WorldWideScience

Sample records for genome-wide nucleosome mapping

  1. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas;

    2014-01-01

    data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...... of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues...

  2. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    Science.gov (United States)

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  3. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence ...

  4. Comparative analysis of methods for genome-wide nucleosome cartography.

    Science.gov (United States)

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control, the elp3 (one of histone acetyltransferase genes deletion mutant, and the hos2 (one of histone deactylase genes deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.

  6. Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy.

    Science.gov (United States)

    van der Heijden, Thijn; van Vugt, Joke J F A; Logie, Colin; van Noort, John

    2012-09-18

    Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosome positioning sequences. By applying Percus's equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.

  7. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Yingxue Ren

    2015-03-01

    Full Text Available In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE64507.

  8. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  9. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  10. High-resolution genome-wide mapping of histone modifications.

    Science.gov (United States)

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  11. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  12. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  13. Genome-wide nucleosome occupancy and DNA methylation profiling of four human cell lines

    Directory of Open Access Journals (Sweden)

    Aaron L. Statham

    2015-03-01

    Full Text Available DNA methylation and nucleosome positioning are two key mechanisms that contribute to the epigenetic control of gene expression. During carcinogenesis, the expression of many genes is altered alongside extensive changes in the epigenome, with repressed genes often being associated with local DNA hypermethylation and gain of nucleosomes at their promoters. However the spectrum of alterations that occur at distal regulatory regions has not been extensively studied. To address this we used Nucleosome Occupancy and Methylation sequencing (NOMe-seq to compare the genome-wide DNA methylation and nucleosome occupancy profiles between normal and cancer cell line models of the breast and prostate. Here we describe the bioinformatic pipeline and methods that we developed for the processing and analysis of the NOMe-seq data published by (Taberlay et al., 2014 [1] and deposited in the Gene Expression Omnibus with accession GSE57498.

  14. A chemical approach to mapping nucleosomes at base pair resolution in yeast.

    Science.gov (United States)

    Brogaard, Kristin R; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-01-01

    Most eukaryotic DNA exists in DNA-protein complexes known as nucleosomes. The exact locations of nucleosomes along the genome play a critical role in chromosome functions and gene regulation. However, the current methods for nucleosome mapping do not provide the necessary accuracy to identify the precise nucleosome locations. Here we describe a new experimental approach that directly maps nucleosome center locations in vivo genome-wide at single base pair resolution.

  15. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    Science.gov (United States)

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

  16. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    Science.gov (United States)

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  17. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    Science.gov (United States)

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  18. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  19. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    Science.gov (United States)

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  20. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  1. A map of nucleosome positions in yeast at base-pair resolution.

    Science.gov (United States)

    Brogaard, Kristin; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-06-28

    The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function. However, existing methods for mapping nucleosomes do not provide the necessary single-base-pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centres on the basis of chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It shows new aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing and the higher-order structure of the chromatin fibre.

  2. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  3. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-12-10

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.

  4. Reading sequence-directed computational nucleosome maps.

    Science.gov (United States)

    Nibhani, Reshma; Trifonov, Edward N

    2015-01-01

    Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.

  5. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    Science.gov (United States)

    2011-04-01

    al. (2007) “Efficient mapping of mendelian traits in dogs through genome-wide association.” Nat Genet 39:1321-1328. 12 Distribution A...collected data to genetically map superior intelligence in the military working dog. A behavioral testing regimen was developed by canine cognitive expert Dr...TERMS Military working dog genome-wide association study genetic marker intelligence 16

  6. Unidimensional nonnegative scaling for genome-wide linkage disequilibrium maps.

    Science.gov (United States)

    Liao, Haiyong; Ng, Michael; Fung, Eric; Sham, Pak C

    2008-01-01

    The main aim of this paper is to propose and develop a unidimensional nonnegative scaling model to construct Linkage Disequilibrium (LD) maps. The proposed constrained scaling model can be efficiently solved by transforming it to an unconstrained model. The method is implemented in PC Clusters at Hong Kong Baptist University. The LD maps are constructed for four populations from Hapmap data sets with chromosomes of several ten thousand Single Nucleotide Polymorphisms (SNPs). The similarities and dissimilarities of the LD maps are studied and analysed. Computational results are also reported to show the effectiveness of the method using parallel computation.

  7. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication

  8. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes.

    Directory of Open Access Journals (Sweden)

    María José Aranzana

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  9. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    Science.gov (United States)

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  10. The HapMap and genome-wide association studies in diagnosis and therapy.

    Science.gov (United States)

    Manolio, Teri A; Collins, Francis S

    2009-01-01

    The International HapMap Project produced a genome-wide database of human genetic variation for use in genetic association studies of common diseases. The initial output of these studies has been overwhelming, with over 150 risk loci identified in studies of more than 60 common diseases and traits. These associations have suggested previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. Here we examine the development and application of the HapMap to genome-wide association (GWA) studies; present and future technologies for GWA research; current major efforts in GWA studies; successes and limitations of the GWA approach in identifying polymorphisms related to complex diseases; data release and privacy polices; use of these findings by clinicians, the public, and academic physicians; and sources of ongoing authoritative information on this rapidly evolving field.

  11. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    OpenAIRE

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years thr...

  12. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia.

    Science.gov (United States)

    Cader, M Z; Steckley, J L; Dyment, D A; McLachlan, R S; Ebers, G C

    2005-07-12

    Episodic ataxias are ion channel disorders characterized by attacks of incoordination. The authors performed a genome-wide screen in a large pedigree segregating a novel episodic ataxia and found significant linkage on 1q42 with a multipoint lod score of 3.65. Haplotype analysis and fine mapping yielded a peak 2-point lod score of 4.14 and indicated a 4-cM region on 1q42 that is likely to harbor an episodic ataxia gene.

  13. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation.

    Science.gov (United States)

    Qiu, Hongfang; Chereji, Răzvan V; Hu, Cuihua; Cole, Hope A; Rawal, Yashpal; Clark, David J; Hinnebusch, Alan G

    2016-02-01

    Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.

  14. TreeQA: quantitative genome wide association mapping using local perfect phylogeny trees.

    Science.gov (United States)

    Pan, Feng; McMillan, Leonard; Pardo-Manuel De Villena, Fernando; Threadgill, David; Wang, Wei

    2009-01-01

    The goal of genome wide association (GWA) mapping in modern genetics is to identify genes or narrow regions in the genome that contribute to genetically complex phenotypes such as morphology or disease. Among the existing methods, tree-based association mapping methods show obvious advantages over single marker-based and haplotype-based methods because they incorporate information about the evolutionary history of the genome into the analysis. However, existing tree-based methods are designed primarily for binary phenotypes derived from case/control studies or fail to scale genome-wide. In this paper, we introduce TreeQA, a quantitative GWA mapping algorithm. TreeQA utilizes local perfect phylogenies constructed in genomic regions exhibiting no evidence of historical recombination. By efficient algorithm design and implementation, TreeQA can efficiently conduct quantitative genom-wide association analysis and is more effective than the previous methods. We conducted extensive experiments on both simulated datasets and mouse inbred lines to demonstrate the efficiency and effectiveness of TreeQA.

  15. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  16. A genome-wide SNP panel for mapping and association studies in the rat

    Directory of Open Access Journals (Sweden)

    Guryev Victor

    2008-02-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is an important model for human disease, and is extensively used for studying complex traits for example in the physiological and pharmacological fields. To facilitate genetic studies like QTL mapping, genetic makers that can be easily typed, like SNPs, are essential. Results A genome-wide set of 820 SNP assays was designed for the KASPar genotyping platform, which uses a technique based on allele specific oligo extension and energy transfer-based detection. SNPs were chosen to be equally spread along all chromosomes except Y and to be polymorphic between Brown Norway and SS or Wistar rat strains based on data from the rat HapMap EU project. This panel was tested on 38 rats of 34 different strains and 3 wild rats to determine the level of polymorphism and to generate a phylogenetic network to show their genetic relationships. As a proof of principle we used this panel to map an obesity trait in Zucker rats and confirmed significant linkage (LOD 122 to chromosome 5: 119–129 Mb, where the leptin receptor gene (Lepr is located (chr5: 122 Mb. Conclusion We provide a fast and cost-effective platform for genome-wide SNP typing, which can be used for first-pass genetic mapping and association studies in a wide variety of rat strains.

  17. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  18. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.

    Science.gov (United States)

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-03-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements.

  19. Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution.

    Science.gov (United States)

    Weiner, Assaf; Lara-Astiaso, David; Krupalnik, Vladislav; Gafni, Ohad; David, Eyal; Winter, Deborah R; Hanna, Jacob H; Amit, Ido

    2016-09-01

    Histone modifications play an important role in chromatin organization and transcriptional regulation, but despite the large amount of genome-wide histone modification data collected in different cells and tissues, little is known about co-occurrence of modifications on the same nucleosome. Here we present a genome-wide quantitative method for combinatorial indexed chromatin immunoprecipitation (co-ChIP) to characterize co-occurrence of histone modifications on nucleosomes. Using co-ChIP, we study the genome-wide co-occurrence of 14 chromatin marks (70 pairwise combinations), and find previously undescribed co-occurrence patterns, including the co-occurrence of H3K9me1 and H3K27ac in super-enhancers. Finally, we apply co-ChIP to measure the distribution of the bivalent H3K4me3-H3K27me3 domains in two distinct mouse embryonic stem cell (mESC) states and in four adult tissues. We observe dynamic changes in 5,786 regions and discover both loss and de novo gain of bivalency in key tissue-specific regulatory genes, suggesting a functional role for bivalent domains during different stages of development. These results show that co-ChIP can reveal the complex interactions between histone modifications.

  20. Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes.

    Science.gov (United States)

    Vacic, Vladimir; Ozelius, Laurie J; Clark, Lorraine N; Bar-Shira, Anat; Gana-Weisz, Mali; Gurevich, Tanya; Gusev, Alexander; Kedmi, Merav; Kenny, Eimear E; Liu, Xinmin; Mejia-Santana, Helen; Mirelman, Anat; Raymond, Deborah; Saunders-Pullman, Rachel; Desnick, Robert J; Atzmon, Gil; Burns, Edward R; Ostrer, Harry; Hakonarson, Hakon; Bergman, Aviv; Barzilai, Nir; Darvasi, Ariel; Peter, Inga; Guha, Saurav; Lencz, Todd; Giladi, Nir; Marder, Karen; Pe'er, Itsik; Bressman, Susan B; Orr-Urtreger, Avi

    2014-09-01

    The recent series of large genome-wide association studies in European and Japanese cohorts established that Parkinson disease (PD) has a substantial genetic component. To further investigate the genetic landscape of PD, we performed a genome-wide scan in the largest to date Ashkenazi Jewish cohort of 1130 Parkinson patients and 2611 pooled controls. Motivated by the reduced disease allele heterogeneity and a high degree of identical-by-descent (IBD) haplotype sharing in this founder population, we conducted a haplotype association study based on mapping of shared IBD segments. We observed significant haplotype association signals at three previously implicated Parkinson loci: LRRK2 (OR = 12.05, P = 1.23 × 10(-56)), MAPT (OR = 0.62, P = 1.78 × 10(-11)) and GBA (multiple distinct haplotypes, OR > 8.28, P = 1.13 × 10(-11) and OR = 2.50, P = 1.22 × 10(-9)). In addition, we identified a novel association signal on chr2q14.3 coming from a rare haplotype (OR = 22.58, P = 1.21 × 10(-10)) and replicated it in a secondary cohort of 306 Ashkenazi PD cases and 2583 controls. Our results highlight the power of our haplotype association method, particularly useful in studies of founder populations, and reaffirm the benefits of studying complex diseases in Ashkenazi Jewish cohorts.

  1. Genome wide association mapping for grain shape traits in indica rice.

    Science.gov (United States)

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  2. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion.

    Science.gov (United States)

    Sokolova, Maria; Turunen, Mikko; Mortusewicz, Oliver; Kivioja, Teemu; Herr, Patrick; Vähärautio, Anna; Björklund, Mikael; Taipale, Minna; Helleday, Thomas; Taipale, Jussi

    2017-01-17

    To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.

  3. Genome-wide maps of nuclear lamina interactions in single human cells

    Science.gov (United States)

    Kind, Jop; Pagie, Ludo; de Vries, Sandra S.; Nahidiazar, Leila; Dey, Siddharth S.; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A.; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas

    2015-01-01

    Summary Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, consistency of NL contacts is inversely linked to gene activity in single cells, and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single cell chromatin organization. PMID:26365489

  4. Genome-wide map of regulatory interactions in the human genome.

    Science.gov (United States)

    Heidari, Nastaran; Phanstiel, Douglas H; He, Chao; Grubert, Fabian; Jahanbani, Fereshteh; Kasowski, Maya; Zhang, Michael Q; Snyder, Michael P

    2014-12-01

    Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects gene transcription. Comparison of interactions between cell types revealed that enhancer-promoter interactions were highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark differences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions, while distal binding events interact with genes involved in dynamic biological processes including response to stimulus. This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus. © 2014 Heidari et al.; Published by Cold Spring Harbor Laboratory Press.

  5. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    Science.gov (United States)

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  6. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation.

    Science.gov (United States)

    Clausen, Anders R; Lujan, Scott A; Burkholder, Adam B; Orebaugh, Clinton D; Williams, Jessica S; Clausen, Maryam F; Malc, Ewa P; Mieczkowski, Piotr A; Fargo, David C; Smith, Duncan J; Kunkel, Thomas A

    2015-03-01

    Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.

  7. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  8. Genome-wide association mapping of root traits in a japonica rice panel.

    Directory of Open Access Journals (Sweden)

    Brigitte Courtois

    Full Text Available Rice is a crop prone to drought stress in upland and rainfed lowland ecosystems. A deep root system is recognized as the best drought avoidance mechanism. Genome-wide association mapping offers higher resolution for locating quantitative trait loci (QTLs than QTL mapping in biparental populations. We performed an association mapping study for root traits using a panel of 167 japonica accessions, mostly of tropical origin. The panel was genotyped at an average density of one marker per 22.5 kb using genotyping by sequencing technology. The linkage disequilibrium in the panel was high (r(2>0.6, on average, for 20 kb mean distances between markers. The plants were grown in transparent 50 cm × 20 cm × 2 cm Plexiglas nailboard sandwiches filled with 1.5 mm glass beads through which a nutrient solution was circulated. Root system architecture and biomass traits were measured in 30-day-old plants. The panel showed a moderate to high diversity in the various traits, particularly for deep (below 30 cm depth root mass and the number of deep roots. Association analyses were conducted using a mixed model involving both population structure and kinship to control for false positives. Nineteen associations were significant at P<1e-05, and 78 were significant at P<1e-04. The greatest numbers of significant associations were detected for deep root mass and the number of deep roots, whereas no significant associations were found for total root biomass or deep root proportion. Because several QTLs for different traits were co-localized, 51 unique loci were detected; several co-localized with meta-QTLs for root traits, but none co-localized with rice genes known to be involved in root growth. Several likely candidate genes were found in close proximity to these loci. Additional work is necessary to assess whether these markers are relevant in other backgrounds and whether the genes identified are robust candidates.

  9. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  10. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  11. Genome-wide mapping of histone H4 serine-1 phosphorylation during sporulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Govin, Jérôme; Schug, Jonathan; Krishnamoorthy, Thanuja; Dorsey, Jean; Khochbin, Saadi; Berger, Shelley L

    2010-08-01

    We previously showed that histone H4 serine-1 phosphorylation (H4S1ph) is evolutionarily conserved during gametogenesis, and contributes to post-meiotic nuclear compaction and to full completion of sporulation in the yeast Saccharomyces cerevisiae. Previous studies showed that H4S1ph and another modification of the same histone, H4 acetylation (H4ac), do not occur together and have opposing roles during DNA double-strand break (DSB) repair. In this study, we investigated the relationship between these marks during yeast sporulation. H4S1ph and H4ac co-exist globally during later stages of sporulation, in contrast to DSB repair. Genome-wide mapping during sporulation reveals accumulation of both marks over promoters of genes. Prevention of H4S1ph deposition delays the decline in transcription that normally occurs during spore maturation. Taken together, our results indicate that H4S1ph deposition reinforces reduced transcription that coincides with full spore compaction, without disrupting the local acetylation signature. These studies indicate distinctive features of a histone H4 modification marking system during sporulation compared with DSB repair.

  12. Universal full-length nucleosome mapping sequence probe.

    Science.gov (United States)

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  13. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  14. Comparison of HapMap and 1000 genomes reference panels in a large-scale genome-wide association study

    NARCIS (Netherlands)

    P.S. de Vries (Paul); M. Sabater-Lleal (Maria); D.I. Chasman (Daniel); S. Trompet (Stella); T.S. Ahluwalia (Tarunveer Singh); A. Teumer (Alexander); M.E. Kleber (Marcus); M.-H. Chen (Ming-Huei); J.J. Wang (Jie Jin); J. Attia (John); R.E. Marioni (Riccardo); M. Steri (Maristella); Weng, L.-C. (Lu-Chen); R. Pool (Reńe); V. Grossmann (Vera); J. Brody (Jennifer); C. Venturini (Cristina); T. Tanaka (Toshiko); L.M. Rose (Lynda); C. Oldmeadow (Christopher); J. Mazur (Johanna); S. Basu (Saonli); M. Frånberg (Mattias); Q. Yang (Qiong); S. Ligthart (Symen); J.J. Hottenga (Jouke Jan); A. Rumley (Ann); Mulas, A. (Antonella); A.J. de Craen (Anton); A. Grotevendt (Anne); K.D. Taylor (Kent D.); G. Delgado; A. Kifley (Annette); L.M. Lopez (Lorna); T.L. Berentzen (Tina L.); M. Mangino (Massimo); S. Bandinelli (Stefania); Morrison, A.C. (Alanna C.); A. Hamsten (Anders); G.H. Tofler (Geoffrey); M.P.M. de Maat (Moniek); G. Draisma (Gerrit); G.D. Lowe (Gordon D.); M. Zoledziewska (Magdalena); N. Sattar (Naveed); Lackner, K.J. (Karl J.); U. Völker (Uwe); McKnight, B. (Barbara); J. Huang (Jian); E.G. Holliday (Elizabeth); McEvoy, M.A. (Mark A.); J.M. Starr (John); P.G. Hysi (Pirro); D.G. Hernandez (Dena); W. Guan (Weihua); F. Rivadeneira Ramirez (Fernando); W.L. McArdle (Wendy); P.E. Slagboom (Eline); Zeller, T. (Tanja); B.M. Psaty (Bruce); A.G. Uitterlinden (André); E.J.C. de Geus (Eco); D.J. Stott (David J.); H. Binder (Harald); A. Hofman (Albert); O.H. Franco (Oscar); J.I. Rotter (Jerome I.); L. Ferrucci (Luigi); Spector, T.D. (Tim D.); I.J. Deary (Ian J.); W. März (Winfried); A. Greinacher (Andreas); P.S. Wild (Philipp S.); F. Cucca (Francesco); D.I. Boomsma (Dorret); Watkins, H. (Hugh); Tang, W. (Weihong); P.M. Ridker (Paul); J.W. Jukema; R.J. Scott (Rodney J.); P. Mitchell (Paul); T. Hansen (T.); O'Donnell, C.J. (Christopher J.); Smith, N.L. (Nicholas L.); D.P. Strachan (David P.); A. Dehghan (Abbas)

    2017-01-01

    textabstractAn increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imput

  15. Transferability and Fine Mapping of genome-wide associated loci for lipids in African Americans

    Directory of Open Access Journals (Sweden)

    Adeyemo Adebowale

    2012-09-01

    Full Text Available Abstract Background A recent, large genome-wide association study (GWAS of European ancestry individuals has identified multiple genetic variants influencing serum lipids. Studies of the transferability of these associations to African Americans remain few, an important limitation given interethnic differences in serum lipids and the disproportionate burden of lipid-associated metabolic diseases among African Americans. Methods We attempted to evaluate the transferability of 95 lipid-associated loci recently identified in European ancestry individuals to 887 non-diabetic, unrelated African Americans from a population-based sample in the Washington, DC area. Additionally, we took advantage of the generally reduced linkage disequilibrium among African ancestry populations in comparison to European ancestry populations to fine-map replicated GWAS signals. Results We successfully replicated reported associations for 10 loci (CILP2/SF4, STARD3, LPL, CYP7A1, DOCK7/ANGPTL3, APOE, SORT1, IRS1, CETP, and UBASH3B. Through trans-ethnic fine-mapping, we were able to reduce associated regions around 75% of the loci that replicated. Conclusions Between this study and previous work in African Americans, 40 of the 95 loci reported in a large GWAS of European ancestry individuals also influence lipid levels in African Americans. While there is now evidence that the lipid-influencing role of a number of genetic variants is observed in both European and African ancestry populations, the still considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of these traits.

  16. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  17. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Dietrich, Nikolaj; Pasini, Diego;

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Pol......The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find...

  18. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    Science.gov (United States)

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    PPIs share similar biological processes and cellular components, and the reconstructed genome-wide PPI network can reflect network topology and modularity. We believe that our method is useful for inferring reliable PPIs and reconstructing a comprehensive PPI network of an interesting organism. PMID:25602759

  19. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle

    DEFF Research Database (Denmark)

    Sahana, G; Guldbrandtsen, B; Bendixen, C;

    2010-01-01

    A genome-wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were...

  20. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane.

    Science.gov (United States)

    Racedo, Josefina; Gutiérrez, Lucía; Perera, María Francisca; Ostengo, Santiago; Pardo, Esteban Mariano; Cuenya, María Inés; Welin, Bjorn; Castagnaro, Atilio Pedro

    2016-06-24

    Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as

  1. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.

    Science.gov (United States)

    Svensson, J Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C; Allshire, Robin C; Ekwall, Karl

    2015-06-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.

  2. GLIDERS - A web-based search engine for genome-wide linkage disequilibrium between HapMap SNPs

    Directory of Open Access Journals (Sweden)

    Broxholme John

    2009-10-01

    Full Text Available Abstract Background A number of tools for the examination of linkage disequilibrium (LD patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb. We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers. Description GLIDERS is an easy to use web tool that only requires the user to enter rs numbers of SNPs they want to retrieve genome-wide LD for (both nearby and long-range. The intuitive web interface handles both manual entry of SNP IDs as well as allowing users to upload files of SNP IDs. The user can limit the resulting inter SNP associations with easy to use menu options. These include MAF limit (5-45%, distance limits between SNPs (minimum and maximum, r2 (0.3 to 1, HapMap population sample (CEU, YRI and JPT+CHB combined and HapMap build/release. All resulting genome-wide inter-SNP associations are displayed on a single output page, which has a link to a downloadable tab delimited text file. Conclusion GLIDERS is a quick and easy way to retrieve genome-wide inter-SNP associations and to explore LD patterns for any number of SNPs of interest. GLIDERS can be useful in identifying SNPs with long-range LD. This can highlight mis-mapping or other potential association signal localisation problems.

  3. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Earl F Glynn

    2004-09-01

    Full Text Available In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.

  4. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  5. Evaluation of genome-wide power of genetic association studies based on empirical data from the HapMap project.

    Science.gov (United States)

    Nannya, Yasuhito; Taura, Kenjiro; Kurokawa, Mineo; Chiba, Shigeru; Ogawa, Seishi

    2007-10-15

    With recent advances in high-throughput single nucleotide polymorphism (SNP) typing technologies, genome-wide association studies have become a realistic approach to identify the causative genes that are responsible for common diseases of complex genetic traits. In this strategy, a trade-off between the increased genome coverage and a chance of finding SNPs incidentally showing a large statistics becomes serious due to extreme multiple-hypothesis testing. We investigated the extent to which this trade-off limits the genome-wide power with this approach by simulating a large number of case-control panels based on the empirical data from the HapMap Project. In our simulations, statistical costs of multiple hypothesis testing were evaluated by empirically calculating distributions of the maximum value of the chi(2) statistics for a series of marker sets having increasing numbers of SNPs, which were used to determine a genome-wide threshold in the following power simulations. With a practical study size, the cost of multiple testing largely offsets the potential benefits from increased genome coverage given modest genetic effects and/or low frequencies of causal alleles. In most realistic scenarios, increasing genome coverage becomes less influential on the power, while sample size is the predominant determinant of the feasibility of genome-wide association tests. Increasing genome coverage without corresponding increase in sample size will only consume resources without little gain in power. For common causal alleles with relatively large effect sizes [genotype relative risk > or =1.7], we can expect satisfactory power with currently available large-scale genotyping platforms using realistic sample size ( approximately 1000 per arm).

  6. Analysis of genome-wide structure, diversity and fine mapping of Mendelian traits in traditional and village chickens

    Science.gov (United States)

    Wragg, D; Mwacharo, J M; Alcalde, J A; Hocking, P M; Hanotte, O

    2012-01-01

    Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r2⩾0.3) in both traditional and village chickens at pairwise marker distances of ∼10 Kb; while haplotype block analysis indicates a median block size of 11–12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55–38.89 Mb) and rose comb (Gga 7:18.41–22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25–67.28 Mb, Gga 1:67.28–67.32 Mb) totalling ∼75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions. PMID:22395157

  7. Mapping of fertility traits in Finnish Ayrshire by genome-wide association analysis

    DEFF Research Database (Denmark)

    Schulmann, Nina F; Sahana, Goutam; Iso-Touru, T

    2011-01-01

    A whole-genome scan using single marker association was used to detect chromosome regions associated with seven female fertility traits in Finnish Ayrshire dairy cattle. The phenotypic data consisted of de-regressed estimated breeding values for 340 bulls which were estimated using a single trait...... effect. We detected eleven genome-wide significant associations on eight different chromosomes. With at least chromosome-wise significance after Bonferroni correction, sixteen SNPs on nine chromosomes showed significant associations with one or more fertility traits. The results confirmed quantitative...... trait loci on three chromosomes (1, 2 and 20) for fertility traits previously reported for the same breed and one on chromosome four previously detected in Holstein cattle....

  8. Genome-Wide Association Mapping for Cell Wall Composition and Properties in Temperate Grasses

    DEFF Research Database (Denmark)

    Bellucci, Andrea

    -glucans. Plant cell wall biosynthesis is regulated by a large number of genes and regulatory factors but very few of these are known and characterized. This PhD project aimed to the identification of putative candidate genes involved in plant cell wall composition and properties using a genome wide (GWAS......) approach. The species investigate were wheat, barley and B. distachyon, considered a model plant for temperate cereals. Agronomical traits as yield and plant height were also included in the analysis along with cell wall composition and saccharification properties. Several marker-trait associations were......Plant cell wall confers flexibility, support for the vital processes of the plant and resistance to abiotic stresses and pathogen. It is constituted by a complex matrix of cellulose, hemicellulose, pectins and polyphenolic compounds as lignin. These main components interact with each other...

  9. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    Science.gov (United States)

    de Vries, Paul S.; Sabater-Lleal, Maria; Chasman, Daniel I.; Trompet, Stella; Kleber, Marcus E.; Chen, Ming-Huei; Wang, Jie Jin; Attia, John R.; Marioni, Riccardo E.; Weng, Lu-Chen; Grossmann, Vera; Brody, Jennifer A.; Venturini, Cristina; Tanaka, Toshiko; Rose, Lynda M.; Oldmeadow, Christopher; Mazur, Johanna; Basu, Saonli; Yang, Qiong; Ligthart, Symen; Hottenga, Jouke J.; Rumley, Ann; Mulas, Antonella; de Craen, Anton J. M.; Grotevendt, Anne; Taylor, Kent D.; Delgado, Graciela E.; Kifley, Annette; Lopez, Lorna M.; Berentzen, Tina L.; Mangino, Massimo; Bandinelli, Stefania; Morrison, Alanna C.; Hamsten, Anders; Tofler, Geoffrey; de Maat, Moniek P. M.; Draisma, Harmen H. M.; Lowe, Gordon D.; Zoledziewska, Magdalena; Sattar, Naveed; Lackner, Karl J.; Völker, Uwe; McKnight, Barbara; Huang, Jie; Holliday, Elizabeth G.; McEvoy, Mark A.; Starr, John M.; Hysi, Pirro G.; Hernandez, Dena G.; Guan, Weihua; Rivadeneira, Fernando; McArdle, Wendy L.; Slagboom, P. Eline; Zeller, Tanja; Psaty, Bruce M.; Uitterlinden, André G.; de Geus, Eco J. C.; Stott, David J.; Binder, Harald; Hofman, Albert; Franco, Oscar H.; Rotter, Jerome I.; Ferrucci, Luigi; Spector, Tim D.; Deary, Ian J.; März, Winfried; Greinacher, Andreas; Wild, Philipp S.; Cucca, Francesco; Boomsma, Dorret I.; Watkins, Hugh; Tang, Weihong; Ridker, Paul M.; Jukema, Jan W.; Scott, Rodney J.; Mitchell, Paul; Hansen, Torben; O'Donnell, Christopher J.; Smith, Nicholas L.; Strachan, David P.

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10−8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10−8), the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development. PMID:28107422

  10. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  11. Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus

    Directory of Open Access Journals (Sweden)

    Niklas eKörber

    2016-03-01

    Full Text Available In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. % as well as require high experimental effort due to their quantitative inheritance and the importance of genotype*environment interaction. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i genome regions associated with the examined agronomic and seed quality traits, (ii the interrelationship of population structure and the detected associations, and (iii candidate genes for the revealed associations. The diversity set used in this study consisted of 405 Brassica napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P-value 100 and a sequence identity of > 70 % to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.

  12. Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle

    Science.gov (United States)

    Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando

    2014-01-01

    The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400

  13. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine.

    Science.gov (United States)

    Huang, Yun; Pastor, William A; Zepeda-Martínez, Jorge A; Rao, Anjana

    2012-10-01

    5-Hydroxymethylcytosine (5hmC) is a recently discovered base in the mammalian genome, produced upon oxidation of 5-methylcytosine (5mC) in a process catalyzed by TET proteins. The biological functions of 5hmC and further oxidation products of 5mC are under intense investigation, as they are likely intermediates in DNA demethylation pathways. Here we describe a novel protocol to profile 5hmC at a genome-wide scale. This approach is based on sodium bisulfite-mediated conversion of 5hmC to cytosine-5-methylenesulfonate (CMS); CMS-containing DNA fragments are then immunoprecipitated using a CMS-specific antiserum. The anti-CMS technique is highly specific with a low background, and is much less dependent on 5hmC density than anti-5hmC immunoprecipitation (IP). Moreover, it does not enrich for CA and CT repeats, as noted for 5hmC DNA IP using antibodies to 5hmC. The anti-CMS protocol takes 3 d to complete.

  14. A genome-wide Asian genetic map and ethnic comparison: The GENDISCAN study

    Directory of Open Access Journals (Sweden)

    Sung Joohon

    2008-11-01

    Full Text Available Abstract Background Genetic maps provide specific positions of genetic markers, which are required for performing genetic studies. Linkage analyses of Asian families have been performed with Caucasian genetic maps, since appropriate genetic maps of Asians were not available. Different ethnic groups may have different recombination rates as a result of genomic variations, which would generate misspecification of the genetic map and reduce the power of linkage analyses. Results We constructed the genetic map of a Mongolian population in Asia with CRIMAP software. This new map, called the GENDISCAN map, is based on genotype data collected from 1026 individuals of 73 large Mongolian families, and includes 1790 total and 1500 observable meioses. The GENDISCAN map provides sex-averaged and sex-specific genetic positions of 1039 microsatellite markers in Kosambi centimorgans (cM with physical positions. We also determined 95% confidence intervals of genetic distances of the adjacent marker intervals. Genetic lengths of the whole genome, chromosomes and adjacent marker intervals are compared with those of Rutgers Map v.2, which was constructed based on Caucasian populations (Centre d'Etudes du Polymorphisme Humain (CEPH and Icelandic families by mapping methods identical to those of the GENDISCAN map, CRIMAP software and the Kosambi map function. Mongolians showed approximately 1.9 fewer recombinations per meiosis than Caucasians. As a result, genetic lengths of the whole genome and chromosomes of the GENDISCAN map are shorter than those of Rutgers Map v.2. Thirty-eight marker intervals differed significantly between the Mongolian and Caucasian genetic maps. Conclusion The new GENDISCAN map is applicable to the genetic study of Asian populations. Differences in the genetic distances between the GENDISCAN and Caucasian maps could facilitate elucidation of genomic variations between different ethnic groups.

  15. Exome sequencing and genome-wide copy number variant mapping reveal novel associations with sensorineural hereditary hearing loss.

    Science.gov (United States)

    Haraksingh, Rajini R; Jahanbani, Fereshteh; Rodriguez-Paris, Juan; Gelernter, Joel; Nadeau, Kari C; Oghalai, John S; Schrijver, Iris; Snyder, Michael P

    2014-12-20

    The genetic diversity of loci and mutations underlying hereditary hearing loss is an active area of investigation. To identify loci associated with predominantly non-syndromic sensorineural hearing loss, we performed exome sequencing of families and of single probands, as well as copy number variation (CNV) mapping in a case-control cohort. Analysis of three distinct families revealed several candidate loci in two families and a single strong candidate gene, MYH7B, for hearing loss in one family. MYH7B encodes a Type II myosin, consistent with a role for cytoskeletal proteins in hearing. High-resolution genome-wide CNV analysis of 150 cases and 157 controls revealed deletions in genes known to be involved in hearing (e.g. GJB6, OTOA, and STRC, encoding connexin 30, otoancorin, and stereocilin, respectively), supporting CNV contributions to hearing loss phenotypes. Additionally, a novel region on chromosome 16 containing part of the PDXDC1 gene was found to be frequently deleted in hearing loss patients (OR=3.91, 95% CI: 1.62-9.40, p=1.45×10(-7)). We conclude that many known as well as novel loci and distinct types of mutations not typically tested in clinical settings can contribute to the etiology of hearing loss. Our study also demonstrates the challenges of exome sequencing and genome-wide CNV mapping for direct clinical application, and illustrates the need for functional and clinical follow-up as well as curated open-access databases.

  16. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc..

    Directory of Open Access Journals (Sweden)

    Lidan Sun

    Full Text Available Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc. has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca, and apple (Malus×domestica genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb and almost twice as high as that of apple (398 SSR/Mb. Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs, with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.

  17. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    Science.gov (United States)

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  18. Genome Wide Association Mapping for Arabinoxylan Content in a Collection of Tetraploid Wheats.

    Directory of Open Access Journals (Sweden)

    Ilaria Marcotuli

    Full Text Available Arabinoxylans (AXs are major components of plant cell walls in bread wheat and are important in bread-making and starch extraction. Furthermore, arabinoxylans are components of soluble dietary fibre that has potential health-promoting effects in human nutrition. Despite their high value for human health, few studies have been carried out on the genetics of AX content in durum wheat.The genetic variability of AX content was investigated in a set of 104 tetraploid wheat genotypes and regions attributable to AX content were identified through a genome wide association study (GWAS. The amount of arabinoxylan, expressed as percentage (w/w of the dry weight of the kernel, ranged from 1.8% to 5.5% with a mean value of 4.0%. The GWAS revealed a total of 37 significant marker-trait associations (MTA, identifying 19 quantitative trait loci (QTL associated with AX content. The highest number of MTAs was identified on chromosome 5A (seven, where three QTL regions were associated with AX content, while the lowest number of MTAs was detected on chromosomes 2B and 4B, where only one MTA identified a single locus. Conservation of synteny between SNP marker sequences and the annotated genes and proteins in Brachypodium distachyon, Oryza sativa and Sorghum bicolor allowed the identification of nine QTL coincident with candidate genes. These included a glycosyl hydrolase GH35, which encodes Gal7 and a glucosyltransferase GT31 on chromosome 1A; a cluster of GT1 genes on chromosome 2B that includes TaUGT1 and cisZog1; a glycosyl hydrolase that encodes a CelC gene on chromosome 3A; Ugt12887 and TaUGT1genes on chromosome 5A; a (1,3-β-D-glucan synthase (Gsl12 gene and a glucosyl hydrolase (Cel8 gene on chromosome 7A.This study identifies significant MTAs for the AX content in the grain of tetraploid wheat genotypes. We propose that these may be used for molecular breeding of durum wheat varieties with higher soluble fibre content.

  19. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.

    Science.gov (United States)

    Zhou, Hua; Blangero, John; Dyer, Thomas D; Chan, Kei-Hang K; Lange, Kenneth; Sobel, Eric M

    2017-04-01

    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even datasets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper, we reexamine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (six CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1,388 individuals in 124 pedigrees) takes less than 2 min and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 min and 1.5 GB of memory. The algorithm is implemented as the Ped-GWAS Analysis (Option 29) in the Mendel statistical genetics package, which is

  20. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits

    Science.gov (United States)

    Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  1. Genome-Wide Mapping of in Vivo Protein-DNA Interactions

    OpenAIRE

    Johnson, David S.; Mortazavi, Ali; Myers, Richard M.; Wold, Barbara

    2007-01-01

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element–1 si...

  2. Genome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli

    OpenAIRE

    Glebes, Tirzah Y.; Sandoval, Nicholas R.; Philippa J Reeder; Schilling, Katherine D.; Min ZHANG; Ryan T Gill

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >105 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli ...

  3. Statistical mechanics of nucleosomes

    Science.gov (United States)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  4. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.).

    Science.gov (United States)

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A; Colecchia, Salvatore A; Mastrangelo, Anna M; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.

  5. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise;

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new...

  6. Prediction of total genetic value using genome-wide dense marker maps

    NARCIS (Netherlands)

    Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E.

    2001-01-01

    Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was

  7. A genome-wide SNP panel for mapping and association studies in the rat

    NARCIS (Netherlands)

    Nijman, Isaäc J; Kuipers, Sylvia; Verheul, Mark; Guryev, Victor; Cuppen, Edwin

    2008-01-01

    BACKGROUND: The laboratory rat (Rattus norvegicus) is an important model for human disease, and is extensively used for studying complex traits for example in the physiological and pharmacological fields. To facilitate genetic studies like QTL mapping, genetic makers that can be easily typed, like S

  8. A genome-wide SNP panel for mapping and association studies in the rat.

    NARCIS (Netherlands)

    Nijman, I.J.; Kuipers, S.; Verheul, M.; Guryev, V.; Cuppen, E.

    2008-01-01

    BACKGROUND: The laboratory rat (Rattus norvegicus) is an important model for human disease, and is extensively used for studying complex traits for example in the physiological and pharmacological fields. To facilitate genetic studies like QTL mapping, genetic makers that can be easily typed, like S

  9. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research.

    Science.gov (United States)

    Arun-Chinnappa, Kiruba S; McCurdy, David W

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.

  10. Genome-wide association data reveal a global map of genetic interactions among protein complexes.

    Directory of Open Access Journals (Sweden)

    Gregory Hannum

    2009-12-01

    Full Text Available This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.

  11. Genome-wide profiling of structural genomic variations in Korean HapMap individuals.

    Directory of Open Access Journals (Sweden)

    Joon Seol Bae

    Full Text Available BACKGROUND: Structural genomic variation study, along with microarray technology development has provided many genomic resources related with architecture of human genome, and led to the fact that human genome structure is a lot more complicated than previously thought. METHODOLOGY/PRINCIPAL FINDINGS: In the case of International HapMap Project, Epstein-Barr various immortalized cell lines were preferably used over blood in order to get a larger number of genomic DNA. However, genomic aberration stemming from immortalization process, biased representation of the donor tissue, and culture process may influence the accuracy of SNP genotypes. In order to identify chromosome aberrations including loss of heterozygosity (LOH, large-scale and small-scale copy number variations, we used Illumina HumanHap500 BeadChip (555,352 markers on Korean HapMap individuals (n = 90 to obtain Log R ratio and B allele frequency information, and then utilized the data with various programs including Illumina ChromoZone, cnvParition and PennCNV. As a result, we identified 28 LOHs (>3 mb and 35 large-scale CNVs (>1 mb, with 4 samples having completely duplicated chromosome. In addition, after checking the sample quality (standard deviation of log R ratio <0.30, we selected 79 samples and used both signal intensity and B allele frequency simultaneously for identification of small-scale CNVs (<1 mb to discover 4,989 small-scale CNVs. Identified CNVs in this study were successfully validated using visual examination of the genoplot images, overlapping analysis with previously reported CNVs in DGV, and quantitative PCR. CONCLUSION/SIGNIFICANCE: In this study, we describe the result of the identified chromosome aberrations in Korean HapMap individuals, and expect that these findings will provide more meaningful information on the human genome.

  12. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tirzah Y Glebes

    Full Text Available Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007 Nat. Method. approach to map, in parallel, the effect of increased dosage for >10(5 different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate. Only 268 of >4,000 E. coli genes (∼ 6% were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  13. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination.

    Science.gov (United States)

    Camara, Pablo G; Rosenbloom, Daniel I S; Emmett, Kevin J; Levine, Arnold J; Rabadan, Raul

    2016-07-01

    Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs.

  14. Genome-wide mapping of in vivo protein-DNA interactions.

    Science.gov (United States)

    Johnson, David S; Mortazavi, Ali; Myers, Richard M; Wold, Barbara

    2007-06-08

    In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a gene network scaffold. To map these protein-DNA interactions comprehensively across entire mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq) based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for repressor element-1 silencing transcription factor) to 1946 locations in the human genome. The data display sharp resolution of binding position [+/-50 base pairs (bp)], which facilitated our finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq data also have high sensitivity and specificity [ROC (receiver operator characteristic) area >/= 0.96] and statistical confidence (P <10(-4)), properties that were important for inferring new candidate interactions. These include key transcription factors in the gene network that regulates pancreatic islet cell development.

  15. Genome-wide mapping of furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Reeder, Philippa J; Schilling, Katherine D; Zhang, Min; Gill, Ryan T

    2014-01-01

    Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >10(5) different fragments of the Escherichia coli genome onto furfural tolerance (furfural is a key toxin of lignocellulosic hydrolysate). Only 268 of >4,000 E. coli genes (∼ 6%) were enriched after growth selections in the presence of furfural. Several of the enriched genes were cloned and tested individually for their effect on furfural tolerance. Overexpression of thyA, lpcA, or groESL individually increased growth in the presence of furfural. Overexpression of lpcA, but not groESL or thyA, resulted in increased furfural reduction rate, a previously identified mechanism underlying furfural tolerance. We additionally show that plasmid-based expression of functional LpcA or GroESL is required to confer furfural tolerance. This study identifies new furfural tolerant genes, which can be applied in future strain design efforts focused on the production of fuels and chemicals from lignocellulosic hydrolysate.

  16. Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics.

    Science.gov (United States)

    Yant, Levi

    2012-02-01

    How does evolution forge adaptive responses? Are many changes required or few? Just how complex are the transcriptional networks that control development? Diverse questions like these are being newly addressed by next-generation sequencing-based techniques. Facilitating a mechanistic understanding, these approaches reveal the direct in vivo interactions between transcription factors and their physical targets, combined with genome-scale readouts to comprehensively map adaptive gene regulatory networks (GRNs). Here I focus on pioneering work from the last 3 years that has leveraged these data to investigate diverse aspects of GRN circuitry controlling the reproductive transition in plants. These approaches have revealed surprising new functions for long-investigated key players in developmental programs and laid bare the basis for pleiotropy in many others, suggesting widespread process integration at the transcriptional level. Evolutionary questions begged by the recent deluge of GRN mapping data are being assessed anew, both by emerging work outside Arabidopsis thaliana and novel analyses within. These studies have swiftly exposed the distinctive power and adaptability of genome-wide GRN mapping and illustrate that this unique data type holds tremendous promise for plant biology.

  17. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Science.gov (United States)

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  18. Genome-Wide Association Mapping of Yield and Grain Quality Traits in Winter Wheat Genotypes.

    Directory of Open Access Journals (Sweden)

    W Tadesse

    Full Text Available The main goal of this study was to investigate the genetic basis of yield and grain quality traits in winter wheat genotypes using association mapping approach, and identify linked molecular markers for marker assisted selection. A total of 120 elite facultative/winter wheat genotypes were evaluated for yield, quality and other agronomic traits under rain-fed and irrigated conditions for two years (2011-2012 at the Tel Hadya station of ICARDA, Syria. The same genotypes were genotyped using 3,051 Diversity Array Technologies (DArT markers, of which 1,586 were of known chromosome positions. The grain yield performance of the genotypes was highly significant both in rain-fed and irrigated sites. Average yield of the genotypes ranged from 2295 to 4038 kg/ha and 4268 to 7102 kg/ha under rain-fed and irrigated conditions, respectively. Protein content and alveograph strength (W ranged from 13.6-16.1% and 217.6-375 Jx10-4, respectively. DArT markers wPt731910 (3B, wPt4680 (4A, wPt3509 (5A, wPt8183 (6B, and wPt0298 (2D were significantly associated with yield under rain-fed conditions. Under irrigated condition, tPt4125 on chromosome 2B was significantly associated with yield explaining about 13% of the variation. Markers wPt2607 and wPt1482 on 5B were highly associated with protein content and alveograph strength explaining 16 and 14% of the variations, respectively. The elite genotypes have been distributed to many countries using ICARDA's International system for potential direct release and/or use as parents after local adaptation trials by the NARSs of respective countries. The QTLs identified in this study are recommended to be used for marker assisted selection after through validation using bi-parental populations.

  19. Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX.

    Science.gov (United States)

    Hanghøj, Kristian; Seguin-Orlando, Andaine; Schubert, Mikkel; Madsen, Tobias; Pedersen, Jakob Skou; Willerslev, Eske; Orlando, Ludovic

    2016-12-01

    The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts.

  20. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  1. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yi Yin

    2013-10-01

    Full Text Available In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs. Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH. In this study, LOH events induced by ultraviolet (UV light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.

  2. Transferability and fine-mapping of genome-wide associated loci for adult height across human populations.

    Directory of Open Access Journals (Sweden)

    Daniel Shriner

    Full Text Available Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height were identified, primarily in individuals of East Asian (Chinese Han or Korean or European ancestry. Here, we examined 152 genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-values or = 0.3 with the reported variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of these transferable associations.

  3. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes.

  4. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme.

    Science.gov (United States)

    Ranc, Nicolas; Muños, Stephane; Xu, Jiaxin; Le Paslier, Marie-Christine; Chauveau, Aurélie; Bounon, Rémi; Rolland, Sophie; Bouchet, Jean-Paul; Brunel, Dominique; Causse, Mathilde

    2012-08-01

    Genome-wide association mapping is an efficient way to identify quantitative trait loci controlling the variation of phenotypes, but the approach suffers severe limitations when one is studying inbred crops like cultivated tomato (Solanum lycopersicum). Such crops exhibit low rates of molecular polymorphism and high linkage disequilibrium, which reduces mapping resolution. The cherry type tomato (S. lycopersicum var. cerasiforme) genome has been described as an admixture between the cultivated tomato and its wild ancestor, S. pimpinellifolium. We have thus taken advantage of the properties of this admixture to improve the resolution of association mapping in tomato. As a proof of concept, we sequenced 81 DNA fragments distributed on chromosome 2 at different distances in a core collection of 90 tomato accessions, including mostly cherry type tomato accessions. The 81 Sequence Tag Sites revealed 352 SNPs and indels. Molecular diversity was greatest for S. pimpinellifolium accessions, intermediate for S. l. cerasiforme accessions, and lowest for the cultivated group. We assessed the structure of molecular polymorphism and the extent of linkage disequilibrium over genetic and physical distances. Linkage disequilibrium decreased under r(2) = 0.3 within 1 cM, and minimal estimated value (r(2) = 0.13) was reached within 20 kb over the physical regions studied. Associations between polymorphisms and fruit weight, locule number, and soluble solid content were detected. Several candidate genes and quantitative trait loci previously identified were validated and new associations detected. This study shows the advantages of using a collection of S. l. cerasiforme accessions to overcome the low resolution of association mapping in tomato.

  5. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    Science.gov (United States)

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J B; Kruijer, Willem; Voorrips, Roeland E; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  6. Genome-wide Bisulfite Sequencing in Zygotes Identifies Demethylation Targets and Maps the Contribution of TET3 Oxidation

    Directory of Open Access Journals (Sweden)

    Julian R. Peat

    2014-12-01

    Full Text Available Fertilization triggers global erasure of paternal 5-methylcytosine as part of epigenetic reprogramming during the transition from gametic specialization to totipotency. This involves oxidation by TET3, but our understanding of its targets and the wider context of demethylation is limited to a small fraction of the genome. We employed an optimized bisulfite strategy to generate genome-wide methylation profiles of control and TET3-deficient zygotes, using SNPs to access paternal alleles. This revealed that in addition to pervasive removal from intergenic sequences and most retrotransposons, gene bodies constitute a major target of zygotic demethylation. Methylation loss is associated with zygotic genome activation and at gene bodies is also linked to increased transcriptional noise in early development. Our data map the primary contribution of oxidative demethylation to a subset of gene bodies and intergenic sequences and implicate redundant pathways at many loci. Unexpectedly, we demonstrate that TET3 activity also protects certain CpG islands against methylation buildup.

  7. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis.

    Science.gov (United States)

    Bac-Molenaar, Johanna A; Granier, Christine; Keurentjes, Joost J B; Vreugdenhil, Dick

    2016-01-01

    Large areas of arable land are often confronted with irregular rainfall resulting in limited water availability for part(s) of the growing seasons, which demands research for drought tolerance of plants. Natural variation was observed for biomass accumulation upon controlled moderate drought stress in 324 natural accessions of Arabidopsis. Improved performance under drought stress was correlated with early flowering and lack of vernalization requirement, indicating overlap in the regulatory networks of flowering time and drought response or correlated responses of these traits to natural selection. In addition, plant size was negatively correlated with relative water content (RWC) independent of the absolute water content (WC), indicating a prominent role for soluble compounds. Growth in control and drought conditions was determined over time and was modelled by an exponential function. Genome-wide association (GWA) mapping of temporal plant size data and of model parameters resulted in the detection of six time-dependent quantitative trait loci (QTLs) strongly associated with drought. Most QTLs would not have been identified if plant size was determined at a single time point. Analysis of earlier reported gene expression changes upon drought enabled us to identify for each QTL the most likely candidates.

  8. Genome-Wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association stud...

  9. Functional roles of nucleosome stability and dynamics.

    Science.gov (United States)

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  10. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Williams, H J; Norton, N; Dwyer, S; Moskvina, V; Nikolov, I; Carroll, L; Georgieva, L; Williams, N M; Morris, D W; Quinn, E M; Giegling, I; Ikeda, M; Wood, J; Lencz, T; Hultman, C; Lichtenstein, P; Thiselton, D; Maher, B S; Malhotra, A K; Riley, B; Kendler, K S; Gill, M; Sullivan, P; Sklar, P; Purcell, S; Nimgaonkar, V L; Kirov, G; Holmans, P; Corvin, A; Rujescu, D; Craddock, N; Owen, M J; O'Donovan, M C

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  11. Improved genome-wide mapping of uncapped and cleaved transcripts in eukaryotes--GMUCT 2.0.

    Science.gov (United States)

    Willmann, Matthew R; Berkowitz, Nathan D; Gregory, Brian D

    2014-05-01

    The advent of high-throughput sequencing has led to an explosion of studies into the diversity, expression, processing, and lifespan of RNAs. Recently, three different high-throughput sequencing-based methods have been developed to specifically study RNAs that are in the process of being degraded. All three methods-genome-wide mapping of uncapped and cleaved transcripts (GMUCT), parallel analysis of RNA ends (PARE), and degradome sequencing-take advantage of the fact that Illumina sequencing libraries use T4 RNA ligase 1 to ligate an adapter to the 5' end of RNAs that have a free 5'-monophosphate. This condition for T4 RNA ligase 1 substrates means that mature mRNAs are not substrates of the enzyme because they have a 5'-cap moiety. As a result, these sequencing libraries are specifically made up of clones of decapped or degrading mRNAs resulting from 5'-to-3' or nonsense-mediated decay (NMD) and the 3' fragment of cleaved microRNA (miRNA) and small interfering RNA (siRNA) target RNAs. Here, we present a massively streamlined protocol for GMUCT that takes 2-3days, can be initiated with as little as 5μg of starting total RNA, and involves only one gel size-selection step. We show that the resulting datasets are similar to those produced using the previous GMUCT and PARE protocols. In total, our results suggest that this method will be the preferable approach for future studies of RNA degradation intermediates and small RNA-mediated cleavage in eukaryotic transcriptomes.

  12. Genome-wide association mapping and pathway analysis of leukosis incidence in a US Holstein cattle population.

    Science.gov (United States)

    Abdalla, E A; Peñagaricano, F; Byrem, T M; Weigel, K A; Rosa, G J M

    2016-08-01

    Bovine leukosis virus is an oncogenic virus that infects B cells, causing bovine leukosis disease. This disease is known to have a negative impact on dairy cattle production and, because no treatment or vaccine is available, finding a possible genetic solution is important. Our objective was to perform a comprehensive genetic analysis of leukosis incidence in dairy cattle. Data on leukosis occurrence, pedigree and molecular information were combined into multitrait GBLUP models with milk yield (MY) and somatic cell score (SCS) to estimate genetic parameters and to perform whole-genome scans and pathway analysis. Leukosis data were available for 11 554 Holsteins daughters of 3002 sires from 112 herds in 16 US states. Genotypes from a 60K SNP panel were available for 961 of those bulls as well as for 2039 additional bulls. Heritability for leukosis incidence was estimated at about 8%, and the genetic correlations of leukosis disease incidence with MY and SCS were moderate at 0.18 and 0.20 respectively. The genome-wide scan indicated that leukosis is a complex trait, possibly modulated by many genes. The gene set analysis identified many functional terms that showed significant enrichment of genes associated with leukosis. Many of these terms, such as G-Protein Coupled Receptor Signaling Pathway, Regulation of Nucleotide Metabolic Process and different calcium-related processes, are known to be related to retrovirus infection. Overall, our findings contribute to a better understanding of the genetic architecture of this complex disease. The functional categories associated with leukosis may be useful in future studies on fine mapping of genes and development of dairy cattle breeding strategies.

  13. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    LENUS (Irish Health Repository)

    Williams, H J

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia\\/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  14. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder

    NARCIS (Netherlands)

    Williams, H.J.; Norton, N.; Dwyer, S.; Moskvina, V.; Nikolov, I.; Carroll, L.; Georgieva, L.; Williams, N.M.; Morris, D.W.; Quinn, E.M.; Giegling, I.; Ikeda, M.; Wood, J.; Lencz, T.; Hultman, C.; Lichtenstein, P.; Thiselton, D.; Maher, B.S.; Malhotra, A.K.; Riley, B.; Kendler, K.S.; Gill, M.; Sullivan, P.; Sklar, P.; Purcell, S.; Nimgaonkar, V.L.; Kirov, G.; Holmans, P.; Corvin, A.; Rujescu, D.; Craddock, N.; Owen, M.J.; O'Donovan, M.C.; GROUP investigators, [No Value

    2011-01-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P = 1.61 x 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P = 9.96 x 10(-9)). In this

  15. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map

    Science.gov (United States)

    Nimmakayala, Padma; Tomason, Yan R.; Abburi, Venkata L.; Alvarado, Alejandra; Saminathan, Thangasamy; Vajja, Venkata G.; Salazar, Germania; Panicker, Girish K.; Levi, Amnon; Wechter, William P.; McCreight, James D.; Korol, Abraham B.; Ronin, Yefim; Garcia-Mas, Jordi; Reddy, Umesh K.

    2016-01-01

    Melon (Cucumis melo L.) is a phenotypically diverse eudicot diploid (2n = 2x = 24) has climacteric and non-climacteric morphotypes and show wide variation for fruit firmness, an important trait for transportation and shelf life. We generated 13,789 SNP markers using genotyping-by-sequencing (GBS) and anchored them to chromosomes to understand genome-wide fixation indices (Fst) between various melon morphotypes and genomewide linkage disequilibrium (LD) decay. The FST between accessions of cantalupensis and inodorus was 0.23. The FST between cantalupensis and various agrestis accessions was in a range of 0.19–0.53 and between inodorus and agrestis accessions was in a range of 0.21–0.59 indicating sporadic to wide ranging introgression. The EM (Expectation Maximization) algorithm was used for estimation of 1436 haplotypes. Average genome-wide LD decay for the melon genome was noted to be 9.27 Kb. In the current research, we focused on the genome-wide divergence underlying diverse melon horticultural groups. A high-resolution genetic map with 7153 loci was constructed. Genome-wide segregation distortion and recombination rate across various chromosomes were characterized. Melon has climacteric and non-climacteric morphotypes and wide variation for fruit firmness, a very important trait for transportation and shelf life. Various levels of QTLs were identified with high to moderate stringency and linked to fruit firmness using both genome-wide association study (GWAS) and biparental mapping. Gene annotation revealed some of the SNPs are located in β-D-xylosidase, glyoxysomal malate synthase, chloroplastic anthranilate phosphoribosyltransferase, and histidine kinase, the genes that were previously characterized for fruit ripening and softening in other crops. PMID:27713759

  16. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder

    OpenAIRE

    Williams, H J; Norton, N; Dwyer, S.; Moskvina, V; Nikolov, I.; Carroll, L.; Georgieva, L; Williams, N. M.; Morris, D.W.; Quinn, E.M.; Giegling, I; M. Ikeda(Kyoto University); Wood, J; Lencz, T; Hultman, C.

    2011-01-01

    Abstract A recent genome wide association study reported evidence for association between rs1344706 within ZNF804A (encoding zinc finger protein 804A) and schizophrenia (P=1.61 x10-7), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 x10-9). Here we provide additional evidence for association through meta-analysis of a larger dataset (schizophrenia/schizoaffective disorder N = 18945, schizophrenia plus bipolar disorder N =21274, controls N ...

  17. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding......In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... decreased expression of NCE103, encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity...

  18. Local Genealogies in a Linear Mixed Model for Genome-wide Association Mapping in Complex Pedigreed Populations

    DEFF Research Database (Denmark)

    Sahana, Goutam; Mailund, Thomas; Lund, Mogens Sandø

    2011-01-01

    be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called ‘GENMIX (genealogy based mixed model)’ which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA. Subjects and Methods: We validated......Introduction: The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS) is unified mixed model analysis (MMA). This approach is very flexible, can be applied to both family-based and population-based samples, and can...

  19. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  20. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Science.gov (United States)

    Khajuria, Yash Paul; Saxena, Maneesha S; Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  1. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  2. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea

    Science.gov (United States)

    Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K.; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7–23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  3. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms.

    Science.gov (United States)

    Porth, Ilga; Klapšte, Jaroslav; Skyba, Oleksandr; Hannemann, Jan; McKown, Athena D; Guy, Robert D; DiFazio, Stephen P; Muchero, Wellington; Ranjan, Priya; Tuskan, Gerald A; Friedmann, Michael C; Ehlting, Juergen; Cronk, Quentin C B; El-Kassaby, Yousry A; Douglas, Carl J; Mansfield, Shawn D

    2013-11-01

    Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29,233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.

  4. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  5. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...... could suggest the existence of evolutionarily preserved genetic mechanisms for BMI whereas the multiple suggestive loci could represent genetic effect from gene-environment interaction as a result of population-specific environmental adaptation....

  6. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.

    Directory of Open Access Journals (Sweden)

    Wenchao Zhang

    2016-05-01

    Full Text Available The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is important in regulating biological function and is considered to explain part of the 'missing heritability,' which involves marginal genetic effects that cannot be accounted for in genome-wide association studies. Thus, the study of epistasis is of great interest to geneticists. However, estimating epistatic effects for quantitative traits is challenging due to the large number of interaction effects that must be estimated, thus significantly increasing computing demands. Here, we present a new web server-based tool, the Pipeline for estimating EPIStatic genetic effects (PEPIS, for analyzing polygenic epistatic effects. The PEPIS software package is based on a new linear mixed model that has been used to predict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for kinship matrix calculation, and the second for polygenic component analyses and genome scanning for main and epistatic effects. To accommodate the demand for high-performance computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the modules for kinship matrix calculations and main and epistatic-effect genome scanning employ parallel computing technology that effectively utilizes multiple computer nodes across our networked cluster, thus significantly improving the computational speed. For example, when analyzing the same immortalized F2 rice population genotypic data examined in a previous study, the PEPIS returned identical results at each analysis step with the original prototype R code, but the computational time was reduced from more than one month to about five minutes. These advances will help overcome the bottleneck frequently encountered in genome wide epistatic genetic effect analysis and enable accommodation of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.org/PolyGenic_QTL/.

  7. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.

    Science.gov (United States)

    Zhang, Wenchao; Dai, Xinbin; Wang, Qishan; Xu, Shizhong; Zhao, Patrick X

    2016-05-01

    The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is important in regulating biological function and is considered to explain part of the 'missing heritability,' which involves marginal genetic effects that cannot be accounted for in genome-wide association studies. Thus, the study of epistasis is of great interest to geneticists. However, estimating epistatic effects for quantitative traits is challenging due to the large number of interaction effects that must be estimated, thus significantly increasing computing demands. Here, we present a new web server-based tool, the Pipeline for estimating EPIStatic genetic effects (PEPIS), for analyzing polygenic epistatic effects. The PEPIS software package is based on a new linear mixed model that has been used to predict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for kinship matrix calculation, and the second for polygenic component analyses and genome scanning for main and epistatic effects. To accommodate the demand for high-performance computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the modules for kinship matrix calculations and main and epistatic-effect genome scanning employ parallel computing technology that effectively utilizes multiple computer nodes across our networked cluster, thus significantly improving the computational speed. For example, when analyzing the same immortalized F2 rice population genotypic data examined in a previous study, the PEPIS returned identical results at each analysis step with the original prototype R code, but the computational time was reduced from more than one month to about five minutes. These advances will help overcome the bottleneck frequently encountered in genome wide epistatic genetic effect analysis and enable accommodation of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.org/PolyGenic_QTL/.

  8. Genome-wide scan in Portuguese Island families implicates multiple loci in bipolar disorder: fine mapping adds support on chromosomes 6 and 11.

    Science.gov (United States)

    Pato, Carlos N; Pato, M T; Kirby, A; Petryshen, T L; Medeiros, H; Carvalho, C; Macedo, A; Dourado, A; Coelho, I; Valente, J; Soares, M J; Ferreira, C P; Lei, M; Verner, A; Hudson, T J; Morley, C P; Kennedy, J L; Azevedo, M H; Daly, M J; Sklar, P

    2004-05-15

    As part of an extensive study in the Portuguese Island population of families with multiple patients suffering from bipolar disorder and schizophrenia, we performed an initial genome-wide scan of 16 extended families with bipolar disorder that identified three regions on chromosomes 2, 11, and 19 with genome-wide suggestive linkage and several other regions, including chromosome 6q, also approached suggestive levels of significance. Dick et al. [2003: Am J Hum Genet 73:107-114] recently reported in a study of 250 families with bipolar disorder a maxLOD score of 3.61 near marker D6S1021 on chromosome 6q. This study replicates this finding having detected a peak NPL = 2.02 (P = 0.025) with the same marker D6S1021(104.7 Mb). Higher-density mapping provided additional support for loci on chromosome 6 including marker D6S1021 with an NPL = 2.59 (P = 0.0068) and peaking at marker D6S1639 (125 Mb) with an NPL = 3.06 (P = 0.0019). A similar pattern was detected with higher-density mapping of chromosome 11 with an NPL = 3.15 (P = 0.0014) at marker D11S1883 (63.1 Mb). Simulations at the density of our fine mapping data indicate that less than 1 scan out of 10 would find two such scores genome-wide in the same scan by chance. Our findings provide additional support for a susceptibility locus for bipolar disorder on 6q, as well as, suggesting the importance of denser scans. Published 2004 Wiley-Liss, Inc.

  9. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  10. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  11. Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids

    Directory of Open Access Journals (Sweden)

    Hansen Marianne HS

    2011-07-01

    Full Text Available Abstract Background Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA in combination with linkage disequilibrium-linkage analysis (LDLA to identify quantitative trait loci (QTL associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251 and Duroc (n = 918 breeds. Results Altogether, 14 genome wide significant (GWS QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14. Conclusion This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i

  12. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    Science.gov (United States)

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  13. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    Directory of Open Access Journals (Sweden)

    Albert Kertho

    Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  14. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.

    Science.gov (United States)

    Hatzig, Sarah V; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

  15. Genome-wide mapping of Quantitative Trait Loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses

    Directory of Open Access Journals (Sweden)

    Bartenschlager Heinz

    2010-07-01

    Full Text Available Abstract Background QTL affecting fat deposition related performance traits have been considered in several studies and mapped on numerous porcine chromosomes. However, activity of specific enzymes, protein content and cell structure in fat tissue probably depend on a smaller number of genes than traits related to fat content in carcass. Thus, in this work traits related to metabolic and cytological features of back fat tissue and fat related performance traits were investigated in a genome-wide QTL analysis. QTL similarities and differences were examined between three F2 crosses, and between male and female animals. Methods A total of 966 F2 animals originating from crosses between Meishan (M, Pietrain (P and European wild boar (W were analysed for traits related to fat performance (11, enzymatic activity (9 and number and volume of fat cells (20. Per cross, 216 (M × P, 169 (W × P and 195 (W × M genome-wide distributed marker loci were genotyped. QTL mapping was performed separately for each cross in steps of 1 cM and steps were reduced when the distance between loci was shorter. The additive and dominant components of QTL positions were detected stepwise by using a multiple position model. Results A total of 147 genome-wide significant QTL (76 at P CAPN6. Additional genome-wide significant QTL were found on SSC8, 12, 13, 14, 16, and 18. In many cases, the QTL are mainly additive and differ between F2 crosses. Many of the QTL profiles possess multiple peaks especially in regions with a high marker density. Sex specific analyses, performed for example on SSC6, SSC7 and SSCX, show that for some traits the positions differ between male and female animals. For the selected traits, the additive and dominant components that were analysed for QTL positions on different chromosomes, explain in combination up to 23% of the total trait variance. Conclusions Our results reveal specific and partly new QTL positions across genetically diverse pig crosses

  16. nuMap:A Web Platform for Accurate Prediction of Nucleosome Positioning

    Institute of Scientific and Technical Information of China (English)

    Bader A Alharbi; Thamir H Alshammari; Nathan L Felton; Victor B Zhurkin; Feng Cui

    2014-01-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and param-eters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site.

  17. Single-nucleosome mapping of histone modifications in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Chih Long Liu

    2005-10-01

    Full Text Available Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes from those at another location (e.g., over the 3' ends of coding regions. These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role.

  18. Genome-wide association mapping unravels the genetic control of seed germination and vigour in Brassica napus

    Directory of Open Access Journals (Sweden)

    Sarah Vanessa Hatzig

    2015-04-01

    Full Text Available Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigour would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.. A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60kSNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigour, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding,. Conditions during seed production and storage were shown to have a profound effect on seed vigour, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologues of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1, ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4 and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1, which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

  19. Local genealogies in a linear mixed model for genome-wide association mapping in complex pedigreed populations.

    Directory of Open Access Journals (Sweden)

    Goutam Sahana

    Full Text Available INTRODUCTION: The state-of-the-art for dealing with multiple levels of relationship among the samples in genome-wide association studies (GWAS is unified mixed model analysis (MMA. This approach is very flexible, can be applied to both family-based and population-based samples, and can be extended to incorporate other effects in a straightforward and rigorous fashion. Here, we present a complementary approach, called 'GENMIX (genealogy based mixed model' which combines advantages from two powerful GWAS methods: genealogy-based haplotype grouping and MMA. SUBJECTS AND METHODS: We validated GENMIX using genotyping data of Danish Jersey cattle and simulated phenotype and compared to the MMA. We simulated scenarios for three levels of heritability (0.21, 0.34, and 0.64, seven levels of MAF (0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 and five levels of QTL effect (0.1, 0.2, 0.5, 0.7 and 1.0 in phenotypic standard deviation unit. Each of these 105 possible combinations (3 h(2 x 7 MAF x 5 effects of scenarios was replicated 25 times. RESULTS: GENMIX provides a better ranking of markers close to the causative locus' location. GENMIX outperformed MMA when the QTL effect was small and the MAF at the QTL was low. In scenarios where MAF was high or the QTL affecting the trait had a large effect both GENMIX and MMA performed similarly. CONCLUSION: In discovery studies, where high-ranking markers are identified and later examined in validation studies, we therefore expect GENMIX to enrich candidates brought to follow-up studies with true positives over false positives more than the MMA would.

  20. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments

    Science.gov (United States)

    Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2015-01-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541

  1. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait.

    Science.gov (United States)

    Husby, Arild; Kawakami, Takeshi; Rönnegård, Lars; Smeds, Linnéa; Ellegren, Hans; Qvarnström, Anna

    2015-05-07

    Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.

  2. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    Science.gov (United States)

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H (2) = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  3. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.

    Directory of Open Access Journals (Sweden)

    Yair Field

    2008-11-01

    Full Text Available The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of approximately 380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted organizations over other factor sites, where factors bind without competition.

  4. AFM Imaging of SWI/SNF action: mapping the nucleosome remodeling and sliding

    CERN Document Server

    Montel, Fabien; Saint-Jean, Philippe; Castelnovo, Martin; Moskalenko-Faivre, Cendrine

    2007-01-01

    We propose a combined experimental (Atomic Force Microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows to determine simultaneously the DNA complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleo-proteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the in the length distribution of DNA complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA complexed length, we extract the net wrapping energy of DNA onto the histone octamer, and compare it to previous studies.

  5. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions.

    Science.gov (United States)

    Turner, Leslie M; Harr, Bettina

    2014-12-09

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.

  6. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    Directory of Open Access Journals (Sweden)

    Steven E Weicksel

    Full Text Available Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors. However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  7. Genetic diversity for Russian wheat aphid resistance as determined by genome-wide association mapping and inheritance in progeny

    Science.gov (United States)

    Russian wheat aphid (RWA) is an increasing problem on barley throughout the world. Genetic resistance has been identified and used to create barley germplasm and cultivars adapted to the US. Several mapping studies have been conducted to identify loci associated with resistance, but questions remain...

  8. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep r

  9. A re-assigned American mink (Neovison vison) map optimal for genome-wide studies

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Nielsen, Vivi; Markakis, Marios Nektarius

    2012-01-01

    to 14 linkage groups corresponding to the mink autosomes. Six markers are unlinked and four markers are allocated to the X chromosome by homology but no linkage was detected. The sex-average linkage map spans 1192 centiMorgans (cM) with an average intermarker distance of 11.4cM and 1648cM when the ends...

  10. Genome-wide nucleosome positioning mode and relationship with TFBS dis-tribution in human CD4 +T cell%人类CD4+T细胞核小体定位模式及其与TFBS分布特征关系研究

    Institute of Scientific and Technical Information of China (English)

    蓝贤梅; 黄艳; 崔颖

    2014-01-01

    目的:研究人类CD4+T细胞全基因组核小体抑制和激活状态下的定位模式,转录因子结合位点( Transcription factor binding site , TFBS)分布特征以及两者之间的关系。方法采用生物信息学软件R、Java等通过编写比对算法进行统计学分析。结果人类CD4+T细胞中核小体定位在染色质上的分布比例为0.6,从休眠到激活状态核小体定位发生位置改变,呈现稳定定位模式和动态定位模式,且比例分别为2%和98%,核小体定位具有较大的动态变化性;核小体定位与TFBS位置关系研究中,发现分布在核小体内的TFBS数目较大,但总体长度较短;而分布在连接DNA上的TFBS数目相对较少,但总体长度较长。结论人类CD4+T细胞休眠和激活状态下全基因组的核小体定位模式基本一致,核小体定位与TFBS关系有明显特征。%Objective To study the human genome-wide nucleosome positioning mode from CD4 +T cell under inhibition and activation status , TFBS distribution characteristics as well as the relationship between them .Methods Using bioinformatics software R , Java to write align-ment algorithms to perform statistical analysis .Results The nucleosomes positioning rate on the chromatin in human CD 4 +T cell was about 60%.Nucleosome positioning lacation came to change when condition of cell was from rest condition to activity condition , both stable positio-ning mode and dynamic positioning mode , and the proportion of them in all of nucleosome posi-tioning were 2%and 98%respectively .Nucleosome positioning appeared larger dynamic varia-bility.Studying the position relationship between nucleosome positioning and TFBS , found that the distribution number of TFBS in nucleosome positioning sequences was bigger , but the over-all length was shorter .And distribution number in the linker was relatively small , but the over-all length was longer than the other .Conclusion The distribution

  11. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  12. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hui Jin

    2016-07-01

    Full Text Available Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.. In the present study, a recombinant inbred line (RIL population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA and Mixolab parameters using 90K and 660K single nucleotide polymorphism (SNP chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90K and 660K SNP assays spanned a total length of 4,121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6,596 new SNP markers were anchored to the bread wheat linkage map, with 1,046 and 5,550 markers from the 90K and 660K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP technique for improvement of processing quality in bread wheat.

  13. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations.

    Science.gov (United States)

    Schielzeth, Holger; Husby, Arild

    2014-07-01

    A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.

  14. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber.

    Science.gov (United States)

    Zhang, Zhonghua; Mao, Linyong; Chen, Huiming; Bu, Fengjiao; Li, Guangcun; Sun, Jinjing; Li, Shuai; Sun, Honghe; Jiao, Chen; Blakely, Rachel; Pan, Junsong; Cai, Run; Luo, Ruibang; Van de Peer, Yves; Jacobsen, Evert; Fei, Zhangjun; Huang, Sanwen

    2015-06-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber.

  15. Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun

    2016-11-01

    Nine QTL for black point resistance in wheat were identified using a RIL population derived from a Linmai 2/Zhong 892 cross and 90K SNP assay. Black point, discoloration of the embryo end of the grain, downgrades wheat grain quality leading to significant economic losses to the wheat industry. The availability of molecular markers will accelerate improvement of black point resistance in wheat breeding. The aims of this study were to identify quantitative trait loci (QTL) for black point resistance and tightly linked molecular markers, and to search for candidate genes using a high-density genetic linkage map of wheat. A recombinant inbred line (RIL) population derived from the cross Linmai 2/Zhong 892 was evaluated for black point reaction during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for seven environments. A high-density linkage map was constructed by genotyping the RILs with the wheat 90K single nucleotide polymorphism (SNP) chip. Composite interval mapping detected nine QTL on chromosomes 2AL, 2BL, 3AL, 3BL, 5AS, 6A, 7AL (2) and 7BS, designated as QBp.caas-2AL, QBp.caas-2BL, QBp.caas-3AL, QBp.caas-3BL, QBp.caas-5AS, QBp.caas-6A, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS, respectively. All resistance alleles, except for QBp.caas-7AL.1 from Linmai 2, were contributed by Zhong 892. QBp.caas-3BL, QBp.caas-5AS, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS probably represent new loci for black point resistance. Sequences of tightly linked SNPs were used to survey wheat and related cereal genomes identifying three candidate genes for black point resistance. The tightly linked SNP markers can be used in marker-assisted breeding in combination with the kompetitive allele specific PCR technique to improve black point resistance.

  16. Genome-wide mapping of transcription start sites yields novel insights into the primary transcriptome of Pseudomonas putida

    DEFF Research Database (Denmark)

    D'Arrigo, Isotta; Bojanovic, Klara; Yang, Xiaochen

    2016-01-01

    was examined using an in vivo assay with GFP-fusion vectors and shown to function via a translational repression mechanism. Furthermore, 56 novel intergenic small RNAs and 8 putative actuaton transcripts were detected, as well as 8 novel open reading frames (ORFs). This study illustrates how global mapping...... elements of P. putida strain KT2440. A total of 7937 putative transcription start sites (TSSs) were identified, where over two-thirds were located either on the opposite strand or internal to annotated genes. For TSSs associated with mRNAs, sequence analysis revealed a clear Shine–Dalgarno sequence...... but a lack of conserved overrepresented promoter motifs. These TSSs defined approximately 50 leaderless transcripts and an abundance of mRNAs with long leader regions of which 18 contain RNA regulatory elements from the Rfam database. The thiamine pyrophosphate riboswitch upstream of the thiC gene...

  17. Genome-wide mapping of hot spots of DNA double-strand breaks in human cells as a tool for epigenetic studies and cancer genomics

    Directory of Open Access Journals (Sweden)

    N.A. Tchurikov

    2015-09-01

    Full Text Available Hot spots of DNA double-strand breaks (DSBs are associated with coordinated expression of genes in chromosomal domains (Tchurikov et al., 2011 [1]; 2013. These 50–150-kb DNA domains (denoted “forum domains” can be visualized by separation of undigested chromosomal DNA in pulsed-field agarose gels (Tchurikov et al., 1988; 1992 and used for genome-wide mapping of the DSBs that produce them. Recently, we described nine hot spots of DSBs in human rDNA genes and observed that, in rDNA units, the hot spots coincide with CTCF binding sites and H3K4me3 marks (Tchurikov et al., 2014, suggesting a role for DSBs in active transcription. Here we have used Illumina sequencing to map DSBs in chromosomes of human HEK293T cells, and describe in detail the experimental design and bioinformatics analysis of the data deposited in the Gene Expression Omnibus with accession number GSE53811 and associated with the study published in DNA Research (Kravatsky et al., 2015. Our data indicate that H3K4me3 marks often coincide with hot spots of DSBs in HEK293T cells and that the mapping of these hot spots is important for cancer genomic studies.

  18. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa).

    Science.gov (United States)

    Begum, Hasina; Spindel, Jennifer E; Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.

  19. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  20. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

    Science.gov (United States)

    Dellino, Gaetano Ivan; Cittaro, Davide; Piccioni, Rossana; Luzi, Lucilla; Banfi, Stefania; Segalla, Simona; Cesaroni, Matteo; Mendoza-Maldonado, Ramiro; Giacca, Mauro; Pelicci, Pier Giuseppe

    2013-01-01

    We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.

  1. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Mathilde de Taffin

    Full Text Available Collier, the single Drosophila COE (Collier/EBF/Olf-1 transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.

  2. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells

    Directory of Open Access Journals (Sweden)

    Yanghua eHe

    2014-10-01

    Full Text Available DNase I hypersensitive sites (DHSs mark diverse classes of cis-regulatory regions, such as promoters and enhancers. MSB-1 derived from chicken Marek's disease (MD lymphomas is an MDV-transformed CD4+ T-cell line for MD study. Previously, DNase I HS sites were studied mainly in human cell types for mammalian. To capture the regulatory elements specific to MSB1 cells and explore the molecular mechanisms of T-cell transformation caused by MDV in MD, we generated high-quality of DHSs map and gene expression profile for functional analysis in MSB1 cell line. The total of 21,724 significant peaks of DHSs was identified from around 40 million short reads. DHSs distribution varied between chromosomes and they preferred to enrich in the gene-rich chromosomes. More interesting, DHSs enrichments appeared to be scarce on regions abundant in CpG islands. Besides, we integrated DHSs into the gene expression data and found that DHSs tended to enrich on high expressed genes throughout whole gene regions while DHSs did not show significant changes for low and silent expressed genes. Furthermore, the correlation of DHSs with lincRNAs expression was also calculated and it implied that enhancer-associated lincRNAs probably originated from enhancer-like regions of DHSs. Together, our results indicated that DNase I HS sites highly correlate with active genes expression in MSB1 cells, suggesting DHSs can be considered as markers to identify the cis-regulatory elements associated with chicken Marek’s disease.

  3. Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen Leptospira interrogans

    Science.gov (United States)

    Zhukova, Anna; Fernandes, Luis Guilherme; Hugon, Perrine; Pappas, Christopher J.; Sismeiro, Odile; Coppée, Jean-Yves; Becavin, Christophe; Malabat, Christophe; Eshghi, Azad; Zhang, Jun-Jie; Yang, Frank X.; Picardeau, Mathieu

    2017-01-01

    Leptospira are emerging zoonotic pathogens transmitted from animals to humans typically through contaminated environmental sources of water and soil. Regulatory pathways of pathogenic Leptospira spp. underlying the adaptive response to different hosts and environmental conditions remains elusive. In this study, we provide the first global Transcriptional Start Site (TSS) map of a Leptospira species. RNA was obtained from the pathogen Leptospira interrogans grown at 30°C (optimal in vitro temperature) and 37°C (host temperature) and selectively enriched for 5′ ends of native transcripts. A total of 2865 and 2866 primary TSS (pTSS) were predicted in the genome of L. interrogans at 30 and 37°C, respectively. The majority of the pTSSs were located between 0 and 10 nucleotides from the translational start site, suggesting that leaderless transcripts are a common feature of the leptospiral translational landscape. Comparative differential RNA-sequencing (dRNA-seq) analysis revealed conservation of most pTSS at 30 and 37°C. Promoter prediction algorithms allow the identification of the binding sites of the alternative sigma factor sigma 54. However, other motifs were not identified indicating that Leptospira consensus promoter sequences are inherently different from the Escherichia coli model. RNA sequencing also identified 277 and 226 putative small regulatory RNAs (sRNAs) at 30 and 37°C, respectively, including eight validated sRNAs by Northern blots. These results provide the first global view of TSS and the repertoire of sRNAs in L. interrogans. These data will establish a foundation for future experimental work on gene regulation under various environmental conditions including those in the host. PMID:28154810

  4. Predicting nucleosome positioning using a duration Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Widom Jonathan

    2010-06-01

    Full Text Available Abstract Background The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting nucleosome positioning can help understanding how a genome's nucleosome organization may facilitate genome function. Results We present a duration Hidden Markov model for nucleosome positioning prediction by explicitly modeling the linker DNA length. The nucleosome and linker models trained from yeast data are re-scaled when making predictions for other species to adjust for differences in base composition. A software tool named NuPoP is developed in three formats for free download. Conclusions Simulation studies show that modeling the linker length distribution and utilizing a base composition re-scaling method both improve the prediction of nucleosome positioning regarding sensitivity and false discovery rate. NuPoP provides a user-friendly software tool for predicting the nucleosome occupancy and the most probable nucleosome positioning map for genomic sequences of any size. When compared with two existing methods, NuPoP shows improved performance in sensitivity.

  5. Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on linkage and genome-wide association mapping

    Directory of Open Access Journals (Sweden)

    Giovanni eLaidò

    2015-12-01

    Full Text Available Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. (Pgt, is one of the most destructive diseases of wheat. Races of the pathogen in the Ug99 lineage are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant

  6. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq).

    Science.gov (United States)

    Mahat, Dig Bijay; Kwak, Hojoong; Booth, Gregory T; Jonkers, Iris H; Danko, Charles G; Patel, Ravi K; Waters, Colin T; Munson, Katie; Core, Leighton J; Lis, John T

    2016-08-01

    We provide a protocol for precision nuclear run-on sequencing (PRO-seq) and its variant, PRO-cap, which map the location of active RNA polymerases (PRO-seq) or transcription start sites (TSSs) (PRO-cap) genome-wide at high resolution. The density of RNA polymerases at a particular genomic locus directly reflects the level of nascent transcription at that region. Nuclei are isolated from cells and, under nuclear run-on conditions, transcriptionally engaged RNA polymerases incorporate one or, at most, a few biotin-labeled nucleotide triphosphates (biotin-NTPs) into the 3' end of nascent RNA. The biotin-labeled nascent RNA is used to prepare sequencing libraries, which are sequenced from the 3' end to provide high-resolution positional information for the RNA polymerases. PRO-seq provides much higher sensitivity than ChIP-seq, and it generates a much larger fraction of usable sequence reads than ChIP-seq or NET-seq (native elongating transcript sequencing). Similarly to NET-seq, PRO-seq maps the RNA polymerase at up to base-pair resolution with strand specificity, but unlike NET-seq it does not require immunoprecipitation. With the protocol provided here, PRO-seq (or PRO-cap) libraries for high-throughput sequencing can be generated in 4-5 working days. The method has been applied to human, mouse, Drosophila melanogaster and Caenorhabditis elegans cells and, with slight modifications, to yeast.

  7. Genome-wide QTL mapping for three traits related to teat number in a White Duroc × Erhualian pig resource population

    Directory of Open Access Journals (Sweden)

    Ai Huashui

    2009-02-01

    Full Text Available Abstract Background Teat number is an important fertility trait for pig production, reflecting the mothering ability of sows. It is also a discrete and often canalized trait presenting bilateral symmetry with minor differences between the two sides, providing a potential power to evaluate fluctuating asymmetry and developmental instability. The knowledge of its genetic control is still limited. In this study, a genome-wide scan was performed with 183 microsatellites covering the pig genome to identify quantitative trait loci (QTL for three traits related to teat number including the total teat number (TTN, the teat number at the left (LTN and right (RTN sides in a large scale White Duroc × Erhualian resource population. Results A sex-average linkage map with a total length of 2350.3 cM and an average marker interval of 12.84 cM was constructed. Eleven genome-wide significant QTL for TTN were detected on 8 autosomes including pig chromosomes (SSC 1, 3, 4, 5, 6, 7, 8 and 12. Six suggestive QTL for this trait were detected on SSC6, 9, 13, 14 and 16. Eight chromosomal regions each on SSC1, 3, 4, 5, 6, 7, 8 and 12 showed significant associations with LTN. These regions were also evidenced as significant QTL for RTN except for those on SSC6 and SSC8. The most significant QTL for the 3 traits were all located on SSC7. Erhualian alleles at most of the identified QTL had positive additive effects except for three QTL on SSC1 and SSC7, at which White Duroc alleles increased teat numbers. On SSC1, 6, 9, 13 and 16, significant dominance effects were observed on TTN, and predominant imprinting effect on TTN was only detected on SSC12. Conclusion The results not only confirmed the QTL regions from previous experiments, but also identified five new QTL for the total teat number in swine. Minor differences between the QTL regions responsible for LTN and RTN were validated. Further fine mapping should be focused on consistently identified regions with small

  8. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.

    Science.gov (United States)

    Nagel, Manuela; Kranner, Ilse; Neumann, Kerstin; Rolletschek, Hardy; Seal, Charlotte E; Colville, Louise; Fernández-Marín, Beatriz; Börner, Andreas

    2015-06-01

    Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background. © 2014 John Wiley & Sons Ltd.

  9. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Liu, Xiang-Ping; Yu, Long-Xi

    2017-01-01

    Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS). The plants were genotyped using genotyping-by-sequencing (GBS). A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW), plant height (PH), leaf chlorophyll content (LCC), and stomatal conductance (SC). For each trait, a stress susceptibility index (SSI) was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula). Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

  10. Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development[OPEN

    Science.gov (United States)

    Yang, Hua; Liu, Xinye; Xin, Mingming; Du, Jinkun; Hu, Zhaorong; Peng, HuiRu; Sun, Qixin; Ni, Zhongfu; Yao, Yingyin

    2016-01-01

    Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDAC HDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants. To investigate HDA101 function during the early stages of seed development, we performed genome-wide mapping of HDA101 binding sites. We observed that, like mammalian HDACs, HDA101 mainly targets highly and intermediately expressed genes. Although loss of HDA101 can induce histone hyperacetylation of its direct targets, this often does not involve variation in transcript levels. A small subset of inactive genes that must be negatively regulated during kernel development is also targeted by HDA101 and its loss leads to hyperacetylation and increased expression of these inactive genes. Finally, we report that HDA101 interacts with members of different chromatin remodeling complexes, such as NFC103/MSI1 and SNL1/SIN3-like protein corepressors. Taken together, our results reveal a complex genetic network regulated by HDA101 during seed development and provide insight into the different mechanisms of HDA101-mediated regulation of transcriptionally active and inactive genes. PMID:26908760

  11. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Xiang-Ping Liu

    2017-05-01

    Full Text Available Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS. The plants were genotyped using genotyping-by-sequencing (GBS. A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW, plant height (PH, leaf chlorophyll content (LCC, and stomatal conductance (SC. For each trait, a stress susceptibility index (SSI was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula. Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

  12. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L. by genome-wide association mapping

    Directory of Open Access Journals (Sweden)

    Christine Désirée Zanke

    2015-09-01

    Full Text Available Grain weight, an essential yield component, is under strong genetic control and at the same time markedly influenced by the environment. Genetic analysis of the thousand grain weight (TGW by genome-wide association study (GWAS was performed with a panel of 358 European winter wheat (Triticum aestivum L. varieties and 14 spring wheat varieties using phenotypic data of field tests in eight environments. Wide phenotypic variations were indicated for the TGW with BLUEs (best linear unbiased estimations values ranging from 35.9 g to 58.2 g with a mean value of 45.4 g and a heritability of H2=0.89. A total of 12 candidate genes for plant height, photoperiodism and grain weight were genotyped on all varieties. Only three candidates, the photoperiodism gene Ppd-D1, dwarfing gene Rht-B1and the TaGW-6A gene were significant explaining up to 14.4%, 2.3% and 3.4% of phenotypic variation, respectively. For a comprehensive genome-wide analysis of TGW-QTL genotyping data from 732 microsatellite markers and a set of 7769 mapped SNP markers genotyped with the 90k iSELECT array were analyzed. In total, 342 significant (-log10 (P-value > 3.0 marker trait associations (MTAs were detected for SSR markers and 1195 MTAs (-log10P-value > 3.0 for SNP markers in all single environments plus the BLUEs. After Bonferroni correction, 28 MTAs remained significant for SSR markers (-log10 (P-value > 4.82 and 58 MTAs for SNP markers (-log10 (P value > 5.89. Apart from chromosomes 4B and 6B for SSR markers and chromosomes 4D and 5D for SNP markers, MTAs were detected on all chromosomes. The highest number of significant SNP markers was found on chromosomes 3B and 1B, while for the SSRs most markers were significant on chromosomes 6D and 3D. Overall, TGW was determined by many markers with small effects. Only three SNP-markers had R2 values above 6%.

  13. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population.

    Directory of Open Access Journals (Sweden)

    Jacqueline Milet

    Full Text Available Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP genome scan (Affimetrix GeneChip Human Mapping 250K-nsp was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value=5x10(-5 and 9x10(-5 respectively, and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value=1.5x10(-4. Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value=3.7x10(-5. This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection

  14. What controls nucleosome positions?

    Science.gov (United States)

    Segal, Eran; Widom, Jonathan

    2009-08-01

    The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.

  15. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches.

    Directory of Open Access Journals (Sweden)

    Mahendar Thudi

    Full Text Available To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia. Diversity Array Technology (DArT markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD estimated using the squared-allele frequency correlations (r2; when r2<0.20 was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs, both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs] and phenotyping data mentioned above employing mixed linear model (MLM analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70 was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.

  16. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Aparicio Oscar M

    2006-10-01

    Full Text Available Abstract Background Eukaryotic replication origins exhibit different initiation efficiencies and activation times within S-phase. Although local chromatin structure and function influences origin activity, the exact mechanisms remain poorly understood. A key to understanding the exact features of chromatin that impinge on replication origin function is to define the precise locations of the DNA sequences that control origin function. In S. cerevisiae, Autonomously Replicating Sequences (ARSs contain a consensus sequence (ACS that binds the Origin Recognition Complex (ORC and is essential for origin function. However, an ACS is not sufficient for origin function and the majority of ACS matches do not function as ORC binding sites, complicating the specific identification of these sites. Results To identify essential origin sequences genome-wide, we utilized a tiled oligonucleotide array (NimbleGen to map the ORC and Mcm2p binding sites at high resolution. These binding sites define a set of potential Autonomously Replicating Sequences (ARSs, which we term nimARSs. The nimARS set comprises 529 ORC and/or Mcm2p binding sites, which includes 95% of known ARSs, and experimental verification demonstrates that 94% are functional. The resolution of the analysis facilitated identification of potential ACSs (nimACSs within 370 nimARSs. Cross-validation shows that the nimACS predictions include 58% of known ACSs, and experimental verification indicates that 82% are essential for ARS activity. Conclusion These findings provide the most comprehensive, accurate, and detailed mapping of ORC binding sites to date, adding to the emerging picture of the chromatin organization of the budding yeast genome.

  17. Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.

    Directory of Open Access Journals (Sweden)

    Noa Safra

    Full Text Available Neural tube defects (NTDs is a general term for central nervous system malformations secondary to a failure of closure or development of the neural tube. The resulting pathologies may involve the brain, spinal cord and/or vertebral column, in addition to associated structures such as soft tissue or skin. The condition is reported among the more common birth defects in humans, leading to significant infant morbidity and mortality. The etiology remains poorly understood but genetic, nutritional, environmental factors, or a combination of these, are known to play a role in the development of NTDs. The variable conditions associated with NTDs occur naturally in dogs, and have been previously reported in the Weimaraner breed. Taking advantage of the strong linkage-disequilibrium within dog breeds we performed genome-wide association analysis and mapped a genomic region for spinal dysraphism, a presumed NTD, using 4 affected and 96 unaffected Weimaraners. The associated region on canine chromosome 8 (pgenome  =3.0 × 10(-5, after 100,000 permutations, encodes 18 genes, including NKX2-8, a homeobox gene which is expressed in the developing neural tube. Sequencing NKX2-8 in affected Weimaraners revealed a G to AA frameshift mutation within exon 2 of the gene, resulting in a premature stop codon that is predicted to produce a truncated protein. The exons of NKX2-8 were sequenced in human patients with spina bifida and rare variants (rs61755040 and rs10135525 were found to be significantly over-represented (p=0.036. This is the first documentation of a potential role for NKX2-8 in the etiology of NTDs, made possible by investigating the molecular basis of naturally occurring mutations in dogs.

  18. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.).

    Science.gov (United States)

    Jaiswal, Vandana; Gahlaut, Vijay; Meher, Prabina Kumar; Mir, Reyazul Rouf; Jaiswal, Jai Prakash; Rao, Atmakuri Ramakrishna; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2016-01-01

    Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910-2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method.

  19. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L..

    Directory of Open Access Journals (Sweden)

    Vandana Jaiswal

    Full Text Available Genome wide association study (GWAS was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST approach, and two recent approaches viz. multi locus mixed model (MLMM, and multi-trait mixed model (MTMM. Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910-2006 for commercial cultivation in different agro-climatic regions in India. Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers using MLMM, and 58 MTAs (29 QTLs, 40 markers using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati. These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS or pseudo-backcrossing method.

  20. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.

    Science.gov (United States)

    Ng, Maggie C Y; Graff, Mariaelisa; Lu, Yingchang; Justice, Anne E; Mudgal, Poorva; Liu, Ching-Ti; Young, Kristin; Yanek, Lisa R; Feitosa, Mary F; Wojczynski, Mary K; Rand, Kristin; Brody, Jennifer A; Cade, Brian E; Dimitrov, Latchezar; Duan, Qing; Guo, Xiuqing; Lange, Leslie A; Nalls, Michael A; Okut, Hayrettin; Tajuddin, Salman M; Tayo, Bamidele O; Vedantam, Sailaja; Bradfield, Jonathan P; Chen, Guanjie; Chen, Wei-Min; Chesi, Alessandra; Irvin, Marguerite R; Padhukasahasram, Badri; Smith, Jennifer A; Zheng, Wei; Allison, Matthew A; Ambrosone, Christine B; Bandera, Elisa V; Bartz, Traci M; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bottinger, Erwin P; Carpten, John; Chanock, Stephen J; Chen, Yii-Der Ida; Conti, David V; Cooper, Richard S; Fornage, Myriam; Freedman, Barry I; Garcia, Melissa; Goodman, Phyllis J; Hsu, Yu-Han H; Hu, Jennifer; Huff, Chad D; Ingles, Sue A; John, Esther M; Kittles, Rick; Klein, Eric; Li, Jin; McKnight, Barbara; Nayak, Uma; Nemesure, Barbara; Ogunniyi, Adesola; Olshan, Andrew; Press, Michael F; Rohde, Rebecca; Rybicki, Benjamin A; Salako, Babatunde; Sanderson, Maureen; Shao, Yaming; Siscovick, David S; Stanford, Janet L; Stevens, Victoria L; Stram, Alex; Strom, Sara S; Vaidya, Dhananjay; Witte, John S; Yao, Jie; Zhu, Xiaofeng; Ziegler, Regina G; Zonderman, Alan B; Adeyemo, Adebowale; Ambs, Stefan; Cushman, Mary; Faul, Jessica D; Hakonarson, Hakon; Levin, Albert M; Nathanson, Katherine L; Ware, Erin B; Weir, David R; Zhao, Wei; Zhi, Degui; Arnett, Donna K; Grant, Struan F A; Kardia, Sharon L R; Oloapde, Olufunmilayo I; Rao, D C; Rotimi, Charles N; Sale, Michele M; Williams, L Keoki; Zemel, Babette S; Becker, Diane M; Borecki, Ingrid B; Evans, Michele K; Harris, Tamara B; Hirschhorn, Joel N; Li, Yun; Patel, Sanjay R; Psaty, Bruce M; Rotter, Jerome I; Wilson, James G; Bowden, Donald W; Cupples, L Adrienne; Haiman, Christopher A; Loos, Ruth J F; North, Kari E

    2017-04-01

    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in

  1. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.

    Directory of Open Access Journals (Sweden)

    Maggie C Y Ng

    2017-04-01

    Full Text Available Genome-wide association studies (GWAS have identified >300 loci associated with measures of adiposity including body mass index (BMI and waist-to-hip ratio (adjusted for BMI, WHRadjBMI, but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2 for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2 was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%. In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement

  2. New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome

    Directory of Open Access Journals (Sweden)

    Deng Yangyang

    2010-01-01

    Full Text Available Abstract Background Recently, a number of high-resolution genome-wide maps of nucleosome locations in S. cerevisiae have been derived experimentally. However, nucleosome positions are determined in vivo by the combined effects of numerous factors. Consequently, nucleosomes are not simple static units, which may explain the discrepancies in reported nucleosome positions as measured by different experiments. In order to more accurately depict the genome-wide nucleosome distribution, we integrated multiple nucleosomal positioning datasets using a multi-angle analysis strategy. Results To evaluate the contribution of chromatin structure to transcription, we used the vast amount of available nucleosome analyzed data. Analysis of this data allowed for the comprehensive identification of the connections between promoter nucleosome positioning patterns and various transcription-dependent properties. Further, we characterised the function of nucleosome destabilisation in the context of transcription regulation. Our results indicate that genes with similar nucleosome occupancy patterns share general transcription attributes. We identified the local regulatory correlation (LRC regions for two distinct types of nucleosomes and we assessed their regulatory properties. We also estimated the nucleosome reproducibility and measurement accuracy for high-confidence transcripts. We found that by maintaining a distance of ~13 bp between the upstream border of the +1 nucleosome and the transcription start sites (TSSs, the stable +1 nucleosome may form a barrier against the accessibility of the TSS and shape an optimum chromatin conformation for gene regulation. An in-depth analysis of nucleosome positioning in normally growing and heat shock cells suggested that the extent and patterns of nucleosome sliding are associated with gene activation. Conclusions Our results, which combine different types of data, suggest that cross-platform information, including

  3. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome.

    Science.gov (United States)

    Beh, Leslie Y; Müller, Manuel M; Muir, Tom W; Kaplan, Noam; Landweber, Laura F

    2015-11-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these "seed" nucleosomes--together with trans-acting factors--may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.

  4. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.

    Science.gov (United States)

    Göbel, Ulrike; Reimer, Julia; Turck, Franziska

    2010-01-01

    Genome-wide targets of chromatin-associated factors can be identified by a combination of chromatin-immunoprecipitation and oligonucleotide microarray hybridization. Genome-wide mircoarray data analysis represents a major challenge for the experimental biologist. This chapter introduces ChIPR, a package written in the R statistical programming language that facilitates the analysis of two-color microarrays from Roche-Nimblegen. The workflow of ChIPR is illustrated with sample data from Arabidopsis thaliana. However, ChIPR supports ChIP-chip data preprocessing, target identification, and cross-annotation of any species for which genome annotation data is available in GFF format. This chapter describes how to use ChIPR as a software tool without the requirement for programming skills in the R language.

  5. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.

    Directory of Open Access Journals (Sweden)

    Evgeniy A Ozonov

    Full Text Available Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs, unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positioning using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10-20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interactions with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers.

  6. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.

    Science.gov (United States)

    Ozonov, Evgeniy A; van Nimwegen, Erik

    2013-01-01

    Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs), unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positioning using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10-20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interactions with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers.

  7. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    Science.gov (United States)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  8. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    Science.gov (United States)

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  9. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array

    Directory of Open Access Journals (Sweden)

    Goldstein Alisa M

    2006-11-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is a common malignancy worldwide. Comprehensive genomic characterization of ESCC will further our understanding of the carcinogenesis process in this disease. Results Genome-wide detection of chromosomal changes was performed using the Affymetrix GeneChip 10 K single nucleotide polymorphism (SNP array, including loss of heterozygosity (LOH and copy number alterations (CNA, for 26 pairs of matched germ-line and micro-dissected tumor DNA samples. LOH regions were identified by two methods – using Affymetrix's genotype call software and using Affymetrix's copy number alteration tool (CNAT software – and both approaches yielded similar results. Non-random LOH regions were found on 10 chromosomal arms (in decreasing order of frequency: 17p, 9p, 9q, 13q, 17q, 4q, 4p, 3p, 15q, and 5q, including 20 novel LOH regions (10 kb to 4.26 Mb. Fifteen CNA-loss regions (200 kb to 4.3 Mb and 36 CNA-gain regions (200 kb to 9.3 Mb were also identified. Conclusion These studies demonstrate that the Affymetrix 10 K SNP chip is a valid platform to integrate analyses of LOH and CNA. The comprehensive knowledge gained from this analysis will enable improved strategies to prevent, diagnose, and treat ESCC.

  10. Genetic Diversity, Population Structure, and Linkage Disequilibrium of an Association-Mapping Panel Revealed by Genome-Wide SNP Markers in Sesame

    Science.gov (United States)

    Cui, Chengqi; Mei, Hongxian; Liu, Yanyang; Zhang, Haiyang; Zheng, Yongzhan

    2017-01-01

    The characterization of genetic diversity and population structure can be used in tandem to detect reliable phenotype–genotype associations. In the present study, we genotyped a set of 366 sesame germplasm accessions by using 89,924 single-nucleotide polymorphisms (SNPs). The number of SNPs on each chromosome was consistent with the physical length of the respective chromosome, and the average marker density was approximately 2.67 kb/SNP. The genetic diversity analysis showed that the average nucleotide diversity of the panel was 1.1 × 10-3, with averages of 1.0 × 10-4, 2.7 × 10-4, and 3.6 × 10-4 obtained, respectively for three identified subgroups of the panel: Pop 1, Pop 2, and the Mixed. The genetic structure analysis revealed that these sesame germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in the panel. The genome-wide linkage disequilibrium (LD) analysis showed that an average LD extended up to ∼99 kb. The genetic diversity and population structure revealed in this study should provide guidance to the future design of association studies and the systematic utilization of the genetic variation characterizing the sesame panel. PMID:28729877

  11. Sequence-dependent nucleosome positioning.

    Science.gov (United States)

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  12. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping.

    Science.gov (United States)

    Yu, Long-Xi

    2017-01-01

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses.

  13. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L. Using Genome-Wide Sequencing and Association Mapping

    Directory of Open Access Journals (Sweden)

    Long-Xi Yu

    2017-06-01

    Full Text Available Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses.

  14. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4.

    Directory of Open Access Journals (Sweden)

    Cécile Libioulle

    2007-04-01

    Full Text Available To identify novel susceptibility loci for Crohn disease (CD, we undertook a genome-wide association study with more than 300,000 SNPs characterized in 547 patients and 928 controls. We found three chromosome regions that provided evidence of disease association with p-values between 10(-6 and 10(-9. Two of these (IL23R on Chromosome 1 and CARD15 on Chromosome 16 correspond to genes previously reported to be associated with CD. In addition, a 250-kb region of Chromosome 5p13.1 was found to contain multiple markers with strongly suggestive evidence of disease association (including four markers with p < 10(-7. We replicated the results for 5p13.1 by studying 1,266 additional CD patients, 559 additional controls, and 428 trios. Significant evidence of association (p < 4 x 10(-4 was found in case/control comparisons with the replication data, while associated alleles were over-transmitted to affected offspring (p < 0.05, thus confirming that the 5p13.1 locus contributes to CD susceptibility. The CD-associated 250-kb region was saturated with 111 SNP markers. Haplotype analysis supports a complex locus architecture with multiple variants contributing to disease susceptibility. The novel 5p13.1 CD locus is contained within a 1.25-Mb gene desert. We present evidence that disease-associated alleles correlate with quantitative expression levels of the prostaglandin receptor EP4, PTGER4, the gene that resides closest to the associated region. Our results identify a major new susceptibility locus for CD, and suggest that genetic variants associated with disease risk at this locus could modulate cis-acting regulatory elements of PTGER4.

  15. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Ryan P Duren

    Full Text Available Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML. Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells.

  16. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Duren, Ryan P; Boudreaux, Seth P; Conneely, Orla M

    2016-01-01

    Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML). Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells.

  17. Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study

    Science.gov (United States)

    Li, Jian-Liang; Hayden, Michael R; Warby, Simon C; Durr, Alexandra; Morrison, Patrick J; Nance, Martha; Ross, Christopher A; Margolis, Russell L; Rosenblatt, Adam; Squitieri, Ferdinando; Frati, Luigi; Gómez-Tortosa, Estrella; García, Carmen Ayuso; Suchowersky, Oksana; Klimek, Mary Lou; Trent, Ronald JA; McCusker, Elizabeth; Novelletto, Andrea; Frontali, Marina; Paulsen, Jane S; Jones, Randi; Ashizawa, Tetsuo; Lazzarini, Alice; Wheeler, Vanessa C; Prakash, Ranjana; Xu, Gang; Djoussé, Luc; Mysore, Jayalakshmi Srinidhi; Gillis, Tammy; Hakky, Michael; Cupples, L Adrienne; Saint-Hilaire, Marie H; Cha, Jang-Ho J; Hersch, Steven M; Penney, John B; Harrison, Madaline B; Perlman, Susan L; Zanko, Andrea; Abramson, Ruth K; Lechich, Anthony J; Duckett, Ayana; Marder, Karen; Conneally, P Michael; Gusella, James F; MacDonald, Marcy E; Myers, Richard H

    2006-01-01

    Background Age at onset of Huntington's disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD. Methods In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs. Results Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci. Conclusion In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient. PMID:16914060

  18. Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study

    Directory of Open Access Journals (Sweden)

    Gillis Tammy

    2006-08-01

    Full Text Available Abstract Background Age at onset of Huntington's disease (HD is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL, modifying age at onset in HD. Methods In order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs. Results Suggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002 increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001, while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03 and the combined sample (LOD = 1.78, p = 0.002. Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci. Conclusion In this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.

  19. Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX

    DEFF Research Database (Denmark)

    Hanghøj, Kristian Ebbesen; Seguin-Orlando, Andaine; Schubert, Mikkel

    2016-01-01

    present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH......, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained...... of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts....

  20. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    Science.gov (United States)

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  1. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS for 6-week body weight in broiler chickens

    Directory of Open Access Journals (Sweden)

    Huiyu eWang

    2014-05-01

    Full Text Available The purpose of this study was to compare results obtained from various methodologies for genome-wide association studies, when applied to real data, in terms of number and commonality of regions identified and their genetic variance explained, computational speed, and possible pitfalls in interpretations of results. Methodologies include: two iteratively reweighted single-step genomic BLUP procedures (ssGWAS1 and ssGWAS2, a single-marker model (CGWAS, and BayesB. The ssGWAS methods utilize genomic breeding values (GEBVs based on combined pedigree, genomic and phenotypic information, while CGWAS and BayesB only utilize phenotypes from genotyped animals or pseudo-phenotypes. In this study, ssGWAS was performed by converting GEBVs to SNP marker effects. Unequal variances for markers were incorporated for calculating weights into a new genomic relationship matrix. SNP weights were refined iteratively. The data was body weight at 6 weeks on 274,776 broiler chickens, of which 4553 were genotyped using a 60k SNP chip. Comparison of genomic regions was based on genetic variances explained by local SNP regions (20 SNPs. After 3 iterations, the noise was greatly reduced of ssGWAS1 and results are similar to that of CGWAS, with 4 out of the top 10 regions in common. In contrast, for BayesB, the plot was dominated by a single region explaining 23.1% of the genetic variance. This same region was found by ssGWAS1 with the same rank, but the amount of genetic variation attributed to the region was only 3%. These finding emphasize the need for caution when comparing and interpreting results from various methods, and highlight that detected associations, and strength of association, strongly depends on methodologies and details of implementations. BayesB appears to overly shrink regions to zero, while overestimating the amount of genetic variation attributed to the remaining SNP effects. The real world is most likely a compromise between methods and remains to

  2. Construction of genome-wide physical BAC contigs using mapped cDNA as probes: Toward an integrated BAC library resource for genome sequencing and analysis. Annual report, July 1995--January 1997

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, S.C.; Bocskai, D.; Cao, Y. [and others

    1997-12-31

    The goal of human genome project is to characterize and sequence entire genomes of human and several model organisms, thus providing complete sets of information on the entire structure of transcribed, regulatory and other functional regions for these organisms. In the past years, a number of useful genetic and physical markers on human and mouse genomes have been made available along with the advent of BAC library resources for these organisms. The advances in technology and resource development made it feasible to efficiently construct genome-wide physical BAC contigs for human and other genomes. Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes are available for human genome mapping. ESTs and cDNAs are excellent resources for building contig maps for two reasons. Firstly, they exist in two alternative forms--as both sequence information for PCR primer pairs, and cDoreen genomic libraries efficiently for large number of DNA probes by combining over 100 cDNA probes in each hybridization. Second, the linkage and order of genes are rather conserved among human, mouse and other model organisms. Therefore, gene markers have advantages over random anonymous STSs in building maps for comparative genomic studies.

  3. Genome-Wide Single Nucleotide Polymorphism Discovery and the Construction of a High-Density Genetic Map for Melon (Cucumis melo L.) Using Genotyping-by-Sequencing.

    Science.gov (United States)

    Chang, Che-Wei; Wang, Yu-Hua; Tung, Chih-Wei

    2017-01-01

    Although genotyping-by-sequencing (GBS) enables the efficient and low-cost generation of large numbers of markers, the utility of resultant genotypes are limited, because they are enormously error-prone and contain high proportions of missing data. In this study, we generated single nucleotide polymorphism (SNP) markers for 109 recombinant inbred lines of melon (Cucumis melo L.) using the GBS approach and ordered them according to their physical position on the draft double haploid line DHL92 genome. Next, by investigating associations between these SNPs, we discovered that some segments on the physical map conflict with linkage relationships. Therefore, to filter out error-prone loci, 4,110 SNPs in which we have a high degree of confidence were selected as anchors to test independence with respect to unselected markers, and the resultant dataset was then analyzed using the Full-Sib Family Haplotype (FSFHap) algorithm in the software TASSEL 5.2. On the basis of this analysis, 22,933 loci that have an average rate of missing data of 0.281% were used to construct a genetic map, which spans 1,088.3 cM across 12 chromosomes and has a maximum spacing of 6.0 cM. Use of this high-quality linkage map enabled the identification of several quantitative trait loci (QTL) known to control traits in fruit and validated our approach. This study highlights the utility of GBS markers for the identification of trait-associated QTLs in melon and facilitates further investigation of genome structure.

  4. Genome-Wide Single Nucleotide Polymorphism Discovery and the Construction of a High-Density Genetic Map for Melon (Cucumis melo L.) Using Genotyping-by-Sequencing

    Science.gov (United States)

    Chang, Che-Wei; Wang, Yu-Hua; Tung, Chih-Wei

    2017-01-01

    Although genotyping-by-sequencing (GBS) enables the efficient and low-cost generation of large numbers of markers, the utility of resultant genotypes are limited, because they are enormously error-prone and contain high proportions of missing data. In this study, we generated single nucleotide polymorphism (SNP) markers for 109 recombinant inbred lines of melon (Cucumis melo L.) using the GBS approach and ordered them according to their physical position on the draft double haploid line DHL92 genome. Next, by investigating associations between these SNPs, we discovered that some segments on the physical map conflict with linkage relationships. Therefore, to filter out error-prone loci, 4,110 SNPs in which we have a high degree of confidence were selected as anchors to test independence with respect to unselected markers, and the resultant dataset was then analyzed using the Full-Sib Family Haplotype (FSFHap) algorithm in the software TASSEL 5.2. On the basis of this analysis, 22,933 loci that have an average rate of missing data of 0.281% were used to construct a genetic map, which spans 1,088.3 cM across 12 chromosomes and has a maximum spacing of 6.0 cM. Use of this high-quality linkage map enabled the identification of several quantitative trait loci (QTL) known to control traits in fruit and validated our approach. This study highlights the utility of GBS markers for the identification of trait-associated QTLs in melon and facilitates further investigation of genome structure. PMID:28220139

  5. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao.

    Directory of Open Access Journals (Sweden)

    Yun-Feng Jiang

    Full Text Available Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023 with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.

  6. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2013-01-01

    are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome......This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD......1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results...

  7. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage;

    2013-01-01

    are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome......This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD......1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results...

  8. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Carlos Riveros

    Full Text Available BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5. CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1, E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.

  9. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    Science.gov (United States)

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  10. Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Directory of Open Access Journals (Sweden)

    Muehlbauer Gary J

    2010-12-01

    Full Text Available Abstract Background Considerations in applying association mapping (AM to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102 assembled at the start of the Barley Coordinated Agricultural Project (CAP. This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608. Results Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without a priori knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We

  11. Genome-Wide Linkage Mapping of QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Population Linmai 2 × Zhong 892.

    Science.gov (United States)

    Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun

    2015-01-01

    Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum) worldwide. Adult-plant resistance (APR) is an efficient approach to provide long-term protection of wheat from the disease. The Chinese winter wheat cultivar Zhong 892 has a moderate level of APR to stripe rust in the field. To determine the inheritance of the APR resistance in this cultivar, 273 F6 recombinant inbred lines (RILs) were developed from a cross between Linmai 2 and Zhong 892. The RILs were evaluated for maximum disease severity (MDS) in two sites during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for five environments. Illumina 90k SNP (single nucleotide polymorphism) chips were used to genotype the RILs and their parents. Composite interval mapping (CIM) detected eight QTL, namely QYr.caas-2AL, QYr.caas-2BL.3, QYr.caas-3AS, QYr.caas-3BS, QYr.caas-5DL, QYr.caas-6AL, QYr.caas-7AL and QYr.caas-7DS.1, respectively. All except QYr.caas-2BL.3 resistance alleles were contributed by Zhong 892. QYr.caas-3AS and QYr.caas-3BS conferred stable resistance to stripe rust in all environments, explaining 6.2-17.4% and 5.0-11.5% of the phenotypic variances, respectively. The genome scan of SNP sequences tightly linked to QTL for APR against annotated proteins in wheat and related cereals genomes identified two candidate genes (autophagy-related gene and disease resistance gene RGA1), significantly associated with stripe rust resistance. These QTL and their closely linked SNP markers, in combination with kompetitive allele specific PCR (KASP) technology, are potentially useful for improving stripe rust resistances in wheat breeding.

  12. Nucleosome switches.

    Science.gov (United States)

    Schwab, David J; Bruinsma, Robijn F; Rudnick, Joseph; Widom, Jonathan

    2008-06-06

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  13. Power analysis for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Klein Robert J

    2007-08-01

    Full Text Available Abstract Background Genome-wide association studies are a promising new tool for deciphering the genetics of complex diseases. To choose the proper sample size and genotyping platform for such studies, power calculations that take into account genetic model, tag SNP selection, and the population of interest are required. Results The power of genome-wide association studies can be computed using a set of tag SNPs and a large number of genotyped SNPs in a representative population, such as available through the HapMap project. As expected, power increases with increasing sample size and effect size. Power also depends on the tag SNPs selected. In some cases, more power is obtained by genotyping more individuals at fewer SNPs than fewer individuals at more SNPs. Conclusion Genome-wide association studies should be designed thoughtfully, with the choice of genotyping platform and sample size being determined from careful power calculations.

  14. Insights into DNA signals for nucleosome positioning

    Institute of Scientific and Technical Information of China (English)

    Zhiming DAI; Xianhua DAI; Jihua FENG; Qian XIANG; Yangyang DENG; Jiang WANG

    2008-01-01

    The nucleosome is the fundamental unit of eukaryotic genomes. Its positioning in the promoter region plays a central role in regulating gene transcription. Experimental evidence suggests that the genomic DNA sequence is one important determinant of nucleosome positioning. Several approaches have been developed to predict nucleosome positions based on DNA sequence features, but the results indicate that there is room for improvement. This paper presents a new computational approach to predict genome-wide nucleosome locations in promoter regions. Importantly, the proposed approach outperforms existing approaches in yeast. Further anal-ysis demonstrates that DNA signals for nucleosome posi-tioning vary with species and composition of histones. Analysis of individual genes reveals that the role of the underlying DNA sequence in nucleosome positioning var-ies with genes.

  15. Relationship between nucleosome positioning and DNA methylation

    Science.gov (United States)

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  16. Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis[OPEN

    Science.gov (United States)

    Willmann, Matthew R.

    2016-01-01

    RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5′ end to the 3′ end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames. This pattern of cotranslational degradation is especially evident near the ends of open reading frames, where we observe accumulation of cleavage events focused 16 to 17 nucleotides upstream of the stop codon because of ribosomal pausing during translation termination. Following treatment of Arabidopsis plants with the translation inhibitor cycloheximide, cleavage events accumulate 13 to 14 nucleotides upstream of the start codon where initiating ribosomes have been stalled with these sequences in their P site. Further analysis in xrn4 mutant plants indicates that cotranslational RNA decay is XRN4 dependent. Additionally, studies in plants lacking CAP BINDING PROTEIN80/ABA HYPERSENSITIVE1, the largest subunit of the nuclear mRNA cap binding complex, reveal a role for this protein in cotranslational decay. In total, our results demonstrate the global prevalence and features of cotranslational RNA decay in a plant transcriptome. PMID:27758893

  17. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array.

    Science.gov (United States)

    Schönhals, Elske Maria; Ding, Jia; Ritter, Enrique; Paulo, Maria João; Cara, Nicolás; Tacke, Ekhard; Hofferbert, Hans-Reinhard; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2017-08-22

    Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The

  18. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    Science.gov (United States)

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  19. Nucleosome architecture throughout the cell cycle.

    Science.gov (United States)

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  20. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder;

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  1. Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus

    Directory of Open Access Journals (Sweden)

    Weiguo eZhao

    2016-01-01

    Full Text Available Seed yield (SY is the most important trait in rapeseed, which was determined by multiple seed yield-related traits (SYRTs and also easily subject to environmental influence. Lots of quantitative trait loci (QTL for SY and SYRTs were reported in Brassica napus. However, no studies have focused on SY and seven agronomic traits affecting SY simultaneous. Genome-wide QTL analysis for SY and seven SYRTs in eight environments was conducted in a doubled haploid population containing 348 lines. Totally, 18 and 208 QTLs for SY and SYRTs were observed, respectively, and then these QTLs were integrated into 144 consensus QTLs by a meta-analysis. Three major QTLs for SY were observed, including cqSY-C6-2 and cqSY-C6-3 that expressed stably in winter cultivation area for three years and cqSY-A2-2 only expressed in spring rapeseed area. Trait-by-trait meta-analysis revealed that the 144 consensus QTLs were integrated into 72 pleiotropic unique QTLs. Among them, all the unique QTLs affected SY, except for uq-A6-1, including uq.A2-3, uq.C1-2, uq.C1-3, uq.C6-1, uq.C6-5 and uq.C6-6 could also affect more than two SYRTs. According to high density consensus map construction and QTL comparison from literature, 36 QTLs from five populations were co-localized with QTLs identified in this study. In addition, 13 orthologs genes were observed, including five each genes for SY and SW, one each gene for BY, BH and PH, respectively. The genomic information of these QTLs would be valuable in hybrid cultivar breeding, and be helpful to analyze QTL expression in different environments.

  2. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies.

    Science.gov (United States)

    Yan, Huihuang; Tian, Shulan; Slager, Susan L; Sun, Zhifu; Ordog, Tamas

    2016-01-15

    Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation-sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets.

  3. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    Science.gov (United States)

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  4. 转录起始位点核小体定位的研究进展%Advances on Nucleosome Mapping Around TSS

    Institute of Scientific and Technical Information of China (English)

    王成爱

    2014-01-01

    核小体定位是参与真核生物基因表达调控的一种重要的表观遗传因素,深刻影响基因转录、DNA复制与修复等生物学过程。对于在许多基因位点,比如转录起始位点(TSS)、转录因子结合位点(TFBS)等处的核小体定位已有不少报道。主要介绍了核小体的定位特性,综述了转录起始位点处核小体的定位特征,分别从序列依赖性因素和DNA甲基化、组蛋白变体及修饰、染色质重塑、可变剪接等表观遗传因素较为详细地概括了转录起始位点核小体定位的研究进展。%Nucleosome mapping,an important epigenetic factor participating in regulating eukaryotic gene expression, deeply affects lots of biological processes,including gene transcription,DNA replication,DNA repair and so forth. The nucleosome mapping around TSS and TFBS has been reported properties of nucleosome mapping were introduced in this paper. Features in nucleosome mapping around TSS were summarized. Advances on nucleosome mapping around TSS from both the DNA sequence-dependent factor and some epigenetic factors including DNA methylation, variants and modification of histone, chromation remodeling,alternative splicing were reviewed.

  5. Inbreeding in genome-wide selection

    NARCIS (Netherlands)

    Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A.

    2007-01-01

    Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) selection, which increased genetic gain by increasing accuracy of evaluation have also led to an increased rate of inbreeding per generation (¿FG). This is not necessarily the case with genome-wide selection, which

  6. VIGoR: Variational Bayesian Inference for Genome-Wide Regression

    Directory of Open Access Journals (Sweden)

    Akio Onogi

    2016-04-01

    Full Text Available Genome-wide regression using a number of genome-wide markers as predictors is now widely used for genome-wide association mapping and genomic prediction. We developed novel software for genome-wide regression which we named VIGoR (variational Bayesian inference for genome-wide regression. Variational Bayesian inference is computationally much faster than widely used Markov chain Monte Carlo algorithms. VIGoR implements seven regression methods, and is provided as a command line program package for Linux/Mac, and as a cross-platform R package. In addition to model fitting, cross-validation and hyperparameter tuning using cross-validation can be automatically performed by modifying a single argument. VIGoR is available at https://github.com/Onogi/VIGoR. The R package is also available at https://cran.r-project.org/web/packages/VIGoR/index.html.

  7. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo

    OpenAIRE

    Zhang, Y; Moqtaderi, Z.; Rattner, BP; Euskirchen, G.; Snyder, M; Kadonaga, JT; Liu, XS; Struhl, K

    2009-01-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regi...

  8. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    Science.gov (United States)

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.

  9. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin.

    Science.gov (United States)

    Snyder, Matthew W; Kircher, Martin; Hill, Andrew J; Daza, Riza M; Shendure, Jay

    2016-01-14

    Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible.

  10. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  11. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  12. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.

    Directory of Open Access Journals (Sweden)

    Katarina Truvé

    2016-05-01

    Full Text Available Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA 26 (p = 2.8 x 10-8. Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.

  13. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development—Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    Science.gov (United States)

    Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin

    2016-01-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  14. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  15. Genome-wide identification of enhancer elements.

    Science.gov (United States)

    Tulin, Sarah; Barsi, Julius C; Bocconcelli, Carlo; Smith, Joel

    2016-01-01

    We present a prospective genome-wide regulatory element database for the sea urchin embryo and the modified chromosome capture-related methodology used to create it. The method we developed is termed GRIP-seq for genome-wide regulatory element immunoprecipitation and combines features of chromosome conformation capture, chromatin immunoprecipitation, and paired-end next-generation sequencing with molecular steps that enrich for active cis-regulatory elements associated with basal transcriptional machinery. The first GRIP-seq database, available to the community, comes from S. purpuratus 24 hpf embryos and takes advantage of the extremely well-characterized cis-regulatory elements in this system for validation. In addition, using the GRIP-seq database, we identify and experimentally validate a novel, intronic cis-regulatory element at the onecut locus. We find GRIP-seq signal sensitively identifies active cis-regulatory elements with a high signal-to-noise ratio for both distal and intronic elements. This promising GRIP-seq protocol has the potential to address a rate-limiting step in resolving comprehensive, predictive network models in all systems.

  16. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

    Science.gov (United States)

    Wippo, Christian J; Israel, Lars; Watanabe, Shinya; Hochheimer, Andreas; Peterson, Craig L; Korber, Philipp

    2011-04-01

    Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.

  17. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  18. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Directory of Open Access Journals (Sweden)

    Varun Warrier

    Full Text Available Asperger Syndrome (AS is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC, which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448 were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448 lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  19. Genome-wide association studies of obesity and metabolic syndrome.

    Science.gov (United States)

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Science.gov (United States)

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  1. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    Science.gov (United States)

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  2. Genome-wide analysis of interactions between ATP-dependent chromatin remodeling and histone modifications

    Directory of Open Access Journals (Sweden)

    Wang Jiang

    2009-07-01

    Full Text Available Abstract Background ATP-dependent chromatin remodeling and the covalent modification of histones play central roles in determining chromatin structure and function. Although several specific interactions between these two activities have been elaborated, the global landscape remains to be elucidated. Results In this paper, we have developed a computational method to generate the first genome-wide landscape of interactions between ATP-dependent chromatin remodeling and the covalent modification of histones in Saccharomyces cerevisiae. Our method succeeds in identifying known interactions and uncovers many previously unknown interactions between these two activities. Analysis of the genome-wide picture revealed that transcription-related modifications tend to interact with more chromatin remodelers. Our results also demonstrate that most chromatin remodeling-modification interactions act via interactions of remodelers with both histone-modifying enzymes and histone residues. We also found that the co-occurrence of both modification and remodeling has significantly different influences on multiple gene features (e.g. nucleosome occupancy compared with the presence of either one. Conclusion We gave the first genome-wide picture of ATP-dependent chromatin remodeling-histone modification interactions. We also revealed how these two activities work together to regulate chromatin structure and function. Our results suggest that distinct strategies for regulating chromatin activity are selectively employed by genes with different properties.

  3. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  4. Genome-Wide Association Study of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Naomi Ogawa

    2010-01-01

    Full Text Available Coronary artery disease (CAD is a multifactorial disease with environmental and genetic determinants. The genetic determinants of CAD have previously been explored by the candidate gene approach. Recently, the data from the International HapMap Project and the development of dense genotyping chips have enabled us to perform genome-wide association studies (GWAS on a large number of subjects without bias towards any particular candidate genes. In 2007, three chip-based GWAS simultaneously revealed the significant association between common variants on chromosome 9p21 and CAD. This association was replicated among other ethnic groups and also in a meta-analysis. Further investigations have detected several other candidate loci associated with CAD. The chip-based GWAS approach has identified novel and unbiased genetic determinants of CAD and these insights provide the important direction to better understand the pathogenesis of CAD and to develop new and improved preventive measures and treatments for CAD.

  5. Genome-wide analysis correlates Ayurveda Prakriti.

    Science.gov (United States)

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S; Dedge, Amrish P; Bharadwaj, Ramachandra; Gangadharan, G G; Nair, Sreekumaran; Gopinath, Puthiya M; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-10-29

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as "Prakriti". To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10(-5)) were significantly different between Prakritis, without any confounding effect of stratification, after 10(6) permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India's traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine.

  6. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  7. Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides) Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq).

    Science.gov (United States)

    Yu, Hui; You, Xinxin; Li, Jia; Liu, Hankui; Meng, Zining; Xiao, Ling; Zhang, Haifa; Lin, Hao-Ran; Zhang, Yong; Shi, Qiong

    2016-04-06

    Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically important fish.

  8. Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq

    Directory of Open Access Journals (Sweden)

    Hui Yu

    2016-04-01

    Full Text Available Mapping of quantitative trait loci (QTL is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms by double digest restriction site associated DNA sequencing (ddRADseq, and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1 including three (tert, ftz-f1 and notch1 that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS efforts to improve growth-related traits in this economically important fish.

  9. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V.; Verwoert, Germaine C.; O'Reilly, Paul F.; Shi, Gang; Johnson, Toby; Johnson, Andrew D.; Bochud, Murielle; Rice, Kenneth M.; Henneman, Peter; Smith, Albert V.; Ehret, Georg B.; Amin, Najaf; Larson, Martin G.; Mooser, Vincent; Hadley, David; Doerr, Marcus; Bis, Joshua C.; Aspelund, Thor; Esko, Tonu; Janssens, A. Cecile J. W.; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U.; Webster, Rebecca J.; Zhang, Feng; Peden, John F.; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I.; Trompet, Stella; Bragg-Gresham, Jennifer L.; Alizadeh, Behrooz Z.; Chambers, John C.; Guo, Xiuqing; Lehtimaki, Terho; Kuehnel, Brigitte; Lopez, Lorna M.; Polasek, Ozren; Boban, Mladen; Nelson, Christopher P.; Morrison, Alanna C.; Pihur, Vasyl; Ganesh, Santhi K.; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U. S.; Rivadeneira, Fernando; Sijbrands, Eric J. G.; Uitterlinden, Andre G.; Hwang, Shih-Jen; Vasan, Ramachandran S.; Wang, Thomas J.; Bergmann, Sven; Vollenweider, Peter; Waeber, Gerard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L.; Kroemer, Heyo K.; Voelker, Uwe; Voelzke, Henry; Glazer, Nicole L.; Taylor, Kent D.; Harris, Tamara B.; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Ines; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sober, Siim; Lu, Xiaowen; Nolte, Ilja M.; Penninx, Brenda W.; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F.; Melander, Olle; O'Donnell, Christopher J.; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M.; Facheris, Maurizio; Collins, Francis S.; Bergman, Richard N.; Beilby, John P.; Hung, Joseph; Musk, A. William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S.; Navarro, Pau; Wild, Sarah H.; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J. C.; Willemsen, Gonneke; Parker, Alex N.; Rose, Lynda M.; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M.; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L.; Kahonen, Mika; Viikari, Jorma; Doering, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M.; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H.; 't Hoen, Peter A. C.; Koenig, Inke R.; Felix, Janine F.; Clarke, Robert; Hopewell, Jemma C.; Ongen, Halit; Breteler, Monique; Debette, Stephanie; DeStefano, Anita L.; Fornage, Myriam; Mitchell, Gary F.; Smith, Nicholas L.; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J.; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J.; Wichmann, H-Erich; Raitakari, Olli T.; Palmas, Walter; Kooner, Jaspal S.; Stolk, Ronald P.; Jukema, J. Wouter; Wright, Alan F.; Boomsma, Dorret I.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wilson, James F.; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D.; Palmer, Lyle J.; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J. F.; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J.; Oostra, Ben A.; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P.; Beckmann, Jacques S.; Witteman, Jacqueline C. M.; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M.; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R.; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B.; Psaty, Bruce M.; Caulfield, Mark J.; Rao, Dabeeru C.; Tobin, Martin D.; Elliott, Paul; van Duijn, Cornelia M.

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we

  10. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  11. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis

    NARCIS (Netherlands)

    D.S. Evans (Daniel); F. Cailotto (Frederic); N. Parimi (Neeta); A.M. Valdes (Ana Maria); M.C. Castaño Betancourt (Martha); Y. Liu (Youfang); R.C. Kaplan (Robert); M. Bidlingmaier (Martin); R.S. Vasan (Ramachandran Srini); A. Teumer (Alexander); G.J. Tranah (Gregory); M.C. Nevitt (Michael); S. Cummings; E.S. Orwoll (Eric); E. Barrett-Connor (Elizabeth); J.B. Renner (Jordan); J.M. Jordan (Joanne); M. Doherty (Michael); S. Doherty (Sally); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); T.D. Spector (Timothy); R.J. Lories (Rik); N.E. Lane

    2014-01-01

    textabstractObjectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and

  12. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao; S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  13. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Zhou, Kaixin; Dempfle, Astrid; Arcos-Burgos, Mauricio; Bakker, Steven C; Banaschewski, Tobias; Biederman, Joseph; Buitelaar, Jan; Castellanos, F Xavier; Doyle, Alysa; Ebstein, Richard P; Ekholm, Jenny; Forabosco, Paola; Franke, Barbara; Freitag, Christine; Friedel, Susann; Gill, Michael; Hebebrand, Johannes; Hinney, Anke; Jacob, Christian; Lesch, Klaus Peter; Loo, Sandra K; Lopera, Francisco; McCracken, James T; McGough, James J; Meyer, Jobst; Mick, Eric; Miranda, Ana; Muenke, Maximilian; Mulas, Fernando; Nelson, Stanley F; Nguyen, T Trang; Oades, Robert D; Ogdie, Matthew N; Palacio, Juan David; Pineda, David; Reif, Andreas; Renner, Tobias J; Roeyers, Herbert; Romanos, Marcel; Rothenberger, Aribert; Schäfer, Helmut; Sergeant, Joseph; Sinke, Richard J; Smalley, Susan L; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; van der Meulen, Emma; Walitza, Susanne; Warnke, Andreas; Lewis, Cathryn M; Faraone, Stephen V; Asherson, Philip

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies, th

  14. Genome-wide association studies for Agronomical Traits in a world wide Spring Barley Collection

    NARCIS (Netherlands)

    Pasam, R.K.; Sharma, R.; Malosetti, M.; Eeuwijk, van F.A.; Haseneyer, G.; Kilian, B.; Graner, A.

    2012-01-01

    Background Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising tool for the detection and fine mapping of quantitative trait loci (QTL) underlying complex agronomic traits. In this study we explored the genetic basis of variation for the traits heading dat

  15. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V; Verwoert, Germaine C; O'Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile J W; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U S; Rivadeneira, Fernando; Sijbrands, Eric J G; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O'Donnell, Christopher J; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J C; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; Hoen, Peter A C 't; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; Destefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J F; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline C M; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C; Tobin, Martin D; Elliott, Paul; van Duijn, Cornelia M

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we ident

  16. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V.; Verwoert, Germaine C.; O'Reilly, Paul F.; Shi, Gang; Johnson, Toby; Johnson, Andrew D.; Bochud, Murielle; Rice, Kenneth M.; Henneman, Peter; Smith, Albert V.; Ehret, Georg B.; Amin, Najaf; Larson, Martin G.; Mooser, Vincent; Hadley, David; Doerr, Marcus; Bis, Joshua C.; Aspelund, Thor; Esko, Tonu; Janssens, A. Cecile J. W.; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U.; Webster, Rebecca J.; Zhang, Feng; Peden, John F.; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I.; Trompet, Stella; Bragg-Gresham, Jennifer L.; Alizadeh, Behrooz Z.; Chambers, John C.; Guo, Xiuqing; Lehtimaki, Terho; Kuehnel, Brigitte; Lopez, Lorna M.; Polasek, Ozren; Boban, Mladen; Nelson, Christopher P.; Morrison, Alanna C.; Pihur, Vasyl; Ganesh, Santhi K.; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U. S.; Rivadeneira, Fernando; Sijbrands, Eric J. G.; Uitterlinden, Andre G.; Hwang, Shih-Jen; Vasan, Ramachandran S.; Wang, Thomas J.; Bergmann, Sven; Vollenweider, Peter; Waeber, Gerard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L.; Kroemer, Heyo K.; Voelker, Uwe; Voelzke, Henry; Glazer, Nicole L.; Taylor, Kent D.; Harris, Tamara B.; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Ines; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sober, Siim; Lu, Xiaowen; Nolte, Ilja M.; Penninx, Brenda W.; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F.; Melander, Olle; O'Donnell, Christopher J.; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M.; Facheris, Maurizio; Collins, Francis S.; Bergman, Richard N.; Beilby, John P.; Hung, Joseph; Musk, A. William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S.; Navarro, Pau; Wild, Sarah H.; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J. C.; Willemsen, Gonneke; Parker, Alex N.; Rose, Lynda M.; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M.; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L.; Kahonen, Mika; Viikari, Jorma; Doering, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M.; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H.; 't Hoen, Peter A. C.; Koenig, Inke R.; Felix, Janine F.; Clarke, Robert; Hopewell, Jemma C.; Ongen, Halit; Breteler, Monique; Debette, Stephanie; DeStefano, Anita L.; Fornage, Myriam; Mitchell, Gary F.; Smith, Nicholas L.; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J.; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J.; Wichmann, H-Erich; Raitakari, Olli T.; Palmas, Walter; Kooner, Jaspal S.; Stolk, Ronald P.; Jukema, J. Wouter; Wright, Alan F.; Boomsma, Dorret I.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wilson, James F.; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D.; Palmer, Lyle J.; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J. F.; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J.; Oostra, Ben A.; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P.; Beckmann, Jacques S.; Witteman, Jacqueline C. M.; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M.; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R.; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B.; Psaty, Bruce M.; Caulfield, Mark J.; Rao, Dabeeru C.; Tobin, Martin D.; Elliott, Paul; van Duijn, Cornelia M.

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we

  17. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao; S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,60

  18. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    Science.gov (United States)

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  19. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.

    Science.gov (United States)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-18

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in

  20. Ubiquitous human ‘master’ origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers

    Science.gov (United States)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-01

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The ‘master’ origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs

  1. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  2. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  3. Genome-Wide analysis of allelic imbalance in laser microdissected prostate cancer tissue using the Affymetrix 50K Mapping array identifies genomic patterns associated with metastasis and differentiation

    DEFF Research Database (Denmark)

    Tørring, Niels; Borre, Michael; Sørensen, Karina;

    2007-01-01

    to be developed for patient stratification based on risk of progression. We analysed laser-microdissected prostate tumour tissue from 43 patients with histologically verified PCa, using the new high-resolution Affymetrix Mapping 50K single-nucleotide polymorphism array. The results showed six major loss......, tumour progression towards a metastatic stage, as well as poor differentiation, was identified by specific patterns of copy number gains of genomic regions located at chromosomes 8q, 1q, 3q and 7q. Androgen ablation therapy was further characterised by copy gain at chromosomes 2p and 10q. In conclusion...

  4. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    Science.gov (United States)

    2008-04-01

    Wang JP, Widom J (2005) Improved alignment of nucleosome DNA sequences using a mixture model. Nucleic Acids Res 33: 6743–6755. 6. Ioshikhes IP, Albert I...EMBO J 24: 533–542. 26. Anderson JD, Widom J (2000) Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites

  5. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    OpenAIRE

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding w...

  6. Genome-wide distribution of genetic diversity and linkage disequilibrium in elite sugar beet germplasm

    Directory of Open Access Journals (Sweden)

    Weißleder Knuth

    2011-10-01

    Full Text Available Abstract Background Characterization of population structure and genetic diversity of germplasm is essential for the efficient organization and utilization of breeding material. The objectives of this study were to (i explore the patterns of population structure in the pollen parent heterotic pool using different methods, (ii investigate the genome-wide distribution of genetic diversity, and (iii assess the extent and genome-wide distribution of linkage disequilibrium (LD in elite sugar beet germplasm. Results A total of 264 and 238 inbred lines from the yield type and sugar type inbreds of the pollen parent heterotic gene pools, respectively, which had been genotyped with 328 SNP markers, were used in this study. Two distinct subgroups were detected based on different statistical methods within the elite sugar beet germplasm set, which was in accordance with its breeding history. MCLUST based on principal components, principal coordinates, or lapvectors had high correspondence with the germplasm type information as well as the assignment by STRUCTURE, which indicated that these methods might be alternatives to STRUCTURE for population structure analysis. Gene diversity and modified Roger's distance between the examined germplasm types varied considerably across the genome, which might be due to artificial selection. This observation indicates that population genetic approaches could be used to identify candidate genes for the traits under selection. Due to the fact that r2 >0.8 is required to detect marker-phenotype association explaining less than 1% of the phenotypic variance, our observation of a low proportion of SNP loci pairs showing such levels of LD suggests that the number of markers has to be dramatically increased for powerful genome-wide association mapping. Conclusions We provided a genome-wide distribution map of genetic diversity and linkage disequilibrium for the elite sugar beet germplasm, which is useful for the application of

  7. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  8. Semantically enabling a genome-wide association study database

    Directory of Open Access Journals (Sweden)

    Beck Tim

    2012-12-01

    Full Text Available Abstract Background The amount of data generated from genome-wide association studies (GWAS has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits, and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH terminology suitable for describing all traits (diseases and medical signs and symptoms at various levels of granularity and the Human Phenotype Ontology (HPO most suitable for describing phenotypic abnormalities (medical signs and symptoms at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic

  9. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    Science.gov (United States)

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

  10. Genome-wide association study of clinical dimensions of schizophrenia

    DEFF Research Database (Denmark)

    Fanous, Ayman H; Zhou, Baiyu; Aggen, Steven H;

    2012-01-01

    Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia....

  11. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  12. Genome-wide polymorphisms show unexpected targets of natural selection

    OpenAIRE

    Pespeni, Melissa H.; Garfield, David A.; Manier, Mollie K; Palumbi, Stephen R.

    2011-01-01

    Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species...

  13. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  14. Genome-wide inference of regulatory networks in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2010-10-01

    Full Text Available Abstract Background The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. Results In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Conclusions Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  15. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.

    Science.gov (United States)

    Zhang, Yong; Moqtaderi, Zarmik; Rattner, Barbara P; Euskirchen, Ghia; Snyder, Michael; Kadonaga, James T; Liu, X Shirley; Struhl, Kevin

    2009-08-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regions, reduced rotational positioning and less translational positioning than obtained by intrinsic histone-DNA interactions. Notably, nucleosomes assembled in vitro have only a limited preference for specific translational positions and do not show the pattern observed in vivo. Our results argue against a genomic code for nucleosome positioning, and they suggest that the nucleosomal pattern in coding regions arises primarily from statistical positioning from a barrier near the promoter that involves some aspect of transcriptional initiation by RNA polymerase II.

  16. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription

    Science.gov (United States)

    Tavenet, Arounie; Suleau, Audrey; Dubreuil, Géraldine; Ferrari, Roberto; Ducrot, Cécile; Michaut, Magali; Aude, Jean-Christophe; Dieci, Giorgio; Lefebvre, Olivier; Conesa, Christine; Acker, Joël

    2009-01-01

    Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells. PMID:19706510

  17. A novel statistic for genome-wide interaction analysis.

    Science.gov (United States)

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDRanalysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  18. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data

    Directory of Open Access Journals (Sweden)

    Yokochi Tomoki

    2008-12-01

    Full Text Available Abstract Background Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. Results We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1 view their data sets privately without sharing; (2 share with other registered users; or (3 make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. Conclusion ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the

  19. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  20. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  1. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  2. Genome-wide association study of colorectal cancer in Hispanics

    Science.gov (United States)

    Schmit, Stephanie L.; Schumacher, Fredrick R.; Edlund, Christopher K.; Conti, David V.; Ihenacho, Ugonna; Wan, Peggy; Van Den Berg, David; Casey, Graham; Fortini, Barbara K.; Lenz, Heinz-Josef; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Moreno-Macías, Hortensia; Huerta-Chagoya, Alicia; Ordóñez-Sánchez, María Luisa; Rodríguez-Guillén, Rosario; Cruz-Bautista, Ivette; Rodríguez-Torres, Maribel; Muñóz-Hernández, Linda Liliana; Arellano-Campos, Olimpia; Gómez, Donají; Alvirde, Ulices; González-Villalpando, Clicerio; González-Villalpando, María Elena; Le Marchand, Loic; Haiman, Christopher A.; Figueiredo, Jane C.

    2016-01-01

    Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10−8. Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10−6) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47–2.36); P = 2.5×10−7], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21–1.55); P = 4.0×10−7), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36–2.01); P = 4.1×10−7) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37–2.08); P=7.8×10−7]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10–5) and 11q12.2 (P = 6.8×10−5), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations. PMID:27207650

  3. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    Directory of Open Access Journals (Sweden)

    Alberto J Lopez

    2015-04-01

    Full Text Available It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, schizophrenia, and Autism Spectrum Disorder. Together, these human developmental and intellectual disability disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development.

  4. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures.

    Science.gov (United States)

    Thomson, John P; Fawkes, Angie; Ottaviano, Raffaele; Hunter, Jennifer M; Shukla, Ruchi; Mjoseng, Heidi K; Clark, Richard; Coutts, Audrey; Murphy, Lee; Meehan, Richard R

    2015-05-14

    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially available semiconductor based technology (DNA immunoprecipitation semiconductor sequencing; "DIP-SC-seq") on the Ion Proton sequencer. Focussing on the 5hmC mark we demonstrate, by directly comparing with alternative sequencing strategies, that this platform can successfully generate genome wide 5hmC patterns from as little as 500 ng of genomic DNA in less than 4 days. Such a method can therefore facilitate the rapid generation of multiple genome wide epigenetic datasets.

  5. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  6. Genome-Wide Scan Reveals Mutation Associated with Melanoma

    Science.gov (United States)

    ... Q R S T U V W X Y Z We want to hear from you You are here: News & Events 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Spotlight on Research 2012 July 2012 (historical) Genome-Wide Scan Reveals Mutation Associated with Melanoma A team of ...

  7. A genome-wide scan for preeclampsia in the Netherlands

    NARCIS (Netherlands)

    Lachmeijer, AMA; Arngrimsson, R; Bastiaans, EJ; Frigge, ML; Pals, G; Sigurdardottir, S; Stefansson, H; Palsson, B; Nicolae, D; Kong, A; Aarnoudse, JG; Gulcher, [No Value; Dekker, GA; ten Kate, LP; Stefansson, K

    2001-01-01

    Preeclampsia, hallmarked by de novo hypertension and proteinuria in pregnancy, has a familial tendency. Recently, a large Icelandic genome-wide scan provided evidence for a maternal susceptibility locus for preeclampsia on chromosome 2p13 which was confirmed by a genome scan from Australia and New

  8. Genome-wide RNA Tomography in the Zebrafish Embryo

    NARCIS (Netherlands)

    Junker, Jan Philipp; Noël, Emily S; Guryev, Victor; Peterson, Kevin A; Shah, Gopi; Huisken, Jan; McMahon, Andrew P; Berezikov, Eugene; Bakkers, Jeroen; van Oudenaarden, Alexander

    2014-01-01

    Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in

  9. Genome-wide RNA Tomography in the zebrafish embryo

    NARCIS (Netherlands)

    Junker, Jan Philipp; Noël, Emily S; Guryev, Victor; Peterson, Kevin A; Shah, Gopi; Huisken, Jan; McMahon, Andrew P; Berezikov, Eugene; Bakkers, Jeroen; van Oudenaarden, Alexander

    2014-01-01

    Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in

  10. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  11. A genome-wide association study of anorexia nervosa

    NARCIS (Netherlands)

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, Annemarie; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countri

  12. Genome-Wide Association Analysis in Primary Sclerosing Cholangitis

    NARCIS (Netherlands)

    T.H. Karlsen; A. Franke; E. Melum; A.. Kaser; J.R. Hov; T. Balschun; B.A. Lie; A. Bergquist; C. Schramm; T.J. Weismüller; D. Gotthardt; C. Rust; E.E.R. Philipp; T. Fritz; L. Henckaerts; R. Weersma; P. Stokkers; C.Y. Ponsioen; C. Wijmenga; M. Sterneck; M. Nothnagel; J. Hampe; A. Teufel; H. Runz; P. Rosenstiel; A. Stiehl; S. Vermeire; U. Beuers; M. Manns; E. Schrumpf; K.M. Boberg; S. Schreiber

    2010-01-01

    BACKGROUND & AIMS: We aimed to characterize the genetic susceptibility to primary sclerosing cholangitis (PSC) by means of a genome-wide association analysis of single nucleotide polymorphism (SNP) markers. METHODS: A total of 443,816 SNPs on the Affymetrix SNP Array 5.0 (Affymetrix, Santa Clara, CA

  13. Genome-wide association study of Tourette's syndrome

    NARCIS (Netherlands)

    Scharf, J. M.; Yu, D.; Mathews, C. A.; Neale, B. M.; Stewart, S. E.; Fagerness, J. A.; Evans, P.; Gamazon, E.; Edlund, C. K.; Service, S. K.; Tikhomirov, A.; Osiecki, L.; Illmann, C.; Pluzhnikov, A.; Konkashbaev, A.; Davis, L. K.; Han, B.; Crane, J.; Moorjani, P.; Crenshaw, A. T.; Parkin, M. A.; Reus, V. I.; Lowe, T. L.; Rangel-Lugo, M.; Chouinard, S.; Dion, Y.; Girard, S.; Cath, D. C.; Smit, J. H.; King, R. A.; Fernandez, T. V.; Leckman, J. F.; Kidd, K. K.; Kidd, J. R.; Pakstis, A. J.; State, M. W.; Herrera, L. D.; Romero, R.; Fournier, E.; Sandor, P.; Barr, C. L.; Phan, N.; Gross-Tsur, V.; Benarroch, F.; Pollak, Y.; Budman, C. L.; Bruun, R. D.; Erenberg, G.; Naarden, A. L.; Lee, P. C.; Weiss, N.; Kremeyer, B.; Berrio, G. B.; Campbell, D. D.; Cardona Silgado, J. C.; Ochoa, W. C.; Mesa Restrepo, S. C.; Muller, H.; Valencia Duarte, A. V.; Lyon, G. J.; Leppert, M.; Morgan, J.; Weiss, R.; Grados, M. A.; Anderson, K.; Davarya, S.; Singer, H.; Walkup, J.; Jankovic, J.; Tischfield, J. A.; Heiman, G. A.; Gilbert, D. L.; Hoekstra, P. J.; Robertson, M. M.; Kurlan, R.; Liu, C.; Gibbs, J. R.; Singleton, A.; Hardy, J.; Strengman, E.; Ophoff, R. A.; Wagner, M.; Moessner, R.; Mirel, D. B.; Posthuma, D.; Sabatti, C.; Eskin, E.; Conti, D. V.; Knowles, J. A.; Ruiz-Linares, A.; Rouleau, G. A.; Purcell, S.; Heutink, P.; Oostra, B. A.; McMahon, W. M.; Freimer, N. B.; Cox, N. J.; Pauls, D. L.

    2013-01-01

    Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association

  14. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  15. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  16. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yiel...

  17. Genome-wide significant risk associations for mucinous ovarian carcinoma

    DEFF Research Database (Denmark)

    Kelemen, Linda E; Lawrenson, Kate; Tyrer, Jonathan;

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at...

  18. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea

    Science.gov (United States)

    Kujur, Alice; Bajaj, Deepak; Upadhyaya, Hari D.; Das, Shouvik; Ranjan, Rajeev; Shree, Tanima; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23–47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea. PMID:26058368

  19. Genome-wide association study identifies multiple loci associated with bladder cancer risk

    Science.gov (United States)

    Figueroa, Jonine D.; Ye, Yuanqing; Siddiq, Afshan; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Prokunina-Olsson, Ludmila; Cortessis, Victoria K.; Kooperberg, Charles; Cussenot, Olivier; Benhamou, Simone; Prescott, Jennifer; Porru, Stefano; Dinney, Colin P.; Malats, Núria; Baris, Dalsu; Purdue, Mark; Jacobs, Eric J.; Albanes, Demetrius; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Tang, Wei; Bas Bueno-de-Mesquita, H.; Trichopoulos, Dimitrios; Ljungberg, Börje; Clavel-Chapelon, Françoise; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth; Tjønneland, Anne; Brenan, Paul; Chang-Claude, Jenny; Riboli, Elio; Conti, David; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Hohensee, Chancellor; Rodabough, Rebecca; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Chen, Constance; De Vivo, Immaculata; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Lindstrom, Sara; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Kamat, Ashish M.; Lerner, Seth P.; Barton Grossman, H.; Lin, Jie; Gu, Jian; Pu, Xia; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Kogevinas, Manolis; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Schned, Alan; Armenti, Karla R.; Hosain, G.M.; Andriole, Gerald; Grubb, Robert; Black, Amanda; Ryan Diver, W.; Gapstur, Susan M.; Weinstein, Stephanie J.; Virtamo, Jarmo; Haiman, Chris A.; Landi, Maria T.; Caporaso, Neil; Fraumeni, Joseph F.; Vineis, Paolo; Wu, Xifeng; Silverman, Debra T.; Chanock, Stephen; Rothman, Nathaniel

    2014-01-01

    Candidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis. PMID:24163127

  20. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults.

    Science.gov (United States)

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S; De Jager, Philip L; Yu, Lei; Singleton, Andrew B; Harris, Tamara; Mosley, Thomas H; Pinto, Jayant M; Bennett, David A; Chen, Honglei

    2015-11-01

    Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases.

  1. Genome-wide pathway association studies of multiple correlated quantitative phenotypes using principle component analyses.

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    Full Text Available Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS approach using principle component analysis(PCA. In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases.

  2. Controls of nucleosome positioning in the human genome.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    Full Text Available Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning than expected by chance and a substantial fraction (8.7% of nucleosomes have moderate to strong positioning. In aggregate, nucleosome sequences have 10 bp periodic patterns in dinucleotide frequency and DNase I sensitivity; and, across cells, nucleosomes frequently have translational offsets that are multiples of 10 bp. We estimate that almost half of the genome contains regularly spaced arrays of nucleosomes, which are enriched in active chromatin domains. Single nucleotide polymorphisms that reduce DNase I sensitivity can disrupt the phasing of nucleosome arrays, which indicates that they often result from positioning against a barrier formed by other proteins. However, nucleosome arrays can also be created by DNA sequence alone. The most striking example is an array of over 400 nucleosomes on chromosome 12 that is created by tandem repetition of sequences with strong positioning properties. In summary, a large fraction of nucleosomes are consistently positioned--in some regions because they adopt favored sequence positions, and in other regions because they are forced into specific arrangements by chromatin remodeling or DNA binding proteins.

  3. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure (letter)

    NARCIS (Netherlands)

    Wain, L.V.; Verwoert, G.C.; O'Reilly, P.F.; Shi, G.; Johnson, T.; Johnson, A.D.; Bochud, M.; Rice, K.M.; Henneman, P.; Smith, A.V.; Ehret, G.B.; Amin, N.; Larson, M.G.; Mooser, V.; Hadley, D.; Dorr, M.; Bis, J.C.; Aspelund, T.; Esko, T.; Janssens, A.C.J.W.; Zhao, J.H.; Heath, S.; Laan, M.; Fu, J.Y.; Pistis, G.; Luan, J.A.; Arora, P.; Lucas, G.; Pirastu, N.; Pichler, I.; Jackson, A.U.; Webster, R.J.; Zhang, F.; Peden, J.F.; Schmidt, H.; Tanaka, T.; Campbell, H.; Igl, W.; Milaneschi, Y.; Hottenga, J.J.; Vitart, V.; Chasman, D.I.; Trompet, S.; Bragg-Gresham, J.L.; Alizadeh, B.Z.; Chambers, J.C.; Guo, X.Q.; Lehtimaki, T.; Kuhnel, B.; Lopez, L.M.; Polasek, O.; Boban, M.; Nelson, C.P.; Morrison, A.C.; Pihur, V.; Ganesh, S.K.; Hofman, A.; Kundu, S.; Mattace-Raso, F.U.S.; Rivadeneira, F.; Sijbrands, E.J.G.; Uitterlinden, A.G.; Hwang, S.J.; Vasan, R.S.; Wang, T.J.; Bergmann, S.; Vollenweider, P.; Waeber, G.; Laitinen, J.; Pouta, A.; Zitting, P.; McArdle, W.L.; Kroemer, H.K.; Volker, U.; Volzke, H.; Glazer, N.L.; Taylor, K.D.; Harris, T.B.; Alavere, H.; Haller, T.; Keis, A.; Tammesoo, M.L.; Aulchenko, Y.; Barroso, I.; Khaw, K.T.; Galan, P.; Hercberg, S.; Lathrop, M.; Eyheramendy, S.; Org, E.; Sober, S.; Lu, X.W.; Nolte, I.M.; Penninx, B.W.; Corre, T.; Masciullo, C.; Sala, C.; Groop, L.; Voight, B.F.; Melander, O.; O'Donnell, C.J.; Salomaa, V.; d'Adamo, A.P.; Fabretto, A.; Faletra, F.; Ulivi, S.; Del Greco, M.F.; Facheris, M.; Collins, F.S.; Bergman, R.N.; Beilby, J.P.; Hung, J.; Musk, A.W.; Mangino, M.; Shin, S.Y.; Soranzo, N.; Watkins, H.; Goel, A.; Hamsten, A.; Gider, P.; Loitfelder, M.; Zeginigg, M.; Hernandez, D.; Najjar, S.S.; Navarro, P.; Wild, S.H.; Corsi, A.M.; Singleton, A.; de Geus, E.J.C.; Willemsen, G.; Parker, A.N.; Rose, L.M.; Buckley, B.; Stott, D.; Orru, M.; Uda, M.; van der Klauw, M.M.; Zhang, W.H.; Li, X.Z.; Scott, J.; Chen, Y.D.I.; Burke, G.L.; Kahonen, M.; Viikari, J.; Doring, A.; Meitinger, T.; Davies, G.; Starr, J.M.; Emilsson, V.; Plump, A.; Lindeman, J.H.; 'T Hoen, P.A.C.; Konig, I.R.; Felix, J.F.; Clarke, R.; Hopewell, J.C.; Ongen, H.; Breteler, M.; Debette, S.; DeStefano, A.L.; Fornage, M.; Mitchell, G.F.; Smith, N.L.; Holm, H.; Stefansson, K.; Thorleifsson, G.; Thorsteinsdottir, U.; Samani, N.J.; Preuss, M.; Rudan, I.; Hayward, C.; Deary, I.J.; Wichmann, H.E.; Raitakari, O.T.; Palmas, W.; Kooner, J.S.; Stolk, R.P.; Jukema, J.W.; Wright, A.F.; Boomsma, D.I.; Bandinelli, S.; Gyllensten, U.B.; Wilson, J.F.; Ferrucci, L.; Schmidt, R.; Farrall, M.; Spector, T.D.; Palmer, L.J.; Tuomilehto, J.; Pfeufer, A.; Gasparini, P.; Siscovick, D.; Altshuler, D.; Loos, R.J.F.; Toniolo, D.; Snieder, H.; Gieger, C.; Meneton, P.; Wareham, N.J.; Oostra, B.A.; Metspalu, A.; Launer, L.; Rettig, R.; Strachan, D.P.; Beckmann, J.S.; Witteman, J.C.M.; Erdmann, J.; van Dijk, K.W.; Boerwinkle, E.; Boehnke, M.; Ridker, P.M.; Jarvelin, M.R.; Chakravarti, A.; Abecasis, G.R.; Gudnason, V.; Newton-Cheh, C.; Levy, D.; Munroe, P.B.; Psaty, B.M.; Caulfield, M.J.; Rao, D.C.; Tobin, M.D.; Elliott, P.; van Duijn, C.M.

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we

  4. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    DEFF Research Database (Denmark)

    Li, Yun R.; van Setten, Jessica; Verma, Shefali S.;

    2015-01-01

    genome-wide genotyping array, the 'TxArray', comprising approximately 782,000 markers with tailored content for deeper capture of variants across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and genotyping quality, we genotyped 85 HapMap samples...

  5. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.

    Directory of Open Access Journals (Sweden)

    Clive J Hoggart

    2008-07-01

    Full Text Available Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.

  6. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    DEFF Research Database (Denmark)

    Li, Yun R.; van Setten, Jessica; Verma, Shefali S.

    2015-01-01

    on the array, including eight trios. Results: We show low Mendelian error rates and high concordance rates for HapMap samples (average parent-parent-child heritability of 0.997, and concordance of 0.996). We performed genotype imputation across autosomal regions, masking directly genotyped SNPs to assess...... compared to reference samples and to other genome-wide genotyping platforms. Conclusions: We have designed a comprehensive genome-wide genotyping tool which enables accurate association testing and imputation of ungenotyped SNPs, facilitating powerful and cost-effective large-scale genotyping of transplant...

  7. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat

    2011-06-01

    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

  8. Genome-wide association studies and resting heart rate

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas

    2016-01-01

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10 years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms...... and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands...... of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal...

  9. Genome-wide patterns of selection in 230 ancient Eurasians

    Science.gov (United States)

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  10. Genome wide copy number analysis of single cells

    Science.gov (United States)

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  11. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection...

  12. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    Science.gov (United States)

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  13. Genome-Wide Prediction of C. elegans Genetic Interactions

    OpenAIRE

    Zhong, Weiwei; Sternberg, Paul W.

    2006-01-01

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms—Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster—and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understandin...

  14. Genome-wide association study of relative telomere length.

    Science.gov (United States)

    Prescott, Jennifer; Kraft, Peter; Chasman, Daniel I; Savage, Sharon A; Mirabello, Lisa; Berndt, Sonja I; Weissfeld, Joel L; Han, Jiali; Hayes, Richard B; Chanock, Stephen J; Hunter, David J; De Vivo, Immaculata

    2011-05-10

    Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003) identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  15. Genome-wide association study of relative telomere length.

    Directory of Open Access Journals (Sweden)

    Jennifer Prescott

    Full Text Available Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003 identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  16. Genome-wide association studies in pediatric endocrinology.

    Science.gov (United States)

    Dauber, Andrew; Hirschhorn, Joel N

    2011-01-01

    Genome-wide association (GWA) studies are a powerful tool for understanding the genetic underpinnings of human disease. In this article, we briefly review the role and findings of GWA studies in type 1 diabetes, stature, pubertal timing, obesity, and vitamin D deficiency. We then discuss the present and future implications of these findings with regards to disease prediction, uncovering basic biology, and the development of novel therapeutic agents.

  17. Statistical Approaches in Genome-Wide Association Studies

    OpenAIRE

    Yazdani, Akram

    2014-01-01

    Genome-wide association studies, GWAS, typically contain hundreds of thousands single nucleotide polymorphisms, SNPs, genotyped for few numbers of samples. The aim of these studies is to identify regions harboring SNPs or to predict the outcomes of interest. Since the number of predictors in the GWAS far exceeds the number of samples, it is impossible to analyze the data with classical statistical methods. In the current GWAS, the widely applied methods are based on single marker analysis th...

  18. Integrative genome-wide approaches in embryonic stem cell research.

    Science.gov (United States)

    Zhang, Xinyue; Huang, Jing

    2010-10-01

    Embryonic stem (ES) cells are derived from blastocysts. They can differentiate into the three embryonic germ layers and essentially any type of somatic cells. They therefore hold great potential in tissue regeneration therapy. The ethical issues associated with the use of human embryonic stem cells are resolved by the technical break-through of generating induced pluripotent stem (iPS) cells from various types of somatic cells. However, how ES and iPS cells self-renew and maintain their pluripotency is still largely unknown in spite of the great progress that has been made in the last two decades. Integrative genome-wide approaches, such as the gene expression microarray, chromatin immunoprecipitation based microarray (ChIP-chip) and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) offer unprecedented opportunities to elucidate the mechanism of the pluripotency, reprogramming and DNA damage response of ES and iPS cells. This frontier article summarizes the fundamental biological questions about ES and iPS cells and reviews the recent advances in ES and iPS cell research using genome-wide technologies. To this end, we offer our perspectives on the future of genome-wide studies on stem cells.

  19. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  20. Genome Wide Examination of Allelic Loss in Lobular and Ductal Breast Cancer

    Science.gov (United States)

    2004-07-01

    assay with data from array comparative genomic hybridization (CGH) on the same tumors. We find almost complete concordance with LOH as defined by the...Facility for assis- HuSNP assay on PEP material may be an acceptable tance in the hybridization and analysis of the HuSNP arrays, approach to genome-wide...Levine D, it is still a low-density map, with an average of one SNP Rabinovitch P, Reid B: 17p (p53) allelic losses, 4N (G2/ tetraploid ) site per 8.5 Mb in

  1. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    Science.gov (United States)

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  2. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    Science.gov (United States)

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  3. HITS-CLIP yields genome-wide insights into brain alternative RNA processing

    Science.gov (United States)

    Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C.; Blume, John E.; Wang, Xuning; Darnell, Jennifer C.; Darnell, Robert B.

    2008-11-01

    Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

  4. The impact of the HIRA histone chaperone upon global nucleosome architecture.

    Science.gov (United States)

    Gal, Csenge; Moore, Karen M; Paszkiewicz, Konrad; Kent, Nicholas A; Whitehall, Simon K

    2015-01-01

    HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.

  5. Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma

    Science.gov (United States)

    Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.

    2015-01-01

    Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132

  6. Effect of Genome-Wide Genotyping and Reference Panels on Rare Variants Imputation

    Institute of Scientific and Technical Information of China (English)

    Hou-Feng Zheng; Martin Ladouceur; Celia M.T. Greenwood; J.Brent Richards

    2012-01-01

    Common variants explain little of the variance of most common disease,prompting large-scale sequencing studies to understand the contribution of rare variants to these diseases.Imputation of rare variants from genome-wide genotypic arrays offers a cost-efficient strategy to achieve necessary sample sizes required for adequate statistical power.To estimate the performance of imputation of rare variants,we imputed 153 individuals,each of whom was genotyped on 3 different genotype arrays including 317k,610k and 1 million single nucleotide polymorphisms (SNPs),to two different reference panels:HapMap2 and 1000 Genomes pilot March 2010 release (1KGpilot) by using IMPUTE version 2.We found that more than 94% and 84% of all SNPs yield acceptable accuracy (info > 0.4) in HapMap2 and 1KGpilot-based imputation,respectively.For rare variants (minor allele frequency (MAF) ≤5%),the proportion of well-imputed SNPs increased as the MAF increased from 0.3% to 5% across all 3 genome-wide association study (GWAS) datasets.The proportion of well-imputed SNPs was 69%,60% and 49% for SNPs with a MAF from 0.3% to 5% for 1M,610k and 317k,respectively.None of the very rare variants (MAF ≤ 0.3%) were well imputed.We conclude that the imputation accuracy of rare variants increases with higher density of genome-wide genotyping arrays when the size of the reference panel is small.Variants with lower MAF are more difficult to impute.These findings have important implications in the design and replication of large-scale sequencing studies.

  7. Genome-wide Association Study of Obsessive-Compulsive Disorder

    Science.gov (United States)

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  8. Genome-wide landscapes of human local adaptation in Asia.

    Directory of Open Access Journals (Sweden)

    Wei Qian

    Full Text Available Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome.

  9. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  10. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies.

    Science.gov (United States)

    Xu, P; Wu, X; Wang, B; Luo, J; Liu, Y; Ehlers, J D; Close, T J; Roberts, P A; Lu, Z; Wang, S; Li, G

    2012-07-01

    Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.

  11. Genome-wide prediction of C. elegans genetic interactions.

    Science.gov (United States)

    Zhong, Weiwei; Sternberg, Paul W

    2006-03-10

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms-Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster-and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understanding of gene functions. We experimentally tested the predicted interactions for two human disease-related genes and identified 14 new modifiers.

  12. Genome-wide association studies and contribution to cardiovascular physiology.

    Science.gov (United States)

    Munroe, Patricia B; Tinker, Andrew

    2015-09-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology.

  13. [Genome-wide association study for adolescent idiopathic scoliosis].

    Science.gov (United States)

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  14. Genome-wide approaches to understanding human ageing

    Directory of Open Access Journals (Sweden)

    Kaeberlein Matt

    2006-06-01

    Full Text Available Abstract The use of genomic technologies in biogerontology has the potential to greatly enhance our understanding of human ageing. High-throughput screens for alleles correlated with survival in long-lived people have uncovered novel genes involved in age-associated disease. Genome-wide longevity studies in simple eukaryotes are identifying evolutionarily conserved pathways that determine longevity. It is hoped that validation of these 'public' aspects of ageing in mice, along with analyses of variation in candidate human ageing genes, will provide targets for future interventions to slow the ageing process and retard the onset of age-associated pathologies.

  15. Genome-wide approaches to understanding behaviour in Drosophila melanogaster.

    Science.gov (United States)

    Neville, Megan; Goodwin, Stephen F

    2012-09-01

    Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.

  16. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  17. Nucleosome Positioning and Epigenetics

    Science.gov (United States)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  18. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia.

    Science.gov (United States)

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-03-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38-0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (pear.

  19. A genome-wide association study of female sexual dysfunction.

    Directory of Open Access Journals (Sweden)

    Andrea Burri

    Full Text Available BACKGROUND: Female sexual dysfunction (FSD is an important but controversial problem with serious negative impact on women's quality of life. Data from twin studies have shown a genetic contribution to the development and maintenance of FSD. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide association study (GWAS on 2.5 million single-nucleotide polymorphisms (SNPs in 1,104 female twins (25-81 years of age in a population-based register and phenotypic data on lifelong sexual functioning. Although none reached conventional genome-wide level of significance (10 × -8, we found strongly suggestive associations with the phenotypic dimension of arousal (rs13202860, P = 1.2 × 10(-7; rs1876525, P = 1.2 × 10(-7; and rs13209281 P = 8.3 × 10(-7 on chromosome 6, around 500 kb upstream of the locus HTR1E (5-hydroxytryptamine receptor 1E locus, related to the serotonin brain pathways. We could not replicate previously reported candidate SNPs associated with FSD in the DRD4, 5HT2A and IL-1B loci. CONCLUSIONS/SIGNIFICANCE: We report the first GWAS of FSD symptoms in humans. This has pointed to several "risk alleles" and the implication of the serotonin and GABA pathways. Ultimately, understanding key mechanisms via this research may lead to new FSD treatments and inform clinical practice and developments in psychiatric nosology.

  20. A genome-wide association study of aging.

    Science.gov (United States)

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  1. Genome-wide patterns of Arabidopsis gene expression in nature.

    Directory of Open Access Journals (Sweden)

    Christina L Richards

    Full Text Available Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg correlate to temperature and precipitation occurrence in the field. The largest PC(veg axes included thermoregulatory genes while the second major PC(veg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  2. Planning and executing a genome wide association study (GWAS).

    Science.gov (United States)

    Sale, Michèle M; Mychaleckyj, Josyf C; Chen, Wei-Min

    2009-01-01

    In recent years, genome-wide association approaches have proven a powerful and successful strategy to identify genetic contributors to complex traits, including a number of endocrine disorders. Their success has meant that genome wide association studies (GWAS) are fast becoming the default study design for discovery of new genetic variants that influence a clinical trait or phenotype. This chapter focuses on a number of key elements that require consideration for the successful conduct of a GWAS. Although many of the considerations are common to any genetic study, the greater cost, extreme multiple testing, and greater openness to data sharing require specific awareness and planning by investigators. In the section on designing a GWAS, we reflect on ethical considerations, study design, selection of phenotype/s, power considerations, sample tracking and storage issues, and genotyping product selection. During execution, important considerations include DNA quantity and preparation, genotyping methods, quality control checks of genotype data, in silico genotyping (imputation), tests of association, and replication of association signals. Although the field of human genetics is rapidly evolving, recent experiences can help guide an investigator in making practical and methodological choices that will eventually determine the overall quality of GWAS results. Given the investment to recruit patient populations or cohorts that are powered for a GWAS, and the still substantial costs associated with genotyping, it is helpful to be aware of these aspects to maximize the likelihood of success, especially where there is an opportunity for implementing them prospectively.

  3. Genome-wide patterns of nucleotide polymorphism in domesticated rice.

    Directory of Open Access Journals (Sweden)

    Ana L Caicedo

    2007-09-01

    Full Text Available Domesticated Asian rice (Oryza sativa is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models to explain contemporary patterns of polymorphisms in rice, including a (i selectively neutral population bottleneck model, (ii bottleneck plus migration model, (iii multiple selective sweeps model, and (iv bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been the dominant demographic model for domesticated species, cannot explain the derived nucleotide polymorphism site frequency spectrum in rice. Instead, a bottleneck model that incorporates selective sweeps, or a more complex demographic model that includes subdivision and gene flow, are more plausible explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection results only in a local signature of variation.

  4. Genome-Wide Scan for Methylation Profiles in Keloids

    Directory of Open Access Journals (Sweden)

    Lamont R. Jones

    2015-01-01

    Full Text Available Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63% were hypomethylated and 56 (37% hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.

  5. Baculoviruses and nucleosome management.

    Science.gov (United States)

    Volkman, Loy E

    2015-02-01

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.

  6. Baculoviruses and nucleosome management

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Loy E., E-mail: lvolkman@berkeley.edu

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  7. Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae.

    Directory of Open Access Journals (Sweden)

    Jennifer K Lowe

    2009-02-01

    Full Text Available It has been argued that the limited genetic diversity and reduced allelic heterogeneity observed in isolated founder populations facilitates discovery of loci contributing to both Mendelian and complex disease. A strong founder effect, severe isolation, and substantial inbreeding have dramatically reduced genetic diversity in natives from the island of Kosrae, Federated States of Micronesia, who exhibit a high prevalence of obesity and other metabolic disorders. We hypothesized that genetic drift and possibly natural selection on Kosrae might have increased the frequency of previously rare genetic variants with relatively large effects, making these alleles readily detectable in genome-wide association analysis. However, mapping in large, inbred cohorts introduces analytic challenges, as extensive relatedness between subjects violates the assumptions of independence upon which traditional association test statistics are based. We performed genome-wide association analysis for 15 quantitative traits in 2,906 members of the Kosrae population, using novel approaches to manage the extreme relatedness in the sample. As positive controls, we observe association to known loci for plasma cholesterol, triglycerides, and C-reactive protein and to a compelling candidate loci for thyroid stimulating hormone and fasting plasma glucose. We show that our study is well powered to detect common alleles explaining >/=5% phenotypic variance. However, no such large effects were observed with genome-wide significance, arguing that even in such a severely inbred population, common alleles typically have modest effects. Finally, we show that a majority of common variants discovered in Caucasians have indistinguishable effect sizes on Kosrae, despite the major differences in population genetics and environment.

  8. Genome-wide association study identified CNP12587 region underlying height variation in Chinese females.

    Directory of Open Access Journals (Sweden)

    Yin-Ping Zhang

    Full Text Available INTRODUCTION: Human height is a highly heritable trait considered as an important factor for health. There has been limited success in identifying the genetic factors underlying height variation. We aim to identify sequence variants associated with adult height by a genome-wide association study of copy number variants (CNVs in Chinese. METHODS: Genome-wide CNV association analyses were conducted in 1,625 unrelated Chinese adults and sex specific subgroup for height variation, respectively. Height was measured with a stadiometer. Affymetrix SNP6.0 genotyping platform was used to identify copy number polymorphisms (CNPs. We constructed a genomic map containing 1,009 CNPs in Chinese individuals and performed a genome-wide association study of CNPs with height. RESULTS: We detected 10 significant association signals for height (p<0.05 in the whole population, 9 and 11 association signals for Chinese female and male population, respectively. A copy number polymorphism (CNP12587, chr18:54081842-54086942, p = 2.41 × 10(-4 was found to be significantly associated with height variation in Chinese females even after strict Bonferroni correction (p = 0.048. Confirmatory real time PCR experiments lent further support for CNV validation. Compared to female subjects with two copies of the CNP, carriers of three copies had an average of 8.1% decrease in height. An important candidate gene, ubiquitin-protein ligase NEDD4-like (NEDD4L, was detected at this region, which plays important roles in bone metabolism by binding to bone formation regulators. CONCLUSIONS: Our findings suggest the important genetic variants underlying height variation in Chinese.

  9. A genome-wide association study of serum uric acid in African Americans

    Directory of Open Access Journals (Sweden)

    Gerry Norman P

    2011-02-01

    Full Text Available Abstract Background Uric acid is the primary byproduct of purine metabolism. Hyperuricemia is associated with body mass index (BMI, sex, and multiple complex diseases including gout, hypertension (HTN, renal disease, and type 2 diabetes (T2D. Multiple genome-wide association studies (GWAS in individuals of European ancestry (EA have reported associations between serum uric acid levels (SUAL and specific genomic loci. The purposes of this study were: 1 to replicate major signals reported in EA populations; and 2 to use the weak LD pattern in African ancestry population to better localize (fine-map reported loci and 3 to explore the identification of novel findings cognizant of the moderate sample size. Methods African American (AA participants (n = 1,017 from the Howard University Family Study were included in this study. Genotyping was performed using the Affymetrix® Genome-wide Human SNP Array 6.0. Imputation was performed using MACH and the HapMap reference panels for CEU and YRI. A total of 2,400,542 single nucleotide polymorphisms (SNPs were assessed for association with serum uric acid under the additive genetic model with adjustment for age, sex, BMI, glomerular filtration rate, HTN, T2D, and the top two principal components identified in the assessment of admixture and population stratification. Results Four variants in the gene SLC2A9 achieved genome-wide significance for association with SUAL (p-values ranging from 8.88 × 10-9 to 1.38 × 10-9. Fine-mapping of the SLC2A9 signals identified a 263 kb interval of linkage disequilibrium in the HapMap CEU sample. This interval was reduced to 37 kb in our AA and the HapMap YRI samples. Conclusions The most strongly associated locus for SUAL in EA populations was also the most strongly associated locus in this AA sample. This finding provides evidence for the role of SLC2A9 in uric acid metabolism across human populations. Additionally, our findings demonstrate the utility of following-up EA

  10. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies

    Science.gov (United States)

    Cowper-Sal·lari, Richard; Cole, Michael D.; Karagas, Margaret R.; Lupien, Mathieu; Moore, Jason H.

    2010-01-01

    The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in non-coding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfilment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin-immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease. PMID:21197657

  11. A genome-wide association study of optic disc parameters.

    Directory of Open Access Journals (Sweden)

    Wishal D Ramdas

    2010-06-01

    Full Text Available The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR. Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72x10(-19 within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67x10(-33 within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15x10(-11 in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93x10(-10 within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612, and the TwinsUK cohort (N = 843. Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant, and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin.

  12. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    Science.gov (United States)

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  13. Genome-wide association study of antisocial personality disorder

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  14. Application of genome-wide single nucleotide polymorphism typing: simple association and beyond.

    Directory of Open Access Journals (Sweden)

    J Raphael Gibbs

    2006-10-01

    Full Text Available The International HapMap Project and the arrival of technologies that type more than 100,000 SNPs in a single experiment have made genome-wide single nucleotide polymorphism (GW-SNP assay a realistic endeavor. This has sparked considerable debate regarding the promise of GW-SNP typing to identify genetic association in disease. As has already been shown, this approach has the potential to localize common genetic variation underlying disease risk. The data provided from this technology also lends itself to several other lines of investigation; autozygosity mapping in consanguineous families and outbred populations, direct detection of structural variation, admixture analysis, and other population genetic approaches. In this review we will discuss the potential uses and practical application of GW-SNP typing including those above and beyond simple association testing.

  15. Genome-wide chromatin analysis in mature mouse and human spermatozoa

    NARCIS (Netherlands)

    Hisano, M.; Erkek, S.; Dessus-Babus, S.; Ramos, L.; Stadler, M.B.; Peters, A.H.

    2013-01-01

    At the end of mammalian spermatogenesis, chromatin in differentiating germ cells is extensively remodeled, with the majority of nucleosomes being removed and ultimately exchanged by highly basic proteins named protamines. Residual nucleosomes are, to various degrees, retained at regulatory sequences

  16. Genome-wide association studies in pharmacogenomics of antidepressants.

    Science.gov (United States)

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  17. Genome-wide association studies in pediatric chronic kidney disease.

    Science.gov (United States)

    Gupta, Jayanta; Kanetsky, Peter A; Wuttke, Matthias; Köttgen, Anna; Schaefer, Franz; Wong, Craig S

    2016-08-01

    The genome-wide association study (GWAS) has become an established scientific method that provides an unbiased screen for genetic loci potentially associated with phenotypes of clinical interest, such as chronic kidney disease (CKD). Thus, GWAS provides opportunities to gain new perspectives regarding the genetic architecture of CKD progression by identifying new candidate genes and targets for intervention. As such, it has become an important arm of translational science providing a complementary line of investigation to identify novel therapeutics to treat CKD. In this review, we describe the method and the challenges of performing GWAS in the pediatric CKD population. We also provide an overview of successful GWAS for kidney disease, and we discuss the established pediatric CKD cohorts in North America and Europe that are poised to identify genetic risk variants associated with CKD progression.

  18. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  19. Genome-wide genetic changes during modern breeding of maize.

    Science.gov (United States)

    Jiao, Yinping; Zhao, Hainan; Ren, Longhui; Song, Weibin; Zeng, Biao; Guo, Jinjie; Wang, Baobao; Liu, Zhipeng; Chen, Jing; Li, Wei; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-06-03

    The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.

  20. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  1. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  2. Genome-wide measurement of RNA folding energies.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  3. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  4. A comparison of multivariate genome-wide association methods

    DEFF Research Database (Denmark)

    Galesloot, Tessel E; Van Steen, Kristel; Kiemeney, Lambertus A L M

    2014-01-01

    Joint association analysis of multiple traits in a genome-wide association study (GWAS), i.e. a multivariate GWAS, offers several advantages over analyzing each trait in a separate GWAS. In this study we directly compared a number of multivariate GWAS methods using simulated data. We focused on six...... methods that are implemented in the software packages PLINK, SNPTEST, MultiPhen, BIMBAM, PCHAT and TATES, and also compared them to standard univariate GWAS, analysis of the first principal component of the traits, and meta-analysis of univariate results. We simulated data (N = 1000) for three...... correlation. We compared the power of the methods using empirically fixed significance thresholds (α = 0.05). Our results showed that the multivariate methods implemented in PLINK, SNPTEST, MultiPhen and BIMBAM performed best for the majority of the tested scenarios, with a notable increase in power...

  5. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    Science.gov (United States)

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  6. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  7. Genome-wide significant loci for addiction and anxiety

    Science.gov (United States)

    Hodgson, K.; Almasy, L.; Knowles, E.E.M.; Kent, J.W.; Curran, J.E.; Dyer, T.D.; Göring, H.H.H.; Olvera, R.L.; Fox, P.T.; Pearlson, G.D.; Krystal, J.H.; Duggirala, R.; Blangero, J.; Glahn, D.C.

    2017-01-01

    Background Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Methods Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Results Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2–q21.2, LOD = 3.322) and a broad anxiety phenotype (12q24.32–q24.33, LOD = 2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg = 0.550–0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1–q33.2, LOD = 3.054) and drug dependence-anxiety (18p11.23–p11.22, LOD = 3.425). Conclusions This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics. PMID:27318301

  8. A genome-wide methylation study on obesity

    Science.gov (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances. PMID:23644594

  9. Genome-wide association studies in asthma: progress and pitfalls

    Directory of Open Access Journals (Sweden)

    March ME

    2015-01-01

    Full Text Available Michael E March,1 Patrick MA Sleiman,1,2 Hakon Hakonarson1,2 1Center for Applied Genomics, Children's Hospital of Philadelphia Research Institute, 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Abstract: Genetic studies of asthma have revealed that there is considerable heritability to the phenotype. An extensive history of candidate-gene studies has identified a long list of genes associated with immune function that are potentially involved in asthma pathogenesis. However, many of the results of candidate-gene studies have failed to be replicated, leaving in question the true impact of the implicated biological pathways on asthma. With the advent of genome-wide association studies, geneticists are able to examine the association of hundreds of thousands of genetic markers with a phenotype, allowing the hypothesis-free identification of variants associated with disease. Many such studies examining asthma or related phenotypes have been published, and several themes have begun to emerge regarding the biological pathways underpinning asthma. The results of many genome-wide association studies have currently not been replicated, and the large sample sizes required for this experimental strategy invoke difficulties with sample stratification and phenotypic heterogeneity. Recently, large collaborative groups of researchers have formed consortia focused on asthma, with the goals of sharing material and data and standardizing diagnosis and experimental methods. Additionally, research has begun to focus on genetic variants that affect the response to asthma medications and on the biology that generates the heterogeneity in the asthma phenotype. As this work progresses, it will move asthma patients closer to more specific, personalized medicine. Keywords: asthma, genetics, GWAS, pharmacogenetics, biomarkers

  10. A genome-wide association study of anorexia nervosa

    Science.gov (United States)

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  11. A genome-wide association study of anorexia nervosa.

    Science.gov (United States)

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  12. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  13. genipe: an automated genome-wide imputation pipeline with automatic reporting and statistical tools.

    Science.gov (United States)

    Lemieux Perreault, Louis-Philippe; Legault, Marc-André; Asselin, Géraldine; Dubé, Marie-Pierre

    2016-12-01

    Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies). The genipe package is an open source Python software and is freely available for non-commercial use (CC BY-NC 4.0) at https://github.com/pgxcentre/genipe Documentation and tutorials are available at http://pgxcentre.github.io/genipe CONTACT: louis-philippe.lemieux.perreault@statgen.org or marie-pierre.dube@statgen.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Development of Genome-Wide Scan for Selection Signature in Farm Animals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-guang

    2013-01-01

    Identifying targets of positive selection in farm animals has, until recently, been frustratingly slow, relying on the analysis of individual candidate genes. Genomics, however, has provided the necessary resources to systematically interrogate the entire genome for signatures of selection. This review described important recent results derived from the application of genome-wide scan to the study of genetic changes in farm animals. These included findings of regions of the genome that showed breed differentiation, evidence of selective sweeps within individual genomes and signatures of demographic events. Particular attention is focused on the study of the implications for domestication. To date, sixteen genome-wide scans for recent or ongoing positive selection have been performed in farm animals. A key challenge is to begin synthesizing these newly constructed maps of selection into a coherent narrative of animal breed evolutionary history and derive a deeper mechanistic understanding of how animal populations improve or evolve. The major insights from the surveyed studies are highlighted and directions for future study are suggested.

  15. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  16. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility

    Science.gov (United States)

    Cook, James P; Morris, Andrew P

    2016-01-01

    Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10−8) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry. PMID:27189021

  17. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip.

    Science.gov (United States)

    Cortijo, Sandra; Wardenaar, René; Colomé-Tatché, Maria; Johannes, Frank; Colot, Vincent

    2014-01-01

    DNA methylation is an epigenetic mark that is essential for preserving genome integrity and normal development in plants and mammals. Although this modification may serve a variety of purposes, it is best known for its role in stable transcriptional silencing of transposable elements and epigenetic regulation of some genes. In addition, it is increasingly recognized that alterations in DNA methylation patterns can sometimes be inherited across multiple generations and thus are a source of heritable phenotypic variation that is independent of any DNA sequence changes. With the advent of genomics, it is now possible to analyze DNA methylation genome-wide with high precision, which is a prerequisite for understanding fully the various functions and phenotypic impact of this modification. Indeed, several so-called epigenomic mapping methods have been developed for the analysis of DNA methylation. Among these, immunoprecipitation of methylated DNA followed by hybridization to genome tiling arrays (MeDIP-chip) arguably offers a reasonable compromise between cost, ease of implementation, and sensitivity to date. Here we describe the application of this method, from DNA extraction to data analysis, to the study of DNA methylation genome-wide in Arabidopsis.

  18. Genome-wide identification of expression quantitative trait loci (eQTLs in human heart.

    Directory of Open Access Journals (Sweden)

    Tamara T Koopmann

    Full Text Available In recent years genome-wide association studies (GWAS have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts. Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits.

  19. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  20. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  1. Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa

    Directory of Open Access Journals (Sweden)

    Tandi E. Matsha

    2016-01-01

    Full Text Available Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of residency-matched. Methylated DNA immunoprecipitation (MeDIP was performed by Arraystar Inc. (Rockville, MD, USA. Results. Hypermethylated DMRs were 1160 (81.97% and 124 (43.20%, respectively, in individuals with diabetes and prediabetes when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample size is required to confirm these findings.

  2. GStream: improving SNP and CNV coverage on genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Arnald Alonso

    Full Text Available We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH. We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS. These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method.

  3. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma.

    Directory of Open Access Journals (Sweden)

    Yanwen Jiang

    Full Text Available The processes of somatic hypermutation (SHM and class switch recombination introduced by activation-induced cytosine deaminase (AICDA at the Immunoglobulin (Ig loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs. Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5' regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL. Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5' regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.

  4. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  5. Genome-Wide Association Study for Autism Spectrum Disorder in Taiwanese Han Population.

    Directory of Open Access Journals (Sweden)

    Po-Hsiu Kuo

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder with strong genetic components. Several recent genome-wide association (GWA studies in Caucasian samples have reported a number of gene regions and loci correlated with the risk of ASD--albeit with very little consensus across studies.A two-stage GWA study was employed to identify common genetic variants for ASD in the Taiwanese Han population. The discovery stage included 315 patients with ASD and 1,115 healthy controls, using the Affymetrix SNP array 6.0 platform for genotyping. Several gene regions were then selected for fine-mapping and top markers were examined in extended samples. Single marker, haplotype, gene-based, and pathway analyses were conducted for associations.Seven SNPs had p-values ranging from 3.4~9.9*10-6, but none reached the genome-wide significant level. Five of them were mapped to three known genes (OR2M4, STYK1, and MNT with significant empirical gene-based p-values in OR2M4 (p = 3.4*10(-5 and MNT (p = 0.0008. Results of the fine-mapping study showed single-marker associations in the GLIS1 (rs12082358 and rs12080993 and NAALADL2 (rs3914502 and rs2222447 genes, and gene-based associations for the OR2M3-OR2T5 (olfactory receptor genes, p = 0.02, and GLIPR1/KRR1 gene regions (p = 0.015. Pathway analyses revealed important pathways for ASD, such as olfactory and G protein-coupled receptors signaling pathways.We reported Taiwanese Han specific susceptibility genes and variants for ASD. However, further replication in other Asian populations is warranted to validate our findings. Investigation in the biological functions of our reported genetic variants might also allow for better understanding on the underlying pathogenesis of autism.

  6. Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis

    Science.gov (United States)

    Hinks, Anne; Barton, Anne; Shephard, Neil; Eyre, Steve; Bowes, John; Cargill, Michele; Wang, Eric; Ke, Xiayi; Kennedy, Giulia C; John, Sally; Worthington, Jane; Thomson, Wendy

    2009-01-01

    Objective Juvenile idiopathic arthritis (JIA) is a chronic rheumatic disease of childhood. Two well-established genetic factors known to contribute to JIA susceptibility, HLA and PTPN22, account for less than half of the genetic susceptibility to disease; therefore, additional genetic factors have yet to be identified. The purpose of this study was to perform a systematic search of the genome to identify novel susceptibility loci for JIA. Methods A genome-wide association study using Affymetrix GeneChip 100K arrays was performed in a discovery cohort (279 cases and 184 controls). Single-nucleotide polymorphisms (SNPs) showing the most significant differences between cases and controls were then genotyped in a validation sample of cases (n = 321) and controls, combined with control data from the 1958 UK birth cohort (n = 2,024). In one region in which association was confirmed, fine-mapping was performed (654 cases and 1,847 controls). Results Of the 112 SNPs that were significantly associated with JIA in the discovery cohort, 6 SNPs were associated with JIA in the independent validation cohort. The most strongly associated SNP mapped to the HLA region, while the second strongest association was with a SNP within the VTCN1 gene. Fine-mapping of that gene was performed, and 10 SNPs were found to be associated with JIA. Conclusion This study is the first to successfully apply a SNP-based genome-wide association approach to the investigation of JIA. The replicated association with markers in the VTCN1 gene defined an additional susceptibility locus for JIA and implicates a novel pathway in the pathogenesis of this chronic disease of childhood. PMID:19116933

  7. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads

    Science.gov (United States)

    Copenhaver, Gregory P.; Browne, William E.; Preuss, Daphne

    1998-01-01

    During meiosis, crossover events generate new allelic combinations, yet the abundance of these genetic exchanges in individual cells has not been measured previously on a genomic level. To perform a genome-wide analysis of recombination, we monitored the assortment of genetic markers in meiotic tetrads from Arabidopsis. By determining the number and distribution of crossovers in individual meiotic cells, we demonstrated (i) surprisingly precise regulation of crossover number in each meiosis, (ii) considerably reduced recombination along chromosomes carrying ribosomal DNA arrays, and (iii) an inversely proportional relationship between recombination frequencies and chromosome size. This use of tetrad analysis also achieved precise mapping of all five Arabidopsis centromeres, localizing centromere functions in the intact chromosomes of a higher eukaryote. PMID:9419361

  8. Moving towards system genetics through multiple trait analysis in genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Daniel eShriner

    2012-01-01

    Full Text Available Association studies are a staple of genotype-phenotype mapping studies, whether they are based on single markers, haplotypes, candidate genes, genome-wide genotypes, or whole genome sequences. Although genetic epidemiological studies typically contain data collected on multiple traits which themselves are often correlated, most analyses have been performed on single traits. Here, I review several methods that have been developed to perform multiple trait analysis. These methods range from traditional multivariate models for systems of equations to recently developed graphical approaches based on network theory. The application of network theory to genetics is termed systems genetics and has the potential to address long-standing questions in genetics about complex processes such as coordinate regulation, homeostasis, and pleiotropy.

  9. A genome-wide association study of neuroticism in a population-based sample.

    Science.gov (United States)

    Calboli, Federico C F; Tozzi, Federica; Galwey, Nicholas W; Antoniades, Athos; Mooser, Vincent; Preisig, Martin; Vollenweider, Peter; Waterworth, Dawn; Waeber, Gerard; Johnson, Michael R; Muglia, Pierandrea; Balding, David J

    2010-07-09

    Neuroticism is a moderately heritable personality trait considered to be a risk factor for developing major depression, anxiety disorders and dementia. We performed a genome-wide association study in 2,235 participants drawn from a population-based study of neuroticism, making this the largest association study for neuroticism to date. Neuroticism was measured by the Eysenck Personality Questionnaire. After Quality Control, we analysed 430,000 autosomal SNPs together with an additional 1.2 million SNPs imputed with high quality from the Hap Map CEU samples. We found a very small effect of population stratification, corrected using one principal component, and some cryptic kinship that required no correction. NKAIN2 showed suggestive evidence of association with neuroticism as a main effect (p neuroticism. Our study was powered to detect almost all SNPs explaining at least 2% of heritability, and so our results effectively exclude the existence of loci having a major effect on neuroticism.

  10. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sibylle Chantal Vonesch

    2016-01-01

    Full Text Available Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.

  11. A Genome-wide Scan for Selective Sweeps in Racing Horses

    Science.gov (United States)

    Moon, Sunjin; Lee, Jin Woo; Shin, Donghyun; Shin, Kwang-Yun; Kim, Jun; Choi, Ik-Young; Kim, Jaemin; Kim, Heebal

    2015-01-01

    Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses. PMID:26333666

  12. A Genome-wide Scan for Selective Sweeps in Racing Horses

    Directory of Open Access Journals (Sweden)

    Sunjin Moon

    2015-11-01

    Full Text Available Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2 that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1, pallid (PLDN, and Ras and Rab interactor 2 (RIN2 genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.

  13. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sibylle Chantal Vonesch

    2016-01-01

    Full Text Available Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.

  14. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.;

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics....

  15. The size of the nucleosome

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper

    2011-01-01

    The structural origin of the size of the 11 nm nucleosomal disc is addressed. On the nanometer length-scale the organization of DNA as chromatin in the chromosomes involves a coiling of DNA around the histone core of the nucleosome. We suggest that the size of the nucleosome core particle is dict......-pairs of the linker-DNA is included the estimate of the size of an ideal nucleosome is in close agreement with the experimental numbers. Interestingly, the size of the nucleosome is shown to be a consequence of intrinsic properties of the DNA double helix....

  16. Genome-wide significant risk associations for mucinous ovarian carcinoma

    Science.gov (United States)

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  17. Genome-Wide Analysis of Human MicroRNA Stability

    Directory of Open Access Journals (Sweden)

    Yang Li

    2013-01-01

    Full Text Available Increasing studies have shown that microRNA (miRNA stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.

  18. Genome-wide analyses of small noncoding RNAs in streptococci

    Directory of Open Access Journals (Sweden)

    Nadja ePatenge

    2015-05-01

    Full Text Available Streptococci represent a diverse group of Gram-positive bacteria, which colonize a wide range of hosts among animals and humans. Streptococcal species occur as commensal as well as pathogenic organisms. Many of the pathogenic species can cause severe, invasive infections in their hosts leading to a high morbidity and mortality. The consequence is a tremendous suffering on the part of men and livestock besides the significant financial burden in the agricultural and healthcare sectors. An environmentally stimulated and tightly controlled expression of virulence factor genes is of fundamental importance for streptococcal pathogenicity. Bacterial small noncoding RNAs (sRNAs modulate the expression of genes involved in stress response, sugar metabolism, surface composition, and other properties that are related to bacterial virulence. Even though the regulatory character is shared by this class of RNAs, variation on the molecular level results in a high diversity of functional mechanisms. The knowledge about the role of sRNAs in streptococci is still limited, but in recent years, genome-wide screens for sRNAs have been conducted in an increasing number of species. Bioinformatics prediction approaches have been employed as well as expression analyses by classical array techniques or next generation sequencing. This review will give an overview of whole genome screens for sRNAs in streptococci with a focus on describing the different methods and comparing their outcome considering sRNA conservation among species, functional similarities, and relevance for streptococcal infection.

  19. Genome-wide association study and premature ovarian failure.

    Science.gov (United States)

    Christin-Maitre, S; Tachdjian, G

    2010-05-01

    Premature ovarian failure (POF) is defined as an amenorrhea for more than 4months, associated with elevated gonadotropins, usually higher than 20mIU/ml, occurring in a woman before the age of 40. Some candidate genes have been identified in the past 15years, such as FOXL2, FSHR, BMP15, GDF9, Xfra premutation. However, POF etiology remains unknown in more than 90% of cases. The first strategy to identify candidate gene, apart from studying genes involved in ovarian failure in animal models, relies on the study of X chromosome deletions and X;autosome translocations in patients. The second strategy is based on linkage analysis, the third one on Comparative Genomic Hybridization (CGH) array. The latest strategy relies on Genome-Wide Association Studies (GWAS). This technique consists in screening single nucleotide polymorphisms (SNPs) in patients and controls. So far, three studies have been performed and have identified different loci potentially linked to POF, such as PTHB1 and ADAMTS19. However, replications in independent cohorts need to be performed. GWAS studies on large cohorts of women with POF should find new candidate genes in the near future.

  20. Reconstructing Roma history from genome-wide data.

    Directory of Open Access Journals (Sweden)

    Priya Moorjani

    Full Text Available The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000-1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs. We estimate that the Roma harbor about 80% West Eurasian ancestry-derived from a combination of European and South Asian sources-and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.

  1. Insights into kidney diseases from genome-wide association studies.

    Science.gov (United States)

    Wuttke, Matthias; Köttgen, Anna

    2016-09-01

    Over the past decade, genome-wide association studies (GWAS) have considerably improved our understanding of the genetic basis of kidney function and disease. Population-based studies, used to investigate traits that define chronic kidney disease (CKD), have identified >50 genomic regions in which common genetic variants associate with estimated glomerular filtration rate or urinary albumin-to-creatinine ratio. Case-control studies, used to study specific CKD aetiologies, have yielded risk loci for specific kidney diseases such as IgA nephropathy and membranous nephropathy. In this Review, we summarize important findings from GWAS and clinical and experimental follow-up studies. We also compare risk allele frequency, effect sizes, and specificity in GWAS of CKD-defining traits and GWAS of specific CKD aetiologies and the implications for study design. Genomic regions identified in GWAS of CKD-defining traits can contain causal genes for monogenic kidney diseases. Population-based research on kidney function traits can therefore generate insights into more severe forms of kidney diseases. Experimental follow-up studies have begun to identify causal genes and variants, which are potential therapeutic targets, and suggest mechanisms underlying the high allele frequency of causal variants. GWAS are thus a useful approach to advance knowledge in nephrology.

  2. Genome-Wide Association Study of Serum Selenium Concentrations

    Directory of Open Access Journals (Sweden)

    Ulrike Peters

    2013-05-01

    Full Text Available Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening and the Women’s Health Initiative (WHI. We tested association between 2,474,333 single nucleotide polymorphisms (SNPs and serum selenium concentrations using linear regression models. In the first stage (PLCO 41 SNPs clustered in 15 regions had p < 1 × 10−5. None of these 41 SNPs reached the significant threshold (p = 0.05/15 regions = 0.003 in the second stage (WHI. Three SNPs had p < 0.05 in the second stage (rs1395479 and rs1506807 in 4q34.3/AGA-NEIL3; and rs891684 in 17q24.3/SLC39A11 and had p between 2.62 × 10−7 and 4.04 × 10−7 in the combined analysis (PLCO + WHI. Additional studies are needed to replicate these findings. Identification of genetic variation that impacts selenium concentrations may contribute to a better understanding of which genes regulate circulating selenium concentrations.

  3. Genome-wide search for strabismus susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Fujiwara H

    2003-06-01

    Full Text Available The purpose of this study was to search for chromosomal susceptibility loci for comitant strabismus. Genomic DNA was isolated from 10mL blood taken from each member of 30 nuclear families in which 2 or more siblings are affected by either esotropia or exotropia. A genome-wide search was performed with amplification by polymerase chain reaction of 400 markers in microsatellite regions with approximately 10 cM resolution. For each locus, non-parametric affected sib-pair analysis and non-parametric linkage analysis for multiple pedigrees (Genehunter software, http://linkage.rockefeller.edu/soft/ were used to calculate multipoint lod scores and non-parametric linkage (NPL scores, respectively. In sib-pair analysis, lod scores showed basically flat lines with several peaks of 0.25 on all chromosomes. In non-parametric linkage analysis for multiple pedigrees, NPL scores showed one peak as high as 1.34 on chromosomes 1, 2, 4, 7, 10, 15, and 16, while 2 such peaks were found on chromosomes 3, 9, 11, 12, 18, and 20. Non-parametric linkage analysis for multiple pedigrees of 30 families with comitant strabismus suggested a number of chromosomal susceptibility loci. Our ongoing study involving a larger number of families will refine the accuracy of statistical analysis to pinpoint susceptibility loci for comitant strabismus.

  4. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  5. Natural selection on functional modules, a genome-wide analysis.

    Science.gov (United States)

    Serra, François; Arbiza, Leonardo; Dopazo, Joaquín; Dopazo, Hernán

    2011-03-01

    Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA), a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  6. Natural selection on functional modules, a genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    François Serra

    2011-03-01

    Full Text Available Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA, a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  7. Identification of differential translation in genome wide studies.

    Science.gov (United States)

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  8. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  9. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  10. Reducing dimensionality for prediction of genome-wide breeding values

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2009-03-01

    Full Text Available Abstract Partial least square regression (PLSR and principal component regression (PCR are methods designed for situations where the number of predictors is larger than the number of records. The aim was to compare the accuracy of genome-wide breeding values (EBV produced using PLSR and PCR with a Bayesian method, 'BayesB'. Marker densities of 1, 2, 4 and 8 Ne markers/Morgan were evaluated when the effective population size (Ne was 100. The correlation between true breeding value and estimated breeding value increased with density from 0.611 to 0.681 and 0.604 to 0.658 using PLSR and PCR respectively, with an overall advantage to PLSR of 0.016 (s.e = 0.008. Both methods gave a lower accuracy compared to the 'BayesB', for which accuracy increased from 0.690 to 0.860. PLSR and PCR appeared less responsive to increased marker density with the advantage of 'BayesB' increasing by 17% from a marker density of 1 to 8Ne/M. PCR and PLSR showed greater bias than 'BayesB' in predicting breeding values at all densities. Although, the PLSR and PCR were computationally faster and simpler, these advantages do not outweigh the reduction in accuracy, and there is a benefit in obtaining relevant prior information from the distribution of gene effects.

  11. A genome wide dosage suppressor network reveals genomic robustness

    Science.gov (United States)

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  12. Genome-wide transcriptome analysis of 150 cell samples†

    Science.gov (United States)

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  13. Genome-wide transcriptome analysis of 150 cell samples.

    Science.gov (United States)

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  14. Reconstructing Roma History from Genome-Wide Data

    Science.gov (United States)

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  15. Genome-wide association study of circulating retinol levels.

    Science.gov (United States)

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  16. Genome-wide association study of proneness to anger.

    Directory of Open Access Journals (Sweden)

    Eric Mick

    Full Text Available BACKGROUND: Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger, hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease. METHODS: With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC study (n = 8,747. RESULTS: Subjects were, on average, 54 (range 45-64 years old at baseline enrollment, 47% (n = 4,117 were male, and all were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.8 ± 1.8 and 7.6 ± 2.2. We observed a nominally significant finding (p = 2.9E-08, λ = 1.027 - corrected pgc = 2.2E-07, λ = 1.0015 on chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn. CONCLUSIONS: Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3-gated channels to regulate calcium influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the expression of Angry Temperament.

  17. A genome-wide association study in multiple system atrophy

    Science.gov (United States)

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  18. Genome-wide studies of telomere biology in budding yeast

    Directory of Open Access Journals (Sweden)

    Yaniv Harari

    2014-03-01

    Full Text Available Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  19. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  20. Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families.

    Science.gov (United States)

    Gao, Hanxiang; Li, Lin; Rao, Shaoqi; Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G; Chen, Qiuyun; Topol, Eric J; Wang, Qing K

    2014-01-01

    Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for missing heritability". Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18-4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.

  1. OpenADAM: an open source genome-wide association data management system for Affymetrix SNP arrays

    Directory of Open Access Journals (Sweden)

    Sham P C

    2008-12-01

    Full Text Available Abstract Background Large scale genome-wide association studies have become popular since the introduction of high throughput genotyping platforms. Efficient management of the vast array of data generated poses many challenges. Description We have developed an open source web-based data management system for the large amount of genotype data generated from the Affymetrix GeneChip® Mapping Array and Affymetrix Genome-Wide Human SNP Array platforms. The database supports genotype calling using DM, BRLMM, BRLMM-P or Birdseed algorithms provided by the Affymetrix Power Tools. The genotype and corresponding pedigree data are stored in a relational database for efficient downstream data manipulation and analysis, such as calculation of allele and genotype frequencies, sample identity checking, and export of genotype data in various file formats for analysis using commonly-available software. A novel method for genotyping error estimation is implemented using linkage disequilibrium information from the HapMap project. All functionalities are accessible via a web-based user interface. Conclusion OpenADAM provides an open source database system for management of Affymetrix genome-wide association SNP data.

  2. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  3. Genome-wide DNA methylation profiling of non-small cell lung carcinomas

    Directory of Open Access Journals (Sweden)

    Carvalho Rejane

    2012-06-01

    Full Text Available Abstract Background Non-small cell lung carcinoma (NSCLC is a complex malignancy that owing to its heterogeneity and poor prognosis poses many challenges to diagnosis, prognosis and patient treatment. DNA methylation is an important mechanism of epigenetic regulation involved in normal development and cancer. It is a very stable and specific modification and therefore in principle a very suitable marker for epigenetic phenotyping of tumors. Here we present a genome-wide DNA methylation analysis of NSCLC samples and paired lung tissues, where we combine MethylCap and next generation sequencing (MethylCap-seq to provide comprehensive DNA methylation maps of the tumor and paired lung samples. The MethylCap-seq data were validated by bisulfite sequencing and methyl-specific polymerase chain reaction of selected regions. Results Analysis of the MethylCap-seq data revealed a strong positive correlation between replicate experiments and between paired tumor/lung samples. We identified 57 differentially methylated regions (DMRs present in all NSCLC tumors analyzed by MethylCap-seq. While hypomethylated DMRs did not correlate to any particular functional category of genes, the hypermethylated DMRs were strongly associated with genes encoding transcriptional regulators. Furthermore, subtelomeric regions and satellite repeats were hypomethylated in the NSCLC samples. We also identified DMRs that were specific to two of the major subtypes of NSCLC, adenocarcinomas and squamous cell carcinomas. Conclusions Collectively, we provide a resource containing genome-wide DNA methylation maps of NSCLC and their paired lung tissues, and comprehensive lists of known and novel DMRs and associated genes in NSCLC.

  4. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content.

    Science.gov (United States)

    Zhang, Hui; Wang, Shou-Zhi; Wang, Zhi-Peng; Da, Yang; Wang, Ning; Hu, Xiao-Xiang; Zhang, Yuan-Dan; Wang, Yu-Xiang; Leng, Li; Tang, Zhi-Quan; Li, Hui

    2012-12-15

    Genomic regions controlling abdominal fatness (AF) were studied in the Northeast Agricultural University broiler line divergently selected for AF. In this study, the chicken 60KSNP chip and extended haplotype homozygosity (EHH) test were used to detect genome-wide signatures of AF. A total of 5357 and 5593 core regions were detected in the lean and fat lines, and 51 and 57 reached a significant level (Pchickens. We provide a genome-wide map of selection signatures in the chicken genome, and make a contribution to the better understanding the mechanisms of selection for AF content in chickens. The selection for low AF in commercial breeding using this information will accelerate the breeding progress.

  5. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    Directory of Open Access Journals (Sweden)

    Soler-López Montserrat

    2011-10-01

    Full Text Available Abstract Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site and TTS (Transcription Termination Site (at least in yeast is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression.

  6. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors.

    Science.gov (United States)

    Wight, Andrew; Yang, Doo; Ioshikhes, Ilya; Makrigiannis, Andrew P

    2016-04-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general.

  7. Allelic association studies of genome wide association data can reveal errors in marker position assignments

    Directory of Open Access Journals (Sweden)

    Curtis David

    2007-06-01

    Full Text Available Abstract Background Genome wide association (GWA studies provide the opportunity to develop new kinds of analysis. Analysing pairs of markers from separate regions might lead to the detection of allelic association which might indicate an interaction between nearby genes. Methods 396,591 markers typed in 541 subjects were studied. 7.8*1010 pairs of markers were screened and those showing initial evidence for allelic association were subjected to more thorough investigation along with 10 flanking markers on either side. Results No evidence was detected for interaction. However 6 markers appeared to have an incorrect map position according to NCBI Build 35. One of these was corrected in Build 36 and 2 were dropped. The remaining 3 were left with map positions inconsistent with their allelic association relationships. Discussion Although no interaction effects were detected the method was successful in identifying markers with probably incorrect map positions. Conclusion The study of allelic association can supplement other methods for assigning markers to particular map positions. Analyses of this type may usefully be applied to data from future GWA studies.

  8. Nucleosome Core Particle

    Science.gov (United States)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  9. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    Science.gov (United States)

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient. © 2015 Wiley Periodicals, Inc.

  10. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    Science.gov (United States)

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. Copyright © 2015 Christopoulou et al.

  11. Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study

    Science.gov (United States)

    Dijkstra, Akkelies E.; Smolonska, Joanna; van den Berge, Maarten; Wijmenga, Ciska; Zanen, Pieter; Luinge, Marjan A.; Platteel, Mathieu; Lammers, Jan-Willem; Dahlback, Magnus; Tosh, Kerrie; Hiemstra, Pieter S.; Sterk, Peter J.; Spira, Avi; Vestbo, Jorgen; Nordestgaard, Borge G.; Benn, Marianne; Nielsen, Sune F.; Dahl, Morten; Verschuren, W. Monique; Picavet, H. Susan J.; Smit, Henriette A.; Owsijewitsch, Michael; Kauczor, Hans U.; de Koning, Harry J.; Nizankowska-Mogilnicka, Eva; Mejza, Filip; Nastalek, Pawel; van Diemen, Cleo C.; Cho, Michael H.; Silverman, Edwin K.; Crapo, James D.; Beaty, Terri H.; Lomas, David A.; Bakke, Per; Gulsvik, Amund; Bossé, Yohan; Obeidat, M. A.; Loth, Daan W.; Lahousse, Lies; Rivadeneira, Fernando; Uitterlinden, Andre G.; Hofman, Andre; Stricker, Bruno H.; Brusselle, Guy G.; van Duijn, Cornelia M.; Brouwer, Uilke; Koppelman, Gerard H.; Vonk, Judith M.; Nawijn, Martijn C.; Groen, Harry J. M.; Timens, Wim; Boezen, H. Marike; Postma, Dirkje S.

    2014-01-01

    Background Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10−6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3×10−9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH. PMID:24714607

  12. Genome-wide promoter methylome of small renal masses.

    Directory of Open Access Journals (Sweden)

    Ilsiya Ibragimova

    Full Text Available The majority of renal cell carcinoma (RCC is now incidentally detected and presents as small renal masses (SRMs defined as ≤ 4 cm in size. SRMs are heterogeneous comprising several histological types of RCC each with different biology and behavior, and benign tumors mainly oncocytoma. The varied prognosis of the different types of renal tumor has implications for management options. A key epigenetic alteration involved in the initiation and progression of cancer is aberrant methylation in the promoter region of a gene. The hypermethylation is associated with transcriptional repression and is an important mechanism of inactivation of tumor suppressor genes in neoplastic cells. We have determined the genome-wide promoter methylation profiles of 47 pT1a and 2 pT1b clear cell, papillary or chromophobe RCC, 25 benign renal oncocytoma ≤ 4 cm and 4 normal renal parenchyma specimens by Infinium HumanMethylation27 beadchip technology. We identify gene promoter hypermethylation signatures that distinguish clear cell and papillary from each other, from chromophobe and oncocytoma, and from normal renal cells. Pairwise comparisons revealed genes aberrantly hypermethylated in a tumor type but unmethylated in normal, and often unmethylated in the other renal tumor types. About 0.4% to 1.7% of genes comprised the promoter methylome in SRMs. The Infinium methylation score for representative genes was verified by gold standard technologies. The genes identified as differentially methylated implicate pathways involved in metabolism, tissue response to injury, epithelial to mesenchymal transition (EMT, signal transduction and G-protein coupled receptors (GPCRs, cancer, and stem cell regulation in the biology of RCC. Our findings contribute towards an improved understanding of the development of RCC, the different biology and behavior of histological types, and discovery of molecular subtypes. The differential methylation signatures may have utility in early

  13. Susceptibility to chronic mucus hypersecretion, a genome wide association study.

    Directory of Open Access Journals (Sweden)

    Akkelies E Dijkstra

    Full Text Available BACKGROUND: Chronic mucus hypersecretion (CMH is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA study of CMH in Caucasian populations. METHODS: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years. Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP. RESULTS: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10(-6, OR = 1.17, located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1 on chromosome 3. The risk allele (G was associated with higher mRNA expression of SATB1 (4.3×10(-9 in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. CONCLUSIONS: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.

  14. Genephony: a knowledge management tool for genome-wide research

    Science.gov (United States)

    Nuzzo, Angelo; Riva, Alberto

    2009-01-01

    Background One of the consequences of the rapid and widespread adoption of high-throughput experimental technologies is an exponential increase of the amount of data produced by genome-wide experiments. Researchers increasingly need to handle very large volumes of heterogeneous data, including both the data generated by their own experiments and the data retrieved from publicly available repositories of genomic knowledge. Integration, exploration, manipulation and interpretation of data and information therefore need to become as automated as possible, since their scale and breadth are, in general, beyond the limits of what individual researchers and the basic data management tools in normal use can handle. This paper describes Genephony, a tool we are developing to address these challenges. Results We describe how Genephony can be used to manage large datesets of genomic information, integrating them with existing knowledge repositories. We illustrate its functionalities with an example of a complex annotation task, in which a set of SNPs coming from a genotyping experiment is annotated with genes known to be associated to a phenotype of interest. We show how, thanks to the modular architecture of Genephony and its user-friendly interface, this task can be performed in a few simple steps. Conclusion Genephony is an online tool for the manipulation of large datasets of genomic information. It can be used as a browser for genomic data, as a high-throughput annotation tool, and as a knowledge discovery tool. It is designed to be easy to use, flexible and extensible. Its knowledge management engine provides fine-grained control over individual data elements, as well as efficient operations on large datasets. PMID:19728881

  15. Genome-Wide Association Study of Schizophrenia in Japanese Population

    Science.gov (United States)

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  16. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  17. Genome-wide methylation analyses in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Rose K Lai

    Full Text Available Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM. Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1, 5 methyl-deoxycytidine (5m-dC and 5 hydroxylmethyl-deoxycytidine (5hm-dC in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  18. Improved statistics for genome-wide interaction analysis.

    Science.gov (United States)

    Ueki, Masao; Cordell, Heather J

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new "joint effects" statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  19. Genome-wide signatures of convergent evolution in echolocating mammals.

    Science.gov (United States)

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J

    2013-10-10

    Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized.

  20. Genome-wide association study of schizophrenia in Japanese population.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamada

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions. The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila-like 2] gene located on 9p21.3 (p = 0.00087. In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026. The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology.

  1. Probabilistic protein function prediction from heterogeneous genome-wide data.

    Directory of Open Access Journals (Sweden)

    Naoki Nariai

    Full Text Available Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function.

  2. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  3. Genome-wide association study of tick resistance in South African Nguni cattle.

    Science.gov (United States)

    Mapholi, N O; Maiwashe, A; Matika, O; Riggio, V; Bishop, S C; MacNeil, M D; Banga, C; Taylor, J F; Dzama, K

    2016-04-01

    Ticks and tick-borne diseases are among the main causes of economic loss in the South African cattle industry through high morbidity and mortality rates. Concerns of the general public regarding chemical residues may tarnish their perceptions of food safety and environmental health when the husbandry of cattle includes frequent use of acaricides to manage ticks. The primary objective of this study was to identify single nucleotide polymorphism (SNP) markers associated with host resistance to ticks in South African Nguni cattle. Tick count data were collected monthly from 586 Nguni cattle reared in four herds under natural grazing conditions over a period of two years. The counts were recorded for six species of ticks attached in eight anatomical locations on the animals and were summed by species and anatomical location. This gave rise to 63 measured phenotypes or traits, with results for 12 of these traits being reported here. Tick count (x) data were transformed using log10(x+1) and the resulting values were examined for normality. DNA was extracted from hair and blood samples and was genotyped using the Illumina BovineSNP50 assay. After quality control (call rate >90%, minor allele frequency >0.02), 40,436 SNPs were retained for analysis. Genetic parameters were estimated and association analysis for tick resistance was carried out using two approaches: a genome-wide association (GWA) analysis using the GenABEL package and a regional heritability mapping (RHM) analysis. The Bonferroni genome-wide (PAmblyomma hebraeum (the vector for Heartwater disease) being the dominant species. Heritability estimates (h(2)) from the fitted animal and sire models ranged from 0.02±0.00 to 0.17±0.04 for the transformed tick count data. Several genomic regions harbouring quantitative trait loci (QTL) were identified for different tick count traits by both the GWA and RHM approaches. Three genome-wide significant regions on chromosomes 7, 10 and 19 were identified for total tick

  4. Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens.

    Science.gov (United States)

    Sun, Yanfa; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Sun, Yan; Yu, Xiaoqiong; Li, Peng; Wen, Jie

    2015-08-06

    Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0-10.0 cM/0.00-0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8. A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken (Gallus gallus; GG) chromosome 3 (i.e., GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0-11.0 cM/0.00-2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0-53.0 cM/11.37-12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken. Copyright © 2015 Sun et al.

  5. Genome-wide association studies of the PR interval in African Americans.

    Directory of Open Access Journals (Sweden)

    J Gustav Smith

    Full Text Available The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247 to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844 within the gene encoding the cardiac sodium channel (SCN5A with genome-wide significant association (p<2.5 x 10⁻⁸ in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1-6.1, p = 3 x 10⁻²³. This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8-3.0, p = 3 x 10⁻¹⁶ in individuals of European ancestry (n = 14,042, but with a smaller effect size (p for heterogeneity <0.001 and variability explained (0.5%. Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015, MEIS1 (rs10865355, and TBX5 (rs7312625 that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009 in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and

  6. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  7. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Science.gov (United States)

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  8. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    Science.gov (United States)

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.

  9. Genome-wide association study of toxic metals and trace elements reveals novel associations.

    Science.gov (United States)

    Ng, Esther; Lind, P Monica; Lindgren, Cecilia; Ingelsson, Erik; Mahajan, Anubha; Morris, Andrew; Lind, Lars

    2015-08-15

    The accumulation of toxic metals in the human body is influenced by exposure and mechanisms involved in metabolism, some of which may be under genetic control. This is the first genome-wide association study to investigate variants associated with whole blood levels of a range of toxic metals. Eleven toxic metals and trace elements (aluminium, cadmium, cobalt, copper, chromium, mercury, manganese, molybdenum, nickel, lead and zinc) were assayed in a cohort of 949 individuals using mass spectrometry. DNA samples were genotyped on the Infinium Omni Express bead microarray and imputed up to reference panels from the 1000 Genomes Project. Analyses revealed two regions associated with manganese level at genome-wide significance, mapping to 4q24 and 1q41. The lead single nucleotide polymorphism (SNP) in the 4q24 locus was rs13107325 (P-value = 5.1 × 10(-11), β = -0.77), located in an exon of SLC39A8, which encodes a protein involved in manganese and zinc transport. The lead SNP in the 1q41 locus is rs1776029 (P-value = 2.2 × 10(-14), β = -0.46). The SNP lies within the intronic region of SLC30A10, another transporter protein. Among other metals, the loci 6q14.1 and 3q26.32 were associated with cadmium and mercury levels (P = 1.4 × 10(-10), β = -1.2 and P = 1.8 × 10(-9), β = -1.8, respectively). Whole blood measurements of toxic metals are associated with genetic variants in metal transporter genes and others. This is relevant in inferring metabolic pathways of metals and identifying subsets of individuals who may be more susceptible to metal toxicity. © The Author 2015. Published by Oxford University Press.

  10. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived