WorldWideScience

Sample records for genome-wide functional analysis

  1. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    Fuyou Fu

    2013-07-24

    Jul 24, 2013 ... Key words: ABC transporter, potato, pleiotropic drug resistance (PDR), RNA-seq. INTRODUCTION ..... of relative transcript accumulation of each of 55 PDR genes as determined by RNA-seq analysis are presented as a heatmap, with ... specificities provide clues to the endogenous function of the individual ...

  3. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  4. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  6. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions

    Directory of Open Access Journals (Sweden)

    Ruiz-Llorente Sergio

    2012-04-01

    Full Text Available Abstract Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF and chromatin remodeling (Sp1, and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism

  7. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  8. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  9. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  10. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis.

    Directory of Open Access Journals (Sweden)

    Zhan-Chun Li

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA and osteoarthritis (OA are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS: We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. RESULTS AND CONCLUSION: We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.

  11. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  12. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton.

    Science.gov (United States)

    Zhao, Ge; Song, Yun; Wang, Caixiang; Butt, Hamama Islam; Wang, Qianhua; Zhang, Chaojun; Yang, Zuoren; Liu, Zhao; Chen, Eryong; Zhang, Xueyan; Li, Fuguang

    2016-12-01

    Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H 2 O 2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.

  13. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)

    Science.gov (United States)

    Davies, G; Armstrong, N; Bis, J C; Bressler, J; Chouraki, V; Giddaluru, S; Hofer, E; Ibrahim-Verbaas, C A; Kirin, M; Lahti, J; van der Lee, S J; Le Hellard, S; Liu, T; Marioni, R E; Oldmeadow, C; Postmus, I; Smith, A V; Smith, J A; Thalamuthu, A; Thomson, R; Vitart, V; Wang, J; Yu, L; Zgaga, L; Zhao, W; Boxall, R; Harris, S E; Hill, W D; Liewald, D C; Luciano, M; Adams, H; Ames, D; Amin, N; Amouyel, P; Assareh, A A; Au, R; Becker, J T; Beiser, A; Berr, C; Bertram, L; Boerwinkle, E; Buckley, B M; Campbell, H; Corley, J; De Jager, P L; Dufouil, C; Eriksson, J G; Espeseth, T; Faul, J D; Ford, I; Scotland, Generation; Gottesman, R F; Griswold, M E; Gudnason, V; Harris, T B; Heiss, G; Hofman, A; Holliday, E G; Huffman, J; Kardia, S L R; Kochan, N; Knopman, D S; Kwok, J B; Lambert, J-C; Lee, T; Li, G; Li, S-C; Loitfelder, M; Lopez, O L; Lundervold, A J; Lundqvist, A; Mather, K A; Mirza, S S; Nyberg, L; Oostra, B A; Palotie, A; Papenberg, G; Pattie, A; Petrovic, K; Polasek, O; Psaty, B M; Redmond, P; Reppermund, S; Rotter, J I; Schmidt, H; Schuur, M; Schofield, P W; Scott, R J; Steen, V M; Stott, D J; van Swieten, J C; Taylor, K D; Trollor, J; Trompet, S; Uitterlinden, A G; Weinstein, G; Widen, E; Windham, B G; Jukema, J W; Wright, A F; Wright, M J; Yang, Q; Amieva, H; Attia, J R; Bennett, D A; Brodaty, H; de Craen, A J M; Hayward, C; Ikram, M A; Lindenberger, U; Nilsson, L-G; Porteous, D J; Räikkönen, K; Reinvang, I; Rudan, I; Sachdev, P S; Schmidt, R; Schofield, P R; Srikanth, V; Starr, J M; Turner, S T; Weir, D R; Wilson, J F; van Duijn, C; Launer, L; Fitzpatrick, A L; Seshadri, S; Mosley, T H; Deary, I J

    2015-01-01

    General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N=53 949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P=3.93 × 10−9, MIR2113; rs17522122, P=2.55 × 10−8, AKAP6; rs10119, P=5.67 × 10−9, APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P=1 × 10−6). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N=6617) and the Health and Retirement Study (N=5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e.=5%) and 28% (s.e.=7%), respectively. Using polygenic prediction analysis, ~1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N=5487; P=1.5 × 10−17). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C. PMID:25644384

  14. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    to protein: through epigenetic modifications, transcription regulators or post-transcriptional controls. The following papers concern several layers of gene regulation with questions answered by different HTS approaches. Genome-wide screening of epigenetic changes by ChIP-seq allowed us to study both spatial...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V...

  15. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up.

    Science.gov (United States)

    Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik

    2017-05-15

    The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an interaction P asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.

  16. GWAMA: software for genome-wide association meta-analysis

    Directory of Open Access Journals (Sweden)

    Mägi Reedik

    2010-05-01

    Full Text Available Abstract Background Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions The GWAMA (Genome-Wide Association Meta-Analysis software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  17. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David S.

    2014-07-09

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  18. Genome-wide functional analysis of plasmodium protein phosphatases reveals key regulators of parasite development and differentiation

    KAUST Repository

    Guttery, David  S.; Poulin, Benoit; Ramaprasad, Abhinay; Wall, Richard  J.; Ferguson, David  J.P.; Brady, Declan; Patzewitz, Eva-Maria; Whipple, Sarah; Straschil, Ursula; Wright, Megan  H.; Mohamed, Alyaa  M.A.H.; Radhakrishnan, Anand; Arold, Stefan T.; Tate, Edward  W.; Holder, Anthony  A.; Wickstead, Bill; Pain, Arnab; Tewari, Rita

    2014-01-01

    Reversible protein phosphorylation regulated by kinases and phosphatases controls many cellular processes. Although essential functions for the malaria parasite kinome have been reported, the roles of most protein phosphatases (PPs) during Plasmodium development are unknown. We report a functional analysis of the Plasmodium berghei protein phosphatome, which exhibits high conservation with the P. falciparum phosphatome and comprises 30 predicted PPs with differential and distinct expression patterns during various stages of the life cycle. Gene disruption analysis of P. berghei PPs reveals that half of the genes are likely essential for asexual blood stage development, whereas six are required for sexual development/sporogony in mosquitoes. Phenotypic screening coupled with transcriptome sequencing unveiled morphological changes and altered gene expression in deletion mutants of two N-myristoylated PPs. These findings provide systematic functional analyses of PPs in Plasmodium, identify how phosphatases regulate parasite development and differentiation, and can inform the identification of drug targets for malaria. © 2014 The Authors.

  19. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  20. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  1. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.

    Directory of Open Access Journals (Sweden)

    Dana B Hancock

    Full Text Available Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1, and its ratio to forced vital capacity (FEV(1/FVC. Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA of single nucleotide polymorphism (SNP and SNP-by-smoking (ever-smoking or pack-years associations on FEV(1 and FEV(1/FVC across 19 studies (total N = 50,047. We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = 5.00×10(-11, HLA-DQB1 and HLA-DQA2 (smallest P(JMA = 4.35×10(-9, and KCNJ2 and SOX9 (smallest P(JMA = 1.28×10(-8 were associated with FEV(1/FVC or FEV(1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.

  2. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus.

    Science.gov (United States)

    Hajiebrahimi, Ali; Owji, Hajar; Hemmati, Shiva

    2017-10-01

    R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. K n /K s values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.

  3. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  4. Genome-wide Analysis of Insomnia (N=1,331,010) Identifies Novel Loci and Functional Pathways

    OpenAIRE

    De Leeuw, Chrstiaan; Bryois, Julien; Skene, Nathan; Stringer, Sven; Watanabe, Kyoko; Jansen, Philip; Nagel, Mats; Savage, Jeanne; Tiemeier, Henning; White, Tonya; Tung, Joyce; Hinds, David; Vacic, Vladimir; Sullivan, Patrick; Van Der Sluis, Sophie

    2018-01-01

    Insomnia is the second-most prevalent mental disorder, with no sufficient treatment available. Despite a substantial role of genetic factors, only a handful of genes have been implicated and insight into the associated neurobiological pathways remains limited. Here, we use an unprecedented large genetic association sample (N=1,331,010) to allow detection of a substantial number of genetic variants and gain insight into biological functions, cell types and tissues involved in insomnia. We iden...

  5. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development.

    Science.gov (United States)

    Ouyang, Xinhao; Li, Jigang; Li, Gang; Li, Bosheng; Chen, Beibei; Shen, Huaishun; Huang, Xi; Mo, Xiaorong; Wan, Xiangyuan; Lin, Rongcheng; Li, Shigui; Wang, Haiyang; Deng, Xing Wang

    2011-07-01

    FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, are key components in phytochrome A signaling and the circadian clock. Here, we use chromatin immunoprecipitation-based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in the Arabidopsis thaliana genome. FHY3 preferentially binds to promoters through the FHY3/FAR1 binding motif (CACGCGC). Interestingly, FHY3 also binds to two motifs in the 178-bp Arabidopsis centromeric repeats. Comparison between the ChIP-seq and microarray data indicates that FHY3 quickly regulates the expression of 197 and 86 genes in D and FR, respectively. FHY3 also coregulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE5 and ELONGATED HYPOCOTYL5. Moreover, we uncover a role for FHY3 in controlling chloroplast development by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5, whose product is a structural component of the latter stages of chloroplast division in Arabidopsis. Taken together, our data suggest that FHY3 regulates multiple facets of plant development, thus providing insights into its functions beyond light and circadian pathways.

  6. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi

    Science.gov (United States)

    Bai, Hua; Palli, Subba R.

    2010-01-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular action of bursicon signaling remains unclear. We utilized RNA interference (RNAi) and microarray to study the function of the bursicon receptor (Tcrk) in the model insect, Tribolium castaneum. The data included here showed that in addition to cuticle tanning and wing expansion reported previously, Tcrk is also required for development and expansion of integumentary structures and adult eclosion. Using custom microarrays, we identified 24 genes that are differentially expressed between Tcrk RNAi and control insects. Knockdown in the expression of one of these genes, TC004091, resulted in the arrest of adult eclosion. Identification of genes that are involved in bursicon receptor mediated biological processes will provide tools for future studies on mechanisms of bursicon action. PMID:20457145

  7. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  8. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    Science.gov (United States)

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia. Further research will be required to confirm these

  9. Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease.

    Science.gov (United States)

    Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth

    2016-05-01

    A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (Pto the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.

  10. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment

    Directory of Open Access Journals (Sweden)

    Shu-Ping Zhao

    2017-06-01

    Full Text Available Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2 DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.. In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.

  11. A genome-wide association study of cognitive function in Chinese adult twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Wu, Yili

    2017-01-01

    Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants....... Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive...

  12. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  13. Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly.

    Science.gov (United States)

    Bai, Yongsheng; Kinne, Jeff; Ding, Lizhong; Rath, Ethan C; Cox, Aaron; Naidu, Siva Dharman

    2017-10-03

    It is generally thought that most canonical or non-canonical splicing events involving U2- and U12 spliceosomes occur within nuclear pre-mRNAs. However, the question of whether at least some U12-type splicing occurs in the cytoplasm is still unclear. In recent years next-generation sequencing technologies have revolutionized the field. The "Read-Split-Walk" (RSW) and "Read-Split-Run" (RSR) methods were developed to identify genome-wide non-canonical spliced regions including special events occurring in cytoplasm. As the significant amount of genome/transcriptome data such as, Encyclopedia of DNA Elements (ENCODE) project, have been generated, we have advanced a newer more memory-efficient version of the algorithm, "Read-Split-Fly" (RSF), which can detect non-canonical spliced regions with higher sensitivity and improved speed. The RSF algorithm also outputs the spliced sequences for further downstream biological function analysis. We used open access ENCODE project RNA-Seq data to search spliced intron sequences against the U12-type spliced intron sequence database to examine whether some events could occur as potential signatures of U12-type splicing. The check was performed by searching spliced sequences against 5'ss and 3'ss sequences from the well-known orthologous U12-type spliceosomal intron database U12DB. Preliminary results of searching 70 ENCODE samples indicated that the presence of 5'ss with U12-type signature is more frequent than U2-type and prevalent in non-canonical junctions reported by RSF. The selected spliced sequences have also been further studied using miRBase to elucidate their functionality. Preliminary results from 70 samples of ENCODE datasets show that several miRNAs are prevalent in studied ENCODE samples. Two of these are associated with many diseases as suggested in the literature. Specifically, hsa-miR-1273 and hsa-miR-548 are associated with many diseases and cancers. Our RSF pipeline is able to detect many possible junctions

  14. Genome-wide analysis of the regulatory function mediated by the small regulatory psm-mec RNA of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cheung, Gordon Y C; Villaruz, Amer E; Joo, Hwang-Soo; Duong, Anthony C; Yeh, Anthony J; Nguyen, Thuan H; Sturdevant, Daniel E; Queck, S Y; Otto, M

    2014-07-01

    Several methicillin resistance (SCCmec) clusters characteristic of hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains harbor the psm-mec locus. In addition to encoding the cytolysin, phenol-soluble modulin (PSM)-mec, this locus has been attributed gene regulatory functions. Here we employed genome-wide transcriptional profiling to define the regulatory function of the psm-mec locus. The immune evasion factor protein A emerged as the primary conserved and strongly regulated target of psm-mec, an effect we show is mediated by the psm-mec RNA. Furthermore, the psm-mec locus exerted regulatory effects that were more moderate in extent. For example, expression of PSM-mec limited expression of mecA, thereby decreasing methicillin resistance. Our study shows that the psm-mec locus has a rare dual regulatory RNA and encoded cytolysin function. Furthermore, our findings reveal a specific mechanism underscoring the recently emerging concept that S. aureus strains balance pronounced virulence and high expression of antibiotic resistance. Published by Elsevier GmbH.

  15. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  16. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  17. Common Mechanisms Underlying Refractive Error Identified in Functional Analysis of Gene Lists From Genome-Wide Association Study Results in 2 European British Cohorts

    Science.gov (United States)

    Hysi, Pirro G.; Mahroo, Omar A.; Cumberland, Phillippa; Wojciechowski, Robert; Williams, Katie M.; Young, Terri L.; Mackey, David A.; Rahi, Jugnoo S.; Hammond, Christopher J.

    2014-01-01

    IMPORTANCE To date, relatively few genes responsible for a fraction of heritability have been identified by means of large genetic association studies of refractive error. OBJECTIVE To explore the genetic mechanisms that lead to refractive error in the general population. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association studies were carried out in 2 British population-based independent cohorts (N = 5928 participants) to identify genes moderately associated with refractive error. MAIN OUTCOMES AND MEASURES Enrichment analyses were used to identify sets of genes overrepresented in both cohorts. Enriched groups of genes were compared between both participating cohorts as a further measure against random noise. RESULTS Groups of genes enriched at highly significant statistical levels were remarkably consistent in both cohorts. In particular, these results indicated that plasma membrane (P = 7.64 × 10−30), cell-cell adhesion (P = 2.42 × 10−18), synaptic transmission (P = 2.70 × 10−14), calcium ion binding (P = 3.55 × 10−15), and cation channel activity (P = 2.77 × 10−14) were significantly overrepresented in relation to refractive error. CONCLUSIONS AND RELEVANCE These findings provide evidence that development of refractive error in the general population is related to the intensity of photosignal transduced from the retina, which may have implications for future interventions to minimize this disorder. Pathways connected to the procession of the nerve impulse are major mechanisms involved in the development of refractive error in populations of European origin. PMID:24264139

  18. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  19. Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)

    NARCIS (Netherlands)

    G. Davies (Gail); N.J. Armstrong (Nicola J.); J.C. Bis (Joshua); J. Bressler (Jan); V. Chouraki (Vincent); S. Giddaluru (Sudheer); E. Hofer; C.A. Ibrahim-Verbaas (Carla); M. Kirin (Mirna); J. Lahti; S.J. van der Lee (Sven); S. Le Hellard (Stephanie); T. Liu; R.E. Marioni (Riccardo); C. Oldmeadow (Christopher); D. Postmus (Douwe); G.D. Smith; J.A. Smith (Jennifer A); A. Thalamuthu (Anbupalam); R. Thomson (Russell); V. Vitart (Veronique); J. Wang; L. Yu; L. Zgaga (Lina); W. Zhao (Wei); R. Boxall (Ruth); S.E. Harris (Sarah); W.D. Hill (W. David); D.C. Liewald (David C.); M. Luciano (Michelle); H.H.H. Adams (Hieab); D. Ames (David); N. Amin (Najaf); P. Amouyel (Philippe); A.A. Assareh; R. Au; J.T. Becker (James); A. Beiser; C. Berr (Claudine); L. Bertram (Lars); E.A. Boerwinkle (Eric); B.M. Buckley (Brendan M.); H. Campbell (Harry); J. Corley; P.L. De Jager; C. Dufouil (Carole); J.G. Eriksson (Johan G.); T. Espeseth (Thomas); J.D. Faul; I. Ford; G. Scotland (Generation); R.F. Gottesman (Rebecca); M.D. Griswold (Michael); V. Gudnason (Vilmundur); T.B. Harris; G. Heiss (Gerardo); A. Hofman (Albert); E.G. Holliday (Elizabeth); J.E. Huffman (Jennifer); S.L.R. Kardia (Sharon); N.A. Kochan (Nicole A.); D.S. Knopman (David); J.B. Kwok; J.-C. Lambert; T. Lee; G. Li; S.-C. Li; M. Loitfelder (Marisa); O.L. Lopez (Oscar); A.J. Lundervold; A. Lundqvist; R. Mather; S.S. Mirza (Saira); L. Nyberg; B.A. Oostra (Ben); A. Palotie (Aarno); G. Papenberg; A. Pattie (Alison); K. Petrovic (Katja); O. Polasek (Ozren); B.M. Psaty (Bruce); P. Redmond (Paul); S. Reppermund; J.I. Rotter; R. Schmidt (Reinhold); M. Schuur (Maaike); P.W. Schofield; R.J. Scott; V.M. Steen (Vidar); D.J. Stott (David J.); J.C. van Swieten (John); K.D. Taylor (Kent); J. Trollor; S. Trompet (Stella); A.G. Uitterlinden (André); G. Weinstein; E. Widen (Elisabeth); B.G. Windham (B Gwen); J.W. Jukema (Jan Wouter); A. Wright (Alan); M.J. Wright (Margaret); Q. Yang (Qiong Fang); H. Amieva (Hélène); J. Attia (John); D.A. Bennett (David); H. Brodaty (Henry); A.J. de Craen (Anton); C. Hayward; M.A. Ikram (Arfan); U. Lindenberger; L.-G. Nilsson; D.J. Porteous (David J.); K. Räikkönen (Katri); I. Reinvang (Ivar); I. Rudan (Igor); P.S. Sachdev (Perminder); R. Schmidt; P. Schofield (Peter); V. Srikanth; J.M. Starr (John); S.T. Turner (Stephen); D.R. Weir (David R.); J.F. Wilson (James F); C.M. van Duijn (Cornelia); L.J. Launer (Lenore); A.L. Fitzpatrick (Annette); S. Seshadri (Sudha); T.H. Mosley (Thomas H.); I.J. Deary (Ian J.)

    2015-01-01

    textabstractGeneral cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of

  20. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2017-03-01

    Full Text Available Plant-specific ( genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L. Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II. The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11% of them were detected in segmental duplicated regions. Furthermore, the exon–intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L. Heynh resulted in increases in lateral root (LR number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA, abscisic acid (ABA, and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.

  1. Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A Polymerases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Kappel

    2015-08-01

    Full Text Available The poly(A tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.

  2. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe

    KAUST Repository

    Schlackow, M.

    2013-10-23

    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3\\' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3\\'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).

  3. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe

    KAUST Repository

    Schlackow, M.; Marguerat, S.; Proudfoot, N. J.; Bahler, J.; Erban, R.; Gullerova, M.

    2013-01-01

    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).

  4. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  5. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and

  6. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  7. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  8. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    Science.gov (United States)

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  9. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth

    Science.gov (United States)

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P chickens with normal body weight (P chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth. PMID:26366565

  10. Regulatory mechanisms underlying atopic dermatitis: Functional characterization of the C11orf30/LRRC32 locus and analysis of genome-wide expression profiles in patients

    OpenAIRE

    Manz, Judith

    2018-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disorder with a strong genetic component. Genome-wide association studies have been successful in the identification of common single nucleotide polymorphisms associated with AD, but their functional relevance has not been investigated yet. This work presents a comprehensive functional characterization of common and infrequent variants at the AD-associated C11orf30/LRRC32 locus. Analyses of cutaneous gene expression profiles in AD patients ...

  11. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  12. Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations

    NARCIS (Netherlands)

    C.M. O'Seaghdha (Conall); H. Wu (Hongsheng); Q. Yang (Qiong); K. Kapur (Karen); I. Guessous (Idris); P. Zuber (Patrick); A. Köttgen (Anna); C. Stoudmann (Candice); A. Teumer (Alexander); Z. Kutalik (Zoltán); M. Mangino (Massimo); A. Dehghan (Abbas); W. Zhang (Weihua); G. Eiriksdottir (Gudny); G. Li (Guo); T. Tanaka (Toshiko); L. Portas (Laura); L.M. Lopez (Lorna); C. Hayward (Caroline); K. Lohman (Kurt); K. Matsuda (Koichi); S. Padmanabhan (Sandosh); D. Firsov (Dmitri); R. Sorice; S. Ulivi (Shelia); A.C. Brockhaus (A. Catharina); M.E. Kleber (Marcus); A. Mahajan (Anubha); F.D.J. Ernst (Florian); V. Gudnason (Vilmundur); L.J. Launer (Lenore); A. Mace (Aurelien); E.A. Boerwinkle (Eric); D.E. Arking (Dan); C. Tanikawa (Chizu); Y. Nakamura (Yusuke); M.J. Brown (Morris); J.-M. Gaspoz (Jean-Michel); J.-M. Theler (Jean-Marc); D.S. Siscovick (David); B.M. Psaty (Bruce); S.M. Bergmann (Sven); P. Vollenweider (Peter); V. Vitart (Veronique); A.F. Wright (Alan); T. Zemunik (Tatijana); M. Boban (Mladen); I. Kolcic (Ivana); P. Navarro (Pau); E.M. Brown (Edward); K. Estrada Gil (Karol); J. Ding (Jingzhong); T.B. Harris (Tamara); S. Bandinelli (Stefania); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Girotto; D. Ruggiero; P. d' Adamo (Pio); A. Robino (Antonietta); T. Meitinger (Thomas); C. Meisinger (Christa); G. Davies (Gail); J.M. Starr (John); J.C. Chambers (John); B.O. Boehm (Bernhard); B. Winkelmann; J. Huang (Jian); D. Murgia (Daniela); S.H. Wild (Sarah); H. Campbell (Harry); A.D. Morris (Andrew); O.H. Franco (Oscar); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); U. Vol̈ker (Uwe); M. Hannemann (Mario); R. Biffar (Reiner); W. Hoffmann (Wolfgang); S.-Y. Shin; P. Lescuyer (Pierre); H. Henry (Hughes); C. Schurmann (Claudia); P. Munroe (Patricia); P. Gasparini (Paolo); N. Pirastu (Nicola); M. Ciullo; C. Gieger (Christian); W. März (Winfried); L. Lind (Lars); T.D. Spector (Timothy); G.D. Smith; I. Rudan (Igor); J.F. Wilson (James); O. Polasek (Ozren); I.J. Deary (Ian); M. Pirastu (Mario); L. Ferrucci (Luigi); Y. Liu (YongMei); B. Kestenbaum (Bryan); J.S. Kooner (Jaspal); J.C.M. Witteman (Jacqueline); M. Nauck (Matthias); W.H.L. Kao (Wen); H. Wallaschofski (Henri); O. Bonny (Olivier); C. Fox (Craig); M. Bochud (Murielle)

    2013-01-01

    textabstractCalcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17

  13. Genome-wide analysis of effectors of peroxisome biogenesis.

    Directory of Open Access Journals (Sweden)

    Ramsey A Saleem

    2010-08-01

    Full Text Available Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.

  14. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  15. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  16. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  17. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  18. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    Science.gov (United States)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  19. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    Science.gov (United States)

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  20. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  1. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Directory of Open Access Journals (Sweden)

    Cristian Pattaro

    Full Text Available Chronic kidney disease (CKD is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR, the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  2. Meta-analysis of Genome-Wide Association Studies for Extraversion

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, K. J. H.

    2016-01-01

    small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found...... at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero...

  3. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    Science.gov (United States)

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  4. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  5. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis

    DEFF Research Database (Denmark)

    Yuan, Xiao Long; Zhang, Zhe; Li, Bin

    2017-01-01

    Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) contexts plays a critical role in biological functions of different tissues. However, the genome-wide DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually unex...

  6. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes.

    Directory of Open Access Journals (Sweden)

    Sophie Garnier

    Full Text Available In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ~2,1 × 10(9 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >10(4-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2 × 10(-4 (~0.05/412, 193 haplotypic signals replicated. 1000 G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000 G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.

  7. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I.E. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  8. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) an...

  9. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkilä, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Mägi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W.-K.; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaëlsson, K.; Morris, A.; Jensen, M.; Khaw, K.-T.; Luben, R. N.; Wang, J. J.; Männistö, S.; Perälä, M.-M.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Döring, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellström, D.; Hottenga, J. J.; Prokopenko, I.; Tönjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H.-J.; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppönen, E.; Järvelin, M.-R.; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.; Nalls, Michael A.; Plagnol, Vincent; Hernandez, Dena G.; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Hershey, Milton S.; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; O' Sullivan, Sean S.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Pollak, Pierre; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Martinez, Maria; Sabatier, Paul; Wood, Nicholas W.; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Box, P. O.

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  10. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  11. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Maegi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W-K; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K-T; Luben, R. N.; Wang, J. J.; Mannisto, S.; Perala, M-M; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Doering, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellstrom, D.; Hottenga, J. J.; Prokopenko, I.; Toenjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H-J; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppoenen, E.; Jarvelin, M-R; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  12. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  13. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; Medland, S.E.; Todt, U.; McArdle, W.L.; Quaye, L.; Koiranen, M.; Ikram, M.A.; Lehtimäki, T.; Stam, A.H.; Ligthart, R.S.L.; Wedenoja, J.; Dunham, I.; Neale, B. M.; Palta, P.; Hamalainen, E.; Schürks, M.; Rose, L.M.; Buring, J.E.; Ridker, P.M.; Steinberg, S.; Stefansson, H.; Jakobsson, F.; Lawlor, D.A.; Evans, D.M.; Ring, S.M.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Freilinger, T.; Schoenen, J.; Frants, R.R.; Pelzer, N.; Weller, C.M.; Zielman, R.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Borck, G.; Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Williams, F.M.; Hartikainen, A.-L.; Pouta, A.; van den Ende, J..; Uitterlinden, A.G.; Hofman, A.; Amin, N.; Hottenga, J.J.; Vink, J.M.; Heikkilä, K.; Alexander, M.; Muller-Myhsok, B.; Schreiber, S; Meitinger, T.; Wichmann, H. E.; Aromaa, A.; Eriksson, J.G.; Traynor, B.J.; Trabzuni, D.; Rossin, E.; Lage, K.; Jacobs, S.B.; Gibbs, J.R.; Birney, E.; Kaprio, J.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Raitakari, O.; Jarvelin, M.-R.; Zwart, J.A.; Cherkas, L.; Strachan, D.P.; Kubisch, C.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M.; Dichgans, M.; Wessman, M.; Smith, G.D.; Stefansson, K.; Daly, M.J.; Nyholt, DR; Chasman, D.I.; Palotie, A.

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  14. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    NARCIS (Netherlands)

    Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; Fitzpatrick, K.; Kanakis, A.; Barrick, T.R.; Moynihan, B.; Lewis, C.M.; Boncoraglio, G.B.; Lemmens, R.; Thijs, V.; Sudlow, C.; Wardlaw, J.; Rothwell, P.M.; Meschia, J.F.; Worrall, B.B.; Levi, C.; Bevan, S.; Furie, K.L.; Dichgans, M.; Rosand, J.; Markus, H.S.; Rost, N.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

  15. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah E.; Collins, Ann L.; Crowley, James J.; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K. E.; Sanchez, Nick; Stahl, Eli A.; Williams, Stephanie; Wray, Naomi R.; Xia, Kai; Bettella, Francesco; Borglum, Anders D.; Bulik-Sullivan, Brendan K.; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L.; Holmans, Peter; Hougaard, David M.; Kendler, Kenneth S.; Lin, Kuang; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Neale, Benjamin M.; O'Neill, Francis A.; Owen, Michael J.; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L.; Riley, Brien P.; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B.; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T.; Levinson, Douglas F.; Gejman, Pablo V.; Laurent, Claudine; Mowry, Bryan J.; O'Donovan, Michael C.; Pulver, Ann E.; Schwab, Sibylle G.; Wildenauer, Dieter B.; Dudbridge, Frank; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F. Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A.; Nestadt, Gerald; Norton, Nadine; Papadimitriou, George N.; Ribble, Robert; Sanders, Alan R.; Silverman, Jeremy M.; Walsh, Dermot; Williams, Nigel M.; Wormley, Brandon; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S.; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M.; Linszen, Don H.; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M.; Ophoff, Roel A.; van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden P.; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D.; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J.; Weston, Paul; Widaa, Sara; Whittaker, Pamela; McCarthy, Mark I.; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A.; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with

  16. Meta-analysis of genome-wide association studies for personality

    NARCIS (Netherlands)

    M.H.M. de Moor; P.T. Costa Jr; A. Terracciano; R.F. Krueger; E.J.C. de Geus (Eco); T. Toshiko; B.W.J.H. Penninx (Brenda); T. Esko; P.A.F. Madden (Pamela); J. Derringer; N. Amin (Najaf); G.A.H.M. Willemsen (Gonneke); J.J. Hottenga (Jouke Jan); M.A. Distel (Marijn); M. Uda (Manuela); S. Sanna (Serena); P. Spinhoven; C.A. Hartman; P.F. Sullivan (Patrick); A. Realo; J. Allik; A.C. Heath; M.L. Pergadia; P. Lin; R. Grucza; T. Nutile; M. Ciullo; D. Rujescu (Dan); I. Giegling (Ina); B. Konte; E. Widen (Elisabeth); D.L. Cousminer (Diana); J.G. Eriksson; A. Palotie; L. Peltonen; M. Luciano (Michelle); A. Tenesa (Albert); G. Davies; L.M. Lopez; N.K. Hansell (Narelle); S.E. Medland (Sarah Elizabeth); L. Ferrucci; D. Schlessinger; G.W. Montgomery; M.J. Wright (Margaret); Y.S. Aulchenko (Yurii); A.C.J.W. Janssens (Cécile); B.A. Oostra (Ben); A. Metspalu (Andres); I.J. Deary; K. Räikkönen (Katri); L.J. Bierut (Laura); N.G. Martin; C.M. van Duijn (Cornelia); D.I. Boomsma (Dorret); G.R. Abecasis (Gonçalo); A. Agrawal (Arpana)

    2012-01-01

    textabstractPersonality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide

  17. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    NARCIS (Netherlands)

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We

  18. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    NARCIS (Netherlands)

    Postmus, Iris; Warren, Helen R.; Trompet, Stella; Arsenault, Benoit J.; Avery, Christy L.; Bis, Joshua C.; Chasman, Daniel I.; de Keyser, Catherine E.; Deshmukh, Harshal A.; Evans, Daniel S.; Feng, QiPing; Li, Xiaohui; Smit, Roelof A. J.; Smith, Albert V.; Sun, Fangui; Taylor, Kent D.; Arnold, Alice M.; Barnes, Michael R.; Barratt, Bryan J.; Betteridge, John; Boekholdt, S. Matthijs; Boerwinkle, Eric; Buckley, Brendan M.; Chen, Y.-D. Ida; de Craen, Anton J. M.; Cummings, Steven R.; Denny, Joshua C.; Dubé, Marie Pierre; Durrington, Paul N.; Eiriksdottir, Gudny; Ford, Ian; Guo, Xiuqing; Harris, Tamara B.; Heckbert, Susan R.; Hofman, Albert; Hovingh, G. Kees; Kastelein, John J. P.; Launer, Leonore J.; Liu, Ching-Ti; Liu, Yongmei; Lumley, Thomas; McKeigue, Paul M.; Munroe, Patricia B.; Neil, Andrew; Nickerson, Deborah A.; Nyberg, Fredrik; O'Brien, Eoin; O'Donnell, Christopher J.; Post, Wendy; Poulter, Neil; Vasan, Ramachandran S.; Rice, Kenneth; Rich, Stephen S.; Rivadeneira, Fernando; Sattar, Naveed; Sever, Peter; Shaw-Hawkins, Sue; Shields, Denis C.; Slagboom, P. Eline; Smith, Nicholas L.; Smith, Joshua D.; Sotoodehnia, Nona; Stanton, Alice; Stott, David J.; Stricker, Bruno H.; Stürmer, Til; Uitterlinden, André G.; Wei, Wei-Qi; Westendorp, Rudi G. J.; Whitsel, Eric A.; Wiggins, Kerri L.; Wilke, Russell A.; Ballantyne, Christie M.; Colhoun, Helen M.; Cupples, L. Adrienne; Franco, Oscar H.; Gudnason, Vilmundur; Hitman, Graham; Palmer, Colin N. A.; Psaty, Bruce M.; Ridker, Paul M.; Stafford, Jeanette M.; Stein, Charles M.; Tardif, Jean-Claude; Caulfield, Mark J.; Jukema, J. Wouter; Rotter, Jerome I.; Krauss, Ronald M.

    2016-01-01

    In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. We performed a meta-analysis of genome-wide

  19. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, S.; O'Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; Kim, Y.; Lee, S.H.; Magnusson, P.K.; Sanchez, N.; Stahl, E.A.; Williams, S.; Wray, N.R.; Xia, K.; Bettella, F.; Borglum, A. D.; Bulik-Sullivan, B.K.; Cormican, P.; Craddock, N.; de Leeuw, C.A.; Durmishi, N.; Gill, M.; Golimbet, V.; Hamshere, M.L.; Holmans, P.; Hougaard, D. M.; Kendler, K.S.; Lin, K.; Morris, D. W.; Mors, O.; Mortensen, P.B.; Neale, B. M.; O'Neill, F. A.; Owen, M.J.; Milovancevic, M.P.; Posthuma, D.; Powell, J.; Richards, A.L.; Riley, B.P.; Ruderfer, D.; Rujescu, D.; Sigurdsson, E.; Silagadze, T.; Smit, A.B.; Stefansson, H.; Steinberg, S.; Suvisaari, J.; Tosato, S.; Verhage, M.; Walters, T.J.; Levinson, D.F.; Gejman, P.V.; Laurent, C.; Mowry, B. J.; O'Donovan, M.C.; Pulver, A. E.; Schwab, S.G.; Wildenauer, D. B.; Dudbridge, F.; Shi, J.; Albus, M.; Alexander, M.; Campion, D.; Cohen, D.; Dikeos, D.; Duan, J.; Eichhammer, P.; Godard, S.; Hansen, M.; Lerer, F.B.; Liang, K.Y.; Maier, W.; Mallet, J.; Nertney, D. A.; Nestadt, G.; Norton, N.; O'Neill, F.A.; Papadimitriou, G.N.; Ribble, R.; Sanders, A.R.; Silverman, J.M.; Wormley, B.; Arranz, M.J.; Bakker, S.; Bender, S.; Bramon, E.; Collier, D.; Crespo-Facorro, B.; Hall, J.; Iyegbe, C.; Jablensky, A.; Kahn, R.S.; Kalaydjieva, L.; Lawrie, S.M.; Lewis, C.M.; Linszen, D.H.; Mata, I.; McIntosh, A.; Murray, R.M.; Ophoff, R.A.; van Os, J.; Walshe, M.; Weisbrod, M.; Wiersma, D.; Donnely, P.; Barasso, I.; Blackwell, J.M.; Brown, M.A.; Casas, J.P.; Corvin, A.P.; Deloukas, P.; Duncanson, A.; Jankowski, J.; Markus, H.S.; Mathew, C.G.; Palmer, C.N.; Plomin, R.; Rautanen, A.; Sawcer, S.J.; Trembath, R.C.; Viswanathan, A.C.; Wood, N.W.; Spencer, C. C.; Band, G.; Bellenguez, C.; Freeman, C.; Hellenthal, G.; Giannoulatou, E.; Pirinen, M.; Pearson, R.D.; Strange, A.; Su, Z.; Vukcevic, D.; Langford, C.; Hunt, S.E.; Edkins, S.; Gwilliam, R.; Blackburn, H.; Bumpstead, S.; Dronov, S.; Gillman, M.; Gray, E.; Hammond, N.; Jayakumar, A.; McCann, O.T.; Liddle, J.; Potter, S.C.; Ravindrarajah, R.; Ricketts, M.; Tashakkori-Ghanbaria, A.; Waller, M.J.; Weston, P.; Widaa, S.; Whittaker, P.; Barrroso, I.; McCarthy, M.I.; Spencer, C.C.; Stefansson, K.; Scolnick, E.; Purcell, S.; McCarroll, S.A.; Sklar, P.; Hultman, C. M.; Sullivan, P.F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with

  20. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin (Najaf); K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao (Jing Hua); G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. van Duijn (Cornelia); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  1. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  2. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  3. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  4. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  5. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  6. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  7. On the analysis of genome-wide association studies in family-based designs: a universal, robust analysis approach and an application to four genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Sungho Won

    2009-11-01

    Full Text Available For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1 in 4 genome-wide association studies.

  8. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS.

    Directory of Open Access Journals (Sweden)

    Uppala Radhakrishna

    Full Text Available Congenital heart defect (CHD is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS, with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated. Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS.

  9. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS).

    Science.gov (United States)

    Radhakrishna, Uppala; Albayrak, Samet; Alpay-Savasan, Zeynep; Zeb, Amna; Turkoglu, Onur; Sobolewski, Paul; Bahado-Singh, Ray O

    2016-01-01

    Congenital heart defect (CHD) is the most common cause of death from congenital anomaly. Among several candidate epigenetic mechanisms, DNA methylation may play an important role in the etiology of CHDs. We conducted a genome-wide DNA methylation analysis using an Illumina Infinium 450k human methylation assay in a cohort of 24 newborns who had aortic valve stenosis (AVS), with gestational-age matched controls. The study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS subjects as compared to controls (either hypermethylated or demethylated). Gene Ontology analysis identified biological processes and functions for these genes including positive regulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular function categories as determined using DAVID identified low-density lipoprotein receptor binding, lipoprotein receptor binding and identical protein binding to be over-represented in the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to be involved in AVS was also observed. A large number CpG methylation sites individually demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus raising possibility of molecular screening markers for this disorder. Using epigenetic analysis we were able to identify genes significantly involved in the pathogenesis of AVS.

  10. Genome-Wide Association Analysis of Ischemic Stroke in Young Adults

    OpenAIRE

    Cheng, Yu-Ching; O’Connell, Jeffrey R.; Cole, John W.; Stine, O. Colin; Dueker, Nicole; McArdle, Patrick F.; Sparks, Mary J.; Shen, Jess; Laurie, Cathy C.; Nelson, Sarah; Doheny, Kimberly F.; Ling, Hua; Pugh, Elizabeth W.; Brott, Thomas G.; Brown, Robert D.

    2011-01-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases...

  11. Genome-wide association study and biological pathway analysis of the Eimeria maxima response in broilers.

    Science.gov (United States)

    Hamzić, Edin; Buitenhuis, Bart; Hérault, Frédéric; Hawken, Rachel; Abrahamsen, Mitchel S; Servin, Bertrand; Elsen, Jean-Michel; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand

    2015-11-25

    Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozoans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respectively. Therefore, the current control programs must be expanded with complementary approaches such as the use of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying response to Eimeria maxima challenge. In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological pathways and networks involved in tissue proliferation and repair along with the primary innate immune response may play the most important role during the early stage of Eimeria maxima infection in broilers.

  12. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    Science.gov (United States)

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  13. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  14. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Science.gov (United States)

    Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.

  15. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  16. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    Science.gov (United States)

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  17. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    Science.gov (United States)

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  18. Data analysis in the post-genome-wide association study era

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Wang

    2016-12-01

    Full Text Available Since the first report of a genome-wide association study (GWAS on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications. Keywords: Genome-wide association study, Data mining, Integrative data analysis, Polymorphism, Copy number variation

  19. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    DEFF Research Database (Denmark)

    Postmus, Iris; Warren, Helen R; Trompet, Stella

    2016-01-01

    BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. METHODS AND RESULTS: We performed...... a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p

  20. Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome

    OpenAIRE

    Shen, Hao-ran; Qiu, Li-hua; Zhang, Zhi-qing; Qin, Yuan-yuan; Cao, Cong; Di, Wen

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder of uncertain etiology. Recent studies suggested that insulin resistance (IR) plays an important role in the development of PCOS. In the current study, we aimed to investigate the molecular mechanism of IR in PCOS. We employed genome-wide methylated DNA immunoprecipitation (MeDIP) analysis to characterize genes that are differentially methylated in PCOS patients vs. healthy controls. Besides, we also identified the different...

  1. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults

    OpenAIRE

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R.; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang

    2015-01-01

    Abstract Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from t...

  2. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  3. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    Science.gov (United States)

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  4. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types

    NARCIS (Netherlands)

    Franssen, Susanne U.; Gu, Jenny; Winters, Gidon; Huylmans, Ann-Kathrin; Wienpahl, Isabell; Sparwel, Maximiliane; Coyer, James; Olsen, Jeanine; Reusch, Thorsten; Bornberg-Bauer, Erich

    Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments

  5. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  6. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population.

    Directory of Open Access Journals (Sweden)

    Kejun Wang

    Full Text Available In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1, seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3, and one for average daily gain (COL27A1. Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.

  7. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    Science.gov (United States)

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  8. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

    NARCIS (Netherlands)

    Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Plagnol, Vincent; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner- Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Conley, Emily Drabant; Dorfman, Elizabeth; Tung, Joyce Y.; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lew, M.; Klein, C.; Golbe, L.; Growdon, J.; Wooten, G. F.; Watts, R.; Guttman, M.; Goldwurm, S.; Saint-Hilaire, M. H.; Baker, K.; Litvan, I.; Nicholson, G.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Sherman, S.; Roxburgh, R.; Slevin, J.; Perlmutter, J.; Mark, M. H.; Huggins, N.; Pezzoli, G.; Massood, T.; Itin, I.; Corbett, A.; Chinnery, P.; Ostergaard, K.; Snow, B.; Cambi, F.; Kay, D.; Samii, A.; Agarwal, P.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Montimurro, J.; Martinez, E.; Griffith, A.; Kusel, V.; Yearout, D.; Zabetian, C.; Clark, L. N.; Liu, X.; Lee, J. H.; Taub, R. Cheng; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; van Duijn, Cornelia M.; Verlinden, Vincent J.; Koudstaal, Peter J.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2014-01-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were

  9. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.

    Directory of Open Access Journals (Sweden)

    Clive J Hoggart

    2008-07-01

    Full Text Available Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.

  10. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  11. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    Science.gov (United States)

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  12. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  13. Brain function in carriers of a genome-wide supported bipolar disorder variant.

    Science.gov (United States)

    Erk, Susanne; Meyer-Lindenberg, Andreas; Schnell, Knut; Opitz von Boberfeld, Carola; Esslinger, Christine; Kirsch, Peter; Grimm, Oliver; Arnold, Claudia; Haddad, Leila; Witt, Stephanie H; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Walter, Henrik

    2010-08-01

    The neural abnormalities underlying genetic risk for bipolar disorder, a severe, common, and highly heritable psychiatric condition, are largely unknown. An opportunity to define these mechanisms is provided by the recent discovery, through genome-wide association, of a single-nucleotide polymorphism (rs1006737) strongly associated with bipolar disorder within the CACNA1C gene, encoding the alpha subunit of the L-type voltage-dependent calcium channel Ca(v)1.2. To determine whether the genetic risk associated with rs1006737 is mediated through hippocampal function. Functional magnetic resonance imaging study. University hospital. A total of 110 healthy volunteers of both sexes and of German descent in the Hardy-Weinberg equilibrium for rs1006737. Blood oxygen level-dependent signal during an episodic memory task and behavioral and psychopathological measures. Using an intermediate phenotype approach, we show that healthy carriers of the CACNA1C risk variant exhibit a pronounced reduction of bilateral hippocampal activation during episodic memory recall and diminished functional coupling between left and right hippocampal regions. Furthermore, risk allele carriers exhibit activation deficits of the subgenual anterior cingulate cortex, a region repeatedly associated with affective disorders and the mediation of adaptive stress-related responses. The relevance of these findings for affective disorders is supported by significantly higher psychopathology scores for depression, anxiety, obsessive-compulsive thoughts, interpersonal sensitivity, and neuroticism in risk allele carriers, correlating negatively with the observed regional brain activation. Our data demonstrate that rs1006737 or genetic variants in linkage disequilibrium with it are functional in the human brain and provide a neurogenetic risk mechanism for bipolar disorder backed by genome-wide evidence.

  14. Genome-wide analysis of disease progression in age-related macular degeneration.

    Science.gov (United States)

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  15. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape

    Science.gov (United States)

    2013-01-01

    Background Aspartic proteases (APs) are a large family of proteolytic enzymes found in almost all organisms. In plants, they are involved in many biological processes, such as senescence, stress responses, programmed cell death, and reproduction. Prior to the present study, no grape AP gene(s) had been reported, and their research on woody species was very limited. Results In this study, a total of 50 AP genes (VvAP) were identified in the grape genome, among which 30 contained the complete ASP domain. Synteny analysis within grape indicated that segmental and tandem duplication events contributed to the expansion of the grape AP family. Additional analysis between grape and Arabidopsis demonstrated that several grape AP genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grape and Arabidopsis. Phylogenetic relationships of the 30 VvAPs with the complete ASP domain and their Arabidopsis orthologs, as well as their gene and protein features were analyzed and their cellular localization was predicted. Moreover, expression profiles of VvAP genes in six different tissues were determined, and their transcript abundance under various stresses and hormone treatments were measured. Twenty-seven VvAP genes were expressed in at least one of the six tissues examined; nineteen VvAPs responded to at least one abiotic stress, 12 VvAPs responded to powdery mildew infection, and most of the VvAPs responded to SA and ABA treatments. Furthermore, integrated synteny and phylogenetic analysis identified orthologous AP genes between grape and Arabidopsis, providing a unique starting point for investigating the function of grape AP genes. Conclusions The genome-wide identification, evolutionary and expression analyses of grape AP genes provide a framework for future analysis of AP genes in defining their roles during stress response. Integrated synteny and phylogenetic analyses provide novel insight into the

  16. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    Science.gov (United States)

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  17. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  18. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    Science.gov (United States)

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  19. Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Xiao Lihong

    2011-12-01

    Full Text Available Abstract Background Regulation of gene expression plays a pivotal role in controlling the development of multicellular plants. To explore the molecular mechanism of plant developmental-stage transition and cell-fate determination, a genome-wide analysis was undertaken of sequential developmental time-points and individual tissue types in the model moss Physcomitrella patens because of the short life cycle and relative structural simplicity of this plant. Results Gene expression was analyzed by digital gene expression tag profiling of samples taken from P. patens protonema at 3, 14 and 24 days, and from leafy shoot tissues at 30 days, after protoplast isolation, and from 14-day-old caulonemal and chloronemal tissues. In total, 4333 genes were identified as differentially displayed. Among these genes, 4129 were developmental-stage specific and 423 were preferentially expressed in either chloronemal or caulonemal tissues. Most of the differentially displayed genes were assigned to functions in organic substance and energy metabolism or macromolecule biosynthetic and catabolic processes based on gene ontology descriptions. In addition, some regulatory genes identified as candidates might be involved in controlling the developmental-stage transition and cell differentiation, namely MYB-like, HB-8, AL3, zinc finger family proteins, bHLH superfamily, GATA superfamily, GATA and bZIP transcription factors, protein kinases, genes related to protein/amino acid methylation, and auxin, ethylene, and cytokinin signaling pathways. Conclusions These genes that show highly dynamic changes in expression during development in P. patens are potential targets for further functional characterization and evolutionary developmental biology studies.

  20. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Turnip (Brassica rapa var. rapa

    Directory of Open Access Journals (Sweden)

    Xin Yin

    2017-07-01

    Full Text Available The calcineurin B-like protein (CBL–CBL-interacting protein kinase (CIPK complex has been identified as a primary component in calcium sensors that perceives various stress signals. Turnip (Brassica rapa var. rapa has been widely cultivated in the Qinghai–Tibet Plateau for a century as a food crop of worldwide economic significance. These CBL–CIPK complexes have been demonstrated to play crucial roles in plant response to various environmental stresses. However, no report is available on the genome-wide characterization of these two gene families in turnip. In the present study, 19 and 51 members of the BrrCBL and BrrCIPK genes, respectively, are first identified in turnip and phylogenetically grouped into three and two distinct clusters, respectively. The expansion of these two gene families is mainly attributable to segmental duplication. Moreover, the differences in expression patterns in quantitative real-time PCR, as well as interaction profiles in the yeast two-hybrid assay, suggest the functional divergence of paralog genes during long-term evolution in turnip. Overexpressing and complement lines in Arabidopsis reveal that BrrCBL9.2 improves, but BrrCBL9.1 does not affect, salt tolerance in Arabidopsis. Thus, the expansion of the BrrCBL and BrrCIPK gene families enables the functional differentiation and evolution of some new gene functions of paralog genes. These paralog genes then play prominent roles in turnip's adaptation to the adverse environment of the Qinghai–Tibet Plateau. Overall, the study results contribute to our understanding of the functions of the CBL–CIPK complex and provide basis for selecting appropriate genes for the in-depth functional studies of BrrCBL–BrrCIPK in turnip.

  1. A mega-analysis of genome-wide association studies for major depressive disorder.

    Science.gov (United States)

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  2. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  3. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Protein Interaction-Based Genome-Wide Analysis of Incident Coronary Heart Disease

    DEFF Research Database (Denmark)

    Jensen, Majken Karoline; Pers, Tune Hannes; Dworzynski, Piotr

    2011-01-01

    in genes associated with risk of coronary heart disease (CHD). Methods and Results-Genome-wide association analyses of approximately approximate to 700 000 single-nucleotide polymorphisms in 899 incident CHD cases and 1823 age-and sex-matched controls within the Nurses' Health and the Health Professionals...... complex. Conclusions-The integration of a GWA study with PPI data successfully identifies a set of candidate susceptibility genes for incident CHD that would have been missed in single-marker GWA analysis. (Circ Cardiovasc Genet. 2011; 4:549-556.)...

  5. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults.

    Science.gov (United States)

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang; Wilson, Robert S; De Jager, Philip L; Yu, Lei; Singleton, Andrew B; Harris, Tamara; Mosley, Thomas H; Pinto, Jayant M; Bennett, David A; Chen, Honglei

    2015-11-01

    Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from the Atherosclerosis Risk in Communities (ARIC) study, the Health, Aging, and Body Composition (Health ABC) study, and the Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP). Genome-wide association study analysis was performed first by individual cohorts and then meta-analyzed using fixed-effect models with inverse variance weights. Although no SNPs reached genome-wide statistical significance, we identified 13 loci with suggestive evidence for an association with the sense of smell (Pmeta < 1 × 10). Of these, 2 SNPs at chromosome 17q21.31 (rs199443 in NSF, P = 3.02 × 10; and rs2732614 in KIAA1267-LRRC37A, P = 6.65 × 10) exhibited cis effects on the expression of microtubule-associated protein tau (MAPT, 17q21.31) in 447 frontal-cortex samples obtained postmortem and profiled by RNA-seq (P < 1 × 10). Gene-based and pathway-enrichment analyses further implicated MAPT in regulating the sense of smell in older adults. Similar results were obtained after excluding participants who reported a physician-diagnosed PD or use of PD medications. In conclusion, we provide preliminary evidence that the MAPT locus may play a role in regulating the sense of smell in older adults and therefore offer a potential genetic link between poor sense of smell and major neurodegenerative diseases.

  6. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell.

    Science.gov (United States)

    Xu, Jiawei; Bao, Xiao; Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-05-10

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS' and controls' granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS' and controls' granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls'. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.

  7. Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Directory of Open Access Journals (Sweden)

    Wenbo Tang

    Full Text Available Genome-wide association studies (GWAS have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1 in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7. In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8 at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

  8. FunCoup 3.0: database of genome-wide functional coupling networks.

    Science.gov (United States)

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.

  9. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    Science.gov (United States)

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  10. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    Science.gov (United States)

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  11. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum.

    Science.gov (United States)

    Huang, Shengxiong; Gao, Yongfeng; Liu, Jikai; Peng, Xiaoli; Niu, Xiangli; Fei, Zhangjun; Cao, Shuqing; Liu, Yongsheng

    2012-06-01

    The WRKY transcription factors have been implicated in multiple biological processes in plants, especially in regulating defense against biotic and abiotic stresses. However, little information is available about the WRKYs in tomato (Solanum lycopersicum). The recent release of the whole-genome sequence of tomato allowed us to perform a genome-wide investigation for tomato WRKY proteins, and to compare these positively identified proteins with their orthologs in model plants, such as Arabidopsis and rice. In the present study, based on the recently released tomato whole-genome sequences, we identified 81 SlWRKY genes that were classified into three main groups, with the second group further divided into five subgroups. Depending on WRKY domains' sequences derived from tomato, Arabidopsis and rice, construction of a phylogenetic tree demonstrated distinct clustering and unique gene expansion of WRKY genes among the three species. Genome mapping analysis revealed that tomato WRKY genes were enriched on several chromosomes, especially on chromosome 5, and 16 % of the family members were tandemly duplicated genes. The tomato WRKYs from each group were shown to share similar motif compositions. Furthermore, tomato WRKY genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various biotic and abiotic stresses. The expression of 18 selected tomato WRKY genes in response to drought and salt stresses and Pseudomonas syringae invasion, respectively, was validated by quantitative RT-PCR. Our results will provide a platform for functional identification and molecular breeding study of WRKY genes in tomato and probably other Solanaceae plants.

  12. Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies.

    Science.gov (United States)

    van Schooten, Bas; Jiggins, Chris D; Briscoe, Adriana D; Papa, Riccardo

    2016-03-22

    In a world of chemical cues, smell and taste are essential senses for survival. Here we focused on Heliconius, a diverse group of butterflies that exhibit variation in pre- and post-zygotic isolation and chemically-mediated behaviors across their phylogeny. Our study examined the ionotropic receptors, a recently discovered class of receptors that are some of the most ancient chemical receptors. We found more ionotropic receptors in Heliconius (31) than in Bombyx mori (25) or in Danaus plexippus (27). Sixteen genes in Lepidoptera were not present in Diptera. Only IR7d4 was exclusively found in butterflies and two expansions of IR60a were exclusive to Heliconius. A genome-wide comparison between 11 Heliconius species revealed instances of pseudogenization, gene gain, and signatures of positive selection across the phylogeny. IR60a2b and IR60a2d are unique to the H. melpomene, H. cydno, and H. timareta clade, a group where chemosensing is likely involved in pre-zygotic isolation. IR60a2b also displayed copy number variations (CNVs) in distinct populations of H. melpomene and was the only gene significantly higher expressed in legs and mouthparts than in antennae, which suggests a gustatory function. dN/dS analysis suggests more frequent positive selection in some intronless IR genes and in particular in the sara/sapho and melpomene/cydno/timareta clades. IR60a1 was the only gene with an elevated dN/dS along a major phylogenetic branch associated with pupal mating. Only IR93a was differentially expressed between sexes. All together these data make Heliconius butterflies one of the very few insects outside Drosophila where IRs have been characterized in detail. Our work outlines a dynamic pattern of IR gene evolution throughout the Heliconius radiation which could be the result of selective pressure to find potential mates or host-plants.

  13. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  14. CMS: a web-based system for visualization and analysis of genome-wide methylation data of human cancers.

    Science.gov (United States)

    Gu, Fei; Doderer, Mark S; Huang, Yi-Wen; Roa, Juan C; Goodfellow, Paul J; Kizer, E Lynette; Huang, Tim H M; Chen, Yidong

    2013-01-01

    DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters. Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework. CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible

  15. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  16. Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    2010-11-01

    Full Text Available Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory to specific (e.g. phosphorylation or transcriptional regulation. We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/.

  17. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.......Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  18. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (number data, and causal mechanisms of the five pathways require further study.

  19. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  20. Genome-wide analysis of E. coli cell-gene interactions.

    Science.gov (United States)

    Cardinale, S; Cambray, G

    2017-11-23

    The pursuit of standardization and reliability in synthetic biology has achieved, in recent years, a number of advances in the design of more predictable genetic parts for biological circuits. However, even with the development of high-throughput screening methods and whole-cell models, it is still not possible to predict reliably how a synthetic genetic construct interacts with all cellular endogenous systems. This study presents a genome-wide analysis of how the expression of synthetic genes is affected by systematic perturbations of cellular functions. We found that most perturbations modulate expression indirectly through an effect on cell size, putting forward the existence of a generic Size-Expression interaction in the model prokaryote Escherichia coli. The Size-Expression interaction was quantified by inserting a dual fluorescent reporter gene construct into each of the 3822 single-gene deletion strains comprised in the KEIO collection. Cellular size was measured for single cells via flow cytometry. Regression analyses were used to discriminate between expression-specific and gene-specific effects. Functions of the deleted genes broadly mapped onto three systems with distinct primary influence on the Size-Expression map. Perturbations in the Division and Biosynthesis (DB) system led to a large-cell and high-expression phenotype. In contrast, disruptions of the Membrane and Motility (MM) system caused small-cell and low-expression phenotypes. The Energy, Protein synthesis and Ribosome (EPR) system was predominantly associated with smaller cells and positive feedback on ribosome function. Feedback between cell growth and gene expression is widespread across cell systems. Even though most gene disruptions proximally affect one component of the Size-Expression interaction, the effect therefore ultimately propagates to both. More specifically, we describe the dual impact of growth on cell size and gene expression through cell division and ribosomal content

  1. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  2. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    Science.gov (United States)

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  3. Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and stress

    Directory of Open Access Journals (Sweden)

    Ridhi eGoel

    2016-03-01

    Full Text Available The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/ development including fruit ripening process respectively.

  4. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS

    Directory of Open Access Journals (Sweden)

    Kim Nora

    2012-07-01

    Full Text Available Abstract Background It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO. Results We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs. Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, ‘Regulation of Cellular Component Organization and Biogenesis’, a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, ‘Actin Cytoskeleton’, a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Conclusions Pathway

  5. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  6. Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin.

    Science.gov (United States)

    Tönjes, Anke; Scholz, Markus; Krüger, Jacqueline; Krause, Kerstin; Schleinitz, Dorit; Kirsten, Holger; Gebhardt, Claudia; Marzi, Carola; Grallert, Harald; Ladenvall, Claes; Heyne, Henrike; Laurila, Esa; Kriebel, Jennifer; Meisinger, Christa; Rathmann, Wolfgang; Gieger, Christian; Groop, Leif; Prokopenko, Inga; Isomaa, Bo; Beutner, Frank; Kratzsch, Jürgen; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Krohn, Knut; Spranger, Joachim; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Kovacs, Peter

    2018-02-01

    Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion. © The Author(s) 2017. Published by Oxford University Press. All rights

  7. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH.We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation.Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them.Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  9. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    Science.gov (United States)

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  10. Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene

    Science.gov (United States)

    Ludwig, Kerstin U.; Ahmed, Syeda Tasnim; Böhmer, Anne C.; Sangani, Nasim Bahram; Varghese, Sheryil; Klamt, Johanna; Schuenke, Hannah; Gültepe, Pinar; Hofmann, Andrea; Rubini, Michele; Aldhorae, Khalid Ahmed; Steegers-Theunissen, Regine P.; Rojas-Martinez, Augusto; Reiter, Rudolf; Borck, Guntram; Knapp, Michael; Nakatomi, Mitsushiro; Graf, Daniel; Mangold, Elisabeth; Peters, Heiko

    2016-01-01

    Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdifflip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions. PMID:26968009

  11. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.

    Science.gov (United States)

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R; Hutter, Carolyn M; Aragaki, Aaron K; Baron, John A; Berndt, Sonja I; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J; Campbell, Peter T; Carlson, Christopher S; Casey, Graham; Chan, Andrew T; Chang-Claude, Jenny; Chanock, Stephen J; Chen, Lin S; Coetzee, Gerhard A; Coetzee, Simon G; Conti, David V; Curtis, Keith R; Duggan, David; Edwards, Todd; Fuchs, Charles S; Gallinger, Steven; Giovannucci, Edward L; Gogarten, Stephanie M; Gruber, Stephen B; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Henderson, Brian E; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Hunter, David J; Jackson, Rebecca D; Jee, Sun Ha; Jenkins, Mark A; Jia, Wei-Hua; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z; Laurie, Cathy C; Laurie, Cecelia A; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M; Liu, Yan; Ma, Jing; Makar, Karen W; Matsuo, Keitaro; Newcomb, Polly A; Potter, John D; Prentice, Ross L; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A; Schoen, Robert E; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L; Taverna, Darin; Thibodeau, Stephen N; Ulrich, Cornelia M; White, Emily; Xiang, Yongbing; Zanke, Brent W; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-04-01

    Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further

  12. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sibylle Chantal Vonesch

    2016-01-01

    Full Text Available Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.

  13. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

    DEFF Research Database (Denmark)

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia

    2013-01-01

    of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge......, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate...... immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated...

  14. Creative Activities in Music – A Genome-Wide Linkage Analysis

    Science.gov (United States)

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  15. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    Science.gov (United States)

    Oikkonen, Jaana; Kuusi, Tuire; Peltonen, Petri; Raijas, Pirre; Ukkola-Vuoti, Liisa; Karma, Kai; Onkamo, Päivi; Järvelä, Irma

    2016-01-01

    Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose

  16. Creative Activities in Music--A Genome-Wide Linkage Analysis.

    Directory of Open Access Journals (Sweden)

    Jaana Oikkonen

    Full Text Available Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases, 4q22.1 for composing (LOD 2.15, 103 cases and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases. Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA at 18q21 (LOD 3.09, 149 cases, which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD, which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We

  17. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory

  18. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  19. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  20. Genome-wide meta-analysis of common variant differences between men and women

    Science.gov (United States)

    Boraska, Vesna; Jerončić, Ana; Colonna, Vincenza; Southam, Lorraine; Nyholt, Dale R.; William Rayner, Nigel; Perry, John R.B.; Toniolo, Daniela; Albrecht, Eva; Ang, Wei; Bandinelli, Stefania; Barbalic, Maja; Barroso, Inês; Beckmann, Jacques S.; Biffar, Reiner; Boomsma, Dorret; Campbell, Harry; Corre, Tanguy; Erdmann, Jeanette; Esko, Tõnu; Fischer, Krista; Franceschini, Nora; Frayling, Timothy M.; Girotto, Giorgia; Gonzalez, Juan R.; Harris, Tamara B.; Heath, Andrew C.; Heid, Iris M.; Hoffmann, Wolfgang; Hofman, Albert; Horikoshi, Momoko; Hua Zhao, Jing; Jackson, Anne U.; Hottenga, Jouke-Jan; Jula, Antti; Kähönen, Mika; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Klopp, Norman; Kutalik, Zoltán; Lagou, Vasiliki; Launer, Lenore J.; Lehtimäki, Terho; Lemire, Mathieu; Lokki, Marja-Liisa; Loley, Christina; Luan, Jian'an; Mangino, Massimo; Mateo Leach, Irene; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Navis, Gerjan; Newnham, John; Nieminen, Markku S.; Palotie, Aarno; Panoutsopoulou, Kalliope; Peters, Annette; Pirastu, Nicola; Polašek, Ozren; Rehnström, Karola; Ripatti, Samuli; Ritchie, Graham R.S.; Rivadeneira, Fernando; Robino, Antonietta; Samani, Nilesh J.; Shin, So-Youn; Sinisalo, Juha; Smit, Johannes H.; Soranzo, Nicole; Stolk, Lisette; Swinkels, Dorine W.; Tanaka, Toshiko; Teumer, Alexander; Tönjes, Anke; Traglia, Michela; Tuomilehto, Jaakko; Valsesia, Armand; van Gilst, Wiek H.; van Meurs, Joyce B.J.; Smith, Albert Vernon; Viikari, Jorma; Vink, Jacqueline M.; Waeber, Gerard; Warrington, Nicole M.; Widen, Elisabeth; Willemsen, Gonneke; Wright, Alan F.; Zanke, Brent W.; Zgaga, Lina; Boehnke, Michael; d'Adamo, Adamo Pio; de Geus, Eco; Demerath, Ellen W.; den Heijer, Martin; Eriksson, Johan G.; Ferrucci, Luigi; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Hengstenberg, Christian; Hudson, Thomas J.; Järvelin, Marjo-Riitta; Kogevinas, Manolis; Loos, Ruth J.F.; Martin, Nicholas G.; Metspalu, Andres; Pennell, Craig E.; Penninx, Brenda W.; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Schreiber, Stefan; Schunkert, Heribert; Spector, Tim D.; Stumvoll, Michael; Uitterlinden, André G.; Ulivi, Sheila; van der Harst, Pim; Vollenweider, Peter; Völzke, Henry; Wareham, Nicholas J.; Wichmann, H.-Erich; Wilson, James F.; Rudan, Igor; Xue, Yali; Zeggini, Eleftheria

    2012-01-01

    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. PMID:22843499

  1. SQC: secure quality control for meta-analysis of genome-wide association studies.

    Science.gov (United States)

    Huang, Zhicong; Lin, Huang; Fellay, Jacques; Kutalik, Zoltán; Hubaux, Jean-Pierre

    2017-08-01

    Due to the limited power of small-scale genome-wide association studies (GWAS), researchers tend to collaborate and establish a larger consortium in order to perform large-scale GWAS. Genome-wide association meta-analysis (GWAMA) is a statistical tool that aims to synthesize results from multiple independent studies to increase the statistical power and reduce false-positive findings of GWAS. However, it has been demonstrated that the aggregate data of individual studies are subject to inference attacks, hence privacy concerns arise when researchers share study data in GWAMA. In this article, we propose a secure quality control (SQC) protocol, which enables checking the quality of data in a privacy-preserving way without revealing sensitive information to a potential adversary. SQC employs state-of-the-art cryptographic and statistical techniques for privacy protection. We implement the solution in a meta-analysis pipeline with real data to demonstrate the efficiency and scalability on commodity machines. The distributed execution of SQC on a cluster of 128 cores for one million genetic variants takes less than one hour, which is a modest cost considering the 10-month time span usually observed for the completion of the QC procedure that includes timing of logistics. SQC is implemented in Java and is publicly available at https://github.com/acs6610987/secureqc. jean-pierre.hubaux@epfl.ch. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    Science.gov (United States)

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence

    Science.gov (United States)

    Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.

    2013-01-01

    It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047

  4. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

    Science.gov (United States)

    Bertram, Lars; Lange, Christoph; Mullin, Kristina; Parkinson, Michele; Hsiao, Monica; Hogan, Meghan F; Schjeide, Brit M M; Hooli, Basavaraj; Divito, Jason; Ionita, Iuliana; Jiang, Hongyu; Laird, Nan; Moscarillo, Thomas; Ohlsen, Kari L; Elliott, Kathryn; Wang, Xin; Hu-Lince, Diane; Ryder, Marie; Murphy, Amy; Wagner, Steven L; Blacker, Deborah; Becker, K David; Tanzi, Rudolph E

    2008-11-01

    Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.

  5. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases.

    Directory of Open Access Journals (Sweden)

    Vincent Plagnol

    2011-08-01

    Full Text Available The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC human leukocyte antigen (HLA region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP data in type 1 diabetes (T1D patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506, insulinoma-associated antigen 2 (IA-2A, n = 2,498, antibodies to the autoimmune thyroid (Graves' disease (AITD autoantigen thyroid peroxidase (TPOA, n = 8,300, and antibodies against gastric parietal cells (PCA, n = 4,328 that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10: 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A.

  6. Network graph analysis of gene-gene interactions in genome-wide association study data.

    Science.gov (United States)

    Lee, Sungyoung; Kwon, Min-Seok; Park, Taesung

    2012-12-01

    Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful and efficient methods for detecting high-order gene-gene (GxG) interactions. However, the biological interpretation of GxG interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified GxG interactions. The proposed network graph analysis consists of three steps. The first step is for performing GxG interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified GxG interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform GxG interaction analysis of body mass index (BMI). Our network graph analysis successfully showed that many identified GxG interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of GxG interactions.

  7. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc; Phelan, Jody; Hill-Cawthorne, Grant A.; Nair, Mridul; Mallard, Kim; Ali, Shahjahan; Abdallah, Abdallah; Alghamdi, Saad; Alsomali, Mona; Ahmed, Abdallah O.; Portelli, Stephanie; Oppong, Yaa; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Caws, Maxine; Chatterjee, Anirvan; Crampin, Amelia C.; Dheda, Keertan; Furnham, Nicholas; Glynn, Judith R.; Grandjean, Louis; Minh Ha, Dang; Hasan, Rumina; Hasan, Zahra; Hibberd, Martin L.; Joloba, Moses; Jones-Ló pez, Edward C.; Matsumoto, Tomoshige; Miranda, Anabela; Moore, David J.; Mocillo, Nora; Panaiotov, Stefan; Parkhill, Julian; Penha, Carlos; Perdigã o, Joã o; Portugal, Isabel; Rchiad, ‍ Zineb; Robledo, Jaime; Sheen, Patricia; Shesha, Nashwa Talaat; Sirgel, Frik A.; Sola, Christophe; Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; Helden, Paul Van; Viveiros, Miguel; Warren, Robert M.; McNerney, Ruth; Pain, Arnab; Clark, Taane G.

    2018-01-01

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed

  8. Genome-Wide Meta-Analysis of Sciatica in Finnish Population.

    Directory of Open Access Journals (Sweden)

    Susanna Lemmelä

    Full Text Available Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (p<1x10-6 were replicated in 776 Finnish sciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981 at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08 and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively. The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04. Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6-7% than in other European populations (1-2%. Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109 were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB, which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.

  9. Genome-Wide Meta-Analysis of Sciatica in Finnish Population.

    Science.gov (United States)

    Lemmelä, Susanna; Solovieva, Svetlana; Shiri, Rahman; Benner, Christian; Heliövaara, Markku; Kettunen, Johannes; Anttila, Verneri; Ripatti, Samuli; Perola, Markus; Seppälä, Ilkka; Juonala, Markus; Kähönen, Mika; Salomaa, Veikko; Viikari, Jorma; Raitakari, Olli T; Lehtimäki, Terho; Palotie, Aarno; Viikari-Juntura, Eira; Husgafvel-Pursiainen, Kirsti

    2016-01-01

    Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS) and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (psciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04). Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6-7%) than in other European populations (1-2%). Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.

  10. Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf

    Directory of Open Access Journals (Sweden)

    Xun Yue

    2012-01-01

    Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.

  11. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  12. Genome-wide analysis reveals a cell cycle–dependent mechanism controlling centromere propagation

    Science.gov (United States)

    Erhardt, Sylvia; Mellone, Barbara G.; Betts, Craig M.; Zhang, Weiguo; Karpen, Gary H.; Straight, Aaron F.

    2008-01-01

    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division. PMID:19047461

  13. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation.

    Science.gov (United States)

    Erhardt, Sylvia; Mellone, Barbara G; Betts, Craig M; Zhang, Weiguo; Karpen, Gary H; Straight, Aaron F

    2008-12-01

    Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.

  14. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  15. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-03-01

    Full Text Available The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes, DEAH-box (52 genes, or DExD/H-box (58 genes in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5% are within the identified syntenic blocks. Sixty-six (40.99% helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.

  16. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  17. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    DEFF Research Database (Denmark)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang

    2017-01-01

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorpt...... a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.......-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p 

  18. Genome-Wide Analysis to Identify HLA Factors Potentially Associated With Severe Dengue

    Directory of Open Access Journals (Sweden)

    Sudheer Gupta

    2018-04-01

    Full Text Available The pathogenesis of dengue hemorrhagic fever (DHF, following dengue virus (DENV infection, is a complex and poorly understood phenomenon. In view of the clinical need of identifying patients with higher likelihood of developing this severe outcome, we undertook a comparative genome-wide association analysis of epitope variants from sequences available in the ViPR database that have been reported to be differentially related to dengue fever and DHF. Having enumerated the incriminated epitope variants, we determined the corresponding HLA alleles in the context of which DENV infection could potentially precipitate DHF. Our analysis considered the development of DHF in three different perspectives: (a as a consequence of primary DENV infection, (b following secondary DENV infection with a heterologous serotype, (c as a result of DENV infection following infection with related flaviviruses like Zika virus, Japanese Encephalitis virus, West Nile virus, etc. Subject to experimental validation, these viral and host markers would be valuable in triaging DENV-infected patients for closer supervision owing to the relatively higher risk of poor prognostic outcome and also for the judicious allocation of scarce institutional resources during large outbreaks.

  19. A genome-wide association meta-analysis identifies new childhood obesity loci

    Science.gov (United States)

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627

  20. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    Science.gov (United States)

    Berndt, Sonja I.; Camp, Nicola J.; Skibola, Christine F.; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S.; Smedby, Karin E.; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S.; Lan, Qing; Teras, Lauren R.; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R.; Hartge, Patricia; Purdue, Mark P.; Birmann, Brenda M.; Vajdic, Claire M.; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G.; Shanafelt, Tait D.; Novak, Anne J.; Kay, Neil E.; Liebow, Mark; Cunningham, Julie M.; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T.; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A.; Diver, W Ryan; Link, Brian K.; Weiner, George J.; Conde, Lucia; Bracci, Paige M.; Riby, Jacques; Arnett, Donna K.; Zhi, Degui; Leach, Justin M.; Holly, Elizabeth A.; Jackson, Rebecca D.; Tinker, Lesley F.; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G.; Achenbach, Sara J.; Vachon, Celine M.; Goldin, Lynn R.; Strom, Sara S.; Leis, Jose F.; Weinberg, J. Brice; Caporaso, Neil E.; Norman, Aaron D.; De Roos, Anneclaire J.; Morton, Lindsay M.; Severson, Richard K.; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María- Dolores; Vermeulen, Roel C. H.; Travis, Ruth C.; Southey, Melissa C.; Milne, Roger L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R.; Villano, Danylo J.; Maria, Ann; Spinelli, John J.; Gascoyne, Randy D.; Connors, Joseph M.; Bertrand, Kimberly A.; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M.; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E.; Snowden, John A.; Wright, Josh; Fraumeni, Joseph F.; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R.; Chanock, Stephen J.; Rothman, Nathaniel; Slager, Susan L.

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility. PMID:26956414

  1. Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias.

    Directory of Open Access Journals (Sweden)

    Gary W Beecham

    2014-09-01

    Full Text Available Alzheimer's disease (AD and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs, and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA, Lewy body disease (LBD, hippocampal sclerosis of the elderly (HS, and vascular brain injury (VBI. Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE. GalNAc transferase 7 (GALNT7, ATP-Binding Cassette, Sub-Family G (WHITE, Member 1 (ABCG1, and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2 was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related

  2. Quantitative Genome-Wide Analysis of Yeast Deletion Strain Sensitivities to Oxidative and Chemical Stress

    Directory of Open Access Journals (Sweden)

    Stanley Fields

    2006-03-01

    Full Text Available Understanding the actions of drugs and toxins in a cell is of critical importance to medicine, yet many of the molecular events involved in chemical resistance are relatively uncharacterized. In order to identify the cellular processes and pathways targeted by chemicals, we took advantage of the haploid Saccharomyces cerevisiae deletion strains (Winzeler et al., 1999. Although ~4800 of the strains are viable, the loss of a gene in a pathway affected by a drug can lead to a synthetic lethal effect in which the combination of a deletion and a normally sublethal dose of a chemical results in loss of viability. WE carried out genome-wide screens to determine quantitative sensitivities of the deletion set to four chemicals: hydrogen peroxide, menadione, ibuprofen and mefloquine. Hydrogen peroxide and menadione induce oxidative stress in the cell, whereas ibuprofen and mefloquine are toxic to yeast by unknown mechanisms. Here we report the sensitivities of 659 deletion strains that are sensitive to one or more of these four compounds, including 163 multichemicalsensitive strains, 394 strains specific to hydrogen peroxide and/or menadione, 47 specific to ibuprofen and 55 specific to mefloquine.We correlate these results with data from other large-scale studies to yield novel insights into cellular function.

  3. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia

    Science.gov (United States)

    Wan, Zi Yi; Xia, Jun Hong; Lin, Grace; Wang, Le; Lin, Valerie C. L.; Yue, Gen Hua

    2016-01-01

    Sexual dimorphism is an interesting biological phenomenon. Previous studies showed that DNA methylation might play a role in sexual dimorphism. However, the overall picture of the genome-wide methylation landscape in sexually dimorphic species remains unclear. We analyzed the DNA methylation landscape and transcriptome in hybrid tilapia (Oreochromis spp.) using whole genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq). We found 4,757 sexually dimorphic differentially methylated regions (DMRs), with significant clusters of DMRs located on chromosomal regions associated with sex determination. CpG methylation in promoter regions was negatively correlated with the gene expression level. MAPK/ERK pathway was upregulated in male tilapia. We also inferred active cis-regulatory regions (ACRs) in skeletal muscle tissues from WGBS datasets, revealing sexually dimorphic cis-regulatory regions. These results suggest that DNA methylation contribute to sex-specific phenotypes and serve as resources for further investigation to analyze the functions of these regions and their contributions towards sexual dimorphisms. PMID:27782217

  4. Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2012-12-01

    Full Text Available Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs. For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR is one of the powerful and efficient methods for detecting high-order gene-gene (GxG interactions. However, the biological interpretation of GxG interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified GxG interactions. The proposed network graph analysis consists of three steps. The first step is for performing GxG interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified GxG interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform GxG interaction analysis of body mass index (BMI. Our network graph analysis successfully showed that many identified GxG interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of GxG interactions.

  5. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    Science.gov (United States)

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T

    2018-02-08

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10 -8 ). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10 -14 ), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10 -10 ), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10 -8 ), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10 -8 ). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.

  6. The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Olga Bajenova

    Full Text Available Сarcinoembryonic antigen (CEA, CEACAM5, CD66 is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8 and CEA negative (MIP 101 colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated. They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis.

  7. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    Science.gov (United States)

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  8. Genome-wide analysis in Brazilian Xavante Indians reveals low degree of admixture.

    Science.gov (United States)

    Kuhn, Patricia C; Horimoto, Andréa R V Russo; Sanches, José Maurício; Vieira Filho, João Paulo B; Franco, Luciana; Fabbro, Amaury Dal; Franco, Laercio Joel; Pereira, Alexandre C; Moises, Regina S

    2012-01-01

    Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F(st) statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders.

  9. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lindgren

    2009-06-01

    Full Text Available To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580 informative for adult waist circumference (WC and waist-hip ratio (WHR. We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11 and MSRA (WC, P = 8.9x10(-9. A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8. The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.

  10. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia.

    Science.gov (United States)

    Law, Philip J; Berndt, Sonja I; Speedy, Helen E; Camp, Nicola J; Sava, Georgina P; Skibola, Christine F; Holroyd, Amy; Joseph, Vijai; Sunter, Nicola J; Nieters, Alexandra; Bea, Silvia; Monnereau, Alain; Martin-Garcia, David; Goldin, Lynn R; Clot, Guillem; Teras, Lauren R; Quintela, Inés; Birmann, Brenda M; Jayne, Sandrine; Cozen, Wendy; Majid, Aneela; Smedby, Karin E; Lan, Qing; Dearden, Claire; Brooks-Wilson, Angela R; Hall, Andrew G; Purdue, Mark P; Mainou-Fowler, Tryfonia; Vajdic, Claire M; Jackson, Graham H; Cocco, Pierluigi; Marr, Helen; Zhang, Yawei; Zheng, Tongzhang; Giles, Graham G; Lawrence, Charles; Call, Timothy G; Liebow, Mark; Melbye, Mads; Glimelius, Bengt; Mansouri, Larry; Glenn, Martha; Curtin, Karen; Diver, W Ryan; Link, Brian K; Conde, Lucia; Bracci, Paige M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Maynadie, Marc; McKay, James; Albanes, Demetrius; Weinstein, Stephanie; Wang, Zhaoming; Caporaso, Neil E; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Vermeulen, Roel C H; Southey, Melissa C; Milne, Roger L; Clavel, Jacqueline; Topka, Sabine; Spinelli, John J; Kraft, Peter; Ennas, Maria Grazia; Summerfield, Geoffrey; Ferri, Giovanni M; Harris, Robert J; Miligi, Lucia; Pettitt, Andrew R; North, Kari E; Allsup, David J; Fraumeni, Joseph F; Bailey, James R; Offit, Kenneth; Pratt, Guy; Hjalgrim, Henrik; Pepper, Chris; Chanock, Stephen J; Fegan, Chris; Rosenquist, Richard; de Sanjose, Silvia; Carracedo, Angel; Dyer, Martin J S; Catovsky, Daniel; Campo, Elias; Cerhan, James R; Allan, James M; Rothman, Nathanial; Houlston, Richard; Slager, Susan

    2017-02-06

    Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10 -13 ), 1q42.13 (rs41271473, P=1.06 × 10 -10 ), 4q24 (rs71597109, P=1.37 × 10 -10 ), 4q35.1 (rs57214277, P=3.69 × 10 -8 ), 6p21.31 (rs3800461, P=1.97 × 10 -8 ), 11q23.2 (rs61904987, P=2.64 × 10 -11 ), 18q21.1 (rs1036935, P=3.27 × 10 -8 ), 19p13.3 (rs7254272, P=4.67 × 10 -8 ) and 22q13.33 (rs140522, P=2.70 × 10 -9 ). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.

  11. A molecular scheme for Yersinia enterocolitica patho-serotyping derived from genome-wide analysis.

    Science.gov (United States)

    Garzetti, Debora; Susen, Rosa; Fruth, Angelika; Tietze, Erhard; Heesemann, Jürgen; Rakin, Alexander

    2014-05-01

    Yersinia enterocolitica is a food-borne, gastro-intestinal pathogen with world-wide distribution. Only 11 serotypes have been isolated from patients, with O:3, O:9, O:8 and O:5,27 being the serotypes most commonly associated with human yersiniosis. Serotype is an important characteristic of Y. enterocolitica strains, allowing differentiation for epidemiology, diagnosis and phylogeny studies. Conventional serotyping, performed by slide agglutination, is a tedious and laborious procedure whose interpretation tends to be subjective, leading to poor reproducibility. Here we present a PCR-based typing scheme for molecular identification and patho-serotyping of Y. enterocolitica. Genome-wide comparison of Y. enterocolitica sequences allowed analysis of the O-antigen gene clusters of different serotypes, uncovering their formerly unknown genomic locations, and selection of targets for serotype-specific amplification. Two multiplex PCRs and one additional PCR were designed and tested on various reference strains and isolates from different origins. Our genotypic assay proved to be highly specific for identification of Y. enterocolitica species, discrimination between virulent and non-virulent strains, distinguishing the main human-related serotypes, and typing of conventionally untypeable strains. This genotyping scheme could be applied in microbiology laboratories as an alternative or complementary method to the traditional phenotypic assays, providing data for epidemiological studies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants.

    Directory of Open Access Journals (Sweden)

    Hai Du

    Full Text Available Cytochrome P450 93 family (CYP93 belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies-CYP93A-K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution-CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis.

  13. A possible mechanism behind autoimmune disorders discovered by genome-wide linkage and association analysis in celiac disease.

    Directory of Open Access Journals (Sweden)

    Malin Östensson

    Full Text Available Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1 polarity and epithelial cell functionality; 2 intestinal smooth muscle; 3 growth and energy homeostasis, including proline and glutamine metabolism; and finally 4 innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly

  14. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  15. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  16. Genome-wide analysis of the diversity and ancestry of Korean dogs.

    Science.gov (United States)

    Choi, Bong Hwan; Wijayananda, Hasini I; Lee, Soo Hyun; Lee, Doo Ho; Kim, Jong Seok; Oh, Seok Il; Park, Eung Woo; Lee, Cheul Koo; Lee, Seung Hwan

    2017-01-01

    There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves), ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population) values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei's genetic distance analysis. The lowest FST (inbreeding rate between populations) values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485) and Korean Donggyeong White (109), respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China.

  17. Genome-wide analysis of the diversity and ancestry of Korean dogs.

    Directory of Open Access Journals (Sweden)

    Bong Hwan Choi

    Full Text Available There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves, ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei's genetic distance analysis. The lowest FST (inbreeding rate between populations values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485 and Korean Donggyeong White (109, respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China.

  18. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci

    NARCIS (Netherlands)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-01

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and

  19. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  20. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  1. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    DEFF Research Database (Denmark)

    Wang, Zhaoming; McGlynn, Katherine A.; Rajpert-De Meyts, Ewa

    2017-01-01

    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the fi...

  2. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Standl, Marie; Chen, Chih-Mei

    2011-01-01

    Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16...

  3. Genome-wide meta-analysis of cognitive empathy : heritability, and correlates with sex, neuropsychiatric conditions and cognition

    NARCIS (Netherlands)

    Warrier, V; Grasby, K L; Uzefovsky, F; Toro, R.; Smith, P.; Chakrabarti, B; Khadake, J.; Mawbey-Adamson, E; Litterman, N; Hottenga, J-J; Lubke, G; Boomsma, D I; Martin, Nicholas G; Hatemi, P.K.; Medland, Sarah E; Hinds, D.A.; Bourgeron, T; Baron-Cohen, S.

    2017-01-01

    We conducted a genome-wide meta-analysis of cognitive empathy using the 'Reading the Mind in the Eyes' Test (Eyes Test) in 88,056 research volunteers of European Ancestry (44,574 females and 43,482 males) from 23andMe Inc., and an additional 1497 research volunteers of European Ancestry (891 females

  4. A meta-analysis of four genome-wide association studies of survival to age 90 years or older

    DEFF Research Database (Denmark)

    Newman, Anne B; Walter, Stefan; Lunetta, Kathryn L

    2010-01-01

    BACKGROUND: Genome-wide association studies (GWAS) may yield insights into longevity. METHODS: We performed a meta-analysis of GWAS in Caucasians from four prospective cohort studies: the Age, Gene/Environment Susceptibility-Reykjavik Study, the Cardiovascular Health Study, the Framingham Heart S...

  5. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Davila Olivas, Nelson H.; Kruijer, Willem; Gort, Gerrit; Wijnen, Cris L.; Loon, van Joop J.A.; Dicke, Marcel

    2017-01-01

    Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two

  6. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  7. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard

    2014-01-01

    provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  8. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    NARCIS (Netherlands)

    Iglesias, A.I. (Adriana I.); A. Mishra (Aniket); V. Vitart (Veronique); Y. Bykhovskaya (Yelena); R. Höhn (René); H. Springelkamp (Henriët); G. Cuellar-Partida (Gabriel); P. Gharahkhani (Puya); Bailey, J.N.C. (Jessica N. Cooke); Willoughby, C.E. (Colin E.); X. Li (Xiaohui); S. Yazar (Seyhan); A. Nag (Abhishek); A.P. Khawaja (Anthony); O. Polasek (Ozren); D.S. Siscovick (David); Mitchell, P. (Paul); Y.C. Tham (Yih Chung); J.L. Haines (Jonathan); L.S. Kearns (Lisa S.); C. Hayward (Caroline); Shi, Y. (Yuan); Van Leeuwen, E.M. (Elisabeth M.); K.D. Taylor (Kent); Wang, J.J. (Jie Jin); E. Rochtchina (Elena); J. Attia (John); Scott, R. (Rodney); E.G. Holliday (Elizabeth); P.N. Baird (Paul); Xie, J. (Jing); Inouye, M. (Michael); Viswanathan, A. (Ananth); X. Sim (Xueling); P.W.M. Bonnemaijer (Pieter); J.I. Rotter (Jerome I.); Martin, N.G. (Nicholas G.); T. Zeller (Tanja); R.A. Mills (Richard); S.E. Staffieri (Sandra E.); Jonas, J.B. (Jost B.); Schmidtmann, I. (Irene); T. Boutin (Thibaud); Kang, J.H. (Jae H.); S.E.M. Lucas (Sionne E.M.); Wong, T.Y. (Tien Yin); Beutel, M.E. (Manfred E.); Wilson, J.F. (James F.); R.R. Allingham (R Rand); M.H. Brilliant (Murray H.); D.L. Budenz (Donald L.); W.G. Christen (William G.); J. Fingert (John); D.S. Friedman (David); Gaasterland, D. (Douglas); T. Gaasterland (Terry); M.A. Hauser (Michael); P. Kraft (Peter); Lee, R.K. (Richard K.); P.A. Lichter (Paul A.); Liu, Y. (Yutao); S.J. Loomis (Stephanie J.); S.E. Moroi (Sayoko); M.A. Pericak-Vance (Margaret); A. Realini (Anthony); Richards, J.E. (Julia E.); J.S. Schuman (Joel S.); W.K. Scott (William); K. Singh (Kuldev); A.J. Sit (Arthur J.); D. Vollrath (Douglas); R.N. Weinreb (Robert N.); G. Wollstein (Gadi); D.J. Zack (Donald); K. Zhang (Kang); Donnelly, P. (Peter); I.E. Barroso (Inês); Blackwell, J.M. (Jenefer M.); E. Bramon (Elvira); M.A. Brown (Matthew); J.P. Casas (Juan); A. Corvin (Aiden); Deloukas, P. (Panos); A. Duncanson (Audrey); Jankowski, J. (Janusz); H.S. Markus (Hugh); J. Mathew (Joseph); C.N.A. Palmer (Colin); R. Plomin (Robert); A. Rautanen (Anna); S.J. Sawcer (Stephen); R.C. Trembath (Richard); Wood, N.W. (Nicholas W.); C.C.A. Spencer (Chris C.); G. Band (Gavin); C. Bellenguez (Céline); Freeman, C. (Colin); F.A. Hellenthal; E. Giannoulatou (Eleni); M. Pirinen (Matti); R. Pearson (Ruth); A. Strange (Amy); Z. Su (Zhan); D. Vukcevic (Damjan); Langford, C. (Cordelia); Hunt, S.E. (Sarah E.); T. Edkins (Ted); R. Gwilliam (Rhian); H. Blackburn (Hannah); S. Bumpstead (Suzannah); S. Dronov (Serge); M. Gillman (Matthew); E. Gray (Emma); N. Hammond (Naomi); A. Jayakumar (Alagurevathi); O.T. McCann (Owen); J. Liddle (Jennifer); S.C. Potter (Simon); Ravindrarajah, R. (Radhi); Ricketts, M. (Michelle); P. Waller (Patrick); P. Weston (Paul); S. Widaa (Sara); Whittaker, P. (Pamela); A.G. Uitterlinden (André); E.N. Vithana (Eranga); P.J. Foster (Paul); P.G. Hysi (Pirro); Hewitt, A.W. (Alex W.); C.C. Khor; L.R. Pasquale (Louis); Montgomery, G.W. (Grant W.); C.C.W. Klaver (Caroline); T. Aung (Tin); A.F.H. Pfeiffer (Andreas); D.A. Mackey (David); C.J. Hammond (Christopher); Cheng, C.-Y. (Ching-Yu); J.E. Craig (Jamie); Y.S. Rabinowitz (Yaron); J.L. Wiggs (Janey L.); K.P. Burdon (Kathryn); C.M. van Duijn (Cornelia); MacGregor, S. (Stuart)

    2018-01-01

    textabstractCentral corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related

  9. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci

    NARCIS (Netherlands)

    Franke, Andre; McGovern, Dermot P. B.; Barrett, Jeffrey C.; Wang, Kai; Radford-Smith, Graham L.; Ahmad, Tariq; Lees, Charlie W.; Balschun, Tobias; Lee, James; Roberts, Rebecca; Anderson, Carl A.; Bis, Joshua C.; Bumpstead, Suzanne; Ellinghaus, David; Festen, Eleonora M.; Georges, Michel; Green, Todd; Haritunians, Talin; Jostins, Luke; Latiano, Anna; Mathew, Christopher G.; Montgomery, Grant W.; Prescott, Natalie J.; Raychaudhuri, Soumya; Rotter, Jerome I.; Schumm, Philip; Sharma, Yashoda; Simms, Lisa A.; Taylor, Kent D.; Whiteman, David; Wijmenga, Cisca; Baldassano, Robert N.; Barclay, Murray; Bayless, Theodore M.; Brand, Stephan; Buening, Carsten; Cohen, Albert; Colombel, Jean-Frederick; Cottone, Mario; Stronati, Laura; Denson, Ted; De Vos, Martine; D'Inca, Renata; Dubinsky, Marla; Edwards, Cathryn; Florin, Tim; Franchimont, Denis; Gearry, Richard; Glas, Juergen; Van Gossum, Andre; Guthery, Stephen L.; Halfvarson, Jonas; Verspaget, Hein W.; Hugot, Jean-Pierre; Karban, Amir; Laukens, Debby; Lawrance, Ian; Lemann, Marc; Levine, Arie; Libioulle, Cecile; Louis, Edouard; Mowat, Craig; Newman, William; Panes, Julian; Phillips, Anne; Proctor, Deborah D.; Regueiro, Miguel; Russell, Richard; Rutgeerts, Paul; Sanderson, Jeremy; Sans, Miquel; Seibold, Frank; Steinhart, A. Hillary; Stokkers, Pieter C. F.; Torkvist, Leif; Kullak-Ublick, Gerd; Wilson, David; Walters, Thomas; Targan, Stephan R.; Brant, Steven R.; Rioux, John D.; D'Amato, Mauro; Weersma, Rinse K.; Kugathasan, Subra; Griffiths, Anne M.; Mansfield, John C.; Vermeire, Severine; Duerr, Richard H.; Silverberg, Mark S.; Satsangi, Jack; Schreiber, Stefan; Cho, Judy H.; Annese, Vito; Hakonarson, Hakon; Daly, Mark J.; Parkes, Miles

    2010-01-01

    We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new

  10. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

    NARCIS (Netherlands)

    Hysi, Pirro G.; Cheng, Ching-Yu; Springelkamp, Henriet; Macgregor, Stuart; Bailey, Jessica N. Cooke; Wojciechowski, Robert; Vitart, Veronique; Nag, Abhishek; Hewitt, Alex W.; Hohn, Rene; Venturini, Cristina; Mirshahi, Alireza; Ramdas, Wishal D.; Thorleifsson, Gudmar; Vithana, Eranga; Khor, Chiea-Chuen; Stefansson, Arni B.; Liao, Jiemin; Haines, Jonathan L.; Amin, Najaf; Wang, Ya Xing; Wild, Philipp S.; Ozel, Ayse B.; Li, Jun Z.; Fleck, Brian W.; Zeller, Tanja; Staffieri, Sandra E.; Teo, Yik-Ying; Cuellar-Partida, Gabriel; Luo, Xiaoyan; Allingham, R. Rand; Richards, Julia E.; Senft, Andrea; Karssen, Lennart C.; Zheng, Yingfeng; Bellenguez, Celine; Xu, Liang; Iglesias, Adriana I.; Wilson, James F.; Kang, Jae H.; van Leeuwen, Elisabeth M.; Jonsson, Vesteinn; Thorsteinsdottir, Unnur; Despriet, Dominiek D. G.; Ennis, Sarah; Moroi, Sayoko E.; Martin, Nicholas G.; Jansonius, Nomdo M.; Yazar, Seyhan; Tai, E-Shyong

    2014-01-01

    Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma

  11. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    NARCIS (Netherlands)

    Springelkamp, Henriët; Höhn, René; Mishra, Aniket; Hysi, Pirro G; Khor, Chiea-Chuen; Loomis, Stephanie J; Bailey, Jessica N Cooke; Gibson, Jane; Thorleifsson, Gudmar; Janssen, Sarah F; Luo, Xiaoyan; Ramdas, Wishal D; Vithana, Eranga; Nongpiur, Monisha E; Montgomery, Grant W; Xu, Liang; Mountain, Jenny E; Gharahkhani, Puya; Lu, Yi; Amin, Najaf; Karssen, Lennart C; Sim, Kar-Seng; van Leeuwen, Elisabeth M; Iglesias, Adriana I; Verhoeven, Virginie J M; Hauser, Michael A; Loon, Seng-Chee; Despriet, Dominiek D G; Nag, Abhishek; Venturini, Cristina; Sanfilippo, Paul G; Schillert, Arne; Kang, Jae H; Landers, John; Jonasson, Fridbert; Cree, Angela J; van Koolwijk, Leonieke M E; Rivadeneira, Fernando; Souzeau, Emmanuelle; Jonsson, Vesteinn; Menon, Geeta; Weinreb, Robert N; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Ennis, Sarah; Thorsteinsdottir, Unnur; Burdon, Kathryn P; Spector, Timothy D; Mirshahi, Alireza; Saw, Seang-Mei; Vingerling, Johannes R; Teo, Yik-Ying; Haines, Jonathan L; Wolfs, Roger C W; Lemij, Hans G; Tai, E-Shyong; Jansonius, Nomdo M; Jonas, Jost B; Cheng, Ching-Yu; Aung, Tin; Viswanathan, Ananth C; Klaver, Caroline C W; Craig, Jamie E; Macgregor, Stuart; Mackey, David A; Lotery, Andrew J; Stefansson, Kari; Bergen, Arthur A B; Young, Terri L; Wiggs, Janey L; Pfeiffer, Norbert; Wong, Tien-Yin; Pasquale, Louis R; Hewitt, Alex W; van Duijn, Cornelia M; Hammond, Christopher J

    2014-01-01

    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important

  12. Balanced into array : genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis

    NARCIS (Netherlands)

    Feenstra, Ilse; Hanemaaijer, Nicolien; Sikkema-Raddatz, Birgit; Yntema, Helger; Dijkhuizen, Trijnie; Lugtenberg, Dorien; Verheij, Joke; Green, Andrew; Hordijk, Roel; Reardon, William; de Vries, Bert; Brunner, Han; Bongers, Ernie; de Leeuw, Nicole; van Ravenswaaij-Arts, Conny

    2011-01-01

    High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis

  13. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  14. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.; Ekholm, J.; Forabosco, P.; Franke, F.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenkel, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schäfer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.; Steinhausen, H.C.; van der Meulen, E.; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  15. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.P.; Ekholm, J.; Forabosco, P.; Franke, B.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenke, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schafer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Meulen, E. van der; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  16. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Matheson, Melanie C; Pers, Tune Hannes

    2013-01-01

    Allergen-specific immunoglobulin E (present in allergic sensitization) has a central role in the pathogenesis of allergic disease. We performed the first large-scale genome-wide association study (GWAS) of allergic sensitization in 5,789 affected individuals and 10,056 controls and followed up th...

  17. Genome-wide analysis yields new loci associating with aortic valve stenosis

    DEFF Research Database (Denmark)

    Helgadottir, Anna; Thorleifsson, Gudmar; Gretarsdottir, Solveig

    2018-01-01

    Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls...

  18. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  19. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  20. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  1. Meta-analysis of genome-wide linkage studies in BMI and obesity.

    Science.gov (United States)

    Saunders, Catherine L; Chiodini, Benedetta D; Sham, Pak; Lewis, Cathryn M; Abkevich, Victor; Adeyemo, Adebowale A; de Andrade, Mariza; Arya, Rector; Berenson, Gerald S; Blangero, John; Boehnke, Michael; Borecki, Ingrid B; Chagnon, Yvon C; Chen, Wei; Comuzzie, Anthony G; Deng, Hong-Wen; Duggirala, Ravindranath; Feitosa, Mary F; Froguel, Philippe; Hanson, Robert L; Hebebrand, Johannes; Huezo-Dias, Patricia; Kissebah, Ahmed H; Li, Weidong; Luke, Amy; Martin, Lisa J; Nash, Matthew; Ohman, Miina; Palmer, Lyle J; Peltonen, Leena; Perola, Markus; Price, R Arlen; Redline, Susan; Srinivasan, Sathanur R; Stern, Michael P; Stone, Steven; Stringham, Heather; Turner, Stephen; Wijmenga, Cisca; Collier, David A

    2007-09-01

    The objective was to provide an overall assessment of genetic linkage data of BMI and BMI-defined obesity using a nonparametric genome scan meta-analysis. We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome-wide logarithm of the odds (LOD) scores, non-parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI-defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Bins at chromosome 13q13.2- q33.1, 12q23-q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3-22.3 were also observed for BMI-defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1-qter and 12p11.21-q23 (p < 0.01). Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.

  2. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  3. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    Science.gov (United States)

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment. Copyright © 2014 Wiley Periodicals, Inc.

  4. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  5. Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas wittichii RW1

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2012-08-01

    Full Text Available Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF. A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3 and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1 were expected, whereas others (in a gene cluster for phenylacetate degradation were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in

  6. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  7. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato.

    Science.gov (United States)

    Liu, Taibo; Huang, Binbin; Chen, Lin; Xian, Zhiqiang; Song, Shiwei; Chen, Riyuan; Hao, Yanwei

    2018-06-30

    Polyamines (PAs), including putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine (T-Spm), play key roles in plant development, including fruit setting and ripening, morphogenesis, and abiotic/biotic stress. Their functions appear to be intimately related to their synthesis, which occurs via arginine/ornithine decarboxylase (ADC/ODC), Spd synthase (SPDS), Spm synthase (SPMS), and Acaulis5 (ACL5), respectively. Unfortunately, the expression and function of these PA synthesis-relate genes during specific developmental process or under stress have not been fully elucidated. Here, we present the results of a genome-wide analysis of the PA synthesis genes (ADC, ODC, SPDS, SPMS, ACL5) in the tomato (Solanum lycopersicum). In total, 14 PA synthesis-related genes were identified. Further analysis of their structures, conserved domains, phylogenetic trees, predicted subcellular localization, and promoter cis-regulatory elements were analyzed. Furthermore, we also performed experiments to evaluate their tissue expression patterns and under hormone and various stress treatments. To our knowledge, this is the first study to elucidate the mechanisms underlying PA function in this variety of tomato. Taken together, these data provide valuable information for future functional characterization of specific genes in the PA synthesis pathway in this and other plant species. Although additional research is required, the insight gained by this and similar studies can be used to improve our understanding of PA metabolism ultimately leading to more effective and consistent plant cultivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Gene set-based analysis of polymorphisms: finding pathways or biological processes associated to traits in genome-wide association studies

    Science.gov (United States)

    Medina, Ignacio; Montaner, David; Bonifaci, Nuria; Pujana, Miguel Angel; Carbonell, José; Tarraga, Joaquin; Al-Shahrour, Fatima; Dopazo, Joaquin

    2009-01-01

    Genome-wide association studies have become a popular strategy to find associations of genes to traits of interest. Despite the high-resolution available today to carry out genotyping studies, the success of its application in real studies has been limited by the testing strategy used. As an alternative to brute force solutions involving the use of very large cohorts, we propose the use of the Gene Set Analysis (GSA), a different analysis strategy based on testing the association of modules of functionally related genes. We show here how the Gene Set-based Analysis of Polymorphisms (GeSBAP), which is a simple implementation of the GSA strategy for the analysis of genome-wide association studies, provides a significant increase in the power testing for this type of studies. GeSBAP is freely available at http://bioinfo.cipf.es/gesbap/ PMID:19502494

  10. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  11. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential

  12. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    DEFF Research Database (Denmark)

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A

    2016-01-01

    . Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching PFTO....... Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown...

  13. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster

    OpenAIRE

    Vonesch, Sibylle; Mackay, Trudy; Lamparter, David; Hafen, Ernst; Bergmann, Sven

    2015-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequen...

  14. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies

    Science.gov (United States)

    Zhang, Shujun

    2018-01-01

    Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896

  15. Identifying and exploiting trait-relevant tissues with multiple functional annotations in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Xingjie Hao

    2018-01-01

    Full Text Available Genome-wide association studies (GWASs have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART. With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.

  16. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    Science.gov (United States)

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Tatsuke, Tsuneyuki; Zhu, Li; Xu, Jian; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2012-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  17. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Zhiqing Li

    Full Text Available Polycomb group (PcG proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1, Polycomb repressive complex 2 (PRC2, and Pleiohomeotic repressive complex (PhoRC, to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524 and BmScm (331 out of 532, and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  18. A meta-analysis of genome-wide association studies of follicular lymphoma

    Directory of Open Access Journals (Sweden)

    Skibola Christine F

    2012-10-01

    Full Text Available Abstract Background B-cell non-Hodgkin lymphoma represents a diverse group of hematological malignancies, of which follicular lymphoma (FL is one of the most common subtypes. Family and epidemiological studies suggest an important genetic role in the etiology of FL. In recent genome-wide association studies (GWAS of FL, several genetic susceptibility loci have been identified on chromosome 6p21.33 (rs6457327 and 6p21.32 (rs10484561, rs2647012 in the human leukocyte antigen class I and class II regions. To identify new genetic variants and further elucidate the genetic basis of FL, a meta-analysis was performed of the top 1000 SNPs associated with FL risk from two GWAS in the US, Denmark and Sweden (592 cases, 1541 controls, with independent validation in 107 cases and 681 controls. Results rs9275517 and rs3117222 in the HLA class II region were validated and inversely associated with FL risk (rs9275517: OR = 0.63, 95% CI = 0.55-0.73, p = 4.03 × 10-11; rs3117222: OR = 0.66, 95% CI = 0.57-0.77, p = 1.45 × 10-7. rs9275517, which is in high linkage disequilibrium with rs2647012 (r2 = 0.9, was no longer associated with FL after conditioning on rs2647012. The rs3117222 association was independent of established FL SNPs, but not of the HLA-DPB1*0301 allele. Using publicly available gene expression profiles with matching genotype information, we found that rs3117222 also was significantly correlated with increased HLA-DPB1 expression. Conclusions By performing a meta-analysis of two GWAS of FL, we further validated the relevance of HLA-DPB1*0301 as a protective allele in the pathogenesis of FL. Moreover, the protective rs3117222 A allele correlated with increased levels of HLA-DPB1, suggesting a possible disease mechanism involving HLA-DPB1 expression regulation. Our results add further support to the major role of HLA genetic variation in the pathogenesis of FL.

  19. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

    DEFF Research Database (Denmark)

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis...... (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3...

  20. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution.

    Science.gov (United States)

    Lakhwani, Deepika; Pandey, Ashutosh; Dhar, Yogeshwar Vikram; Bag, Sumit Kumar; Trivedi, Prabodh Kumar; Asif, Mehar Hasan

    2016-01-06

    AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening.

  1. Genome-wide Identification and Expression Analysis of Half-size ABCG Genes in Malus × domestica

    Directory of Open Access Journals (Sweden)

    Juanjuan MA

    2018-03-01

    Full Text Available Half-size adenosine triphosphate-binding cassette transporter subgroup G (ABCG genes play crucial roles in regulating the movements of a variety of substrates and have been well studied in several plants. However, half-size ABCGs have not been characterized in detail in apple (Malus × domestica Borkh.. Here, we performed a genome-wide identification and expression analysis of the half-size ABCG gene family in apple. A total of 46 apple half-size ABCGs were identified and divided into six clusters according to the phylogenetic analysis. A gene structural analysis showed that most half-size ABCGs in the same cluster shared a similar exon–intron organization. A gene duplication analysis showed that segmental, tandem and whole-genome duplications could account for the expansion of half-size ABCG transporters in M. domestica. Moreover, a promoter scan, digital expression analysis and RNA-seq revealed that MdABCG21 may be involved in root's cytokinin transport and that ABCG17 may be involved in the lateral bud development of M. spectabilis ‘Bly114’ by mediating cytokinin transport. The data presented here lay the foundation for further investigations into the biological and physiological processes and functions of half-size ABCG genes in apple. Keywords: apple, ABCG gene, duplication, gene expression

  2. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  3. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  4. Pathway-based analysis of a melanoma genome-wide association study: analysis of genes related to tumour-immunosuppression.

    Directory of Open Access Journals (Sweden)

    Nils Schoof

    Full Text Available Systemic immunosuppression is a risk factor for melanoma, and sunburn-induced immunosuppression is thought to be causal. Genes in immunosuppression pathways are therefore candidate melanoma-susceptibility genes. If variants within these genes individually have a small effect on disease risk, the association may be undetected in genome-wide association (GWA studies due to low power to reach a high significance level. Pathway-based approaches have been suggested as a method of incorporating a priori knowledge into the analysis of GWA studies. In this study, the association of 1113 single nucleotide polymorphisms (SNPs in 43 genes (39 genomic regions related to immunosuppression have been analysed using a gene-set approach in 1539 melanoma cases and 3917 controls from the GenoMEL consortium GWA study. The association between melanoma susceptibility and the whole set of tumour-immunosuppression genes, and also predefined functional subgroups of genes, was considered. The analysis was based on a measure formed by summing the evidence from the most significant SNP in each gene, and significance was evaluated empirically by case-control label permutation. An association was found between melanoma and the complete set of genes (p(emp=0.002, as well as the subgroups related to the generation of tolerogenic dendritic cells (p(emp=0.006 and secretion of suppressive factors (p(emp=0.0004, thus providing preliminary evidence of involvement of tumour-immunosuppression gene polymorphisms in melanoma susceptibility. The analysis was repeated on a second phase of the GenoMEL study, which showed no evidence of an association. As one of the first attempts to replicate a pathway-level association, our results suggest that low power and heterogeneity may present challenges.

  5. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  6. Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Rekaya R

    2016-11-01

    Full Text Available Romdhane Rekaya,1–3 Shannon Smith,4 El Hamidi Hay,5 Nourhene Farhat,6 Samuel E Aggrey3,7 1Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, 2Department of Statistics, Franklin College of Arts and Sciences, 3Institute of Bioinformatics, The University of Georgia, Athens, GA, 4Zoetis, Kalamazoo, MI, 5United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 6Carolinas HealthCare System Blue Ridge, Morganton, NC, 7Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA Abstract: Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS. A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case–control were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the

  7. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    Science.gov (United States)

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  8. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    Science.gov (United States)

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  10. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    OpenAIRE

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies?CYP93A?K, with t...

  11. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  12. Meta-analysis for genome-wide association studies using case-control design: application and practice.

    Science.gov (United States)

    Shim, Sungryul; Kim, Jiyoung; Jung, Wonguen; Shin, In-Soo; Bae, Jong-Myon

    2016-01-01

    This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy-Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The 'genhwcci' and 'metan' commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the 'metareg' command of STATA should be conducted to evaluate related factors of heterogeneities.

  13. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun

    2011-01-01

    steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (~26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n¿=¿880 to 3,070). By carrying out a fixed-effects meta......-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ~2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome......Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic...

  14. Meta-analysis for genome-wide association studies using case-control design: application and practice

    Directory of Open Access Journals (Sweden)

    Sungryul Shim

    2016-12-01

    Full Text Available This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA. The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–Weinberg equilibrium (HWE in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate related factors of heterogeneities.

  15. Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts.

    Directory of Open Access Journals (Sweden)

    Vesna Boraska

    Full Text Available Brachial circumference (BC, also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05 in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.

  16. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types.

    Science.gov (United States)

    Franssen, Susanne U; Gu, Jenny; Winters, Gidon; Huylmans, Ann-Kathrin; Wienpahl, Isabell; Sparwel, Maximiliane; Coyer, James A; Olsen, Jeanine L; Reusch, Thorsten B H; Bornberg-Bauer, Erich

    2014-06-01

    Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments throughout the northern hemisphere. Z. marina is often dominant in subtidal environments and subjected to fewer temperature extremes compared to the predominately intertidal and more stress-tolerant N. noltii. We exposed plants of both species to a realistic heat wave scenario in a common-stress-garden experiment. Using RNA-seq (~7million reads/library), four Z. marina and four N. noltii libraries were compared representing northern (Denmark) and southern (Italy) locations within the co-occurring range of the species' European distribution. A total of 8977 expressed genes were identified, of which 78 were directly related to heat stress. As predicted, both species were negatively affected by the heat wave, but showed markedly different molecular responses. In Z. marina the heat response was similar across locations in response to the heatwave at 26°C, with a complex response in functions related to protein folding, synthesis of ribosomal chloroplast proteins, proteins involved in cell wall modification and heat shock proteins (HSPs). In N. noltii the heat response markedly differed between locations, while HSP genes were not induced in either population. Our results suggest that as coastal seawater temperatures increase, Z. marina will disappear along its southern most ranges, whereas N. noltii will continue to move north. As a consequence, sub- and intertidal habitat partitioning may weaken in more northern regions because the higher thermal tolerance of N. noltii provides a competitive advantage in both habitats. Although previous studies have focused on HSPs, the present study clearly demonstrates that a broader examination of stress related genes is necessary. Copyright

  17. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology

    OpenAIRE

    Springelkamp, Henriët; Mishra, Aniket; Hysi, Pirro G.; Gharahkhani, Puya; Höhn, René; Khor, Chiea-Chuen; Cooke Bailey, Jessica N.; Luo, Xiaoyan; Ramdas, Wishal D.; Vithana, Eranga; Koh, Victor; Yazar, Seyhan; Xu, Liang; Forward, Hannah; Kearns, Lisa S.

    2015-01-01

    Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asia...

  18. Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    OpenAIRE

    Iglesias, Adriana I; Mishra, Aniket; Vitart, Veronique; Bykhovskaya, Yelena; Höhn, René; Springelkamp, Henriët; Cuellar-Partida, Gabriel; Gharahkhani, Puya; Bailey, Jessica N Cooke; Willoughby, Colin E; Li, Xiaohui; Yazar, Seyhan; Nag, Abhishek; Khawaja, Anthony P.; Polasek, Ozren

    2018-01-01

    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. Pathway analyses uncover new, as well as supported the role of connective tissue-related, pathways. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan,...

  19. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    NARCIS (Netherlands)

    C.E. Elks (Cathy); J.R.B. Perry (John); P. Sulem (Patrick); D.I. Chasman (Daniel); N. Franceschini (Nora); C. He (Chunyan); K.L. Lunetta (Kathryn); J.A. Visser (Jenny); E.M. Byrne (Enda); D.L. Cousminer (Diana); D.F. Gudbjartsson (Daniel); T. Esko (Tõnu); B. Feenstra (Bjarke); J.J. Hottenga (Jouke Jan); D.L. Koller (Daniel); Z. Kutalik (Zoltán); P. Lin (Peng); M. Mangino (Massimo); M. Marongiu (Mara); P.F. McArdle (Patrick); A.V. Smith (Albert Vernon); L. Stolk (Lisette); S. van Wingerden (Sophie); J.H. Zhao (Jing Hua); E. Albrecht (Eva); T. Corre (Tanguy); E. Ingelsson (Erik); C. Hayward (Caroline); P.K. Magnusson (Patrik); S. Ulivi (Shelia); N.M. Warrington (Nicole); L. Zgaga (Lina); H. Alavere (Helene); N. Amin (Najaf); T. Aspelund (Thor); S. Bandinelli (Stefania); I.E. Barroso (Inês); G. Berenson (Gerald); S.M. Bergmann (Sven); H. Blackburn (Hannah); E.A. Boerwinkle (Eric); J.E. Buring (Julie); F. Busonero; H. Campbell (Harry); S.J. Chanock (Stephen); W. Chen (Wei); M. Cornelis (Marilyn); D.J. Couper (David); A.D. Coviello (Andrea); P. d' Adamo (Pio); U. de Faire (Ulf); E.J.C. de Geus (Eco); P. Deloukas (Panagiotis); A. Döring (Angela); D.F. Easton (Douglas); G. Eiriksdottir (Gudny); V. Emilsson (Valur); J.G. Eriksson (Johan); L. Ferrucci (Luigi); A.R. Folsom (Aaron); T. Foroud (Tatiana); M. Garcia (Melissa); P. Gasparini (Paolo); F. Geller (Frank); C. Gieger (Christian); V. Gudnason (Vilmundur); A.S. Hall (Alistair); S.E. Hankinson (Susan); L. Ferreli (Liana); A.C. Heath (Andrew); D.G. Hernandez (Dena); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); M.R. Järvelin; A.D. Johnson (Andrew); D. Karasik (David); K-T. Khaw (Kay-Tee); D.P. Kiel (Douglas); T.O. Kilpelänen (Tuomas); I. Kolcic (Ivana); P. Kraft (Peter); L.J. Launer (Lenore); J.S.E. Laven (Joop); S. Li (Shengxu); J. Liu (Jianjun); D. Levy (Daniel); N.G. Martin (Nicholas); M. Melbye (Mads); V. Mooser (Vincent); J.C. Murray (Jeffrey); M.A. Nalls (Michael); P. Navarro (Pau); M. Nelis (Mari); A.R. Ness (Andrew); K. Northstone (Kate); B.A. Oostra (Ben); M. Peacock (Munro); C. Palmer (Cameron); A. Palotie (Aarno); G. Paré (Guillaume); A.N. Parker (Alex); N.L. Pedersen (Nancy); L. Peltonen (Leena Johanna); C.E. Pennell (Craig); P.D.P. Pharoah (Paul); O. Polasek (Ozren); A.S. Plump (Andrew); A. Pouta (Anneli); E. Porcu (Eleonora); T. Rafnar (Thorunn); J.P. Rice (John); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); C. Sala (Cinzia); V. Salomaa (Veikko); S. Sanna (Serena); D. Schlessinger; N.J. Schork (Nicholas); A. Scuteri (Angelo); A.V. Segrè (Ayellet); A.R. Shuldiner (Alan); N. Soranzo (Nicole); U. Sovio (Ulla); S.R. Srinivasan (Sathanur); D.P. Strachan (David); M.L. Tammesoo; E. Tikkanen (Emmi); D. Toniolo (Daniela); K. Tsui (Kim); L. Tryggvadottir (Laufey); J.P. Tyrer (Jonathan); M. Uda (Manuela); R.M. van Dam (Rob); J.B.J. van Meurs (Joyce); P. Vollenweider (Peter); G. Waeber (Gérard); N.J. Wareham (Nick); D. Waterworth (Dawn); H.E. Wichmann (Heinz Erich); G.A.H.M. Willemsen (Gonneke); J.F. Wilson (James); A.F. Wright (Alan); L. Young (Lauren); G. Zhai (Guangju); W.V. Zhuang; L.J. Bierut (Laura); D.I. Boomsma (Dorret); H.A. Boyd (Heather); L. Crisponi (Laura); E.W. Demerath (Ellen); P. Tikka-Kleemola (Päivi); M.J. Econs (Michael); T.B. Harris (Tamara); D. Hunter (David); R.J.F. Loos (Ruth); A. Metspalu (Andres); G.W. Montgomery (Grant); P.M. Ridker (Paul); T.D. Spector (Tim); E.A. Streeten (Elizabeth); K. Stefansson (Kari); U. Thorsteinsdottir (Unnur); A.G. Uitterlinden (André); E. Widen (Elisabeth); J. Murabito (Joanne); K. Ong (Ken); M.N. Weedon (Michael)

    2010-01-01

    textabstractTo identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10 -60) and 9q31.2 (P = 2.2 × 10 -33), we identified 30

  20. SNP-based pathway enrichment analysis for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Potkin Steven G

    2011-04-01

    Full Text Available Abstract Background Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs, have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs. Results We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the following two main steps: 1 for a given pathway, using an adaptive truncated product statistic to identify all representative (potentially more than one SNPs of each gene, calculating the average number of representative SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and 2 ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one

  1. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    DEFF Research Database (Denmark)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte

    2014-01-01

    Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better......Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies......, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap...

  2. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    2010-12-01

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  3. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    KAUST Repository

    Khraiwesh, Basel

    2015-11-30

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

  4. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese

    Science.gov (United States)

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-01-01

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10−13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10−10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10−8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. PMID:25967671

  5. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    Science.gov (United States)

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  6. Epigenetic Variation in Monozygotic Twins: A Genome-Wide Analysis of DNA Methylation in Buccal Cells

    Directory of Open Access Journals (Sweden)

    Jenny van Dongen

    2014-05-01

    Full Text Available DNA methylation is one of the most extensively studied epigenetic marks in humans. Yet, it is largely unknown what causes variation in DNA methylation between individuals. The comparison of DNA methylation profiles of monozygotic (MZ twins offers a unique experimental design to examine the extent to which such variation is related to individual-specific environmental influences and stochastic events or to familial factors (DNA sequence and shared environment. We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8–19 using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs after QC. After selecting CpGs showing the most variation in the methylation level between subjects, the mean genome-wide correlation (rho was 0.54. The correlation was higher, on average, for CpGs within CpG islands (CGIs, compared to CGI shores, shelves and non-CGI regions, particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental and stochastic influences account for more variation in DNA methylation in CpG-poor regions. Our findings also indicate that it is worthwhile to examine heritable and shared environmental influences on buccal DNA methylation in larger studies that also include dizygotic twins.

  7. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Iris Broce

    2018-01-01

    Full Text Available Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD. Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed.Using large genome-wide association studies (GWASs (total n = 192,886 cases and controls and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD, progressive supranuclear palsy (PSP, and amyotrophic lateral sclerosis (ALS-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC, rheumatoid arthritis (RA, type 1 diabetes (T1D, celiac disease (CeD, and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold. For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA region on Chromosome (Chr 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2, TBKBP1 (TBK1 binding protein 1, and PGBD5 (piggyBac transposable element

  8. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations

    Science.gov (United States)

    Zhan, Qimin; Hu, Zhibin; He, Zhonghu; Jia, Weihua; Zhou, Yifeng; Yu, Kai; Shu, Xiao-Ou; Yuan, Jian-Min; Zheng, Wei; Zhao, Xue-Ke; Gao, She-Gan; Yuan, Zhi-Qing; Zhou, Fu-You; Fan, Zong-Min; Cui, Ji-Li; Lin, Hong-Li; Han, Xue-Na; Li, Bei; Chen, Xi; Dawsey, Sanford M.; Liao, Linda; Lee, Maxwell P.; Ding, Ti; Qiao, You-Lin; Liu, Zhihua; Liu, Yu; Yu, Dianke; Chang, Jiang; Wei, Lixuan; Gao, Yu-Tang; Koh, Woon-Puay; Xiang, Yong-Bing; Tang, Ze-Zhong; Fan, Jin-Hu; Han, Jing-Jing; Zhou, Sheng-Li; Zhang, Peng; Zhang, Dong-Yun; Yuan, Yuan; Huang, Ying; Liu, Chunling; Zhai, Kan; Qiao, Yan; Jin, Guangfu; Guo, Chuanhai; Fu, Jianhua; Miao, Xiaoping; Lu, Changdong; Yang, Haijun; Wang, Chaoyu; Wheeler, William A.; Gail, Mitchell; Yeager, Meredith; Yuenger, Jeff; Guo, Er-Tao; Li, Ai-Li; Zhang, Wei; Li, Xue-Min; Sun, Liang-Dan; Ma, Bao-Gen; Li, Yan; Tang, Sa; Peng, Xiu-Qing; Liu, Jing; Hutchinson, Amy; Jacobs, Kevin; Giffen, Carol; Burdette, Laurie; Fraumeni, Joseph F.; Shen, Hongbing; Ke, Yang; Zeng, Yixin; Wu, Tangchun; Kraft, Peter; Chung, Charles C.; Tucker, Margaret A.; Hou, Zhi-Chao; Liu, Ya-Li; Hu, Yan-Long; Liu, Yu; Wang, Li; Yuan, Guo; Chen, Li-Sha; Liu, Xiao; Ma, Teng; Meng, Hui; Sun, Li; Li, Xin-Min; Li, Xiu-Min; Ku, Jian-Wei; Zhou, Ying-Fa; Yang, Liu-Qin; Wang, Zhou; Li, Yin; Qige, Qirenwang; Yang, Wen-Jun; Lei, Guang-Yan; Chen, Long-Qi; Li, En-Min; Yuan, Ling; Yue, Wen-Bin; Wang, Ran; Wang, Lu-Wen; Fan, Xue-Ping; Zhu, Fang-Heng; Zhao, Wei-Xing; Mao, Yi-Min; Zhang, Mei; Xing, Guo-Lan; Li, Ji-Lin; Han, Min; Ren, Jing-Li; Liu, Bin; Ren, Shu-Wei; Kong, Qing-Peng; Li, Feng; Sheyhidin, Ilyar; Wei, Wu; Zhang, Yan-Rui; Feng, Chang-Wei; Wang, Jin; Yang, Yu-Hua; Hao, Hong-Zhang; Bao, Qi-De; Liu, Bao-Chi; Wu, Ai-Qun; Xie, Dong; Yang, Wan-Cai; Wang, Liang; Zhao, Xiao-Hang; Chen, Shu-Qing; Hong, Jun-Yan; Zhang, Xue-Jun; Freedman, Neal D; Goldstein, Alisa M.; Lin, Dongxin; Taylor, Philip R.; Wang, Li-Dong; Chanock, Stephen J.

    2014-01-01

    We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region. PMID:25129146

  9. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    Science.gov (United States)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  10. C-RAF function at the genome-wide transcriptome level: A systematic view.

    Science.gov (United States)

    Huang, Ying; Zhang, Xin-Yu; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Guo, Xiao-Xi; Xu, Tian-Rui

    2018-05-20

    C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    Science.gov (United States)

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  12. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    Science.gov (United States)

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  13. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations.

    Directory of Open Access Journals (Sweden)

    Conall M O'Seaghdha

    Full Text Available Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12, rs10491003 upstream of GATA3 (P = 4.8E-09 and rs7481584 in CARS (P = 1.2E-10 implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11, also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10 are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.

  14. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  15. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151)

    Science.gov (United States)

    Davies, G; Marioni, R E; Liewald, D C; Hill, W D; Hagenaars, S P; Harris, S E; Ritchie, S J; Luciano, M; Fawns-Ritchie, C; Lyall, D; Cullen, B; Cox, S R; Hayward, C; Porteous, D J; Evans, J; McIntosh, A M; Gallacher, J; Craddock, N; Pell, J P; Smith, D J; Gale, C R; Deary, I J

    2016-01-01

    People's differences in cognitive functions are partly heritable and are associated with important life outcomes. Previous genome-wide association (GWA) studies of cognitive functions have found evidence for polygenic effects yet, to date, there are few replicated genetic associations. Here we use data from the UK Biobank sample to investigate the genetic contributions to variation in tests of three cognitive functions and in educational attainment. GWA analyses were performed for verbal–numerical reasoning (N=36 035), memory (N=112 067), reaction time (N=111 483) and for the attainment of a college or a university degree (N=111 114). We report genome-wide significant single-nucleotide polymorphism (SNP)-based associations in 20 genomic regions, and significant gene-based findings in 46 regions. These include findings in the ATXN2, CYP2DG, APBA1 and CADM2 genes. We report replication of these hits in published GWA studies of cognitive function, educational attainment and childhood intelligence. There is also replication, in UK Biobank, of SNP hits reported previously in GWA studies of educational attainment and cognitive function. GCTA-GREML analyses, using common SNPs (minor allele frequency>0.01), indicated significant SNP-based heritabilities of 31% (s.e.m.=1.8%) for verbal–numerical reasoning, 5% (s.e.m.=0.6%) for memory, 11% (s.e.m.=0.6%) for reaction time and 21% (s.e.m.=0.6%) for educational attainment. Polygenic score analyses indicate that up to 5% of the variance in cognitive test scores can be predicted in an independent cohort. The genomic regions identified include several novel loci, some of which have been associated with intracranial volume, neurodegeneration, Alzheimer's disease and schizophrenia. PMID:27046643

  16. Genome - wide identification, molecular characterization and expression analysis of the rop gtpase family in pepper (capsicum annum)

    International Nuclear Information System (INIS)

    Huang, D.; Li, M.; He, S.

    2015-01-01

    ROP/RAC GTPases is a plant-specific subfamily of Rho GTPases that plays a versatile role in the regulation of plant growth, development, in hormone signal transduction and response to the environment. Prior to the present study, only one Rop gene in pepper has been described. However, with the recent release of the draft genome sequence of pepper allowes us to conduct a genome wide search to identify how many Rop family members existed in pepper genome. We carried out bioinformatics analysis to establish the conserved as well as divergent regions on the protein sequences, phylogenetically analysis and the corresponding result shows that, CaROPs could be distributed into four groups as described in the literature for their homologs in Arabidopsis. To understand the function of nine Rop genes in pepper, we accordingly studied the tissue, fruit development and ripening expression patterns of CaRop genes by obtained RNA-seq data from public database. From our analysis, we realized that the expression of CaRop genes shows no total tissue or developmental specific expression. Furthermore, gene expression profiles of CaRop in response to environment stresses and hormone treatment, such as inoculated with Ralstonia solanacearum, by heat stress as well as treated with four phytohormones respectively and evaluated with real time RT-PCR. The potential involvement of specific CaRop genes in growth, fruit development, ripening, environment stresses as well as hormone responses discussed and may lay the foundation for future functional analysis to unravel their biological roles. (author)

  17. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    Science.gov (United States)

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  18. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. A genome-wide gene function prediction resource for Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Han Yan

    2010-08-01

    Full Text Available Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.

  20. Genome-wide identification and function analyses of heat shock transcription factors in potato

    Directory of Open Access Journals (Sweden)

    Ruimin eTang

    2016-04-01

    Full Text Available Heat shock transcription factors (Hsfs play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5 and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014 and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf-co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies.

  1. The Development of PIPA: An Integrated and Automated Pipeline for Genome-Wide Protein Function Annotation

    National Research Council Canada - National Science Library

    Yu, Chenggang; Zavaljevski, Nela; Desai, Valmik; Johnson, Seth; Stevens, Fred J; Reifman, Jaques

    2008-01-01

    .... With the existence of many programs and databases for inferring different protein functions, a pipeline that properly integrates these resources will benefit from the advantages of each method...

  2. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    Fuyou Fu

    2013-07-24

    Jul 24, 2013 ... 1Chongqing Agricultural Technology Extension Station, Chongqing, 400037, China. 2Chongqing ... These data provide some clues for future molecular ... teins consist of one or two cytosolically oriented nubleo- tide-binding ...

  3. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  4. Genome-wide screening and transcriptional profile analysis of desaturase genes in the European corn borer moth

    Institute of Scientific and Technical Information of China (English)

    Bingye Xue; Alejandro P. Rooney; Wendell L. Roelofs

    2012-01-01

    Acyl-coenzyme A (Acyl-CoA) desaturases play a key role in the biosynthesis of female moth sex pheromones.Desaturase genes are encoded by a large multigene family,and they have been divided into five subgroups on the basis of biochemical functionality and phylogenetic affinity.In this study both copy numbers and transcriptional levels of desaturase genes in the European corn borer (ECB),Ostrinia nubilalis,were investigated.The results from genome-wide screening of ECB bacterial artificial chromosome (BAC)library indicated there are many copies of some desaturase genes in the genome.An open reading frame (ORF) has been isolated for the novel desaturase gene ECB ezi-△11β from ECB gland complementary DNA and its functionality has been analyzed by two yeast expression systems.No functional activities have been detected for it.The expression levels of the four desaturase genes both in the pheromone gland and fat body of ECB and Asian corn borer (ACB),O.furnacalis,were determined by real-time polymerase chain reaction.In the ECB gland,△ 11 is the most abundant,although the amount of △14 is also considerable.In the ACB gland,△14 is the most abundant and is 100 times more abundant than all the other three combined.The results from the analysis of evolution of desaturase gene transcription in the ECB,ACB and other moths indicate that the pattern of △ 11 gene transcription is significantly different from the transcriptional patterns of other desaturase genes and this difference is tied to the underlying nucleotide composition bias of the genome.

  5. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes

    DEFF Research Database (Denmark)

    Barrett, Jeffrey C; Clayton, David G; Concannon, Patrick

    2009-01-01

    Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7......,514 cases and 9,045 reference samples. Forty-one distinct genomic locations provided evidence for association with T1D in the meta-analysis (P

  6. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    Science.gov (United States)

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  7. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Raees Khan

    Full Text Available The substantial use of triclosan (TCS has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231 and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17, and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79% and soil-borne plant pathogenic bacteria (98%. These included a variety of enoyl-acyl carrier protein reductase (ENRs homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously

  8. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    Full Text Available The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS and of adenosine triphosphate (ATP. We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to

  9. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  10. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  11. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens

    Directory of Open Access Journals (Sweden)

    Zhuang Liu

    2018-04-01

    Full Text Available Egg weight (EW is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80. Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1 and two genes (MEIS1 and SPRED2 on GGA3, which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.

  12. Genome-wide identification and analysis of the chicken basic helix-loop-helix factors.

    Science.gov (United States)

    Liu, Wu-Yi; Zhao, Chun-Jiang

    2010-01-01

    Members of the basic helix-loop-helix (bHLH) family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus) genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ''orphans". A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO) enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.

  13. Genome-Wide Identification and Analysis of the Chicken Basic Helix-Loop-Helix Factors

    Directory of Open Access Journals (Sweden)

    Wu-yi Liu

    2010-01-01

    Full Text Available Members of the basic helix-loop-helix (bHLH family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ‘‘orphans’’. A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.

  14. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2018-01-16

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.

  15. Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton

    Directory of Open Access Journals (Sweden)

    Tingting Lu

    2017-08-01

    Full Text Available Calcineurin B-like (CBL proteins, as calcium sensors, play pivotal roles in plant responses to diverse abiotic stresses and in growth and development through interaction with CBL-interacting protein kinases (CIPKs. However, knowledge about functions and evolution of CBLs in Gossypium plants is scarce. Here, we conducted a genome-wide survey and identified 13, 13 and 22 CBL genes in the progenitor diploid Gossypium arboreum and Gossypium raimondii, and the cultivated allotetraploid Gossypium hirsutum, respectively. Analysis of physical properties, chromosomal locations, conserved domains and phylogeny indicated rather conserved nature of CBLs among the three Gossypium species. Moreover, these CBLs have closer genetic evolutionary relationship with the CBLs from cocoa than with those from other plants. Most CBL genes underwent evolution under purifying selection in the three Gossypium plants. Additionally, nearly all G. hirsutum CBL (GhCBL genes were expressed in the root, stem, leaf, flower and fiber. Many GhCBLs were preferentially expressed in the flower while several GhCBLs were mainly expressed in roots. Expression patterns of GhCBL genes in response to potassium deficiency were also studied. The expression of most GhCBLs were moderately induced in roots after treatments with low-potassium stress. Yeast two-hybrid experiments indicated that GhCBL1-2, GhCBL1-3, GhCBL4-4, GhCBL8, GhCBL9 and GhCBL10-3 interacted with GhCIPK23, respectively. Our results provided a comprehensive view of the CBLs and valuable information for researchers to further investigate the roles and functional mechanisms of the CBLs in Gossypium.

  16. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes.

    Directory of Open Access Journals (Sweden)

    Elijah R Behr

    Full Text Available Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP, treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7, odds ratio = 2, 95% confidence intervals: 1.5-2.6. The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9. Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.

  17. A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia.

    LENUS (Irish Health Repository)

    Jia, Peilin

    2012-02-01

    After the recent successes of genome-wide association studies (GWAS), one key challenge is to identify genetic variants that might have a significant joint effect on complex diseases but have failed to be identified individually due to weak to moderate marginal effect. One popular and effective approach is gene set based analysis, which investigates the joint effect of multiple functionally related genes (eg, pathways). However, a typical gene set analysis method is biased towards long genes, a problem that is especially severe in psychiatric diseases.

  18. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress.

    Science.gov (United States)

    Huang, Xiaosan; Li, Kongqing; Xu, Xiaoyong; Yao, Zhenghong; Jin, Cong; Zhang, Shaoling

    2015-12-24

    WRKY transcription factors (TFs) constitute one of the largest protein families in higher plants, and its members contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. WRKY proteins play significant roles in plant development, and in responses to biotic and abiotic stresses. Pear (Pyrus bretschneideri) is one of the most important fruit crops in the world and is frequently threatened by abiotic stress, such as drought, affecting growth, development and productivity. Although the pear genome sequence has been released, little is known about the WRKY TFs in pear, especially in respond to drought stress at the genome-wide level. We identified a total of 103 WRKY TFs in the pear genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the pear WRKY (PbWRKY) family was classified into seven groups (Groups 1, 2a-e, and 3). The microsyteny analysis indicated that 33 (32%) PbWRKY genes were tandemly duplicated and 57 genes (55.3%) were segmentally duplicated. RNA-seq experiment data and quantitative real-time reverse transcription PCR revealed that PbWRKY genes in different groups were induced by drought stress, and Group 2a and 3 were mainly involved in the biological pathways in response to drought stress. Furthermore, adaptive evolution analysis detected a significant positive selection for Pbr001425 in Group 3, and its expression pattern differed from that of other members in this group. The present study provides a solid foundation for further functional dissection and molecular evolution of WRKY TFs in pear, especially for improving the water-deficient resistance of pear through manipulation of the PbWRKYs.

  19. Clinical Implications of Human Population Differences in Genome-wide Rates of Functional Genotypes

    Directory of Open Access Journals (Sweden)

    Ali eTorkamani

    2012-11-01

    Full Text Available There have been a number of recent successes in the use of whole genome sequencing and sophisticated bioinformatics techniques to identify pathogenic DNA sequence variants responsible for individual idiopathic congenital conditions. However, the success of this identification process is heavily influenced by the ancestry or genetic background of a patient with an idiopathic condition. This is so because potential pathogenic variants in a patient’s genome must be contrasted with variants in a reference set of genomes made up of other individuals’ genomes of the same ancestry as the patient. We explored the effect of ignoring the ancestries of both an individual patient and the individuals used to construct reference genomes. We pursued this exploration in two major steps. We first considered variation in the per-genome number and rates likely functional derived (i.e., non-ancestral, based on the chimp genome single nucleotide variants and small indels in 52 individual whole human genomes sampled from 10 different global populations. We took advantage of a suite of computational and bioinformatics techniques to predict the functional effect of over 24 million genomic variants, both coding and non-coding, across these genomes. We found that the typical human genome harbors ~5.5-6.1 million total derived variants, of which ~12,000 are likely to have a functional effect (~5000 coding and ~7000 non-coding. We also found that the rates of functional genotypes per the total number of genotypes in individual whole genomes differ dramatically between human populations. We then created tables showing how the use of comparator or reference genome panels comprised of genomes from individuals that do not have the same ancestral background as a patient can negatively impact pathogenic variant identification. Our results have important implications for clinical sequencing initiatives.

  20. Genome-wide analysis of SRSF10-regulated alternative splicing by deep sequencing of chicken transcriptome

    Directory of Open Access Journals (Sweden)

    Xuexia Zhou

    2014-12-01

    Full Text Available Splicing factor SRSF10 is known to function as a sequence-specific splicing activator that is capable of regulating alternative splicing both in vitro and in vivo. We recently used an RNA-seq approach coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Functionally, many of the SRSF10-verified alternative exons are linked to pathways of response to external stimulus. Here we describe in detail the experimental design, bioinformatics analysis and GO/pathway enrichment analysis of SRSF10-regulated genes to correspond with our data in the Gene Expression Omnibus with accession number GSE53354. Our data thus provide a resource for studying regulation of alternative splicing in vivo that underlines biological functions of splicing regulatory proteins in cells.

  1. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitulkumar Nandlal; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of Europea...

  2. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Stephen; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Melanie; Bolla, Manjeet; Wang, Qing; Shah, Mitul; Perkins, Barbara; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to wome...

  3. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP.

  4. The challenges of genome-wide interaction studies: lessons to learn from the analysis of HDL blood levels.

    Directory of Open Access Journals (Sweden)

    Elisabeth M van Leeuwen

    Full Text Available Genome-wide association studies (GWAS have revealed 74 single nucleotide polymorphisms (SNPs associated with high-density lipoprotein cholesterol (HDL blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS to identify SNP×SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS cohort I (RS-I using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III, we were able to filter 181 interaction terms with a p-value<1 · 10-8 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30,011 when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098 and rs12442098 in SPATA8 (ENSG00000185594 being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP×SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS.

  5. Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat.

    Science.gov (United States)

    Falkenberg, Katrina J; Gould, Cathryn M; Johnstone, Ricky W; Simpson, Kaylene J

    2014-01-01

    Identification of mechanisms of resistance to histone deacetylase inhibitors, such as vorinostat, is important in order to utilise these anticancer compounds more efficiently in the clinic. Here, we present a dataset containing multiple tiers of stringent siRNA screening for genes that when knocked down conferred sensitivity to vorinostat-induced cell death. We also present data from a miRNA overexpression screen for miRNAs contributing to vorinostat sensitivity. Furthermore, we provide transcriptomic analysis using massively parallel sequencing upon knockdown of 14 validated vorinostat-resistance genes. These datasets are suitable for analysis of genes and miRNAs involved in cell death in the presence and absence of vorinostat as well as computational biology approaches to identify gene regulatory networks.

  6. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening.

    Directory of Open Access Journals (Sweden)

    Patxi San Martin-Uriz

    Full Text Available Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY. This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.

  7. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs.

    Directory of Open Access Journals (Sweden)

    Hongyang Wang

    Full Text Available Copy number variations (CNVs refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs' independent domestication, and facilitate further functional studies of CNV-associated genes.

  8. Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Recent studies in population of European ancestry have shown that 30% ~ 50% of heritability for human complex traits such as height and body mass index, and common diseases such as schizophrenia and rheumatoid arthritis, can be captured by common SNPs and that genetic variation attributed to chromosomes are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analysed 49 human quantitative traits, many of which are relevant to human diseases, in 7,170 unrelated Korean individuals genotyped on 326,262 SNPs. For 43 of the 49 traits, we estimated a nominally significant (P<0.05 proportion of variance explained by all SNPs on the Affymetrix 5.0 genotyping array ([Formula: see text]. On average across 47 of the 49 traits for which the estimate of h(G(2 is non-zero, common SNPs explain approximately one-third (range of 7.8% to 76.8% of narrow sense heritability. The estimate of h(G(2 is highly correlated with the proportion of SNPs with association P<0.031 (r(2 = 0.92. Longer genomic segments tend to explain more phenotypic variation, with a correlation of 0.78 between the estimate of variance explained by individual chromosomes and their physical length, and 1% of the genome explains approximately 1% of the genetic variance. Despite the fact that there are a few SNPs with large effects for some traits, these results suggest that polygenicity is ubiquitous for most human complex traits and that a substantial proportion of the "missing heritability" is captured by common SNPs.

  9. Genome-wide analysis of the GH3 family in apple (Malus × domestica).

    Science.gov (United States)

    Yuan, Huazhao; Zhao, Kai; Lei, Hengjiu; Shen, Xinjie; Liu, Yun; Liao, Xiong; Li, Tianhong

    2013-05-02

    Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.

  10. Genome-Wide Identification and Analysis of Genes Encoding PHD-Finger Protein in Tomato

    International Nuclear Information System (INIS)

    Hayat, S.; Cheng, Z.; Chen, X.

    2016-01-01

    The PHD-finger proteins are conserved in eukaryotic organisms and are involved in a variety of important functions in different biological processes in plants. However, the function of PHD fingers are poorly known in tomato (Solanum lycopersicum L.). In current study, we identified 45 putative genes coding Phd finger protein in tomato distributed on 11 chromosomes except for chromosome 8. Some of the genes encode other conserved key domains besides Phd-finger. Phylogenetic analysis of these 45 proteins resulted in seven clusters. Most Phd finger proteins were predicted to PML body location. These PHD-finger genes displayed differential expression either in various organs, at different development stages and under stresses in tomato. Our study provides the first systematic analysis of PHD-finger genes and proteins in tomato. This preliminary study provides a very useful reference information for Phd-finger proteins in tomato. They will be helpful for cloning and functional study of tomato PHD-finger genes. (author)

  11. Genome-Wide Transcriptome Analysis Reveals Extensive Alternative Splicing Events in the Protoscoleces of Echinococcus granulosus and Echinococcus multilocularis

    Science.gov (United States)

    Liu, Shuai; Zhou, Xiaosu; Hao, Lili; Piao, Xianyu; Hou, Nan; Chen, Qijun

    2017-01-01

    Alternative splicing (AS), as one of the most important topics in the post-genomic era, has been extensively studied in numerous organisms. However, little is known about the prevalence and characteristics of AS in Echinococcus species, which can cause significant health problems to humans and domestic animals. Based on high-throughput RNA-sequencing data, we performed a genome-wide survey of AS in two major pathogens of echinococcosis-Echinococcus granulosus and Echinococcus multilocularis. Our study revealed that the prevalence and characteristics of AS in protoscoleces of the two parasites were generally consistent with each other. A total of 6,826 AS events from 3,774 E. granulosus genes and 6,644 AS events from 3,611 E. multilocularis genes were identified in protoscolex transcriptomes, indicating that 33–36% of genes were subject to AS in the two parasites. Strikingly, intron retention instead of exon skipping was the predominant type of AS in Echinococcus species. Moreover, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway indicated that genes that underwent AS events were significantly enriched in multiple pathways mainly related to metabolism (e.g., purine, fatty acid, galactose, and glycerolipid metabolism), signal transduction (e.g., Jak-STAT, VEGF, Notch, and GnRH signaling pathways), and genetic information processing (e.g., RNA transport and mRNA surveillance pathways). The landscape of AS obtained in this study will not only facilitate future investigations on transcriptome complexity and AS regulation during the life cycle of Echinococcus species, but also provide an invaluable resource for future functional and evolutionary studies of AS in platyhelminth parasites. PMID:28588571

  12. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection.

    Directory of Open Access Journals (Sweden)

    George Nicholson

    2011-09-01

    Full Text Available We have performed a metabolite quantitative trait locus (mQTL study of the (1H nuclear magnetic resonance spectroscopy ((1H NMR metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs. Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10(-11functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%-64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from

  13. Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2

    Science.gov (United States)

    Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.

    2015-01-01

    Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset genetic variants at loci with association Pstroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560

  14. Genome-wide analysis of immune system genes by EST profiling

    Science.gov (United States)

    Giallourakis, Cosmas; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E.; Zukerberg, Lawrence R.; Daly, Mark J.; Rioux, John D.; Xavier, Ramnik J.

    2013-01-01

    Profiling studies of mRNA and miRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as ENCODE have demonstrated the benefit of coupling RNA-Seq analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including non-coding RNAs. As a result, we have established the Immunogene database, representing an integrated EST “road map” of gene expression in human immune cells, which can be used to further investigate the function of coding and non-coding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  15. Research Guidelines in the Era of Large-scale Collaborations: An Analysis of Genome-wide Association Study Consortia

    Science.gov (United States)

    Austin, Melissa A.; Hair, Marilyn S.; Fullerton, Stephanie M.

    2012-01-01

    Scientific research has shifted from studies conducted by single investigators to the creation of large consortia. Genetic epidemiologists, for example, now collaborate extensively for genome-wide association studies (GWAS). The effect has been a stream of confirmed disease-gene associations. However, effects on human subjects oversight, data-sharing, publication and authorship practices, research organization and productivity, and intellectual property remain to be examined. The aim of this analysis was to identify all research consortia that had published the results of a GWAS analysis since 2005, characterize them, determine which have publicly accessible guidelines for research practices, and summarize the policies in these guidelines. A review of the National Human Genome Research Institute’s Catalog of Published Genome-Wide Association Studies identified 55 GWAS consortia as of April 1, 2011. These consortia were comprised of individual investigators, research centers, studies, or other consortia and studied 48 different diseases or traits. Only 14 (25%) were found to have publicly accessible research guidelines on consortia websites. The available guidelines provide information on organization, governance, and research protocols; half address institutional review board approval. Details of publication, authorship, data-sharing, and intellectual property vary considerably. Wider access to consortia guidelines is needed to establish appropriate research standards with broad applicability to emerging forms of large-scale collaboration. PMID:22491085

  16. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4.

    LENUS (Irish Health Repository)

    Sklar, Pamela

    2011-10-01

    We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10(-7)). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci.

  17. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Science.gov (United States)

    Broce, Iris; Karch, Celeste M; Wen, Natalie; Fan, Chun C; Wang, Yunpeng; Tan, Chin Hong; Kouri, Naomi; Ross, Owen A; Höglinger, Günter U; Muller, Ulrich; Hardy, John; Momeni, Parastoo; Hess, Christopher P; Dillon, William P; Miller, Zachary A; Bonham, Luke W; Rabinovici, Gil D; Rosen, Howard J; Schellenberg, Gerard D; Franke, Andre; Karlsen, Tom H; Veldink, Jan H; Ferrari, Raffaele; Yokoyama, Jennifer S; Miller, Bruce L; Andreassen, Ole A; Dale, Anders M; Desikan, Rahul S; Sugrue, Leo P

    2018-01-01

    Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. We

  18. Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model.

    Science.gov (United States)

    Wu, Jian; Peng, Zhen; Liu, Songyu; He, Yanjun; Cheng, Lin; Kong, Fuling; Wang, Jie; Lu, Gang

    2012-04-01

    Auxin plays key roles in a wide variety of plant activities, including embryo development, leaf formation, phototropism, fruit development and root initiation and development. Auxin/indoleacetic acid (Aux/IAA) genes, encoding short-lived nuclear proteins, are key regulators in the auxin transduction pathway. But how they work is still unknown. In order to conduct a systematic analysis of this gene family in Solanaceae species, a genome-wide search for the homologues of auxin response genes was carried out. Here, 26 and 27 non redundant AUX/IAAs were identified in tomato and potato, respectively. Using tomato as a model, a comprehensive overview of SlIAA gene family is presented, including the gene structures, phylogeny, chromosome locations, conserved motifs and cis-elements in promoter sequences. A phylogenetic tree generated from alignments of the predicted protein sequences of 31 OsIAAs, 29 AtIAAs, 31 ZmIAAs, and 26 SlIAAs revealed that these IAAs were clustered into three major groups and ten subgroups. Among them, seven subgroups were present in both monocot and dicot species, which indicated that the major functional diversification within the IAA family predated the monocot/dicot divergence. In contrast, group C and some other subgroups seemed to be species-specific. Quantitative real-time PCR (qRT-PCR) analysis showed that 19 of the 26 SlIAA genes could be detected in all tomato organs/tissues, however, seven of them were specifically expressed in some of tomato tissues. The transcript abundance of 17 SlIAA genes were increased within a few hours when the seedlings were treated with exogenous IAA. However, those of other six SlIAAs were decreased. The results of stress treatments showed that most SIIAA family genes responded to at least one of the three stress treatments, however, they exhibited diverse expression levels under different abiotic stress conditions in tomato seedlings. SlIAA20, SlIAA21 and SlIAA22 were not significantly influenced by stress

  19. Genome-wide imaging association study implicates functional activity and glial homeostasis of the caudate in smoking addiction.

    Science.gov (United States)

    Qian, David C; Molfese, David L; Jin, Jennifer L; Titus, Alexander J; He, Yixuan; Li, Yafang; Vaissié, Maxime; Viswanath, Humsini; Baldwin, Philip R; Krahe, Ralf; Salas, Ramiro; Amos, Christopher I

    2017-09-19

    Nearly 6 million deaths and over a half trillion dollars in healthcare costs worldwide are attributed to tobacco smoking each year. Extensive research efforts have been pursued to elucidate the molecular underpinnings of smoking addiction and facilitate cessation. In this study, we genotyped and obtained both resting state and task-based functional magnetic resonance imaging from 64 non-smokers and 42 smokers. Smokers were imaged after having smoked normally ("sated") and after having not smoked for at least 12 h ("abstinent"). While abstinent smokers did not differ from non-smokers with respect to pairwise resting state functional connectivities (RSFCs) between 12 brain regions of interest, RSFCs involving the caudate and putamen of sated smokers significantly differed from those of non-smokers (P smoking status (P = 0.015). Moreover, abstinent smokers with lower CR experienced greater withdrawal symptoms (P = 0.024), which suggests CR may be related to smoking urges. Associations between genetic variants and CR, adjusted for smoking status, were identified by genome-wide association study (GWAS). Genes containing or exhibiting caudate-specific expression regulation by these variants were enriched within Gene Ontology terms that describe cytoskeleton functions, synaptic organization, and injury response (P < 0.001, FDR < 0.05). By integrating genomic and imaging data, novel insights into potential mechanisms of caudate activation and homeostasis are revealed that may guide new directions of research toward improving our understanding of addiction pathology.

  20. Genome-wide analysis of the GRAS gene family in Prunus mume.

    Science.gov (United States)

    Lu, Jiuxing; Wang, Tao; Xu, Zongda; Sun, Lidan; Zhang, Qixiang

    2015-02-01

    Prunus mume is an ornamental flower and fruit tree in Rosaceae. We investigated the GRAS gene family to improve the breeding and cultivation of P. mume and other Rosaceae fruit trees. The GRAS gene family encodes transcriptional regulators that have diverse functions in plant growth and development, such as gibberellin and phytochrome A signal transduction, root radial patterning, and axillary meristem formation and gametogenesis in the P. mume genome. Despite the important roles of these genes in plant growth regulation, no findings on the GRAS genes of P. mume have been reported. In this study, we discerned phylogenetic relationships of P. mume GRAS genes, and their locations, structures in the genome and expression levels of different tissues. Out of 46 identified GRAS genes, 45 were located on the 8 P. mume chromosomes. Phylogenetic results showed that these genes could be classified into 11 groups. We found that Group X was P. mume-specific, and three genes of Group IX clustered with the rice-specific gene Os4. We speculated that these genes existed before the divergence of dicotyledons and monocotyledons and were lost in Arabidopsis. Tissue expression analysis indicated that 13 genes showed high expression levels in roots, stems, leaves, flowers and fruits, and were related to plant growth and development. Functional analysis of 24 GRAS genes and an orthologous relationship analysis indicated that many functioned during plant growth and flower and fruit development. Our bioinformatics analysis provides valuable information to improve the economic, agronomic and ecological benefits of P. mume and other Rosaceae fruit trees.

  1. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  2. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.)

    Science.gov (United States)

    Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885

  3. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  4. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    Science.gov (United States)

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  5. Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.

    Science.gov (United States)

    Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio

    2013-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.

  6. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-12-29

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut.

  7. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Directory of Open Access Journals (Sweden)

    Lu Yiming

    2011-03-01

    Full Text Available Abstract Background The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1 mis-annotation (the clone with the retired gene name should be remapped to the actual target gene; 2 nonspecific PCR amplification; 3 cross-RNAi; 4 mis-operation such as sample loading error, etc. Results Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3% of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54% bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs. The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/ was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies. Conclusions Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine

  8. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  9. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  10. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture.

    Science.gov (United States)

    Migault, Vincent; Pallas, Benoît; Costes, Evelyne

    2016-01-01

    In crops, optimizing target traits in breeding programs can be fostered by selecting appropriate combinations of architectural traits which determine light interception and carbon acquisition. In apple tree, architectural traits were observed to be under genetic control. However, architectural traits also result from many organogenetic and morphological processes interacting with the environment. The present study aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms of architectural traits, previously described in a bi-parental population. We focused on parameters related to organogenesis (phyllochron and immediate branching) and morphogenesis processes (internode length and leaf area) during the first year of tree growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes, issued from a 'Starkrimson' × 'Granny Smith' cross, were used. The phyllochron was estimated as a function of thermal time and sylleptic branching was modeled subsequently depending on phyllochron. From a genetic map built with SNPs, marker effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data. These effects were then considered in MAppleT to simulate tree development in the two climatic conditions. The genome wide prediction model gave consistent estimations of parameter values with correlation coefficients between observed values and estimated values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the prediction model following cross validation schemas was lower. Three integrative traits (the number of leaves, trunk length, and number of sylleptic laterals) were considered for validating MAppleT simulations. In 2007 climatic conditions, simulated values were close to observations, highlighting the correct simulation of genetic variability. However, in 2004 conditions which were not used for model calibration, the simulations differed from observations. This study demonstrates the possibility of

  11. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  12. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    Science.gov (United States)

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  13. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).

    Science.gov (United States)

    Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu

    2015-01-01

    The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut.

  15. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    Science.gov (United States)

    Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James

    2015-02-14

    Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the

  16. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  17. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    Science.gov (United States)

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  18. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    Science.gov (United States)

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases

  19. Genome-wide association study and biological pathway analysis for response to Eimeria maxima in broilers

    DEFF Research Database (Denmark)

    Hamzic, Edin; Buitenhuis, Albert Johannes; Hérault, Frédéric

    2015-01-01

    Background Coccidiosis is the most common and costly disease in the poultry industry and which caused by protozoans from the genus of Eimeria. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high...... costs for development of efficient vaccines, respectively. Therefore, the present control programs must be expanded with complementary approaches such as the use of genetics for improvement of the host’s response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500...... of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis with the aim of gaining a better biological understanding of the underlying response to Eimeria maxima challenge in broilers. Results In total, we identified 22 single nucleotide...

  20. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.

    Science.gov (United States)

    Aiese Cigliano, Riccardo; Sanseverino, Walter; Cremona, Gaetana; Ercolano, Maria R; Conicella, Clara; Consiglio, Federica M

    2013-01-28

    Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  1. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles

    Directory of Open Access Journals (Sweden)

    Aiese Cigliano Riccardo

    2013-01-01

    Full Text Available Abstract Background Histone post-translational modifications (HPTMs including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs in tomato are sketchy. Results Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs, 15 histone deacetylases (HDACs, 52 histone methytransferases (HMTs and 26 histone demethylases (HDMs, and compared them with those detected in Arabidopsis (Arabidopsis thaliana, maize (Zea mays and rice (Oryza sativa orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. Conclusions In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.

  2. Genome Wide Identification, Evolutionary, and Expression Analysis of VQ Genes from Two Pyrus Species.

    Science.gov (United States)

    Cao, Yunpeng; Meng, Dandan; Abdullah, Muhammad; Jin, Qing; Lin, Yi; Cai, Yongping

    2018-04-23

    The VQ motif-containing gene, a member of the plant-specific genes, is involved in the plant developmental process and various stress responses. The VQ motif-containing gene family has been studied in several plants, such as rice ( Oryza sativa ), maize ( Zea mays ), and Arabidopsis ( Arabidopsis thaliana ). However, no systematic study has been performed in Pyrus species, which have important economic value. In our study, we identified 41 and 28 VQ motif-containing genes in Pyrus bretschneideri and Pyrus communis , respectively. Phylogenetic trees were calculated using A. thaliana and O. sativa VQ motif-containing genes as a template, allowing us to categorize these genes into nine subfamilies. Thirty-two and eight paralogous of VQ motif-containing genes were found in P. bretschneideri and P. communis , respectively, showing that the VQ motif-containing genes had a more remarkable expansion in P. bretschneideri than in P. communis . A total of 31 orthologous pairs were identified from the P. bretschneideri and P. communis VQ motif-containing genes. Additionally, among the paralogs, we found that these duplication gene pairs probably derived from segmental duplication/whole-genome duplication (WGD) events in the genomes of P. bretschneideri and P. communis , respectively. The gene expression profiles in both P. bretschneideri and P. communis fruits suggested functional redundancy for some orthologous gene pairs derived from a common ancestry, and sub-functionalization or neo-functionalization for some of them. Our study provided the first systematic evolutionary analysis of the VQ motif-containing genes in Pyrus , and highlighted the diversification and duplication of VQ motif-containing genes in both P. bretschneideri and P. communis .

  3. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms.

    Science.gov (United States)

    Li, Nan; Chen, Huan; Williams, Henry N

    2015-05-10

    Bdellovibrio-and-like organisms (BALOs) are gram-negative, predatory bacteria with wide variations in genome sizes and GC content and ecological habitats. The ATP-binding cassette (ABC) systems have been identified in several prokaryotes, fungi and plants and have a role in transport of materials in and out of cells and in cellular processes. However, knowledge of the ABC systems of BALOs remains obscure. A total of 269 putative ABC proteins were identified in BALOs. The genes encoding these ABC systems occupy nearly 1.3% of the gene content in freshwater Bdellovibrio strains and about 0.7% in their saltwater counterparts. The proteins found belong to 25 ABC system families based on their structural characteristics and functions. Among these, 16 families function as importers, 6 as exporters and 3 are involved in various cellular processes. Eight of these 25 ABC system families were deduced to be the core set of ABC systems conserved in all BALOs. All Bacteriovorax strains have 28 or less ABC systems. On the contrary, the freshwater Bdellovibrio strains have more ABC systems, typically around 51. In the genome of Bdellovibrio exovorus JSS (CP003537.1), 53 putative ABC systems were detected, representing the highest number among all the BALO genomes examined in this study. Unexpected high numbers of ABC systems involved in cellular processes were found in all BALOs. Phylogenetic analysis suggests that the majority of ABC proteins can be assigned into many separate families with high bootstrap supports (>50%). In this study, a general framework of sequence-structure-function connections for the ABC systems in BALOs was revealed providing novel insights for future investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Genome-wide comparative analysis of metacaspases in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Qin Song

    2010-03-01

    Full Text Available Abstract Background Cyanobacteria are an ancient group of photoautotrophic prokaryotes with wide variations in genome size and ecological habitat. Metacaspases (MCAs are cysteine proteinases that have sequence homology to caspases and play essential roles in programmed cell death (PCD. MCAs have been identified in several prokaryotes, fungi and plants; however, knowledge about cyanobacterial metacaspases still remains obscure. With the availability of sequenced genomes of 33 cyanobacteria, we perform a comparative analysis of metacaspases and explore their distribution, domain structure and evolution. Results A total of 58 putative MCAs were identified, which are abundant in filamentous diazotrophic cyanobacteria and Acaryochloris marina MBIC 11017 and absent in all Prochlorococcus and marine Synechococcus strains, except Synechococcus sp. PCC 7002. The Cys-His dyad of caspase superfamily is conserved, while mutations (Tyr in place of His and Ser/Asn/Gln/Gly instead of Cys are also detected in some cyanobacteria. MCAs can be classified into two major families (α and β based on the additional domain structure. Ten types and a total of 276 additional domains were identified, most of which involves in signal transduction. Apoptotic related NACHT domain was also found in two cyanobacterial MCAs. Phylogenetic tree of MCA catalytic P20 domains coincides well with the domain structure and the phylogenies based on 16s rRNA. Conclusions The existence and quantity of MCA genes in unicellular and filamentous cyanobacteria are a function of the genome size and ecological habitat. MCAs of family α and β seem to evolve separately and the recruitment of WD40 additional domain occurs later than the divergence of the two families. In this study, a general framework of sequence-structure-function connections for the metacaspases has been revealed, which may provide new targets for function investigation.

  5. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  6. A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women

    Directory of Open Access Journals (Sweden)

    Kira C. Taylor

    2016-12-01

    Full Text Available Background: Osteoporosis is a major public health problem associated with excess disability and mortality. It is estimated that 50–70% of the variation in osteoporotic fracture risk is attributable to genetic factors. The purpose of this hypothesis-generating study was to identify possible genetic determinants of fracture among African American (AA women in a GWAS meta-analysis. Methods: Data on clinical fractures (all fractures except fingers, toes, face, skull or sternum were analyzed among AA female participants in the Women's Health Initiative (WHI (N = 8155, Cardiovascular Health Study (CHS (N = 504, BioVU (N = 704, Health ABC (N = 651, and the Johnston County Osteoarthritis Project (JoCoOA (N = 291. Affymetrix (WHI and Illumina (Health ABC, JoCoOA, BioVU, CHS GWAS panels were used for genotyping, and a 1:1 ratio of YRI:CEU HapMap haplotypes was used as an imputation reference panel. We used Cox proportional hazard models or logistic regression to evaluate the association of ~2.5 million SNPs with fracture risk, adjusting for ancestry, age, and geographic region where applicable. We conducted a fixed-effects, inverse variance-weighted meta-analysis. Genome-wide significance was set at P < 5 × 10−8. Results: One SNP, rs12775980 in an intron of SVIL on chromosome 10p11.2, reached genome-wide significance (P = 4.0 × 10−8. Although this SNP has a low minor allele frequency (0.03, there was no evidence for heterogeneity of effects across the studies (I2 = 0. This locus was not reported in any previous osteoporosis-related GWA studies. We also interrogated previously reported GWA-significant loci associated with fracture or bone mineral density in our data. One locus (SMOC1 generalized, but overall there was not substantial evidence of generalization. Possible reasons for the lack of generalization are discussed. Conclusion: This GWAS meta-analysis of fractures in African American women identified a potentially novel

  7. Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle

    Directory of Open Access Journals (Sweden)

    Marcos H. de Moraes

    2018-05-01

    Full Text Available Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain’s fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.

  8. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits

    Science.gov (United States)

    Wangler, Michael F.; Hu, Yanhui

    2017-01-01

    ABSTRACT Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease. PMID:28151408

  9. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  10. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions

    Science.gov (United States)

    2013-01-01

    Background Soybean is an important crop that provides valuable proteins and oils for human use. Because soybean growth and development is extremely sensitive to water deficit, quality and crop yields are severely impacted by drought stress. In the face of limited water resources, drought-responsive genes are therefore of interest. Identification and analysis of dehydration- and rehydration-inducible differentially expressed genes (DEGs) would not only aid elucidation of molecular mechanisms of stress response, but also enable improvement of crop stress tolerance via gene transfer. Using Digital Gene Expression Tag profiling (DGE), a new technique based on Illumina sequencing, we analyzed expression profiles between two soybean genotypes to identify drought-responsive genes. Results Two soybean genotypes—drought-tolerant Jindou21 and drought-sensitive Zhongdou33—were subjected to dehydration and rehydration conditions. For analysis of DEGs under dehydration conditions, 20 cDNA libraries were generated from roots and leaves at two different time points under well-watered and dehydration conditions. We also generated eight libraries for analysis under rehydration conditions. Sequencing of the 28 libraries produced 25,000–33,000 unambiguous tags, which were mapped to reference sequences for annotation of expressed genes. Many genes exhibited significant expression differences among the libraries. DEGs in the drought-tolerant genotype were identified by comparison of DEGs among treatments and genotypes. In Jindou21, 518 and 614 genes were differentially expressed under dehydration in leaves and roots, respectively, with 24 identified both in leaves and roots. The main functional categories enriched in these DEGs were metabolic process, response to stresses, plant hormone signal transduction, protein processing, and plant-pathogen interaction pathway; the associated genes primarily encoded transcription factors, protein kinases, and other regulatory proteins. The

  11. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  12. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    Science.gov (United States)

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  13. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Science.gov (United States)

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  14. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato

    Directory of Open Access Journals (Sweden)

    Xing Ding

    2018-05-01

    Full Text Available The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6, of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA, gibberellin (GA, and salicylic acid (SA. We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.

  15. Genome-wide identification and expression analysis of the CIPK gene family in cassava

    Directory of Open Access Journals (Sweden)

    Wei eHu

    2015-10-01

    Full Text Available Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava.

  16. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus

    Science.gov (United States)

    2012-01-01

    Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and

  17. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1

    Directory of Open Access Journals (Sweden)

    Wang Pu

    2010-10-01

    Full Text Available Abstract The Epstein-Barr Virus (EBV Nuclear Antigen 1 (EBNA1 protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP, regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP combined with massively parallel deep-sequencing (ChIP-Seq was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA

  18. Genome-Wide H3K4me3 Analysis in Angus Cattle with Divergent Tenderness.

    Directory of Open Access Journals (Sweden)

    Chunping Zhao

    Full Text Available Tenderness is one of the most important properties of meat quality, which is influenced by genetic and environmental factors. As an intensively studied epigenetic marker, histone methylation, occurring on arginine and lysine residues, has pivotal regulatory functions on gene expression. To examine whether histone methylation involves in beef tenderness variation, we analyzed the transcriptome and H3K4me3 enrichment profiles of muscle strips obtained from the longissimus dorsi (LD of Angus steers previously classify to the tender or tough group. We first plotted a global bovine H3K4me3 map on chromosomes and called peak-enriched regions and genes. We found that majorities of H3K4me3 on genes were occupying the first intron and intergenic regions and its maps displayed similar patterns in tender and tough groups, with high H3K4me3 enrichment surrounding the transcription start site (TSS. We also explored the relationship of H3K4me3 and gene expression. The results showed that H3K4me3 enrichment is highly positively correlated with gene expression across the whole genome. Cluster analysis results confirmed the relationship of H3K4me3 enrichment and gene expression. By using a pathway-based approach in genes with H3K4me3 enrichment in promoter regions from the tender cluster, we revealed that those genes involved in the development of different tissues-connective tissue, skeletal and muscular system and functional tissues-; while in tough group those genes engaged in cell death, lipid metabolism and small molecule biochemistry. The results from this study provide a deep insight into understanding of the mechanisms of epigenetic regulations in meat quality and beef tenderness.

  19. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    Science.gov (United States)

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins

  20. Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Núñez Cinthia

    2009-07-01

    Full Text Available Abstract Background The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. Results An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III, which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. Conclusion The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of

  1. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis

    Directory of Open Access Journals (Sweden)

    Zhao Patrick X

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L., a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1 chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

  2. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    Directory of Open Access Journals (Sweden)

    Claire L Simpson

    Full Text Available Refractive error (RE is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness and hyperopia (farsightedness, which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8, which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11 and 8q12 (minimum p value 1.82×10(-11 previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al. and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  3. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

    Science.gov (United States)

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-10-17

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.

  4. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.

    Directory of Open Access Journals (Sweden)

    Zhenli Zhao

    Full Text Available Paulownia tomentosa is a fast-growing tree species with multiple uses. It is grown worldwide, but is native to China, where it is widely cultivated in saline regions. We previously confirmed that autotetraploid P. tomentosa plants are more stress-tolerant than the diploid plants. However, the molecular mechanism underlying P. tomentosa salinity tolerance has not been fully characterized. Using the complete Paulownia fortunei genome as a reference, we applied next-generation RNA-sequencing technology to analyze the effects of salt stress on diploid and autotetraploid P. tomentosa plants. We generated 175 million clean reads and identified 15,873 differentially expressed genes (DEGs from four P. tomentosa libraries (two diploid and two autotetraploid. Functional annotations of the differentially expressed genes using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that plant hormone signal transduction and photosynthetic activities are vital for plant responses to high-salt conditions. We also identified several transcription factors, including members of the AP2/EREBP, bHLH, MYB, and NAC families. Quantitative real-time PCR analysis validated the expression patterns of eight differentially expressed genes. Our findings and the generated transcriptome data may help to accelerate the genetic improvement of cultivated P. tomentosa and other plant species for enhanced growth in saline soils.

  5. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors

    Directory of Open Access Journals (Sweden)

    Xianming Wang

    2018-03-01

    Full Text Available Objective: Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4. Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing β-cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Also, comparative studies of PDX1 binding patterns in pancreatic progenitors and adult β-cells have not been conducted so far. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs and T2DM, and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far. Methods: In this study, we have generated a novel induced pluripotent stem cell (iPSC line that efficiently differentiates into human pancreatic progenitors (PPs. Furthermore, PDX1 and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq was used to identify PDX1 transcriptional targets and active enhancer and promoter regions. To address potential differences in the function of PDX1 during development and adulthood, we compared PDX1 binding profiles from PPs and adult islets. Moreover, combining ChIP-seq and GWAS meta-analysis data we identified T2DM-associated SNPs in PDX1 binding sites and active chromatin regions. Results: ChIP-seq for PDX1 revealed a total of 8088 PDX1-bound regions that map to 5664 genes in iPSC-derived PPs. The PDX1 target regions include important pancreatic TFs, such as PDX1 itself, RFX6, HNF1B, and MEIS1, which were activated during the differentiation process as revealed by the active chromatin mark H3K27ac and mRNA expression profiling, suggesting that auto-regulatory feedback regulation

  6. Multiple Genes Related to Muscle Identified through a Joint Analysis of a Two-stage Genome-wide Association Study for Racing Performance of 1,156 Thoroughbreds

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Shin

    2015-06-01

    Full Text Available Thoroughbred, a relatively recent horse breed, is best known for its use in horse racing. Although myostatin (MSTN variants have been reported to be highly associated with horse racing performance, the trait is more likely to be polygenic in nature. The purpose of this study was to identify genetic variants strongly associated with racing performance by using estimated breeding value (EBV for race time as a phenotype. We conducted a two-stage genome-wide association study to search for genetic variants associated with the EBV. In the first stage of genome-wide association study, a relatively large number of markers (~54,000 single-nucleotide polymorphisms, SNPs were evaluated in a small number of samples (240 horses. In the second stage, a relatively small number of markers identified to have large effects (170 SNPs were evaluated in a much larger number of samples (1,156 horses. We also validated the SNPs related to MSTN known to have large effects on racing performance and found significant associations in the stage two analysis, but not in stage one. We identified 28 significant SNPs related to 17 genes. Among these, six genes have a function related to myogenesis and five genes are involved in muscle maintenance. To our knowledge, these genes are newly reported for the genetic association with racing performance of Thoroughbreds. It complements a recent horse genome-wide association studies of racing performance that identified other SNPs and genes as the most significant variants. These results will help to expand our knowledge of the polygenic nature of racing performance in Thoroughbreds.

  7. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton.

    Science.gov (United States)

    Wu, Jianyong; Zhang, Meng; Zhang, Bingbing; Zhang, Xuexian; Guo, Liping; Qi, Tingxiang; Wang, Hailin; Zhang, Jinfa; Xing, Chaozhu

    2017-06-08

    Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC 8 F 1 ) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm.

  8. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  9. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Cui Hongli

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS. PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic

  10. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    Science.gov (United States)

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  11. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Mahajan, Anubha; Go, Min Jin; Zhang, Weihua

    2014-01-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We obs...... and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry....... observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls...

  12. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57.

    Science.gov (United States)

    Bak, Mads; Boonen, Susanne E; Dahl, Christina; Hahnemann, Johanne M D; Mackay, Deborah J D G; Tümer, Zeynep; Grønskov, Karen; Temple, I Karen; Guldberg, Per; Tommerup, Niels

    2016-04-14

    Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers. Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing. We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif. We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional

  13. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Hao

    Full Text Available Long intergenic noncoding RNAs (lincRNAs are intergenic transcripts with a length of at least 200 nt that lack coding potential. Emerging evidence suggests that lincRNAs from animals participate in many fundamental biological processes. However, the systemic identification of lincRNAs has been undertaken in only a few plants. We chose to use cucumber (Cucumis sativus as a model to analyze lincRNAs due to its importance as a model plant for studying sex differentiation and fruit development and the rich genomic and transcriptome data available. The application of a bioinformatics pipeline to multiple types of gene expression data resulted in the identification and characterization of 3,274 lincRNAs. Next, 10 lincRNAs targeted by 17 miRNAs were also explored. Based on co-expression analysis between lincRNAs and mRNAs, 94 lincRNAs were annotated, which may be involved in response to stimuli, multi-organism processes, reproduction, reproductive processes, and growth. Finally, examination of the evolution of lincRNAs showed that most lincRNAs are under purifying selection, while 16 lincRNAs are under natural selection. Our results provide a rich resource for further validation of cucumber lincRNAs and their function. The identification of lincRNAs targeted by miRNAs offers new clues for investigations into the role of lincRNAs in regulating gene expression. Finally, evaluation of the lincRNAs suggested that some lincRNAs are under positive and balancing selection.

  14. Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes.

    Science.gov (United States)

    Celik Altunoglu, Yasemin; Baloglu, Mehmet Cengiz; Baloglu, Pinar; Yer, Esra Nurten; Kara, Sibel

    2017-01-01

    Late embryogenesis abundant (LEA) proteins are large and diverse group of polypeptides which were first identified during seed dehydration and then in vegetative plant tissues during different stress responses. Now, gene family members of LEA proteins have been detected in various organisms. However, there is no report for this protein family in watermelon and melon until this study. A total of 73 LEA genes from watermelon ( ClLEA ) and 61 LEA genes from melon ( CmLEA ) were identified in this comprehensive study. They were classified into four and three distinct clusters in watermelon and melon, respectively. There was a correlation between gene structure and motif composition among each LEA groups. Segmental duplication played an important role for LEA gene expansion in watermelon. Maximum gene ontology of LEA genes was observed with poplar LEA genes. For evaluation of tissue specific expression patterns of ClLEA and CmLEA genes, publicly available RNA-seq data were analyzed. The expression analysis of selected LEA genes in root and leaf tissues of drought-stressed watermelon and melon were examined using qRT-PCR. Among them, ClLEA - 12 - 17 - 46 genes were quickly induced after drought application. Therefore, they might be considered as early response genes for water limitation conditions in watermelon. In addition, CmLEA - 42 - 43 genes were found to be up-regulated in both tissues of melon under drought stress. Our results can open up new frontiers about understanding of functions of these important family members under normal developmental stages and stress conditions by bioinformatics and transcriptomic approaches.

  15. Whole blood genome-wide expression profiling and network analysis suggest MELAS master regulators.

    Science.gov (United States)

    Mende, Susanne; Royer, Loic; Herr, Alexander; Schmiedel, Janet; Deschauer, Marcus; Klopstock, Thomas; Kostic, Vladimir S; Schroeder, Michael; Reichmann, Heinz; Storch, Alexander

    2011-07-01

    The heteroplasmic mitochondrial DNA (mtDNA) mutation A3243G causes the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome as one of the most frequent mitochondrial diseases. The process of reconfiguration of nuclear gene expression profile to accommodate cellular processes to the functional status of mitochondria might be a key to MELAS disease manifestation and could contribute to its diverse phenotypic presentation. To determine master regulatory protein networks and disease-modifying genes in MELAS syndrome. Analyses of whole blood transcriptomes from 10 MELAS patients using a novel strategy by combining classic Affymetrix oligonucleotide microarray profiling with regulatory and protein interaction network analyses. Hierarchical cluster analysis elucidated that the relative abundance of mutant mtDNA molecules is decisive for the nuclear gene expression response. Further analyses confirmed not only transcription factors already known to be involved in mitochondrial diseases (such as TFAM), but also detected the hypoxia-inducible factor 1 complex, nuclear factor Y and cAMP responsive element-binding protein-related transcription factors as novel master regulators for reconfiguration of nuclear gene expression in response to the MELAS mutation. Correlation analyses of gene alterations and clinico-genetic data detected significant correlations between A3243G-induced nuclear gene expression changes and mutant mtDNA load as well as disease characteristics. These potential disease-modifying genes influencing the expression of the MELAS phenotype are mainly related to clusters primarily unrelated to cellular energy metabolism, but important for nucleic acid and protein metabolism, and signal transduction. Our data thus provide a framework to search for new pathogenetic concepts and potential therapeutic approaches to treat the MELAS syndrome.

  16. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function.

    Science.gov (United States)

    Rozman, Vita; Kunej, Tanja

    2018-05-10

    Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).

  17. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density.

    Science.gov (United States)

    Xiao, Su-Mei; Kung, Annie Wai Chee; Gao, Yi; Lau, Kam-Shing; Ma, Alvin; Zhang, Zhen-Lin; Liu, Jian-Min; Xia, Wiebo; He, Jin-Wei; Zhao, Lin; Nie, Min; Fu, Wei-Zhen; Zhang, Min-Jia; Sun, Jing; Kwan, Johnny S H; Tso, Gloria Hoi Wan; Dai, Zhi-Jie; Cheung, Ching-Lung; Bow, Cora H; Leung, Anskar Yu Hung; Tan, Kathryn Choon Beng; Sham, Pak Chung

    2012-04-01

    Our previous genome-wide association study (GWAS) in a Hong Kong Southern Chinese population with extreme bone mineral density (BMD) scores revealed suggestive association with MPP7, which ranked second after JAG1 as a candidate gene for BMD. To follow-up this suggestive signal, we replicated the top single-nucleotide polymorphism rs4317882 of MPP7 in three additional independent Asian-descent samples (n= 2684). The association of rs4317882 reached the genome-wide significance in the meta-analysis of all available subjects (P(meta)= 4.58 × 10(-8), n= 4204). Site heterogeneity was observed, with a larger effect on spine than hip BMD. Further functional studies in a zebrafish model revealed that vertebral bone mass was lower in an mpp7 knock-down model compared with the wide-type (P= 9.64 × 10(-4), n= 21). In addition, MPP7 was found to have constitutive expression in human bone-derived cells during osteogenesis. Immunostaining of murine MC3T3-E1 cells revealed that the Mpp7 protein is localized in the plasma membrane and intracytoplasmic compartment of osteoblasts. In an assessment of the function of identified variants, an electrophoretic mobility shift assay demonstrated the binding of transcriptional factor GATA2 to the risk allele 'A' but not the 'G' allele of rs4317882. An mRNA expression study in human peripheral blood mononuclear cells confirmed that the low BMD-related allele 'A' of rs4317882 was associated with lower MPP7 expression (P= 9.07 × 10(-3), n= 135). Our data suggest a genetic and functional association of MPP7 with BMD variation.

  18. Correlation of microRNA levels during hypoxia with predicted target mRNAs through genome-wide microarray analysis

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-03-01

    Full Text Available Abstract Background Low levels of oxygen in tissues, seen in situations such as chronic lung disease, necrotic tumors, and high altitude exposures, initiate a signaling pathway that results in active transcription of genes possessing a hypoxia response element (HRE. The aim of this study was to investigate whether a change in miRNA expression following hypoxia could account for changes in the cellular transcriptome based on currently available miRNA target prediction tools. Methods To identify changes induced by hypoxia, we conducted mRNA- and miRNA-array-based experiments in HT29 cells, and performed comparative analysis of the resulting data sets based on multiple target prediction algorithms. To date, few studies have investigated an environmental perturbation for effects on genome-wide miRNA levels, or their consequent influence on mRNA output. Results Comparison of miRNAs with predicted mRNA targets indicated a lower level of concordance than expected. We did, however, find preliminary evidence of combinatorial regulation of mRNA expression by miRNA. Conclusion Target prediction programs and expression profiling techniques do not yet adequately represent the complexity of miRNA-mediated gene repression, and new methods may be required to better elucidate these pathways. Our data suggest the physiologic impact of miRNAs on cellular transcription results from a multifaceted network of miRNA and mRNA relationships, working together in an interconnected system and in context of hundreds of RNA species. The methods described here for comparative analysis of cellular miRNA and mRNA will be useful for understanding genome wide regulatory responsiveness and refining miRNA predictive algorithms.

  19. Characterization and functional inferences of a genome-wide DNA methylation profile in the loin ( muscle of swine

    Directory of Open Access Journals (Sweden)

    Woonsu Kim

    2018-01-01

    Full Text Available Objective DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi muscle (LDM of swine. Methods A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates. The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR were identified from methylated regions that overlapped at least two samples. Results Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47, indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7% of PMR was present in the repeat regions, followed by introns (21.5%. The highest conservation of PMR was found in CpG islands (12.1%. These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways. Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

  20. Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans.

    Science.gov (United States)

    Carty, Cara L; Keene, Keith L; Cheng, Yu-Ching; Meschia, James F; Chen, Wei-Min; Nalls, Mike; Bis, Joshua C; Kittner, Steven J; Rich, Stephen S; Tajuddin, Salman; Zonderman, Alan B; Evans, Michele K; Langefeld, Carl D; Gottesman, Rebecca; Mosley, Thomas H; Shahar, Eyal; Woo, Daniel; Yaffe, Kristine; Liu, Yongmei; Sale, Michèle M; Dichgans, Martin; Malik, Rainer; Longstreth, W T; Mitchell, Braxton D; Psaty, Bruce M; Kooperberg, Charles; Reiner, Alexander; Worrall, Bradford B; Fornage, Myriam

    2015-08-01

    The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African Americans, despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population Genome-Wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations. Using METAL, we conducted meta-analyses of GWAS in 14 746 African Americans (1365 ischemic and 1592 total stroke cases) from COMPASS, and tested genetic variants with Pstroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations. The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613; P=3.9×10(-8)) in African Americans. Nominal associations (Pstroke were observed for 18 variants in or near genes implicated in cell cycle/mRNA presplicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, and IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B, and ZFHX3) were nominally associated (Pstroke in COMPASS. We identified a novel genetic variant associated with total stroke in African Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations. © 2015 American Heart Association, Inc.

  1. High resolution genome-wide analysis of chromosomal alterations in Burkitt's lymphoma.

    Directory of Open Access Journals (Sweden)

    Saloua Toujani

    Full Text Available Additional chromosomal abnormalities are currently detected in Burkitt's lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitt's lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs2 Mb, gains were found in 1q (12/27, 13q (7/27, 7q (6/27, 8q(4/27, 2p (3/27, 11q (2/27 and 15q (2/27. Losses were found in 3p (5/27, 4p (4/27, 4q (4/27, 9p (4/27, 13q (4/27, 6p (3/27, 17p (3/27, 6q (2/27,11pterp13 (2/27 and 14q12q21.3 (2/27. Twenty one minimal critical regions (MCR, (range 0.04-71.36 Mb, were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3 harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies.

  2. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae).

    Science.gov (United States)

    Cheng, Tingcai; Lin, Ping; Huang, Lulin; Wu, Yuqian; Jin, Shengkai; Liu, Chun; Xia, Qingyou

    2016-01-01

    Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host-pathogen interaction. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding.

    Science.gov (United States)

    He, Jianbo; Meng, Shan; Zhao, Tuanjie; Xing, Guangnan; Yang, Shouping; Li, Yan; Guan, Rongzhan; Lu, Jiangjie; Wang, Yufeng; Xia, Qiuju; Yang, Bing; Gai, Junyi

    2017-11-01

    The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was

  4. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-01-01

    to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread

  5. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    Directory of Open Access Journals (Sweden)

    Jibin Liu

    2016-08-01

    Full Text Available Riemerella anatipestifer (RA belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05. Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA.

  6. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    Science.gov (United States)

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  7. A genome-wide association meta-analysis identifies new childhood obesity loci

    NARCIS (Netherlands)

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, Andre; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M. A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O.; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G.; van Duijn, Cornelia M.; van der Valk, Ralf J. P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, W. James; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Magi, Reedik; Boreham, Colin A. G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimaki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of

  8. A genome-wide association meta-analysis identifies new childhood obesity loci

    NARCIS (Netherlands)

    Bradfield, J.P.; Taal, H.R.; Timpson, N.J.; Scherag, A.; Lecoeur, C.; Warrington, N.M.; Hypponen, E.; Holst, C.; Valcarcel, B.; Thiering, E.; Salem, R.M.; Schumacher, F.R.; Cousminer, D.L.; Sleiman, P.M.A.; Zhao, J.; Berkowitz, R.I.; Vimaleswaran, K.S.; Jarick, I.; Pennell, C.E.; Evans, D.M.; St Pourcain, B.; Berry, D.J.; Mook-Kanamori, D.O.; Hofman, A.; Rivadeneira, F.; Uitterlinden, A.G.; van Duijn, C.M.; van der Valk, R.J.P.; de Jongste, J.C.; Postma, D.S.; Boomsma, D.I.; Gauderman, W.J.; Hassanein, M.T.; Lindgren, C.M.; Mägi, R.; Boreham, C.A.G.; Neville, C.E.; Moreno, L.A.; Elliott, P.; Pouta, A.; Hartikainen, A.-L.; Li, M.; Raitakari, O.; Lehtimäki, T.; Eriksson, J.G.; Palotie, A.; Dallongeville, J.; Das, S.; Deloukas, P.; McMahon, G.; Ring, S.M.; Kemp, J.P.; Buxton, J.L.; Blakemore, A.I.F.; Bustamante, M.; Guxens, M.; Hirschhorn, J.N.; Gillman, M.W.; Kreiner-Møller, E.; Bisgaard, H.; Gilliland, F.D.; Heinrich, J.; Wheeler, E.; Barroso, I.; O'Rahilly, S.; Meirhaeghe, A.; Sørensen, T.I.A.; Power, C.; Palmer, L.J.; Hinney, A.; Widen, E.; Farooqi, I.S.; McCarthy, M.I.; Froguel, P.; Meyre, D.; Hebebrand, J.; Järvelin, M.J.; Jaddoe, V.W.V.; Smith, G.D.; Hakonarson, H.; Grant, S.F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of

  9. Meta-analysis of genome-wide linkage studies in BMI and obesity

    NARCIS (Netherlands)

    Saunders, Catherine L.; Chiodini, Benedetta D.; Sham, Pak; Lewis, Cathryn M.; Abkevich, Victor; Adeyemo, Adebowale A.; de Andrade, Mariza; Arya, Rector; Berenson, Gerald S.; Blangero, John; Boehnke, Michael; Borecki, Ingrid B.; Chagnon, Yvon C.; Chen, Wei; Comuzzie, Anthony G.; Deng, Hong-Wen; Duggirala, Ravindranath; Feitosa, Mary F.; Froguel, Philippe; Hanson, Robert L.; Hebebrand, Johannes; Huezo-Dias, Patricia; Kissebah, Ahmed H.; Li, Weidong; Luke, Amy; Martin, Lisa J.; Nash, Matthew; Ohman, Muena; Palmer, Lyle J.; Peltonen, Leena; Perola, Markus; Price, R. Arlen; Redline, Susan; Srinivasan, Sathanur R.; Stern, Michael P.; Stone, Steven; Stringham, Heather; Turner, Stephen; Wijmenga, Cisca; Collier, David A.

    Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI-defined obesity using a nonparametric genome scan meta-analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000

  10. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE

    DEFF Research Database (Denmark)

    Valen, Eivind; Pascarella, Giovanni; Chalk, Alistair

    2009-01-01

    in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth...

  11. Genome-wide analysis of SINA family in plants and their phylogenetic relationships.

    Science.gov (United States)

    Wang, Meng; Jin, Ying; Fu, Junjie; Zhu, Yun; Zheng, Jun; Hu, Jian; Wang, Guoying

    2008-06-01

    SINA genes in plants are part of a multigene family with 5 members in Arabidopsis thaliana, 10 members in Populus trichocarpa, 6 members in Oryza sativa, at least 6 members in Zea mays and at least 1 member in Physcomitrella patens. Six members in maize were confirmed by RT-PCR. All SINAs have one RING domain and one SINA domain. These two domains are highly conserved in plants. According to the motif organization and phylogenetic tree, SINA family members were divided into 2 groups. In addition, through semi-quantitative RT-PCR analysis of maize members and Digital Northern analysis of Arabidopsis and rice members, we found that the tissue expression patterns are more diverse in monocot than in Arabidopsis.

  12. Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Tyrer, Jonathan P; Kar, Siddhartha

    2015-01-01

    PURPOSE: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. EXPERIMENTAL DESIGN: We analyzed approximately 2.8 million genotyped and imputed SNPs from the iCOGS experiment...... for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent first-line treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥ 4 cycles of paclitaxel and carboplatin...... at standard doses. We evaluated the top SNPs in 4,434 EOC patients, including patients from The Cancer Genome Atlas. In addition, we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. RESULTS: Five SNPs were significantly...

  13. Genome-wide analysis reveals the extent of EAV-HP integration in domestic chicken.

    Science.gov (United States)

    Wragg, David; Mason, Andrew S; Yu, Le; Kuo, Richard; Lawal, Raman A; Desta, Takele Taye; Mwacharo, Joram M; Cho, Chang-Yeon; Kemp, Steve; Burt, David W; Hanotte, Olivier

    2015-10-14

    EAV-HP is an ancient retrovirus pre-dating Gallus speciation, which continues to circulate in modern chicken populations, and led to the emergence of avian leukosis virus subgroup J causing significant economic losses to the poultry industry. We mapped EAV-HP integration sites in Ethiopian village chickens, a Silkie, Taiwan Country chicken, red junglefowl Gallus gallus and several inbred experimental lines using whole-genome sequence data. An average of 75.22 ± 9.52 integration sites per bird were identified, which collectively group into 279 intervals of which 5 % are common to 90 % of the genomes analysed and are suggestive of pre-domestication integration events. More than a third of intervals are specific to individual genomes, supporting active circulation of EAV-HP in modern chickens. Interval density is correlated with chromosome length (P < 2.31(-6)), and 27 % of intervals are located within 5 kb of a transcript. Functional annotation clustering of genes reveals enrichment for immune-related functions (P < 0.05). Our results illustrate a non-random distribution of EAV-HP in the genome, emphasising the importance it may have played in the adaptation of the species, and provide a platform from which to extend investigations on the co-evolutionary significance of endogenous retroviral genera with their hosts.

  14. Genome-wide analysis of codon usage bias in Bovine Coronavirus

    OpenAIRE

    Castells, Mat?as; Victoria, Mat?as; Colina, Rodney; Musto, H?ctor; Cristina, Juan

    2017-01-01

    Background Bovine coronavirus (BCoV) belong to the genus Betacoronavirus of the family Coronaviridae. BCoV are widespread around the world and cause enteric or respiratory infections among cattle, leading to important economic losses to the beef and dairy industry worldwide. To study the relation of codon usage among viruses and their hosts is essential to understand host-pathogen interaction, evasion from host?s immune system and evolution. Methods We performed a comprehensive analysis of co...

  15. Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data

    Science.gov (United States)

    Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo

    2008-02-01

    The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.

  16. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases.

    Science.gov (United States)

    Murungi, Edwin K; Kariithi, Henry M

    2017-03-21

    The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.

  18. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases

    Directory of Open Access Journals (Sweden)

    Edwin K. Murungi

    2017-03-01

    Full Text Available The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM, a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group, S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group. Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.

  19. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation

    OpenAIRE

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge

    2014-01-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories.

  20. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato

    OpenAIRE

    Xing Ding; Jinhua Li; Yu Pan; Yue Zhang; Lei Ni; Yaling Wang; Xingguo Zhang

    2018-01-01

    The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into s...

  1. Genome-wide analysis of Tol2 transposon reintegration in zebrafish

    Directory of Open Access Journals (Sweden)

    Parinov Sergey

    2009-09-01

    Full Text Available Abstract Background Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. Results We performed a large-scale enhancer trap (ET screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. Conclusion Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.

  2. Genome-wide analysis of Tol2 transposon reintegration in zebrafish.

    Science.gov (United States)

    Kondrychyn, Igor; Garcia-Lecea, Marta; Emelyanov, Alexander; Parinov, Sergey; Korzh, Vladimir

    2009-09-08

    Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.

  3. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  4. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    Directory of Open Access Journals (Sweden)

    Salcedo Mauricio

    2007-09-01

    Full Text Available Abstract Background Cervical carcinoma (CC is a leading cause of death among women worldwide. Human papilloma virus (HPV is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (at least 2-fold in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways. Conclusion This analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies.

  5. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    Science.gov (United States)

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. © 2015 S. Karger AG, Basel.

  6. Identification of the genetic and clinical characteristics of neuroblastomas using genome-wide analysis.

    Science.gov (United States)

    Uryu, Kumiko; Nishimura, Riki; Kataoka, Keisuke; Sato, Yusuke; Nakazawa, Atsuko; Suzuki, Hiromichi; Yoshida, Kenichi; Seki, Masafumi; Hiwatari, Mitsuteru; Isobe, Tomoya; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Koh, Katsuyoshi; Hanada, Ryoji; Oka, Akira; Hayashi, Yasuhide; Ohira, Miki; Kamijo, Takehiko; Nagase, Hiroki; Takimoto, Tetsuya; Tajiri, Tatsuro; Nakagawara, Akira; Ogawa, Seishi; Takita, Junko

    2017-12-08

    To provide better insight into the genetic signatures of neuroblastomas, we analyzed 500 neuroblastomas (included specimens from JNBSG) using targeted-deep sequencing for 10 neuroblastoma-related genes and SNP arrays analysis. ALK expression was evaluated using immunohistochemical analysis in 259 samples. Based on genetic alterations, the following 6 subgroups were identified: groups A ( ALK abnormalities), B (other gene mutations), C ( MYCN amplification), D (11q loss of heterozygosity [LOH]), E (at least 1 copy number variants), and F (no genetic changes). Groups A to D showed advanced disease and poor prognosis, whereas groups E and F showed excellent prognosis. Intriguingly, in group A, MYCN amplification was not a significant prognostic marker, while high ALK expression was a relevant indicator for prognosis ( P = 0.033). Notably, the co-existence of MYCN amplification and 1p LOH, and the co-deletion of 3p and 11q were significant predictors of relapse ( P = 0.043 and P = 0.040). Additionally, 6q/8p LOH and 17q gain were promising indicators of survival in patients older than 5 years, and 1p, 4p, and 11q LOH potentially contributed to outcome prediction in the intermediate-risk group. Our genetic overview clarifies the clinical impact of genetic signatures and aids in the better understanding of genetic basis of neuroblastoma.

  7. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  8. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    Science.gov (United States)

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  9. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug

  10. [Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula].

    Science.gov (United States)

    Song, Hui; Nan, Zhibiao

    2014-02-01

    WRKY gene family plays important roles in plant by involving in transcriptional regulations during various physiologically processes such as development, metabolism and responses to biotic and abiotic stresses. WRKY genes have been identified in various plants. However, only few WRKY genes in Medicago truncatula have been identified with systematic analysis and comparison. In this study, we identified 93 WRKY genes through analyses of M. truncatula genome. These genes include 19 type-I genes, 49 type II genes and 13 type-III genes, and 12 non-regular type genes. All of these genes were characterized through analyses of gene duplication, chromosomal locations, structural diversity, conserved protein motifs and phylogenetic relations. The results showed that 11 times of gene duplication event occurred in WRKY gene family involving 24 genes. WRKY genes, containing 6 gene clusters, are unevenly distributed into chromosome 1 to 6, and there is the purifying selection pressure in WRKY group III genes.

  11. Further statistical analysis for genome-wide expression evolution in primate brain/liver/fibroblast tissue

    Directory of Open Access Journals (Sweden)

    Gu Jianying

    2004-05-01

    Full Text Available Abstract In spite of only a 1-2 per cent genomic DNA sequence difference, humans and chimpanzees differ considerably in behaviour and cognition. Affymetrix microarray technology provides a novel approach to addressing a long-term debate on whether the difference between humans and chimpanzees results from the alteration of gene expressions. Here, we used several statistical methods (distance method, two-sample t-tests, regularised t-tests, ANOVA and bootstrapping to detect the differential expression pattern between humans and great apes. Our analysis shows that the pattern we observed before is robust against various statistical methods; that is, the pronounced expression changes occurred on the human lineage after the split from chimpanzees, and that the dramatic brain expression alterations in humans may be mainly driven by a set of genes with increased expression (up-regulated rather than decreased expression (down-regulated.

  12. Genome-wide expression analysis comparing hypertrophic changes in normal and dysferlinopathy mice

    Directory of Open Access Journals (Sweden)

    Yun-Sil Lee

    2015-12-01

    Full Text Available Because myostatin normally limits skeletal muscle growth, there are extensive efforts to develop myostatin inhibitors for clinical use. One potential concern is that in muscle degenerative diseases, inducing hypertrophy may increase stress on dystrophic fibers. Our study shows that blocking this pathway in dysferlin deficient mice results in early improvement in histopathology but ultimately accelerates muscle degeneration. Hence, benefits of this approach should be weighed against these potential detrimental effects. Here, we present detailed experimental methods and analysis for the gene expression profiling described in our recently published study in Human Molecular Genetics (Lee et al., 2015. Our data sets have been deposited in the Gene Expression Omnibus (GEO database (GSE62945 and are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62945. Our data provide a resource for exploring molecular mechanisms that are related to hypertrophy-induced, accelerated muscular degeneration in dysferlinopathy.

  13. Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    DEFF Research Database (Denmark)

    Fagertun, Jens

    The goal of this Ph.D. project is to present selected challenges regarding facial analysis within the fields of Human Biometrics and Human Genetics. In the course of the Ph.D. nine papers have been produced, eight of which have been included in this thesis. Three of the papers focus on face...... and gender recognition, where in the gender recognition papers the process of human perception of gender is analyzed and used to improve machine learning algorithms. One paper addresses the issues of variability in human annotation of facial landmarks, which most papers regard as a static “gold standard...... on genetic information, a new area that holds great potential. Two papers explore the connection between minor physical anomalies in the face and schizophrenic disorders. Schizophrenia is a life long disease, but early discovery and treatment can have a significant impact on the course of the disease...

  14. A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Olin K Silander

    2012-01-01

    Full Text Available Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as "phenotypic noise." In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alone.

  15. Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Emilio Gutierrez-Beltran

    2015-09-01

    Full Text Available Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN proteins (TSN1 and TSN2 are localized in cytoplasmic messenger ribonucleoprotein (mRNP complexes called stress granules (SG and processing bodies (PB under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011 [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler and TSN double knock-out (tsn1tsn2 seedlings grown under heat stress (39 °C for 40 min and control (23 °C conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522 published by Gutierrez-Beltran et al. (2015 in The Plant Cell [2].

  16. Genome-wide analysis of LTR-retrotransposons in oil palm.

    Science.gov (United States)

    Beulé, Thierry; Agbessi, Mawussé Dt; Dussert, Stephane; Jaligot, Estelle; Guyot, Romain

    2015-10-15

    The oil palm (Elaeis guineensis Jacq.) is a major cultivated crop and the world's largest source of edible vegetable oil. The genus Elaeis comprises two species E. guineensis, the commercial African oil palm and E. oleifera, which is used in oil palm genetic breeding. The recent publication of both the African oil palm genome assembly and the first draft sequence of its Latin American relative now allows us to tackle the challenge of understanding the genome composition, structure and evolution of these palm genomes through the annotation of their repeated sequences. In this study, we identified, annotated and compared Transposable Elements (TE) from the African and Latin American oil palms. In a first step, Transposable Element databases were built through de novo detection in both genome sequences then the TE content of both genomes was estimated. Then putative full-length retrotransposons with Long Terminal Repeats (LTRs) were further identified in the E. guineensis genome for characterization of their structural diversity, copy number and chromosomal distribution. Finally, their relative expression in several tissues was determined through in silico analysis of publicly available transcriptome data. Our results reveal a congruence in the transpositional history of LTR retrotransposons between E. oleifera and E. guineensis, especially the Sto-4 family. Also, we have identified and described 583 full-length LTR-retrotransposons in the Elaeis guineensis genome. Our work shows that these elements are most likely no longer mobile and that no recent insertion event has occurred. Moreover, the analysis of chromosomal distribution suggests a preferential insertion of Copia elements in gene-rich regions, whereas Gypsy elements appear to be evenly distributed throughout the genome. Considering the high proportion of LTR retrotransposon in the oil palm genome, our work will contribute to a greater understanding of their impact on genome organization and evolution

  17. Genome-wide mouse mutagenesis reveals CD45-mediated T cell function as critical in protective immunity to HSV-1.

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2013-09-01

    Full Text Available Herpe