL FINDINGS: Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. CONCLUSION: The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.

  10. Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes.

    Directory of Open Access Journals (Sweden)

    Teal S Hallstrand

    Full Text Available BACKGROUND: A frequent manifestation of asthma, exercise-induced bronchoconstriction (EIB, occurs in 30-50% of asthmatics and is characterized by increased release of inflammatory eicosanoids. The objective of this study was to identify genes differentially expressed in EIB and to understand the function of these genes in the biology of asthma. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide expression profiling of airway leukocytes and epithelial cells obtained by induced sputum was conducted in two groups of subjects with asthma with and without EIB (n = 7 per group, at baseline and following exercise challenge. Based on the results of the gene expression study, additional comparisons were made with a normal control group (n = 10. Localization studies were conducted on epithelial brushings and biopsies from an additional group of asthmatics with EIB (n = 3. Genes related to epithelial repair and mast cell infiltration including beta-tryptase and carboxypeptidase A3 were upregulated by exercise challenge in the asthma group with EIB. A gene novel to asthma pathogenesis, transglutaminase 2 (TGM2, was the most differentially expressed at baseline between the groups. In vivo studies confirmed the increased expression of TGM2 in airway cells and airway lining fluid, and demonstrate that TGM2 is avidly expressed in the asthmatic airway epithelium. In vitro studies using recombinant human enzymes reveal that TGM2 augments the enzymatic activity of secreted phospholipase A(2 (PLA(2 group X (sPLA(2-X, an enzyme recently implicated in asthma pathogenesis. CONCLUSIONS/SIGNIFICANCE: This study found that TGM2, a mediator that is novel to asthma pathogenesis, is overexpressed in asthmatic airways and functions to increase sPLA(2-X enzymatic activity. Since PLA(2 serves as the first rate-limiting step leading to eicosanoid formation, these results suggest that TGM2 may be a key initiator of the airway inflammatory cascade in asthma.

  11. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Pedersen, Thomas Askov; Hagenbeek, Dik;

    2008-01-01

    with deep sequencing to generate genome-wide maps of PPARgamma and retinoid X receptor (RXR)-binding sites, and RNA polymerase II (RNAPII) occupancy at very high resolution throughout adipocyte differentiation of 3T3-L1 cells. We identify >5000 high-confidence shared PPARgamma:RXR-binding sites...

  12. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits

    NARCIS (Netherlands)

    C.Y. Hsu (Chao); M.C. Zillikens (Carola); S.G. Wilson (Scott); C.R. Farber (Charles); S. Demissie (Serkalem); N. Soranzo (Nicole); E.N. Bianchi (Estelle); E. Grundberg (Elin); L. Liang (Liming); J.B. Richards (Brent); K. Estrada Gil (Karol); Y. Zhou (Yanhua); A. van Nas (Atila); M.F. Moffatt (Miriam); G. Zhai (Guangju); A. Hofman (Albert); J.B.J. van Meurs (Joyce); H.A.P. Pols (Huib); R.I. Price (Roger Ian); O. Nilsson (Ola); T. Pastinen (Tomi); L.A. Cupples (Adrienne); A.J. Lusis (Aldons Jake); E.E. Schadt (Eric); A.G. Uitterlinden (André); D.P. Kiel (Douglas); F. Rivadeneira Ramirez (Fernando); T.D. Spector (Timothy); D. Karasik (David); S.L. Ferrari (Serge)

    2010-01-01

    textabstractOsteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain

  13. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Wu, Huili; Lv, Hao; Li, Long; Liu, Jun; Mu, Shaohua; Li, Xueping; Gao, Jian

    2015-01-01

    The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA) and the division time of AP2/ERF family genes between rice and moso bamboo was 15-23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo.

  14. 7A.03: TRANSGENERATIONAL INHERITANCE OF GENOME-WIDE DNA METHYLATION PROFILES IN PULMONARY VASCULAR ENDOTHELIAL DYSFUNCTION FOLLOWING EXTRAUTERINE GROWTH RESTRICTION.

    Science.gov (United States)

    Zhang, L; Du, L; Tang, L; Lao, L; Hu, Q

    2015-06-01

    Early postnatal life is considered as a critical time window for determination of long-term metabolic states and organ functions. Extrauterine growth restriction (EUGR) causes the development of adult onset chronic diseases, including pulmonary hypertension (PH). However, the mechanisms involved and the possibilities of transgenerational transmission on pulmonary vascular consequences in later life are still unclear. Epigenetic information can be inherited and represents a plausible transgenerational carrier of environmental information. Our study was designed to test whether epigenetics dysregulation mediates the cellular memory of this early postnatal event.(Figure is included in full-text article.) : To test this hypothesis, the EUGR pups were established by undernutritional until weaning. We isolated pulmonary vascular endothelial cells (PVEC) by magnetic-activated cell sorting (MACS) from EUGR and control rats. MeDIP-chip (Methyl-DNA immune precipitation chip), genome-scale mapping studies to search for differentially methylated loci. A postnatal insult, nutritional restriction-induced EUGR caused development of an increased PH at 9-week of age in male rats (First-generation of EUGR, F1-EUGR male). We intercrossed female adult control and F1-EUGR-male rats to obtain the second-generation (F2) offspring in two groups: C male-C female, EUGR-male -C-female. We found that significantly decreased pulmonary artery pressure in F2 female offspring in EUGR-male-C-female group (F2-EUGR-female), compared with controls to some degrees. we carried out genome-wide DNA methylation profiles screen for genes in rats between F1-EUGR-male and F2-EUGR-female. The EUGR and control group comparisons revealed consistently and distinctively methylated loci, with 74.8% F1-EUGR-male group and 84.5% F2-EUGR-female group changes in hyper-methylation loci enriched for highly significant group differences. Gene ontology (GO) analysis on no consistent differentially methylated genes

  15. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis)

    Science.gov (United States)

    Li, Long; Liu, Jun; Mu, Shaohua; Li, Xueping; Gao, Jian

    2015-01-01

    The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA) and the division time of AP2/ERF family genes between rice and moso bamboo was 15–23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo. PMID:25985202

  16. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes

    NARCIS (Netherlands)

    Mokry, M.; Hatzis, P.; Schuijers, J.; Lansu, N.; Ruzius, F.P.; Clevers, H.; Cuppen, E.

    2012-01-01

    Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by

  17. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes

    NARCIS (Netherlands)

    Mokry, Michal; Hatzis, Pantelis; Schuijers, Jurian; Lansu, Nico; Ruzius, Frans-Paul; Clevers, Hans; Cuppen, Edwin

    2012-01-01

    Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by RN

  18. Transcriptome profiling and genome-wide DNA binding define the differential role of fenretinide and all-trans RA in regulating the death and survival of human hepatocellular carcinoma Huh7 cells.

    Science.gov (United States)

    Hu, Ying; Liu, Hui-Xin; He, Yuqi; Fang, Yaping; Fang, Jianwen; Wan, Yu-Jui Yvonne

    2013-04-01

    Fenretinide is significantly more effective in inducing apoptosis in cancer cells than all-trans retinoic acid (ATRA). The current study uses a genome-wide approach to understand the differential role fenretinide and ATRA have in inducing apoptosis in Huh7 cells. Fenretinide and ATRA-induced gene expressions and DNA bindings were profiled using microarray and chromatin immunoprecipitation with anti-RXRα antibody. The data showed that fenretinide was not a strong transcription regulator. Fenretinide only changed the expressions of 1 093 genes, approximately three times less than the number of genes regulated by ATRA (2 811). Biological function annotation demonstrated that both fenretinide and ATRA participated in pathways that determine cell fate and metabolic processes. However, fenretinide specifically induced Fas/TNFα-mediated apoptosis by increasing the expression of pro-apoptotic genes i.e., DEDD2, CASP8, CASP4, and HSPA1A/B; whereas, ATRA induced the expression of BIRC3 and TNFAIP3, which inhibit apoptosis by interacting with TRAF2. In addition, fenretinide inhibited the expression of the genes involved in RAS/RAF/ERK-mediated survival pathway. In contrast, ATRA increased the expression of SOSC2, BRAF, MEK, and ERK genes. Most genes regulated by fenretinide and ATRA were bound by RXRα, suggesting a direct effect. This study revealed that by regulating fewer genes, the effects of fenretinide become more specific and thus has fewer side effects than ATRA. The data also suggested that fenretinide induces apoptosis via death receptor effector and by inhibiting the RAS/RAF/ERK pathway. It provides insight on how retinoid efficacy can be improved and how side effects in cancer therapy can be reduced.

  19. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ghazal Peter

    2009-09-01

    Full Text Available Abstract Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry, thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition.

  20. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    Science.gov (United States)

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.

  1. Genome-wide identification, classification and functional analyses of the bHLH transcription factor family in the pig, Sus scrofa.

    Science.gov (United States)

    Liu, Wuyi

    2015-08-01

    The basic helix-loop-helix (bHLH) transcription factors are one of the largest families of gene regulatory proteins and play crucial roles in genetic, developmental and physiological processes in eukaryotes. Here, we conducted a survey of the Sus scrofa genome and identified 109 putative bHLH transcription factor members belonging to super-groups A, B, C, D, E, and F, respectively, while four members were orphan genes. We identified 6 most significantly enriched KEGG pathways and 116 most significant GO annotation categories. Further comprehensive surveys in human genome and other 12 medical databases identified 72 significantly enriched biological pathways with these 113 pig bHLH transcription factors. From the functional protein association network analysis 93 hub proteins were identified and 55 hub proteins created a tight network or a functional module within their protein families. Especially, there were 20 hub proteins found highly connected in the functional interaction network. The present study deepens our understanding and provided insights into the evolution and functional aspects of animal bHLH proteins and should serve as a solid foundation for further for analyses of specific bHLH transcription factors in the pig and other mammals.

  2. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization.

    Science.gov (United States)

    Hu, Xiao-Mei; Shi, Cai-Yun; Liu, Xiao; Jin, Long-Fei; Liu, Yong-Zhong; Peng, Shu-Ang

    2015-02-01

    ATP-citrate lyase (ACL, EC4.1.3.8) catalyzes citrate to oxaloacetate and acetyl-CoA in the cell cytosol, and has important roles in normal plant growth and in the biosynthesis of some secondary metabolites. We identified three ACL genes, CitACLα1, CitACLα2, and CitACLβ1, in the citrus genome database. Both CitACLα1 and CitACLα2 encode putative ACL α subunits with 82.5 % amino acid identity, whereas CitACLβ1 encodes a putative ACL β subunit. Gene structure analysis showed that CitACLα1 and CitACLα2 had 12 exons and 11 introns, and CitACLβ1 had 16 exons and 15 introns. CitACLα1 and CitACLβ1 were predominantly expressed in flower, and CitACLα2 was predominantly expressed in stem and fibrous roots. As fruits ripen, the transcript levels of CitACLα1, CitACLβ1, and/or CitACLα2 in cultivars 'Niuher' and 'Owari' increased, accompanied by significant decreases in citrate content, while their transcript levels decreased significantly in 'Egan No. 1' and 'Iyokan', although citrate content also decreased. In 'HB pummelo', in which acid content increased as fruit ripened, and in acid-free pummelo, transcript levels of CitACLα2, CitACLβ1, and/or CitACLα1 increased. Moreover, mild drought stress and ABA treatment significantly increased citrate contents in fruits. Transcript levels of the three genes were significantly reduced by mild drought stress, and the transcript level of only CitACLβ1 was significantly reduced by ABA treatment. Taken together, these data indicate that the effects of ACL on citrate use during fruit ripening depends on the cultivar, and the reduction in ACL gene expression may be attributed to citrate increases under mild drought stress or ABA treatment.

  3. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Carlos Riveros

    Full Text Available BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5. CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1, E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.

  4. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    Science.gov (United States)

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening.

  5. PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies.

    Science.gov (United States)

    Siersbaek, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2010-08-04

    Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding profiles for PPARgamma and C/EBPalpha. Interestingly, these analyses show that PPARgamma and C/EBPalpha binding sites are associated with most genes that are induced during adipogenesis suggesting direct activation of many more adipocyte genes than previously anticipated. Furthermore, an extensive overlap between the C/EBPalpha and PPARgamma cistromes indicate a hitherto unrecognized direct crosstalk between these transcription factors. As more genome-wide data emerge in the future, this crosstalk will likely be found to include several other adipogenic transcription factors. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Wang, Jinyan; Hu, Zhongze; Zhao, Tongmin; Yang, Yuwen; Chen, Tianzi; Yang, Mali; Yu, Wengui; Zhang, Baolong

    2015-02-05

    The basic helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that can bind to specific DNA target sites. They have been well characterized in model plants such as Arabidopsis and rice and have been shown to be important regulatory components in many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in tomatoes. Tomato yellow leaf curl virus (TYLCV) threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. A total of 152 bHLH transcription factors were identified from the entire tomato genome. Phylogenetic analysis of bHLH domain sequences from Arabidopsis and tomato facilitated classification of these genes into 26 subfamilies. The evolutionary and possible functional relationships revealed during this analysis are supported by other criteria, including the chromosomal distribution of these genes, the conservation of motifs and exon/intron structural patterns, and the predicted DNA binding activities within subfamilies. Distribution mapping results showed bHLH genes were localized on the 12 tomato chromosomes. Among the 152 bHLH genes from the tomato genome, 96 bHLH genes were detected in the TYLCV-susceptible and resistant tomato breeding line before (0 dpi) and after TYLCV (357 dpi) infection. As anticipated, gene ontology (GO) analysis indicated that most bHLH genes are related to the regulation of macromolecule metabolic processes and gene expression. Only four bHLH genes were differentially expressed between 0 and 357 dpi. Virus-induced gene silencing (VIGS) of one bHLH genes SlybHLH131 in resistant lines can lead to the cell death. In the present study, 152 bHLH transcription factor genes were identified. One of which bHLH genes, SlybHLH131, was found to be involved in the TYLCV infection through qRT-PCR expression analysis and VIGS validation. The isolation and identification of these bHLH transcription

  7. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  8. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles

    Directory of Open Access Journals (Sweden)

    Takahashi Toru

    2010-02-01

    Full Text Available Abstract Background Bovine follicular development is regulated by numerous molecular mechanisms and biological pathways. In this study, we tried to identify differentially expressed genes between largest (F1 and second-largest follicles (F2, and classify them by global gene expression profiling using a combination of microarray and quantitative real-time PCR (QPCR analysis. The follicular status of F1 and F2 were further evaluated in terms of healthy and atretic conditions by investigating mRNA localization of identified genes. Methods Global gene expression profiles of F1 (10.7 +/- 0.7 mm and F2 (7.8 +/- 0.2 mm were analyzed by hierarchical cluster analysis and expression profiles of 16 representative genes were confirmed by QPCR analysis. In addition, localization of six identified transcripts was investigated in healthy and atretic follicles using in situ hybridization. The healthy or atretic condition of examined follicles was classified by progesterone and estradiol concentrations in follicular fluid. Results Hierarchical cluster analysis of microarray data classified the follicles into two clusters. Cluster A was composed of only F2 and was characterized by high expression of 31 genes including IGFBP5, whereas cluster B contained only F1 and predominantly expressed 45 genes including CYP19 and FSHR. QPCR analysis confirmed AMH, CYP19, FSHR, GPX3, PlGF, PLA2G1B, SCD and TRB2 were greater in F1 than F2, while CCL2, GADD45A, IGFBP5, PLAUR, SELP, SPP1, TIMP1 and TSP2 were greater in F2 than in F1. In situ hybridization showed that AMH and CYP19 were detected in granulosa cells (GC of healthy as well as atretic follicles. PlGF was localized in GC and in the theca layer (TL of healthy follicles. IGFBP5 was detected in both GC and TL of atretic follicles. GADD45A and TSP2 were localized in both GC and TL of atretic follicles, whereas healthy follicles expressed them only in GC. Conclusion We demonstrated that global gene expression profiling of F

  9. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki

    2016-01-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles

  10. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.

    Science.gov (United States)

    Lada, Artem G; Kliver, Sergei F; Dhar, Alok; Polev, Dmitrii E; Masharsky, Alexey E; Rogozin, Igor B; Pavlov, Youri I

    2015-05-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells.

  11. Cross-analysis of gene and miRNA genome-wide expression profiles in human fibroblasts at different stages of transformation.

    Science.gov (United States)

    Ostano, Paola; Bione, Silvia; Belgiovine, Cristina; Chiodi, Ilaria; Ghimenti, Chiara; Scovassi, A Ivana; Chiorino, Giovanna; Mondello, Chiara

    2012-01-01

    We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis.

  12. Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray

    Institute of Scientific and Technical Information of China (English)

    DOU YueTan; YAN YongLiang; PING ShuZhen; LU Wei; CHEN Ming; ZHANG Wei; WANG YiPing; JIN Qi; LIN Min

    2008-01-01

    Pseudomonas stutzeri A1501, an associative nitrogen-fixing bacterium, was isolated from the rice paddy rhizosphere. This bacterium fixes nitrogen under microaerobic conditions. In this study, ge-nome-wide DNA microarrays were used to analyze the global transcription profile of A1501 under aerobic and microaerobic conditions. The expression of 135 genes was significantly altered by more than 2-fold in response to oxygen stress. Among these genes, 68 were down-regulated under aerobic conditions; these genes included those responsible for nitrogen fixation and denitrification. Sixty-seven genes were up-regulated under aerobic conditions; these genes included sodC, encoding a copper-zinc superoxide dismutase, PST2179, encoding an NAD(P)-dependent oxidoreductase, PST3584, encoding a 2OG-Fe(Ⅱ) oxygenase, and PST3602, encoding an NAD(P)H-flavin oxidoreductase. Addi-tionally, seven genes involved in capsular polysaccharide and antigen oligosaccharide biosynthesis together with 17 genes encoding proteins of unknown function were up-regulated under aerobic con-ditions. The overall analysis suggests that the genes we identified are involved in the protection of the bacterium from oxygen, but the mechanisms of their action remain to be elucidated.

  13. Integrative genome-wide expression analysis bears evidence of estrogen receptor-independent transcription in heregulin-stimulated MCF-7 cells.

    Directory of Open Access Journals (Sweden)

    Takeshi Nagashima

    Full Text Available Heregulin beta-1 (HRG is an extracellular ligand that activates mitogen-activated protein kinase (MAPK and phosphatidylinositol-3-OH kinase (PI3K/Akt signaling pathways through ErbB receptors. MAPK and Akt have been shown to phosphorylate the estrogen receptor (ER at Ser-118 and Ser-167, respectively, thereby mimicking the effects of estrogenic activity such as estrogen responsive element (ERE-dependent transcription. In the current study, integrative analysis was performed using two tiling array platforms, comprising histone H3 lysine 9 (H3K9 acetylation and RNA mapping, together with array comparative genomic hybridization (CGH analysis in an effort to identify HRG-regulated genes in ER-positive MCF-7 breast cancer cells. Through application of various threshold settings, 333 (326 up-regulated and 7 down-regulated HRG-regulated genes were detected. Prediction of upstream transcription factors (TFs and pathway analysis indicated that 21% of HRG-induced gene regulation may be controlled by the MAPK cascade, while only 0.6% of the gene expression is controlled by ERE. A comparison with previously reported estrogen (E2-regulated gene expression data revealed that only 12 common genes were identified between the 333 HRG-regulated (3.6% and 239 E2-regulated (5.0% gene groups. However, with respect to enriched upstream TFs, 4 common TFs were identified in the 14 HRG-regulated (28.6% and 13 E2-regulated (30.8% gene groups. These results indicated that while E2 and HRG may induce common TFs, the regulatory mechanisms that govern HRG- and E2-induced gene expression differ.

  14. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.

    Science.gov (United States)

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C H; Labavitch, John M; Powell, Ann L T; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  15. Genome-wide transcriptional profiling reveals two distinct outcomes in central Nervous system infections of rabies virus

    Directory of Open Access Journals (Sweden)

    Daiting eZhang

    2016-05-01

    Full Text Available Rabies remains a major public health concern in many developing countries. The precise neuropathogenesis of rabies is unknown, though it is hypothesized to be due to neuronal death or dysfunction. Mice that received intranasal inoculation of an attenuated rabies virus (RABV strain HEP-Flury exhibited subtle clinical signs, and eventually recovered, which is different from the fatal encephalitis caused by the virulent RABV strain CVS-11. To understand the neuropathogenesis of rabies and the mechanisms of viral clearance, we applied RNA sequencing (RNA-Seq to compare the brain transcriptomes of normal mice versus HEP-Flury or CVS-11 intranasally inoculated mice. Our results revealed that both RABV strains altered positively and negatively the expression levels of many host genes, including genes associated with innate and adaptive immunity, inflammation and cell death. It is found that HEP-Flury infection can activate the innate immunity earlier through the RIG-I/MDA-5 signaling, and the innate immunity pre-activated by HEP-Flury or Newcastle disease virus (NDV infection can effectively prevent the CVS-11 to invade central nervous system (CNS, but fails to clear the CVS-11 after its entry into the CNS. In addition, following CVS-11 infection, genes implicated in cell adhesion, blood vessel morphogenesis and coagulation were mainly up-regulated, while the genes involved in synaptic transmission and ion transport were significantly down-regulated. On the other hand, several genes involved in the MHC class II-mediated antigen presentation pathway were activated to a greater extent after the HEP-Flury infection as compared with the CVS-11 infection suggesting that the collaboration of CD4+ T cells and MHC class II-mediated antigen presentation is critical for the clearance of attenuated RABV from the CNS. The differentially regulated genes reported here are likely to include potential therapeutic targets for expanding the postexposure treatment window for RABV infection.

  16. Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program.

    Directory of Open Access Journals (Sweden)

    Marijana Radonjic

    Full Text Available BACKGROUND: Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic syndrome are insufficiently understood. PRINCIPAL FINDINGS: To identify the mechanisms underlying the pathological changes associated with short and long-term exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF diets was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related pathways. The major changes in gene expression take place during the early (day 3 and late (week 12 phases of HF feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late repression and lipogenic/adipogenic pathways (early repression, late activation. Transcriptional network analysis identifies NF-kappaB, NEMO, Akt, PPARgamma and SREBP1 as the key controllers of these processes and suggests that direct regulatory interactions between these factors may govern the transition from early (stressed, inflammatory to late (pathological, steatotic hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of hepatic gene expression and triglyceride levels. CONCLUSIONS: The transition from an inflammatory to a steatotic transcriptional program

  17. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton

    Directory of Open Access Journals (Sweden)

    Caiping Cai

    2014-04-01

    Full Text Available WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes. We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and G. raimondii. These WRKY members were anchored on 13 chromosomes in G. raimondii with uneven distribution. Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups, with 20 members in group I, 88 in group II, and 12 in group III. The 88 genes in group II were further classified into five subgroups, groups IIa–e, containing 7, 16, 37, 15, and 13 members, respectively. We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins. The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response. Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton.

  18. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton

    Institute of Scientific and Technical Information of China (English)

    Caiping; Cai; Erli; Niu; Hao; Du; Liang; Zhao; Yue; Feng; Wangzhen; Guo

    2014-01-01

    WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes.We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species,Gossypium hirsutum,Gossypium barbadense,Gossypium arboreum,and G.raimondii.These WRKY members were anchored on 13 chromosomes in G.raimondii with uneven distribution.Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups,with 20 members in group I,88 in group II,and 12 in group III.The88 genes in group II were further classified into five subgroups,groups IIa–e,containing 7,16,37,15,and 13 members,respectively.We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins.The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response.Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton.

  19. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus

    Science.gov (United States)

    Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms. PMID:28319194

  20. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  1. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit

    Directory of Open Access Journals (Sweden)

    Lima-Silva Viviana

    2012-05-01

    Full Text Available Abstract Background L-ascorbic acid (AsA; vitamin C is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. Results We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes or negatively (NVC genes with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. Conclusion Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data

  2. Genome-wide identification of enhancer elements.

    Science.gov (United States)

    Tulin, Sarah; Barsi, Julius C; Bocconcelli, Carlo; Smith, Joel

    2016-01-01

    We present a prospective genome-wide regulatory element database for the sea urchin embryo and the modified chromosome capture-related methodology used to create it. The method we developed is termed GRIP-seq for genome-wide regulatory element immunoprecipitation and combines features of chromosome conformation capture, chromatin immunoprecipitation, and paired-end next-generation sequencing with molecular steps that enrich for active cis-regulatory elements associated with basal transcriptional machinery. The first GRIP-seq database, available to the community, comes from S. purpuratus 24 hpf embryos and takes advantage of the extremely well-characterized cis-regulatory elements in this system for validation. In addition, using the GRIP-seq database, we identify and experimentally validate a novel, intronic cis-regulatory element at the onecut locus. We find GRIP-seq signal sensitively identifies active cis-regulatory elements with a high signal-to-noise ratio for both distal and intronic elements. This promising GRIP-seq protocol has the potential to address a rate-limiting step in resolving comprehensive, predictive network models in all systems.

  3. Genome-wide identification and expression profile analysis of citrus sucrose synthase genes: investigation of possible roles in the regulation of sugar accumulation.

    Science.gov (United States)

    Islam, Mohammad Zahidul; Hu, Xiao-Mei; Jin, Long-Fei; Liu, Yong-Zhong; Peng, Shu-Ang

    2014-01-01

    Sucrose synthase (Sus) (EC 2.4.1.13) is a key enzyme for the sugar accumulation that is critical to form fruit quality. In this study, extensive data-mining and PCR amplification confirmed that there are at least six Sus genes (CitSus1-6) in the citrus genome. Gene structure and phylogeny analysis showed an evolutionary consistency with other plant species. The six Sus genes contain 12-15 exons and 11-14 introns and were evenly distributed into the three plant Sus groups (CitSus1 and CitSus2 in the Sus I group, CitSus3 and CitSus6 in the Sus II group, and CitSus4 and CitSus5 in the Sus III group). Transcripts of these six CitSus genes were subsequently examined. For tissues and organs, CitSus1 and 2 were predominantly expressed in fruit juice sacs (JS) whereas CitSus3 and 4 were predominantly expressed in early leaves (immature leaves), and CitSus5 and 6 were predominantly expressed in fruit JS and in mature leaves. During fruit development, CitSus5 transcript increased significantly and CitSus6 transcript decreased significantly in fruit JS. In the fruit segment membrane (SM), the transcript levels of CitSus2 and 5 were markedly higher and the abundant levels of CitSus3 and 6 gradually decreased. Moreover, transcript levels of CitSus1-4 examined were higher and the CitSus5 transcript level was lower in the fruit SM than in fruit JS, while CitSus6 had a similar transcript level in fruit JS and SM. In addition, transcripts of CitSus1-6 responded differently to dehydration in mature leaves or to mild drought stress in fruit JS and SM. Finally, the possible roles of Sus genes in the regulation of sugar accumulation are discussed; however, further study is required.

  4. Genome-wide identification and expression profile analysis of citrus sucrose synthase genes: investigation of possible roles in the regulation of sugar accumulation.

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul Islam

    Full Text Available Sucrose synthase (Sus (EC 2.4.1.13 is a key enzyme for the sugar accumulation that is critical to form fruit quality. In this study, extensive data-mining and PCR amplification confirmed that there are at least six Sus genes (CitSus1-6 in the citrus genome. Gene structure and phylogeny analysis showed an evolutionary consistency with other plant species. The six Sus genes contain 12-15 exons and 11-14 introns and were evenly distributed into the three plant Sus groups (CitSus1 and CitSus2 in the Sus I group, CitSus3 and CitSus6 in the Sus II group, and CitSus4 and CitSus5 in the Sus III group. Transcripts of these six CitSus genes were subsequently examined. For tissues and organs, CitSus1 and 2 were predominantly expressed in fruit juice sacs (JS whereas CitSus3 and 4 were predominantly expressed in early leaves (immature leaves, and CitSus5 and 6 were predominantly expressed in fruit JS and in mature leaves. During fruit development, CitSus5 transcript increased significantly and CitSus6 transcript decreased significantly in fruit JS. In the fruit segment membrane (SM, the transcript levels of CitSus2 and 5 were markedly higher and the abundant levels of CitSus3 and 6 gradually decreased. Moreover, transcript levels of CitSus1-4 examined were higher and the CitSus5 transcript level was lower in the fruit SM than in fruit JS, while CitSus6 had a similar transcript level in fruit JS and SM. In addition, transcripts of CitSus1-6 responded differently to dehydration in mature leaves or to mild drought stress in fruit JS and SM. Finally, the possible roles of Sus genes in the regulation of sugar accumulation are discussed; however, further study is required.

  5. Genome-wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E

    Science.gov (United States)

    Background: The objective of this study was to acquire a broader, more comprehensive picture of the transcriptional changes in the L. Thoracis muscle (LT) and subcutaneous fat (SF) of lambs supplemented with vitamin E. Furthermore, we aimed to identify novel genes involved in the metabolism of vitam...

  6. Gene expression profiling signatures for the diagnosis and prevention of oral cavity carcinogenesis-genome-wide analysis using RNA-seq technology.

    Science.gov (United States)

    Tang, Xiao-Han; Urvalek, Alison M; Osei-Sarfo, Kwame; Zhang, Tuo; Scognamiglio, Theresa; Gudas, Lorraine J

    2015-09-15

    We compared the changes in global gene expression between an early stage (the termination of the carcinogen treatment and prior to the appearance of frank tumors) and a late stage (frank squamous cell carcinoma (SCC)) of tongue carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in a mouse model of human oral cavity and esophageal squamous cell carcinoma. Gene ontology and pathway analyses show that increases in "cell cycle progression" and "degradation of basement membrane and ECM pathways" are early events during SCC carcinogenesis and that changes in these pathways are even greater in the actual tumors. Myc, NFκB complex (NFKB1/RELA), and FOS transcription networks are the major transcriptional networks induced in early stage tongue carcinogenesis. Decreases in metabolism pathways, such as in "tricarboxylic acid cycle" and "oxidative phosphorylation", occurred only in the squamous cell carcinomas and not in the early stages of carcinogenesis. We detected increases in ALDH1A3, PTGS2, and KRT1 transcripts in both the early and late stages of carcinogenesis. The identification of the transcripts and pathways that change at an early stage of carcinogenesis provides potentially useful information for early diagnosis and for prevention strategies for human tongue squamous cell carcinomas.

  7. What we have learned from transcript profile analyses of male and female gametes in flowering plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Double fertilization is one of the predominant features of sexual reproduction in flowering plants but, because of the physical inaccessibility of gametes, the essential molecular mechanisms in these processes are largely unknown. Based on the techniques for isolating highly purified gametes from several species and well-developed methods for manipulating RNA from limited quantities of gametes, genome-wide investigations of gamete transcription profiles were recently conducted in flowering plants. In this review, we survey the accumulated knowledge on gamete collection and purification, cDNA library construction, and transcript profile analysis to assess our understanding of the molecular mechanisms of gamete specialization and fertilization.

  8. Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis[OPEN

    Science.gov (United States)

    Willmann, Matthew R.

    2016-01-01

    RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5′ end to the 3′ end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames. This pattern of cotranslational degradation is especially evident near the ends of open reading frames, where we observe accumulation of cleavage events focused 16 to 17 nucleotides upstream of the stop codon because of ribosomal pausing during translation termination. Following treatment of Arabidopsis plants with the translation inhibitor cycloheximide, cleavage events accumulate 13 to 14 nucleotides upstream of the start codon where initiating ribosomes have been stalled with these sequences in their P site. Further analysis in xrn4 mutant plants indicates that cotranslational RNA decay is XRN4 dependent. Additionally, studies in plants lacking CAP BINDING PROTEIN80/ABA HYPERSENSITIVE1, the largest subunit of the nuclear mRNA cap binding complex, reveal a role for this protein in cotranslational decay. In total, our results demonstrate the global prevalence and features of cotranslational RNA decay in a plant transcriptome. PMID:27758893

  9. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  10. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Vannozzi Alessandro

    2012-08-01

    Full Text Available Abstract Background Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS, a type III polyketide synthase (PKS. Stilbene synthases are closely related to chalcone synthases (CHS, the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. Results In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection and abiotic (wounding and UV-C exposure stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be

  11. Diagnosis and Prognostication of Ductal Adenocarcinomas of the Pancreas Based on Genome-Wide DNA Methylation Profiling by Bacterial Artificial Chromosome Array-Based Methylated CpG Island Amplification

    Directory of Open Access Journals (Sweden)

    Masahiro Gotoh

    2011-01-01

    Full Text Available To establish diagnostic criteria for ductal adenocarcinomas of the pancreas (PCs, bacterial artificial chromosome (BAC array-based methylated CpG island amplification was performed using 139 tissue samples. Twelve BAC clones, for which DNA methylation status was able to discriminate cancerous tissue (T from noncancerous pancreatic tissue in the learning cohort with a specificity of 100%, were identified. Using criteria that combined the 12 BAC clones, T-samples were diagnosed as cancers with 100% sensitivity and specificity in both the learning and validation cohorts. DNA methylation status on 11 of the BAC clones, which was able to discriminate patients showing early relapse from those with no relapse in the learning cohort with 100% specificity, was correlated with the recurrence-free and overall survival rates in the validation cohort and was an independent prognostic factor by multivariate analysis. Genome-wide DNA methylation profiling may provide optimal diagnostic markers and prognostic indicators for patients with PCs.

  12. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    Directory of Open Access Journals (Sweden)

    Matthew J. Bush

    2016-04-01

    Full Text Available WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo.

  13. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  14. Hereditary profiles of disorderly transcription?

    Directory of Open Access Journals (Sweden)

    Simons Johannes WIM

    2006-04-01

    Full Text Available Abstract Background Microscopic examination of living cells often reveals that cells from some cell strains appear to be in a permanent state of disarray without obvious reason. In all probability such a disorderly state affects cell functioning. The aim of this study was to establish whether a disorderly state could occur that adversely affects gene expression profiles and whether such a state might have biomedical consequences. To this end, the expression profiles of the 14 genes of the proteasome derived from the GEO SAGE database were utilized as a model system. Results By adopting the overall expression profile as the standard for normal expression, deviation in transcription was frequently observed. Each deviating tissue exhibited its own characteristic profile of over-expressed and under-expressed genes. Moreover such a specific deviating profile appeared to be epigenetic in origin and could be stably transmitted to a clonal derivative e.g. from a precancerous normal tissue to its tumor. A significantly greater degree of deviation was observed in the expression profiles from the tumor tissues. The changes in the expression of different genes display a network of interdependencies. Therefore our hypothesis is that deviating profiles reflect disorder in the localization of genes within the nucleus The underlying cause(s for these disorderly states remain obscure; it could be noise and/or deterministic chaos. Presence of mutational damage does not appear to be predominantly involved. Conclusion As disturbances in expression profiles frequently occur and have biomedical consequences, its determination could prove of value in several fields of biomedical research. Reviewers This article was reviewed by Trey Ideker, Itai Yanai and Stephan Beck

  15. Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray.

    Science.gov (United States)

    Wu, Ying; Yu, Dan-Dan; Hu, Yong; Yan, Dali; Chen, Xiu; Cao, Hai-Xia; Yu, Shao-Rong; Wang, Zhuo; Feng, Ji-Feng

    2016-06-01

    Mutations in the epidermal growth factor receptor (EGFR) make lung adenocarcinoma cells sensitive to EGFR tyrosine kinase inhibitors (TKIs). Long-term cancer therapy may cause the occurrence of acquired resistance to EGFR TKIs. Long non-coding RNAs (lncRNAs) play important roles in tumor formation, tumor metastasis and the development of EGFR-TKI resistance in lung cancer. To gain insight into the molecular mechanisms of EGFR-TKI resistance, we generated an EGFR-TKI-resistant HCC827-8-1 cell line and analyzed expression patterns by lncRNA microarray and compared it with its parental HCC827 cell line. A total of 1,476 lncRNA transcripts and 1,026 mRNA transcripts were dysregulated in the HCC827‑8-1 cells. The expression levels of 7 chosen lncRNAs were validated by real-time quantitative PCR. As indicated by functional analysis, several groups of lncRNAs may be involved in the bio-pathways associated with EGFR-TKI resistance through their cis- and/or trans‑regulation of protein-coding genes. Thus, lncRNAs may be used as novel candidate biomarkers and potential targets in EGFR-TKI therapy in the future.

  16. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  17. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).

    Science.gov (United States)

    Zhang, Ling; Zhao, Hong-Kun; Dong, Qian-Li; Zhang, Yuan-Yu; Wang, Yu-Min; Li, Hai-Yun; Xing, Guo-Jie; Li, Qi-Yun; Dong, Ying-Shan

    2015-01-01

    Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

  18. A genome-wide survey of maize lipid-related genes: candidate genes mining,digital gene expression profiling and colocation with QTL for maize kernel oil

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Lipids play an important role in plants due to their abundance and their extensive participation in many metabolic processes.Genes involved in lipid metabolism have been extensively studied in Arabidopsis and other plant species.In this study,a total of 1003 maize lipid-related genes were cloned and annotated,including 42 genes with experimental validation,732 genes with full-length cDNA and protein sequences in public databases and 229 newly cloned genes.Ninety-seven maize lipid-related genes with tissue-preferential expression were discovered by in silico gene expression profiling based on 1984483 maize Expressed Sequence Tags collected from 182 cDNA libraries.Meanwhile,70 QTL clusters for maize kernel oil were identified,covering 34.5% of the maize genome.Fifty-nine (84%) QTL clusters co-located with at least one lipid-related gene,and the total number of these genes amounted to 147.Interestingly,thirteen genes with kernel-preferential expression profiles fell within QTL clusters for maize kernel oil content.All the maize lipid-related genes identified here may provide good targets for maize kernel oil QTL cloning and thus help us to better understand the molecular mechanism of maize kernel oil accumulation.

  19. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  20. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing.

    Directory of Open Access Journals (Sweden)

    Guo Li

    Full Text Available BACKGROUND: Rapidly growing evidence suggests that microRNAs (miRNAs are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC. METHODS: The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models. RESULTS: 50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501, 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323 and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1 and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1. CONCLUSIONS: Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.

  1. MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes.

    Science.gov (United States)

    Wang, Shi; Lv, Jia; Zhang, Lingling; Dou, Jinzhuang; Sun, Yan; Li, Xue; Fu, Xiaoteng; Dou, Huaiqian; Mao, Junxia; Hu, Xiaoli; Bao, Zhenmin

    2015-11-01

    Characterization of dynamic DNA methylomes in diverse phylogenetic groups has attracted growing interest for a better understanding of the evolution of DNA methylation as well as its function and biological significance in eukaryotes. Sequencing-based methods are promising in fulfilling this task. However, none of the currently available methods offers the 'perfect solution', and they have limitations that prevent their application in the less studied phylogenetic groups. The recently discovered Mrr-like enzymes are appealing for new method development, owing to their ability to collect 32-bp methylated DNA fragments from the whole genome for high-throughput sequencing. Here, we have developed a simple and scalable DNA methylation profiling method (called MethylRAD) using Mrr-like enzymes. MethylRAD allows for de novo (reference-free) methylation analysis, extremely low DNA input (e.g. 1 ng) and adjustment of tag density, all of which are still unattainable for most widely used methylation profiling methods such as RRBS and MeDIP. We performed extensive analyses to validate the power and accuracy of our method in both model (plant Arabidopsis thaliana) and non-model (scallop Patinopecten yessoensis) species. We further demonstrated its great utility in identification of a gene (LPCAT1) that is potentially crucial for carotenoid accumulation in scallop adductor muscle. MethylRAD has several advantages over existing tools and fills a void in the current epigenomic toolkit by providing a universal tool that can be used for diverse research applications, e.g. from model to non-model species, from ordinary to precious samples and from small to large genomes, but at an affordable cost.

  2. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data

    Directory of Open Access Journals (Sweden)

    Yokochi Tomoki

    2008-12-01

    Full Text Available Abstract Background Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. Results We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1 view their data sets privately without sharing; (2 share with other registered users; or (3 make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. Conclusion ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the

  3. Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses

    Science.gov (United States)

    Jin, Si-Han; Guo, Han-Du; Zhong, Xiao-Juan; He, Jiao; Li, Xi; Jiang, Ming-Yan; Yu, Xiao-Fang; Ma, Ming-Dong; Chen, Qi-Bing

    2016-01-01

    The proteins containing the TIFY domain belong to a plant-specific family of putative transcription factors and could be divided into four subfamilies: ZML, TIFY, PPD and JAZ. They not only function as key regulators of jasmonate hormonal response, but are also involved in responding to abiotic stress. In this study, we identified 24 TIFY genes (PeTIFYs) in Moso bamboo (Phyllostachys edulis) of Poaceae by analyzing the whole genome sequence. One PeTIFY belongs to TIFY subfamily, 18 and five belong to JAZ and ZML subfamilies, respectively. Two equivocal gene models were re-predicted and a putative retrotransposition event was found in a ZML protein. The distribution and conservation of domain or motif, and gene structure were also analyzed. Phylogenetic analysis with TIFY proteins of Arabidopsis and Oryza sativa indicated that JAZ subfamily could be further divided to four groups. Evolutionary analysis revealed intragenomic duplication and orthologous relationship between P. edulis, O. sativa, and B. distachyon. Calculation of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that the duplication of PeTIFY may have occurred around 16.7 million years ago (MYA), the divergence time of TIFY family among the P. edulis-O. sativa, P. edulis-B. distachyon, and O. sativa-B. distachyon was approximately 39 MYA, 39 MYA, and 45 MYA, respectively. They appear to have undergone extensive purifying selection during evolution. Transcriptome sequencing revealed that more than 50% of PeTIFY genes could be up-regulated by cold and dehydration stresses, and some PeTIFYs also share homology to know TIFYs involved in abiotic stress tolerance. Our results made insights into TIFY family of Moso bamboo, an economically important non-timber forest resource, and provided candidates for further identification of genes involved in regulating responses to abiotic stress.

  4. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2015-10-01

    Full Text Available The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L., an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf and flower from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7 and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8 and 25.9 showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance.

  6. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea.

    Science.gov (United States)

    Agarwal, Gaurav; Garg, Vanika; Kudapa, Himabindu; Doddamani, Dadakhalandar; Pazhamala, Lekha T; Khan, Aamir W; Thudi, Mahendar; Lee, Suk-Ha; Varshney, Rajeev K

    2016-07-01

    APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea.

  7. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  8. Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep.

    Science.gov (United States)

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu; Guo, Yuntao; Zhao, Huijing

    2015-11-13

    Small Tail Han and Dorset sheep are two different sheep with distinguished morphologies in fat depositions. In order to characterize their gene expression profiles, our present study took the advantages of RNA sequencing technology with the aims to identify important genes regulating the metabolisms in adipose tissues of two different sheep. In obtained high quality sequencing reads, 85.9 (Han) and 86.1% (Dorset) were uniquely aligned to Oar v3.1 sheep reference genome, and over 76% of bases in mapped reads corresponded to mRNA. Using R package EBSeq, we identified 602 differentially expressed genes. Using the 602 genes, GO analysis showed that 30 out of 56 significantly enriched biological processes were metabolism related, of which the most significant one was triglyceride biosynthetic process. The KEGG pathway analysis indicated the down-regulation of several fat metabolic pathways. The predominant down-regulation of massive metabolic processes, particularly the lipid metabolism, in adipose tissues of Han sheep could explain, at least in part, the distinguished fat deposition between two different sheep, and our data constitute a basic picture of transcriptomes in these sheep for better understanding of underline biological mechanism in their lipid metabolisms.

  9. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    JIAN Hongju

    2016-09-01

    Full Text Available Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers and SWEETs (Sugars Will Eventually be Exported Transporters play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analysed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of ‘ZS11’ and the expression of 9 BnSUC and 7 BnSWEET genes in ‘ZS11’ under various conditions, including biotic stress (Sclerotinia sclerotiorum, abiotic stresses (drought, salt and heat, and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin and salicylic acid. In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape.

  10. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses.

    Science.gov (United States)

    Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Dias, Waldir P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2013-08-28

    The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these proteins are promising targets for developing crop varieties that are better adapted to biotic and abiotic stresses. Thus, in the present study an in silico identification of GmHsp20 gene family members was performed, and the genes were characterized and subjected to in vivo expression analysis under biotic and abiotic stresses. A search of the available soybean genome databases revealed 51 gene models as potential GmHsp20 candidates. The 51 GmHsp20 genes were distributed across a total of 15 subfamilies where a specific predicted secondary structure was identified. Based on in vivo analysis, only 47 soybean Hsp20 genes were responsive to heat shock stress. Among the GmHsp20 genes that were potentials HSR, five were also cold-induced, and another five, in addition to one GmAcd gene, were responsive to Meloidogyne javanica infection. Furthermore, one predicted GmHsp20 was shown to be responsive only to nematode infection; no expression change was detected under other stress conditions. Some of the biotic stress-responsive GmHsp20 genes exhibited a divergent expression pattern between resistant and susceptible soybean genotypes under M. javanica infection. The putative regulatory elements presenting some conservation level in the GmHsp20 promoters included HSE, W-box, CAAT box, and TA-rich elements. Some of these putative elements showed a unique occurrence pattern among genes responsive to nematode infection. The evolution of Hsp20 family in soybean genome has most likely involved a total of 23 gene duplications. The obtained expression profiles revealed that the majority of the 51 GmHsp20 candidates are induced under HT, but

  11. Genome-wide microRNA profiling of rat hippocampus after status epilepticus induced by amygdala stimulation identifies modulators of neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Zhen Sun

    Full Text Available MicroRNAs (miRNAs are small and endogenously expressed non-coding RNAs that negatively regulate the expression of protein-coding genes at the translational level. Emerging evidence suggests that miRNAs play critical roles in central nervous system under physiological and pathological conditions. However, their expression and functions in status epilepticus (SE have not been well characterized thus far. Here, by using high-throughput sequencing, we characterized miRNA expression profile in rat hippocampus at 24 hours following SE induced by amygdala stimulation. After confirmation by qRT-PCR, six miRNAs were found to be differentially expressed in brain after SE. Subsequent Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that most of the predicted target genes for these six miRNAs were related to neuronal apoptosis. We then investigated the dynamic changes of these six miRNAs at different time-point (4 hours, 24 hours, 1 week and 3 weeks after SE. Meanwhile, neuronal survival and apoptosis in the hippocampus after SE were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP end-labeling assay. We found that the expression of miR-874-3p, miR-20a-5p, miR-345-3p, miR-365-5p, and miR-764-3p were significantly increased from 24 hours to 1 week, whereas miR-99b-3p level was markedly decreased from 24 hours to 3 weeks after SE. Further analysis revealed that the levels of miR-365-5p and miR-99b-3p were significantly correlated with neuronal apoptosis after SE. Taken together, our data suggest that miRNAs are important modulators of SE-induced neuronal apoptosis. These findings also open new avenues for future studies aimed at developing strategies against neuronal apoptosis after SE.

  12. Genome-wide gene expression profiles in lung tissues of pig breeds differing in resistance to porcine reproductive and respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Jinyi Xing

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS caused by PRRS virus (PRRSV is an infectious disease characterized by severe reproductive deficiency in pregnant sows, typical respiratory symptoms in piglets, and high mortality rate of piglets. In this study, we employed an Affymetrix microarray chip to compare the gene expression profiles of lung tissue samples from Dapulian (DPL pigs (a Chinese indigenous pig breed and Duroc×Landrace×Yorkshire (DLY pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited a range of clinical features that typify the disease, whereas the DPL pigs showed only mild signs of the disease. Overall, the DPL group had a lower percentage of CD4(+ cells and lower CD4(+/CD8(+ratios than the DLY group (p<0.05. For both IL-10 and TNF-α, the DLY pigs had significantly higher levels than the DPL pigs (p<0.01. The DLY pigs have lower serum IFN-γ levels than the DPL pigs (p<0.01. The serum IgG levels increased slightly from 0 dpi to 7 dpi, and peaked at 14 dpi (p<0.0001. Microarray data analysis revealed 16 differentially expressed (DE genes in the lung tissue samples from the DLY and DPL pigs (q≤5%, of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The mRNA expression levels of 10 out of the 16 DE genes were validated by real-time quantitative RT-PCR and their fold change was consistent with the result of microarray data analysis. We further analyzed the mRNA expression level of 8 differentially expressed genes between the DPL and DLY pigs for both uninfected and infected groups, and found that TF and USP18 genes were important in underlying porcine resistance or susceptibility to PRRSV.

  13. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealin...

  14. Genome-wide ChIP-seq analysis of EZH2-mediated H3K27me3 target gene profile highlights differences between low- and high-grade astrocytic tumors.

    Science.gov (United States)

    Sharma, Vikas; Malgulwar, Prit Benny; Purkait, Suvendu; Patil, Vikas; Pathak, Pankaj; Agrawal, Rahul; Kulshreshtha, Ritu; Mallick, Supriya; Julka, Pramod Kumar; Suri, Ashish; Sharma, Bhawani Shankar; Suri, Vaishali; Sharma, Mehar Chand; Sarkar, Chitra

    2017-02-01

    Enhancer of zeste homolog-2(EZH2) is a key epigenetic regulator that functions as oncogene and also known for inducing altered trimethylation of histone at lysine-27 (H3K27me3) mark in various tumors. However, H3K27me3 targets and their precise relationship with gene expression are largely unknown in astrocytic tumors. In this study, we checked EZH2 messenger RNA and protein expression in 90 astrocytic tumors of different grades using quantitative PCR and immunohistochemistry, respectively. Further, genome-wide ChIP-seq analysis for H3K27me3 modification was also performed on 11 glioblastomas (GBMs) and 2 diffuse astrocytoma (DA) samples. Our results showed EZH2 to be highly overexpressed in astrocytic tumors with a significant positive correlation with grade. Interestingly, ChIP-seq mapping revealed distinct differences in genes and pathways targeted by these H3K27me3 modifications between GBM versus DA. Neuroactive ligand receptor pathway was found most enriched in GBM (P = 9.4 × 10-25), whereas DA were found to be enriched in metabolic pathways. Also, GBM showed a higher enrichment of H3K27me3 targets reported in embryonic stem cells and glioma stem cells as compared with DAs. Our results show majority of these H3K27me3 target genes were downregulated, not only due to H3K27me3 modification but also due to concomitant DNA methylation. Further, H3K27me3 modification-associated gene silencing was not restricted to promoter but also present in gene body and transcription start site regions. To the best of our knowledge, this is the first high-resolution genome-wide mapping of H3K27me3 modification in adult astrocytic primary tissue samples of human, highlighting the differences between grades. Interestingly, we identified SLC25A23 as important target of H3K27me3 modification, which was downregulated in GBM and its low expression was associated with poor prognosis in GBMs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions

  15. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus.

    Directory of Open Access Journals (Sweden)

    Evelyn N Kouwenhoven

    2010-08-01

    Full Text Available Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM, orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA-binding profiling by chromatin immunoprecipitation (ChIP, followed by deep sequencing (ChIP-seq in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes.

  16. Novel Loci Associated with Usual Sleep Duration: The CHARGE Consortium Genome-Wide Association Study

    Science.gov (United States)

    Gottlieb, Daniel J.; Hek, Karin; Chen, Ting-hsu; Watson, Nathaniel F.; Eiriksdottir, Gudny; Byrne, Enda M.; Cornelis, Marilyn; Warby, Simon C.; Bandinelli, Stefania; Cherkas, Lynn; Evans, Daniel S.; Grabe, Hans J.; Lahti, Jari; Li, Man; Lehtimäki, Terho; Lumley, Thomas; Marciante, Kristin D.; Pérusse, Louis; Psaty, Bruce M.; Robbins, John; Tranah, Gregory J.; Vink, Jacqueline M.; Wilk, Jemma B.; Stafford, Jeanette M.; Bellis, Claire; Biffar, Reiner; Bouchard, Claude; Cade, Brian; Curhan, Gary C.; Eriksson, Johan G.; Ewert, Ralf; Ferrucci, Luigi; Fülöp, Tibor; Gehrman, Philip R.; Goodloe, Robert; Harris, Tamara B.; Heath, Andrew C.; Hernandez, Dena; Hofman, Albert; Hottenga, Jouke-Jan; Hunter, David J.; Jensen, Majken K.; Johnson, Andrew D.; Kähönen, Mika; Kao, Linda; Kraft, Peter; Larkin, Emma K.; Lauderdale, Diane S.; Luik, Annemarie I.; Medici, Marco; Montgomery, Grant W.; Palotie, Aarno; Patel, Sanjay R.; Pistis, Giorgio; Porcu, Eleonora; Quaye, Lydia; Raitakari, Olli; Redline, Susan; Rimm, Eric B.; Rotter, Jerome I.; Smith, Albert V.; Spector, Tim D.; Teumer, Alexander; Uitterlinden, André G.; Vohl, Marie-Claude; Widen, Elisabeth; Willemsen, Gonneke; Young, Terry; Zhang, Xiaoling; Liu, Yongmei; Blangero, John; Boomsma, Dorret I.; Gudnason, Vilmundur; Hu, Frank; Mangino, Massimo; Martin, Nicholas G.; O’Connor, George T.; Stone, Katie L.; Tanaka, Toshiko; Viikari, Jorma; Gharib, Sina A.; Punjabi, Naresh M.; Räikkönen, Katri; Völzke, Henry; Mignot, Emmanuel; Tiemeier, Henning

    2015-01-01

    Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study of usual sleep duration was conducted using 18 population-based cohorts totaling 47,180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35–80 kb upstream from the thyroid-specific transcription factor PAX8 (lowest p=1.1 ×10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest p=9.3 × 10−4). The strongest combined association was at rs1823125 (p=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 minutes longer per night. The alleles associated with longer sleep duration were associated in previous genome-wide association studies with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease. PMID:25469926

  17. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  18. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast.

    Science.gov (United States)

    Young, Conor P; Hillyer, Cory; Hokamp, Karsten; Fitzpatrick, Darren J; Konstantinov, Nikifor K; Welty, Jacqueline S; Ness, Scott A; Werner-Washburne, Margaret; Fleming, Alastair B; Osley, Mary Ann

    2017-01-26

    Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth.

  19. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  20. Genome wide binding (ChIP-Seq) of murine Bapx1 and Sox9 proteins in vivo and in vitro.

    Science.gov (United States)

    Chatterjee, Sumantra; Kraus, Petra; Sivakamasundari, V; Yap, Sook Peng; Kumar, Vibhor; Prabhakar, Shyam; Lufkin, Thomas

    2016-12-01

    This work pertains to GEO submission GSE36672, in vivo and in vitro genome wide binding (ChIP-Seq) of Bapx1/Nkx3.2 and Sox9 proteins. We have previously shown that data from a genome wide binding assay combined with transcriptional profiling is an insightful means to divulge the mechanisms directing cell type specification and the generation of tissues and subsequent organs [1]. Our earlier work identified the role of the DNA-binding homeodomain containing protein Bapx1/Nkx3.2 in midgestation murine embryos. Microarray analysis of EGFP-tagged cells (both wildtype and null) was integrated using ChIP-Seq analysis of Bapx1/Nkx3.2 and Sox9 DNA-binding proteins in living tissue.

  1. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea

    Science.gov (United States)

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368

  2. Inbreeding in genome-wide selection

    NARCIS (Netherlands)

    Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A.

    2007-01-01

    Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) selection, which increased genetic gain by increasing accuracy of evaluation have also led to an increased rate of inbreeding per generation (¿FG). This is not necessarily the case with genome-wide selection, which

  3. Genome wide copy number analysis of single cells

    Science.gov (United States)

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  4. Genome-wide promoter methylome of small renal masses.

    Directory of Open Access Journals (Sweden)

    Ilsiya Ibragimova

    Full Text Available The majority of renal cell carcinoma (RCC is now incidentally detected and presents as small renal masses (SRMs defined as ≤ 4 cm in size. SRMs are heterogeneous comprising several histological types of RCC each with different biology and behavior, and benign tumors mainly oncocytoma. The varied prognosis of the different types of renal tumor has implications for management options. A key epigenetic alteration involved in the initiation and progression of cancer is aberrant methylation in the promoter region of a gene. The hypermethylation is associated with transcriptional repression and is an important mechanism of inactivation of tumor suppressor genes in neoplastic cells. We have determined the genome-wide promoter methylation profiles of 47 pT1a and 2 pT1b clear cell, papillary or chromophobe RCC, 25 benign renal oncocytoma ≤ 4 cm and 4 normal renal parenchyma specimens by Infinium HumanMethylation27 beadchip technology. We identify gene promoter hypermethylation signatures that distinguish clear cell and papillary from each other, from chromophobe and oncocytoma, and from normal renal cells. Pairwise comparisons revealed genes aberrantly hypermethylated in a tumor type but unmethylated in normal, and often unmethylated in the other renal tumor types. About 0.4% to 1.7% of genes comprised the promoter methylome in SRMs. The Infinium methylation score for representative genes was verified by gold standard technologies. The genes identified as differentially methylated implicate pathways involved in metabolism, tissue response to injury, epithelial to mesenchymal transition (EMT, signal transduction and G-protein coupled receptors (GPCRs, cancer, and stem cell regulation in the biology of RCC. Our findings contribute towards an improved understanding of the development of RCC, the different biology and behavior of histological types, and discovery of molecular subtypes. The differential methylation signatures may have utility in early

  5. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  6. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  7. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  8. Transcriptional profiling of epidermal differentiation.

    Science.gov (United States)

    Radoja, Nada; Gazel, Alix; Banno, Tomohiro; Yano, Shoichiro; Blumenberg, Miroslav

    2006-10-03

    In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.

  9. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.

    LENUS (Irish Health Repository)

    Enjalbert, Brice

    2009-04-01

    Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis.

  10. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  11. Genome-wide analysis of alternative splicing during human heart development

    Science.gov (United States)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-01-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development. PMID:27752099

  12. Genome-wide analysis of alternative splicing during human heart development

    Science.gov (United States)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  13. Genome-wide patterns of Arabidopsis gene expression in nature.

    Directory of Open Access Journals (Sweden)

    Christina L Richards

    Full Text Available Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg correlate to temperature and precipitation occurrence in the field. The largest PC(veg axes included thermoregulatory genes while the second major PC(veg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  14. TRANSFAC: transcriptional regulation, from patterns to profiles.

    Science.gov (United States)

    Matys, V; Fricke, E; Geffers, R; Gössling, E; Haubrock, M; Hehl, R; Hornischer, K; Karas, D; Kel, A E; Kel-Margoulis, O V; Kloos, D-U; Land, S; Lewicki-Potapov, B; Michael, H; Münch, R; Reuter, I; Rotert, S; Saxel, H; Scheer, M; Thiele, S; Wingender, E

    2003-01-01

    The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.

  15. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  16. Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis.

    Science.gov (United States)

    Zimmermann, Céline; Stévant, Isabelle; Borel, Christelle; Conne, Béatrice; Pitetti, Jean-Luc; Calvel, Pierre; Kaessmann, Henrik; Jégou, Bernard; Chalmel, Frédéric; Nef, Serge

    2015-04-01

    Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2α), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1β), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility.

  17. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  18. Genome-Wide Transcriptional Profiling to Elucidate Key Candidates Involved in Bud Burst and Rattling Growth in a Subtropical Bamboo (Dendrocalamus hamiltonii)

    Science.gov (United States)

    Bhandawat, Abhishek; Singh, Gagandeep; Seth, Romit; Singh, Pradeep; Sharma, Ram K.

    2017-01-01

    Bamboo, one of the fastest growing plants, can be a promising model system to understand growth. The study provides an insight into the complex interplay between environmental signaling and cellular machineries governing initiation and persistence of growth in a subtropical bamboo (Dendrocalamus hamiltonii). Phenological and spatio-temporal transcriptome analysis of rhizome and shoot during the major vegetative developmental transitions of D. hamiltonii was performed to dissect factors governing growth. Our work signifies the role of environmental cues, predominantly rainfall, decreasing day length, and high humidity for activating dormant bud to produce new shoot, possibly through complex molecular interactions among phosphatidylinositol, calcium signaling pathways, phytohormones, circadian rhythm, and humidity responses. We found the coordinated regulation of auxin, cytokinin, brassinosteroid signaling and cell cycle modulators; facilitating cell proliferation, cell expansion, and cell wall biogenesis supporting persistent growth of emerging shoot. Putative master regulators among these candidates were identified using predetermined Arabidopsis thaliana protein-protein interaction network. We got clues that the growth signaling begins far back in rhizome even before it emerges out as new shoot. Putative growth candidates identified in our study can serve in devising strategies to engineer bamboos and timber trees with enhanced growth and biomass potentials. PMID:28123391

  19. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.

    Science.gov (United States)

    Shi, Zhen; Fujii, Kotaro; Kovary, Kyle M; Genuth, Naomi R; Röst, Hannes L; Teruel, Mary N; Barna, Maria

    2017-07-06

    Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison

    Directory of Open Access Journals (Sweden)

    Dal Ri Antonio

    2007-11-01

    Full Text Available Abstract Background Grapevine (Vitis species is among the most important fruit crops in terms of cultivated area and economic impact. Despite this relevance, little is known about the transcriptional changes and the regulatory circuits underlying the biochemical and physical changes occurring during berry development. Results Fruit ripening in the non-climacteric crop species Vitis vinifera L. has been investigated at the transcriptional level by the use of the Affymetrix Vitis GeneChip® which contains approximately 14,500 unigenes. Gene expression data obtained from berries sampled before and after véraison in three growing years, were analyzed to identify genes specifically involved in fruit ripening and to investigate seasonal influences on the process. From these analyses a core set of 1477 genes was found which was similarly modulated in all seasons. We were able to separate ripening specific isoforms within gene families and to identify ripening related genes which appeared strongly regulated also by the seasonal weather conditions. Transcripts annotation by Gene Ontology vocabulary revealed five overrepresented functional categories of which cell wall organization and biogenesis, carbohydrate and secondary metabolisms and stress response were specifically induced during the ripening phase, while photosynthesis was strongly repressed. About 19% of the core gene set was characterized by genes involved in regulatory processes, such as transcription factors and transcripts related to hormonal metabolism and signal transduction. Auxin, ethylene and light emerged as the main stimuli influencing berry development. In addition, an oxidative burst, previously not detected in grapevine, characterized by rapid accumulation of H2O2 starting from véraison and by the modulation of many ROS scavenging enzymes, was observed. Conclusion The time-course gene expression analysis of grapevine berry development has identified the occurrence of two well

  1. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  2. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  3. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.

    Science.gov (United States)

    Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han

    2014-12-01

    Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.

  4. Integrated, genome-wide screening for hypomethylated oncogenes in salivary gland adenoid cystic carcinoma

    Science.gov (United States)

    Shao, Chunbo; Sun, Wenyue; Tan, Marietta; Glazer, Chad A.; Bhan, Sheetal; Zhong, Xiaoli; Fakhry, Carole; Sharma, Rajni; Westra, William H.; Hoque, Mohammad O.; Moskaluk, Christopher A.; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Purpose Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy that is poorly understood. In order to look for relevant oncogene candidates under the control of promoter methylation, an integrated, genome-wide screen was performed. Experimental Design Global demethylation of normal salivary gland cell strains using 5-aza-2′-deoxycytidine (5-Aza dC) and Trichostatin A (TSA), followed by expression array analysis was performed. ACC-specific expression profiling was generated using expression microarray analysis of primary ACC and normal samples. Next, the two profiles were integrated to identify a subset of genes for further validation of promoter demethylation in ACC versus normal. Finally, promising candidates were further validated for mRNA, protein, and promoter methylation levels in larger ACC cohorts. Functional validation was then performed in cancer cell lines. Results We found 159 genes that were significantly re-expressed after 5-Aza dC/TSA treatment and overexpressed in ACC. After initial validation, eight candidates showed hypomethylation in ACC: AQP1, CECR1, C1QR1, CTAG2, P53AIP1, TDRD12, BEX1, and DYNLT3. Aquaporin 1 (AQP1) showed the most significant hypomethylation and was further validated. AQP1 hypomethylation in ACC was confirmed with two independent cohorts. Of note, there was significant overexpression of AQP1 in both mRNA and protein in the paraffin-embedded ACC cohort. Furthermore, AQP1 was up-regulated in 5-Aza dC/TSA treated SACC83. Lastly, AQP1 promoted cell proliferation and colony formation in SACC83. Conclusions Our integrated, genome-wide screening method proved to be an effective strategy for detecting novel oncogenes in ACC. AQP1 is a promising oncogene candidate for ACC and is transcriptionally regulated by promoter hypomethylation. PMID:21551254

  5. Genome-wide measurement of RNA folding energies.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  6. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape.

    Science.gov (United States)

    Sherwood, Richard I; Hashimoto, Tatsunori; O'Donnell, Charles W; Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-02-01

    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.

  7. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  8. Genome-wide analysis correlates Ayurveda Prakriti.

    Science.gov (United States)

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S; Dedge, Amrish P; Bharadwaj, Ramachandra; Gangadharan, G G; Nair, Sreekumaran; Gopinath, Puthiya M; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-10-29

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as "Prakriti". To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10(-5)) were significantly different between Prakritis, without any confounding effect of stratification, after 10(6) permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India's traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine.

  9. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  10. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1.

    Directory of Open Access Journals (Sweden)

    Tilman J Todt

    Full Text Available BACKGROUND: In prokaryotes, sigma factors are essential for directing the transcription machinery towards promoters. Various sigma factors have been described that recognize, and bind to specific DNA sequence motifs in promoter sequences. The canonical sigma factor σ(70 is commonly involved in transcription of the cell's housekeeping genes, which is mediated by the conserved σ(70 promoter sequence motifs. In this study the σ(70-promoter sequences in Lactobacillus plantarum WCFS1 were predicted using a genome-wide analysis. The accuracy of the transcriptionally-active part of this promoter prediction was subsequently evaluated by correlating locations of predicted promoters with transcription start sites inferred from the 5'-ends of transcripts detected by high-resolution tiling array transcriptome datasets. RESULTS: To identify σ(70-related promoter sequences, we performed a genome-wide sequence motif scan of the L. plantarum WCFS1 genome focussing on the regions upstream of protein-encoding genes. We obtained several highly conserved motifs including those resembling the conserved σ(70-promoter consensus. Position weight matrices-based models of the recovered σ(70-promoter sequence motif were employed to identify 3874 motifs with significant similarity (p-value<10(-4 to the model-motif in the L. plantarum genome. Genome-wide transcript information deduced from whole genome tiling-array transcriptome datasets, was used to infer transcription start sites (TSSs from the 5'-end of transcripts. By this procedure, 1167 putative TSSs were identified that were used to corroborate the transcriptionally active fraction of these predicted promoters. In total, 568 predicted promoters were found in proximity (≤ 40 nucleotides of the putative TSSs, showing a highly significant co-occurrence of predicted promoter and TSS (p-value<10(-263. CONCLUSIONS: High-resolution tiling arrays provide a suitable source to infer TSSs at a genome-wide level, and

  11. Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis.

    Science.gov (United States)

    Guo, Shicheng; Zhu, Qi; Jiang, Ting; Wang, Rongsheng; Shen, Yi; Zhu, Xiao; Wang, Yan; Bai, Fengmin; Ding, Qin; Zhou, Xiaodong; Chen, Guangjie; He, Dong Yi

    2017-05-01

    Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation of the joints. Recent evidence indicated the epigenetic changes may contribute to the pathogenesis of RA. To understand the extent and nature of dysregulated DNA methylation in RA CD4T cells, we performed a genome-wide DNA methylation study in CD4 + T cells in 12 RA patients compared to 12 matched normal healthy controls. Cytosine methylation status was quantified with Illumina methylation 450K microarray. The DNA methylation profiling showed 383 hyper- and 785 hypo-methylated genes in the CD4 + T cells of the RA patients (p ontology analysis indicated transcript alternative splicing and protein modification mediated by DNA methylation might play an important role in the pathogenesis of RA. In addition, the result showed that human leukocyte antigen (HLA) region including HLA-DRB6, HLA-DQA1 and HLA-E was frequently hypomethylated, but HLA-DQB1 hypermethylated in CpG island region and hypomethylated in CpG shelf region in RA patients. Outside the MHC region, HDAC4, NXN, TBCD and TMEM61 were the most hypermethylated genes, while ITIH3, TCN2, PRDM16, SLC1A5 and GALNT9 are the most hypomethylated genes. Genome-wide DNA methylation profile revealed significant DNA methylation change in CD4 + T cells from patients with RA.

  12. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  13. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Sunita Kumari

    Full Text Available Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs. The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica and dicot (A. thaliana genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.

  14. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  15. A genome-wide methylation study on obesity

    Science.gov (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances. PMID:23644594

  16. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun

    2015-04-20

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene\\'s function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins\\' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  17. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    Science.gov (United States)

    2008-04-01

    Wang JP, Widom J (2005) Improved alignment of nucleosome DNA sequences using a mixture model. Nucleic Acids Res 33: 6743–6755. 6. Ioshikhes IP, Albert I...EMBO J 24: 533–542. 26. Anderson JD, Widom J (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites

  18. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research.

    Science.gov (United States)

    Arun-Chinnappa, Kiruba S; McCurdy, David W

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.

  19. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  20. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope

    Directory of Open Access Journals (Sweden)

    Tran Ngat

    2011-05-01

    Full Text Available Abstract Background A decline in the discovery of new antibacterial drugs, coupled with a persistent rise in the occurrence of drug-resistant bacteria, has highlighted antibiotics as a diminishing resource. The future development of new drugs with novel antibacterial activities requires a detailed understanding of adaptive responses to existing compounds. This study uses Streptomyces coelicolor A3(2 as a model system to determine the genome-wide transcriptional response following exposure to three antibiotics (vancomycin, moenomycin A and bacitracin that target distinct stages of cell wall biosynthesis. Results A generalised response to all three antibiotics was identified which involves activation of transcription of the cell envelope stress sigma factor σE, together with elements of the stringent response, and of the heat, osmotic and oxidative stress regulons. Attenuation of this system by deletion of genes encoding the osmotic stress sigma factor σB or the ppGpp synthetase RelA reduced resistance to both vancomycin and bacitracin. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. Sensitivity studies using mutants constructed on the basis of the transcriptome profiling confirmed a role for several such genes in antibiotic resistance, validating the usefulness of the approach. Conclusions Antibiotic inhibition of bacterial cell wall biosynthesis induces both common and compound-specific transcriptional responses. Both can be exploited to increase antibiotic susceptibility. Regulatory networks known to govern responses to environmental and nutritional stresses are also at the core of the common antibiotic response, and likely help cells survive until any specific resistance mechanisms are fully functional.

  1. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  2. Transcriptional and post-transcriptional profile of human chromosome 21.

    Science.gov (United States)

    Nikolaev, Sergey I; Deutsch, Samuel; Genolet, Raphael; Borel, Christelle; Parand, Leila; Ucla, Catherine; Schütz, Frederic; Duriaux Sail, Genevieve; Dupré, Yann; Jaquier-Gubler, Pascale; Araud, Tanguy; Conne, Beatrice; Descombes, Patrick; Vassalli, Jean-Dominique; Curran, Joseph; Antonarakis, Stylianos E

    2009-08-01

    Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.

  3. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  4. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  5. Genome-Wide Analysis of Human MicroRNA Stability

    Directory of Open Access Journals (Sweden)

    Yang Li

    2013-01-01

    Full Text Available Increasing studies have shown that microRNA (miRNA stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.

  6. Genome-wide transcriptome analysis of 150 cell samples†

    Science.gov (United States)

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  7. Genome-wide transcriptome analysis of 150 cell samples.

    Science.gov (United States)

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  8. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome.

    Science.gov (United States)

    Jiang, Linlin; Huang, Jia; Chen, Yaxiao; Yang, Yabo; Li, Ruiqi; Li, Yu; Chen, Xiaoli; Yang, Dongzi

    2016-07-01

    This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.

  9. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    IP-seq and small RNA-seq, we delineated the landscape of the promoters with bidirectional transcriptions that yield steady-state RNA in only one directions (Paper III). A subsequent motif analysis enabled us to uncover specific DNA signals – early polyA sites – that make RNA on the reverse strand sensitive...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V......). Gene enrichment analysis on the detected NMD substrates revealed an unappreciated NMD-based regulatory mechanism of the genes hosting multiple intronic snoRNAs, which can facilitate differential expression of individual snoRNAs from a single host gene locus. Finally, supported by RNA-seq and small RNA-seq...

  10. Genome-wide inference of regulatory networks in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2010-10-01

    Full Text Available Abstract Background The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. Results In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Conclusions Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  11. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers

    Directory of Open Access Journals (Sweden)

    Lifang Hu

    2011-01-01

    Full Text Available Members of the ERF transcription-factor family participate in a number of biological processes, viz., responses to hormones, adaptation to biotic and abiotic stress, metabolism regulation, beneficial symbiotic interactions, cell differentiation and developmental processes. So far, no tissue-expression profile of any cucumber ERF protein has been reported in detail. Recent completion of the cucumber full-genome sequence has come to facilitate, not only genome-wide analysis of ERF family members in cucumbers themselves, but also a comparative analysis with those in Arabidopsis and rice. In this study, 103 hypothetical ERF family genes in the cucumber genome were identified, phylogenetic analysis indicating their classification into 10 groups, designated I to X. Motif analysis further indicated that most of the conserved motifs outside the AP2/ERF domain, are selectively distributed among the specific clades in the phylogenetic tree. From chromosomal localization and genome distribution analysis, it appears that tandem-duplication may have contributed to CsERF gene expansion. Intron/exon structure analysis indicated that a few CsERFs still conserved the former intron-position patterns existent in the common ancestor of monocots and eudicots. Expression analysis revealed the widespread distribution of the cucumber ERF gene family within plant tissues, thereby implying the probability of their performing various roles therein. Furthermore, members of some groups presented mutually similar expression patterns that might be related to their phylogenetic groups.

  12. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  13. Genome-wide association study of clinical dimensions of schizophrenia

    DEFF Research Database (Denmark)

    Fanous, Ayman H; Zhou, Baiyu; Aggen, Steven H;

    2012-01-01

    Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia....

  14. Genome-wide profiling of micro-RNA expression in gefitinib-resistant human lung adenocarcinoma using microarray for the identification of miR-149-5p modulation.

    Science.gov (United States)

    Hu, Yong; Qin, Xiaobing; Yan, Dali; Cao, Haixia; Zhou, Leilei; Fan, Fan; Zang, Jialan; Ni, Jie; Xu, Xiaoyue; Sha, Huanhuan; Liu, Siwen; Yu, Shaorong; Wu, Jianzhong; Ma, Rong; Feng, Jifeng

    2017-03-01

    To understand the mechanism involved in gefitinib resistance, we established gefitinib-resistant human HCC827/GR-8-1 cell line from the parental HCC827 cell line. We compared the micro-RNA expression profiles of the HCC827 cells HCC827/GR-8-1 using Agilent micro-RNA microarrays. The micro-RNAs, such as the miR-149-5p, were up- or downregulated and associated with acquired gefitinib resistance. Quantitative real-time polymerase chain reaction was then performed to verify the expression patterns of different micro-RNAs. The result showed that miR-149-5p was upregulated in the HCC827/GR-8-1 cell line. To investigate the biological function of miR-149-5p in non-small cell lung cancer cells acquired gefitinib resistance, we examined cell proliferation using a cell counting kit-8 assay. Cell viability was evaluated after the miR-149-5p mimics, inhibitors, and negative control were separately transfected into the non-small cell lung cancer cells. The results showed that the non-small cell lung cancer cells transfected with miR-149-5p mimics exhibited reduced cell motility. The drug-sensitivity assay results revealed that the overexpression of miR-149-5p effectively evaluates the half maximal inhibitory concentration values of the cell in response to gefitinib, and the downregulation of miR-149-5p can attenuate the half maximal inhibitory concentration values of the cell lines in response to gefitinib. Furthermore, the levels of miR-149-5p in the HCC827 and HCC827/GR-8-1 cells were inversely correlated with caspase-3 expression. In conclusion, this study revealed that miR-149-5p is upregulated in the HCC827/GR-8-1 cells and involved in the acquired gefitinib resistance.

  15. Identification of Transcribed Enhancers by Genome-Wide Chromatin Immunoprecipitation Sequencing.

    Science.gov (United States)

    Blinka, Steven; Reimer, Michael H; Pulakanti, Kirthi; Pinello, Luca; Yuan, Guo-Cheng; Rao, Sridhar

    2017-01-01

    Recent work has shown that RNA polymerase II-mediated transcription at distal cis-regulatory elements serves as a mark of highly active enhancers. Production of noncoding RNAs at enhancers, termed eRNAs, correlates with higher expression of genes that the enhancer interacts with; hence, eRNAs provide a new tool to model gene activity in normal and disease tissues. Moreover, this unique class of noncoding RNA has diverse roles in transcriptional regulation. Transcribed enhancers can be identified by a common signature of epigenetic marks by overlaying a series of genome-wide chromatin immunoprecipitation and RNA sequencing datasets. A computational approach to filter non-enhancer elements and other classes of noncoding RNAs is essential to not cloud downstream analysis. Here we present a protocol that combines wet and dry bench methods to accurately identify transcribed enhancers genome-wide as well as an experimental procedure to validate these datasets.

  16. Identification of differential translation in genome wide studies.

    Science.gov (United States)

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  17. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  18. Genome-wide polymorphisms show unexpected targets of natural selection

    OpenAIRE

    Pespeni, Melissa H.; Garfield, David A.; Manier, Mollie K; Palumbi, Stephen R.

    2011-01-01

    Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species...

  19. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  20. Transcriptional profiling of human dendritic cell populations and models--unique profiles of in vitro dendritic cells and implications on functionality and applicability.

    Directory of Open Access Journals (Sweden)

    Kristina Lundberg

    Full Text Available BACKGROUND: Dendritic cells (DCs comprise heterogeneous populations of cells, which act as central orchestrators of the immune response. Applicability of primary DCs is restricted due to their scarcity and therefore DC models are commonly employed in DC-based immunotherapy strategies and in vitro tests assessing DC function. However, the interrelationship between the individual in vitro DC models and their relative resemblance to specific primary DC populations remain elusive. OBJECTIVE: To describe and assess functionality and applicability of the available in vitro DC models by using a genome-wide transcriptional approach. METHODS: Transcriptional profiling was performed with four commonly used in vitro DC models (MUTZ-3-DCs, monocyte-derived DCs, CD34-derived DCs and Langerhans cells (LCs and nine primary DC populations (dermal DCs, LCs, blood and tonsillar CD123(+, CD1c(+ and CD141(+ DCs, and blood CD16(+ DCs. RESULTS: Principal Component Analysis showed that transcriptional profiles of each in vitro DC model most closely resembled CD1c(+ and CD141(+ tonsillar myeloid DCs (mDCs among primary DC populations. Thus, additional differentiation factors may be required to generate model DCs that more closely resemble other primary DC populations. Also, no model DC stood out in terms of primary DC resemblance. Nevertheless, hierarchical clustering showed clusters of differentially expressed genes among individual DC models as well as primary DC populations. Furthermore, model DCs were shown to differentially express immunologically relevant transcripts and transcriptional signatures identified for each model DC included several immune-associated transcripts. CONCLUSION: The unique transcriptional profiles of in vitro DC models suggest distinct functionality in immune applications. The presented results will aid in the selection of an appropriate DC model for in vitro assays and assist development of DC-based immunotherapy.

  1. Transcriptional profile in response to ionizing radiation at low dose in Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    Chen Huan; Xu Zhenjian; Tian Bing; Chen Weiwei; Hu Songnian; Hua Yuejin

    2007-01-01

    The genome-wide transcription profile of Deinococcus radiodurans cells was investigated after treatment with low dose irradiation (2 kGy). From the expression profile, we found that the process of DNA repair was induced in order, i.e. genes involved in base excision repair, nucleotide excision repair and single-strand annealing were induced immediately after ionizing radiation, and genes for recombination repair, including recA, recD and recQ were then activated. Especially, recD and recQ were specifically induced at low dose irradiation, and this phenomenon informed us that these two genes would play a certain role in anti-oxidation. Some genes such as ddrA and ssb were activated during the whole repair phase. Furthermore, the response of oxidative stress-related genes under low dose irradiation showed a different pattern from that of the acute high-level irradiation, many anti-oxidative genes were induced to scavenge reactive oxygen species directly, other associated systems also changed their expression patterns during the recovery time, such as iron metabolism systems, intracellular mutagenic precursors sanitize systems. These characteristics indicate that there is a powerful and orderly recovery process in Deinococcus radiodurans.

  2. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  3. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  4. Use of Genome-Wide Expression Data to Mine the “Gray Zone” of GWA Studies Leads to Novel Candidate Obesity Genes

    Science.gov (United States)

    Naukkarinen, Jussi; Surakka, Ida; Pietiläinen, Kirsi H.; Rissanen, Aila; Salomaa, Veikko; Ripatti, Samuli; Yki-Järvinen, Hannele; van Duijn, Cornelia M.; Wichmann, H.-Erich; Kaprio, Jaakko; Taskinen, Marja-Riitta; Peltonen, Leena

    2010-01-01

    To get beyond the “low-hanging fruits” so far identified by genome-wide association (GWA) studies, new methods must be developed in order to discover the numerous remaining genes that estimates of heritability indicate should be contributing to complex human phenotypes, such as obesity. Here we describe a novel integrative method for complex disease gene identification utilizing bot