WorldWideScience

Sample records for genome-wide deletion mutant

  1. A genome-wide screen for Schizosaccharomyces pombe deletion mutants that affect telomere length

    Institute of Scientific and Technical Information of China (English)

    Ning-Ning Liu; Tian Xu Han; Li-Lin Du; Jin-Qiu Zhou

    2010-01-01

    @@ Dear Editor, Both the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are popular model organisms, and studies using these models have provided many informative clues for solving fundamental biological questions [1], such as DNA replication,cell cycle regulation and gene transcription. Since the completion of genome sequencing of these fungi [2, 3],systematic genetic modification, e.g. gene deletion, has become possible, and genome-wide phenotypic screening for gene function has been widely carried out. For example, Askree et al. and Gatbonton et al. examined the telomere-length change in about 4 800 non-essential gene deletion mutants of S. cerevisiae, and found that about 250 genes are involved in telomere-length regulation.

  2. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Dai Wei

    2009-11-01

    Full Text Available Abstract Background The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4. Results We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. Conclusion We have undertaken a whole genome approach in order to further understand the mechanism(s regulating the cell

  3. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control, the elp3 (one of histone acetyltransferase genes deletion mutant, and the hos2 (one of histone deactylase genes deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.

  4. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana

    KAUST Repository

    Belfield, E.J.

    2012-04-12

    Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)-induced single base substitutions differed substantially from those of "background" mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations.

  5. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  6. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    Science.gov (United States)

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  7. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise;

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new...

  8. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Van Tassell, Curtis P; Sonstegard, Tad S; Liu, George E

    2014-06-01

    Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.

  9. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Jingwei Yuan

    Full Text Available Egg number (EN, egg laying rate (LR and age at first egg (AFE are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens.

  10. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Science.gov (United States)

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  11. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Nielsen, Michael Lynge; Nielsen, Jakob Blæsbjerg; Rank, Christian

    2011-01-01

    Fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. To understand this complexity, a holistic approach is necessary. We initiated such an analysis in the important model fungus Aspergillus nidulans by systemat...... the current understanding of the biosynthetic pathways leading to arugosins and violaceols. We expect that the library will be an important resource towards a systemic understanding of polyketide production in A. nidulans.......Fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. To understand this complexity, a holistic approach is necessary. We initiated such an analysis in the important model fungus Aspergillus nidulans...... by systematically deleting all 32 individual genes encoding polyketide synthases. Wild-type and all mutant strains were challenged on different complex media to provoke induction of the secondary metabolism. Screening of the mutant library revealed direct genetic links to two austinol meroterpenoids and expanded...

  12. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors

    NARCIS (Netherlands)

    Steinhart, Zachary; Pavlovic, Zvezdan; Chandrashekhar, Megha; Hart, Traver; Wang, Xiaowei; Zhang, Xiaoyu; Robitaille, Mélanie; Brown, Kevin R; Jaksani, Sridevi; Overmeer, René; Boj, Sylvia F; Adams, Jarrett; Pan, James; Clevers, Hans; Sidhu, Sachdev; Moffat, Jason; Angers, Stéphane

    2016-01-01

    Forward genetic screens with CRISPR-Cas9 genome editing enable high-resolution detection of genetic vulnerabilities in cancer cells. We conducted genome-wide CRISPR-Cas9 screens in RNF43-mutant pancreatic ductal adenocarcinoma (PDAC) cells, which rely on Wnt signaling for proliferation. Through thes

  13. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue.

    Science.gov (United States)

    Palace, Samantha G; Proulx, Megan K; Lu, Shan; Baker, Richard E; Goguen, Jon D

    2014-08-19

    knowledge of this aspect of bacterial biology is important as a potential pathway to the development of novel therapeutics. Yersinia pestis, the plague bacterium, is highly virulent due to its rapid dissemination and growth in deep tissues, making it a good model for discovering bacterial adaptations that promote rapid growth during infection. Using Tn-seq, a genome-wide fitness profiling technique, we identified several functions required for fitness of Y. pestis in vivo that were not previously known to be important. Most of these functions are needed to acquire or synthesize nutrients. Interference with these critical nutrient acquisition pathways may be an effective strategy for designing novel antibiotics and vaccines. Copyright © 2014 Palace et al.

  14. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium.

    Directory of Open Access Journals (Sweden)

    Catherine Cheng

    Full Text Available The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA deletion mutant of Citrobacter rodentium and found it to be attenuated for virulence in mice, its natural host. This attenuation was dependent on PhoB or PhoB-regulated gene(s because a phoB mutation restored virulence for mice to the pstCA mutant. To investigate how downstream genes may contribute to the virulence of C. rodentium, we used microarray analysis to investigate global gene expression of C. rodentium strain ICC169 and its isogenic pstCA mutant when grown in phosphate-rich medium. Overall 323 genes of the pstCA mutant were differentially expressed by at least 1.5-fold compared to the wild-type C. rodentium. Of these 145 were up-regulated and 178 were down-regulated. Differentially expressed genes included some involved in phosphate homoeostasis, cellular metabolism and protein metabolism. A large number of genes involved in stress responses and of unknown function were also differentially expressed, as were some virulence-associated genes. Up-regulated virulence-associated genes in the pstCA mutant included that for DegP, a serine protease, which appeared to be directly regulated by PhoB. Down-regulated genes included those for the production of the urease, flagella, NleG8 (a type III-secreted protein and the tad focus (which encodes type IVb pili in Yersinia enterocolitica. Infection studies using C57/BL6 mice showed that DegP and NleG8 play a role in bacterial virulence. Overall, our study provides evidence that Pho is a global regulator of gene expression in C. rodentium and indicates the presence of at least two previously unrecognized

  15. Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea

    Science.gov (United States)

    Das, Shouvik; Upadhyaya, Hari D.; Srivastava, Rishi; Bajaj, Deepak; Gowda, C.L.L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We developed 21,499 genome-wide insertion–deletion (InDel) markers (2- to 54-bp in silico fragment length polymorphism) by comparing the genomic sequences of four (desi, kabuli and wild C. reticulatum) chickpea [Cicer arietinum (L.)] accessions. InDel markers showing 2- to 6-bp fragment length polymorphism among accessions were abundant (76.8%) in the chickpea genome. The physically mapped 7,643 and 13,856 markers on eight chromosomes and unanchored scaffolds, respectively, were structurally and functionally annotated. The 4,506 coding (23% large-effect frameshift mutations) and regulatory InDel markers were identified from 3,228 genes (representing 11.7% of total 27,571 desi genes), suggesting their functional relevance for trait association/genetic mapping. High amplification (97%) and intra-specific polymorphic (60–83%) potential and wider genetic diversity (15–89%) were detected by genome-wide 6,254 InDel markers among desi, kabuli and wild accessions using even a simpler cost-effective agarose gel-based assay. This signifies added advantages of this user-friendly genetic marker system for manifold large-scale genotyping applications in laboratories with limited infrastructure and resources. Utilizing 6,254 InDel markers-based high-density (inter-marker distance: 0.212 cM) inter-specific genetic linkage map (ICC 4958 × ICC 17160) of chickpea as a reference, three major genomic regions harboring six flowering and maturity time robust QTLs (16.4–27.5% phenotypic variation explained, 8.1–11.5 logarithm of odds) were identified. Integration of genetic and physical maps at these target QTL intervals mapped on three chromosomes delineated five InDel markers-containing candidate genes tightly linked to the QTLs governing flowering and maturity time in chickpea. Taken together, our study demonstrated the practical utility of developing and high-throughput genotyping of such beneficial InDel markers at a genome-wide scale to expedite genomics

  16. Genome wide transcription profiling of the effects of overexpression of Spc1 and its kinase dead mutant in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Madhurima Paul

    2015-12-01

    Full Text Available The Mitogen Activated Protein Kinase Spc1 (p38 homolog is a major player in stress responses of the unicellular fission yeast Schizosaccharomyces pombe. This pathway is therefore also known as the SAPK or Stress Activated Protein Kinase pathway. Spc1 is a known activator of transcription factors that control gene expression in response to extracellular stimuli and is also known to interact with the translation machinery [1–8]. Spc1 has also been implicated in cell cycle regulation and meiosis in S. pombe [1,2,9,10]. Given its documented role in modulating gene expression, we performed a microarray based identification of genes whose expression in unperturbed cells (absence of stress stimuli is dependent on Spc1. For this we overexpressed Spc1 in S. pombe. Additionally we also overexpressed Spc1K49R (a kinase dead mutant of Spc1 to understand the contribution of Spc1's kinase activity towards the observed gene expression changes. The microarray data are available at NCBI's Gene Expression Omnibus (GEO Series (accession number GSE73618. Here we report the annotation of the genes whose expression get altered by Spc1/Spc1K49R overexpression and also provide details related to sample processing and statistical analysis of our microarray data.

  17. Functional dissection of regulatory models using gene expression data of deletion mutants.

    Directory of Open Access Journals (Sweden)

    Jin'e Li

    Full Text Available Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN. We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.

  18. Genome-wide Expression Profiling in Seedlings of the Arabidopsis Mutant uro that is Defective in the Secondary Cell Wall Formation

    Institute of Scientific and Technical Information of China (English)

    Zheng Yuan; Xuan Yao; Dabing Zhang; Yue Sun; Hai Huang

    2007-01-01

    Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness.Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively.On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy.Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood.Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes.Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth.We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant,upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem.Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem.We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes.Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling,cell division and plant secondary tissue growth.These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.

  19. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  20. Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

    NARCIS (Netherlands)

    Heidenblad, M.; Schoenmakers, E.F.P.M.; Jonson, T.; Gorunova, L.; Veltman, J.A.; Geurts van Kessel, A.H.M.; Hoglund, M.

    2004-01-01

    Pancreatic carcinomas display highly complex chromosomal abnormalities, including many structural and numerical aberrations. There is ample evidence indicating that some of these abnormalities, such as recurrent amplifications and homozygous deletions, contribute to tumorigenesis by altering express

  1. Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data

    Directory of Open Access Journals (Sweden)

    Marenne Gaëlle

    2012-07-01

    Full Text Available Abstract Background Structural variations such as copy number variants (CNV influence the expression of different phenotypic traits. Algorithms to identify CNVs through SNP-array platforms are available. The ability to evaluate well-characterized CNVs such as GSTM1 (1p13.3 deletion provides an important opportunity to assess their performance. Results 773 cases and 759 controls from the SBC/EPICURO Study were genotyped in the GSTM1 region using TaqMan, Multiplex Ligation-dependent Probe Amplification (MLPA, and Illumina Infinium 1 M SNP-array platforms. CNV callings provided by TaqMan and MLPA were highly concordant and replicated the association between GSTM1 and bladder cancer. This was not the case when CNVs were called using Illumina 1 M data through available algorithms since no deletion was detected across the study samples. In contrast, when the Log R Ratio (LRR was used as a continuous measure for the 5 probes contained in this locus, we were able to detect their association with bladder cancer using simple regression models or more sophisticated methods such as the ones implemented in the CNVtools package. Conclusions This study highlights an important limitation in the CNV calling from SNP-array data in regions of common aberrations and suggests that there may be added advantage for using LRR as a continuous measure in association tests rather than relying on calling algorithms.

  2. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  3. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    Science.gov (United States)

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening.

  4. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting...... of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...

  5. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Directory of Open Access Journals (Sweden)

    Zhang Dake

    2012-12-01

    Full Text Available Abstract Background Hepatitis B virus (HBV, because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023. In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007. Particularly, preS2 deletions were associated with the usage of nucleos(tide analog therapy (Fisher exact test, P = 0.023. Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that

  6. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    Directory of Open Access Journals (Sweden)

    Yuzy Matsuo

    Full Text Available Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5. Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.

  7. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe : 5. Characterization of mitochondrial deletion mutants.

    Science.gov (United States)

    Ahne, F; Merlos-Lange, A M; Lang, B F; Wolf, K

    1984-09-01

    The three mutator strains ana (r)-8, ana (r)-14, and diu (r)-301 were shown to produce respiratory deficient mutants at different rates. The frequency of respiratory deficient mutants in a culture could be increased by adding ethidium bromide. According to their cytochrome spectra and enzymatic activities they form three classes, namely mutants defective in cytochrome oxidase, in cytochrome b, and in both cytochromes. By restriction enzyme analysis of mitochondrial DNA from about 100 mutants, 22 deletion mutants were identified. The deletions, ranging from 50 to 1,500 base pairs were physically mapped. Deletions were localized in the genes coding for subunit 1 of cytochrome oxidase with its two introns, within the cytochrome b gene and its intron, and within the genes for subunits 2 and 3 of cytochrome oxidase. In several cases, where the physical mapping yielded ambiguous results, pairwise genetic crosses ruled out an overlap between two neighbouring deletions.Using these mitochondrial deletion mutants as tester strains, it was shown that only tetrad analysis and chemical haploidization, but not mitotic segregation analysis, allows a decision between chromosomal and mitochondrial inheritance of respiratory deficiency in Schizosaccharomyces pombe.

  8. A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion

    Institute of Scientific and Technical Information of China (English)

    Mika Hayashi-Tsugane; Masahiko Maekawa; Qian Qian; Hirokazu Kobayashi; Shigeru Iida; Kazuo Tsugane

    2011-01-01

    We have isolated a recessive rice mutant,designated as indeterminate growth(ing),which displays creeping and apparent heterochronic phenotypes in the vegetative period with lanky and winding culms.Rough mapping and subsequent molecular characterization revealed that the ing mutant carries a large deletion,which corresponds to a 103 kb region in the Nipponbare genome,containing nine annotated genes on chromosome 3.Of these annotated genes,the SLRI gene encoding a DELLA protein is the only one that is well characterized in its function,and its null mutation,which is caused by a single base deletion in the middle of the intronless SLR1 gene,confers a slender phenotype that bears close resemblance to the ing mutant phenotype.The primary cause of the ing mutant phenotype is the deletion of the SLR1 gene,and the ing mutant appears to be the first characterized mutant having the entire SLRI sequence deleted.Our results also suggest that the deleted region of 103 kb does not contain an indispensable gene,whose dysfunction must result in a lethal phenotype.

  9. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Directory of Open Access Journals (Sweden)

    Guocai Li

    Full Text Available Neisseria gonorrhoeae (N. gonorrhoeae outer membrane protein reduction modifiable protein (Rmp has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  10. Antibodies with higher bactericidal activity induced by a Neisseria gonorrhoeae Rmp deletion mutant strain.

    Science.gov (United States)

    Li, Guocai; Xie, Rushan; Zhu, Xiaoping; Mao, Yanli; Liu, Shuangxi; Jiao, Hongmei; Yan, Hua; Xiong, Kun; Ji, Mingchun

    2014-01-01

    Neisseria gonorrhoeae (N. gonorrhoeae) outer membrane protein reduction modifiable protein (Rmp) has strong immunogenicity. However, anti-Rmp antibodies block rather than preserve the antibacterial effects of protective antibodies, which hampers the development of vaccines for gonococcal infections. We herein constructed an Rmp deletion mutant strain of N. gonorrhoeae by gene homologous recombination. The 261-460 nucleotide residues of Rmp gene amplified from N. gonorrhoeae WHO-A strain were replaced with a kanamycin-resistant Kan gene amplified from pET-28a. The resultant hybridized DNA was transformed into N. gonorrhoeae WHO-A strain. PCR was used to screen the colonies in which wild-type Rmp gene was replaced with a mutant gene fragment. Western blotting revealed that the Rmp deletion mutant strain did not express Rmp protein. Rmp deletion did not alter the morphological and Gram staining properties of the mutant strain that grew slightly more slowly than the wild-type one. Rmp gene mutated stably throughout 25 generations of passage. Antibody-mediated complement-dependent cytotoxicity assay indicated that the antibodies induced by the mutant strain had evidently higher bactericidal activities than those induced by the wild-type strain. Further modification of the Rmp deletion mutant strain is still required in the development of novel live attenuated vaccines for gonorrhea by Opa genes deletion or screening of phenotypic variant strains that do not express Opa proteins.

  11. Deletion and interallelic complementation analysis of Steel mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Cleveland, L.S.; Copeland, N.G. [NCI-Frederick Cancer Research and Development Center, MD (United States)] [and others

    1996-03-01

    Mutations at the Steel (Sl) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously have been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to date contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggests that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed. 39 refs., 3 figs., 3 tabs.

  12. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding......In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... decreased expression of NCE103, encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity...

  13. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, L T; Ladefoged, S; Birkelund, S;

    1995-01-01

    characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...

  14. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants.

    Science.gov (United States)

    Quivey, R G; Grayhack, E J; Faustoferri, R C; Hubbard, C J; Baldeck, J D; Wolf, A S; MacGilvray, M E; Rosalen, P L; Scott-Anne, K; Santiago, B; Gopal, S; Payne, J; Marquis, R E

    2015-12-01

    A collection of tagged deletion mutant strains was created in Streptococcus mutans UA159 to facilitate investigation of the aciduric capability of this oral pathogen. Gene-specific barcoded deletions were attempted in 1432 open reading frames (representing 73% of the genome), and resulted in the isolation of 1112 strains (56% coverage) carrying deletions in distinct non-essential genes. As S. mutans virulence is predicated upon the ability of the organism to survive an acidic pH environment, form biofilms on tooth surfaces, and out-compete other oral microflora, we assayed individual mutant strains for the relative fitness of the deletion strain, compared with the parent strain, under acidic and oxidative stress conditions, as well as for their ability to form biofilms in glucose- or sucrose-containing medium. Our studies revealed a total of 51 deletion strains with defects in both aciduricity and biofilm formation. We have also identified 49 strains whose gene deletion confers sensitivity to oxidative damage and deficiencies in biofilm formation. We demonstrate the ability to examine competitive fitness of mutant organisms using the barcode tags incorporated into each deletion strain to examine the representation of a particular strain in a population. Co-cultures of deletion strains were grown either in vitro in a chemostat to steady-state values of pH 7 and pH 5 or in vivo in an animal model for oral infection. Taken together, these data represent a mechanism for assessing the virulence capacity of this pathogenic microorganism and a resource for identifying future targets for drug intervention to promote healthy oral microflora.

  15. Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

    Science.gov (United States)

    Yurgel, Svetlana N; Mortimer, Michael W; Rice, Jennifer T; Humann, Jodi L; Kahn, Michael L

    2013-03-01

    Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.

  16. Deletion mutants of region E1 a of AD12 E1 plasmids: Effect on oncogenic transformation

    NARCIS (Netherlands)

    Bos, J.L.; Jochemsen, A.G.; Bernards, R.A.; Schrier, P.I.; Ormondt, H. van; Eb, A.J. van der

    1983-01-01

    Plasmids containing the El region of Ad12 DNA can transform certain rodent cells into oncogenic cells. To study the role of the Ela subregion in the process of oncogenic transformation, Ad12 region El mutants carrying deletions in the Ela region were constructed. Deletion mutants pR7 and pR8 affect

  17. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

    Science.gov (United States)

    Shirasawa, Kenta; Hirakawa, Hideki; Nunome, Tsukasa; Tabata, Satoshi; Isobe, Sachiko

    2016-01-01

    Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.

  18. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation.

  19. Case history and genome-wide scans for copy number variants in a family with patient having 15q11.1-q11.2 duplication and 22q11.2 deletion, and schizophrenia.

    Science.gov (United States)

    Takahashi, Sakae; Suzuki, Takahiro; Nakamura-Tomizuka, Sakura; Osaki, Koichi; Sotome, Yuta; Sagawa, Tomoaki; Uchiyama, Makoto

    2015-06-01

    Many studies have indicated that chromosomes 15q11 and 22q11 may be associated with the genetic etiologies of schizophrenia. We have followed an adult schizophrenia case with 15q11.1-q11.2 duplication and 22q11.2 deletion. Here we report his clinical history, and copy number variants (CNVs) identified by microarray and real-time PCR in the patient and his parents. This is the first report describing a detailed phenotype of an adult schizophrenic case with both 15q11 and 22q11 CNVs as revealed by novel and trustworthy technologies. Subjects were a 33-year-old male patient with 15q11 and 22q11 CNVs, and his normal parents. He fulfilled the DSM-IV criteria for schizophrenia at age 18 years. He was also diagnosed with 22q11.2 deletion syndrome by fluorescence in situ hybridization (FISH) at age 18 years. To search for CNVs in more detail, whole-genome array-CGH analyses including ∼ 420,000 probes were carried out in the patient and his parents. For validations of the CNVs detected by array-CGH, real-time PCR analyses of these CNVs were performed. The patient had two disease-specific CNVs, 15q11.1-q11.2 duplication (∼ 2.7 Mb) and 22q11.21 deletion (∼ 2.9 Mb). These two regions are important for the development of schizophrenia, and this patient had shown symptoms of schizophrenia. Thus, the two areas may contain causal genes for schizophrenia. © 2015 Wiley Periodicals, Inc.

  20. Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available We have been studying the action mechanisms of valproic acid (VPA in fission yeast Schizosaccharomyces pombe by developing a genetic screen for mutants that show hypersensitivity to VPA. In the present study, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 148 deletion strains to be VPA sensitive. Of the 148 strains, 93 strains also showed sensitivity to another aliphatic acids HDAC inhibitor, sodium butyrate (SB, and 55 strains showed sensitivity to VPA but not to SB. Interestingly, we found that both VPA and SB treatment induced a marked increase in the transcription activity of Atf1 in wild-type cells. However, in clr6-1, a mutant allele the clr6(+ gene encoding class I HDAC, neither VPA- nor SB induced the activation of Atf1 transcription activity. We also found that VPA, but not SB, caused an increase in cytoplasmic Ca(2+ level. We further found that the cytoplasmic Ca(2+ increase was caused by Ca(2+ influx from extracellular medium via Cch1-Yam8 channel complex. Altogether, our present study indicates that VPA and SB play similar but distinct roles in multiple physiological processes in fission yeast.

  1. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-01-01

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement...

  2. [Repression of the enzyme inducible syntheses in Escherichia coli K12 mutant with a deleted ptsH gene].

    Science.gov (United States)

    Gershanovich, V N; Il'ina, T S; Rusina, O Iu; Iurovitskaia, N V; Bol'shakova, T N

    1977-01-01

    The genome of lambda phage with thermosensitive repressor was integrated into the pts region of the E. coli chromosome. Such a lysogenic culture behaves as a pts mutant at 30 degrees. Heating of cells of this strain leads to the induction of lambda prophage and formation of deletions in the pts region. A mutant with a deletion covering ptsH gene was isolated after prophage induction. The deletion nature of pts mutation was confirmed in genetic and biochemical experiments. It was shown that the deletion is small and does not involve ptsI and lig genes. The isolated deltaptsH mutant possesses all characteristics of pts mutants: pleiotropic impairment of transport and utilization of a number of carbohydrates, repression of the enzyme inducible synthesis and resistance to catabolite repression with glucose. These data (together with earlier ones) allow us to conclude that the phosphorylated form of HPr is involved (in direct of indirect manner/ in activation of DNA transcription.

  3. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Lüddeke Frauke

    2012-09-01

    Full Text Available Abstract Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S-(+-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes

  4. Construction and characterization of partially ntrC-deleted mutants in Alcaligenes faecalis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the effect of ntrC gene product on the expression and regulation of other important nitrogen-fixing genes in Alcaligenes faecalis, partially ntrC-deleted mutants of A. faecalis have been generated. To start with, the ntrC gene of A. faecalis was cloned into a suicide plasmid pSUP202 to create a recombinant plasmid pSUM1. The ntrC gene in pSUM1 was then replaced by a lacZ-Kmr fragment resulted in the generation of a plasmid pSUM2. The lacZ fragment in pSUM2 was further removed and a plasmid pSUM3 produced. As a second step, the plasmid pSUM2 or pSUM3 was introduced into the wild type of A. faecalis A1501 by conjugation and two partially ntrC-deleted mutants A15CM1 (ntrC∷lacZ) and A15CM2 (ntrC-) were obtained. To understand the regulatory effect of the NtrC on the expression of nifH and nifA, a nifH-lacZ gene or a nifA-lacZ gene was introduced into the ntrC- mutant by conjugation. The results indicated that: (ⅰ) although the ntrC- mutant was nif + , its nitrogen fixation activity was only 20% that of the wild type; (ⅱ) the ntrC- mutant failed to grow on the medium containing nitrate as a sole nitrogen source; (ⅲ) the regulation of ntrC gene expression did not require its own product; (ⅳ) the expression of nifH in A . faecalis was positively regulated by the ntrC. Deletion of the ntrC resulted in the reduction of nifH expression or even totally inactivated nitrogen fixation; (ⅴ) there was no obvious influence on the expression of nifA in A. faecalis if the ntrC gene was deleted.

  5. The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant.

    Science.gov (United States)

    Li, Xu; Bergelson, Joy; Chapple, Clint

    2010-01-01

    Sinapoylmalate is the major sinapate ester found in leaves of Arabidopsis thaliana, where it plays an important role in UV-B protection. Metabolic profiling of rosette leaves from 96 Arabidopsis accessions revealed that the Pna-10 accession accumulates sinapoylglucose instead of sinapoylmalate. This unique leaf sinapate ester profile is similar to that of the previously characterized sinapoylglucose accumulator1 (sng1) mutants. SNG1 encodes sinapoylglucose:malate sinapoyltransferase (SMT), a serine carboxypeptidase-like (SCPL) enzyme that catalyzes the conversion of sinapoylglucose to sinapoylmalate. In the reference Columbia genome, the SNG1 gene is located in a cluster of five SCPL genes on Chromosome II. PCR and sequencing analysis of the same genomic region in the Pna-10 accession revealed a 13-kb deletion that eliminates the SNG1 gene (At2g22990) and the gene encoding sinapoylglucose:anthocyanin sinapoyltransferase (SAT) (At2g23000). In addition to its sinapoylmalate-deficient phenotype, and consistent with the loss of SAT, Pna-10 is unable to accumulate sinapoylated anthocyanins. Interestingly, the Pna-17 accession, collected from the same location as Pna-10, has no such deletion. Further analysis of 135 lines collected from the same location as Pna-10 and Pna-17 revealed that four more lines contain the deletion found in Pna-10 accession, suggesting that either the deletion found in Pna-10 is a recent event that has not yet been eliminated through selection or that sinapoylmalate is dispensable for the growth of Arabidopsis under field conditions.

  6. Phenotype profiling of single gene deletion mutants of E. coli using Biolog technology.

    Science.gov (United States)

    Tohsato, Yukako; Mori, Hirotada

    2008-01-01

    Phenotype MicroArray (PM) technology is high-throughput phenotyping system and is directly applicable to assay the effects of genetic changes in cells. In this study, we performed comprehensive PM analysis using single gene deletion mutants of central metabolic pathway and related genes. To elucidate the structure of central metabolic networks in Escherichia coli K-12, we focused 288 different PM conditions of carbon and nitrogen sources and performed bioinformatic analysis. For data processing, we employed noise reduction procedures. The distance between each of the mutants was defined by Manhattan distance and agglomerative Ward's hierarchical method was applied for clustering analysis. As a result, five clusters were revealed which represented to activate or repress cellular respiratory activities. Furthermore, the results might suggest that Glyceraldehyde-3P plays a key role as a molecular switch of central metabolic network.

  7. Inbreeding in genome-wide selection

    NARCIS (Netherlands)

    Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A.

    2007-01-01

    Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) selection, which increased genetic gain by increasing accuracy of evaluation have also led to an increased rate of inbreeding per generation (¿FG). This is not necessarily the case with genome-wide selection, which

  8. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    Science.gov (United States)

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria.

  9. Selection of Mycoplasma hominis PG21 deletion mutants by cultivation in the presence of monoclonal antibody 552

    DEFF Research Database (Denmark)

    Jensen, Lise Torp; Ladefoged, Søren; Birkelund, Svend

    1995-01-01

    Three mutants of Mycoplasma hominis PG21 were isolated and shown to contain alterations in the size of a repeat-containing gene encoding a surface-localized 135-kDa antigen designated Lmp1. The mutants were isolated by cultivating M. hominis for a 3-month period in the presence of Lmp1-specific...... characterized. The mutants showed deletions of a various number of repeats. The deletions were accompanied by a decrease in size of the proteins. With increasing size of deletions, agglutination and growth inhibition by MAb 552 became less pronounced. Spontaneous aggregation of the mutant M. hominis cells...... in culture medium was, however, increased, indicating that the repeated elements may be of importance for repulsion of the cells....

  10. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The Varicella Zoster Virus (VZV is a ubiquitous human alpha-herpesvirus that is the causative agent of chicken pox and shingles. Although an attenuated VZV vaccine (v-Oka has been widely used in children in the United States, chicken pox outbreaks are still seen, and the shingles vaccine only reduces the risk of shingles by 50%. Therefore, VZV still remains an important public health concern. Knowledge of VZV replication and pathogenesis remains limited due to its highly cell-associated nature in cultured cells, the difficulty of generating recombinant viruses, and VZV's almost exclusive tropism for human cells and tissues. In order to circumvent these hurdles, we cloned the entire VZV (p-Oka genome into a bacterial artificial chromosome that included a dual-reporter system (GFP and luciferase reporter genes. We used PCR-based mutagenesis and the homologous recombination system in the E. coli to individually delete each of the genome's 70 unique ORFs. The collection of viral mutants obtained was systematically examined both in MeWo cells and in cultured human fetal skin organ samples. We use our genome-wide deletion library to provide novel functional annotations to 51% of the VZV proteome. We found 44 out of 70 VZV ORFs to be essential for viral replication. Among the 26 non-essential ORF deletion mutants, eight have discernable growth defects in MeWo. Interestingly, four ORFs were found to be required for viral replication in skin organ cultures, but not in MeWo cells, suggesting their potential roles as skin tropism factors. One of the genes (ORF7 has never been described as a skin tropic factor. The global profiling of the VZV genome gives further insights into the replication and pathogenesis of this virus, which can lead to improved prevention and therapy of chicken pox and shingles.

  11. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    Science.gov (United States)

    Tai, Siew Leng; Snoek, Ishtar; Luttik, Marijke A. H.; Almering, Marinka J. H.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2007-01-01

    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies. PMID:17322208

  12. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  13. Genome-wide identification of genes essential for the survival of Streptococcus pneumoniae in human saliva.

    Directory of Open Access Journals (Sweden)

    Lilly M Verhagen

    Full Text Available Since Streptococcus pneumoniae transmits through droplet spread, this respiratory tract pathogen may be able to survive in saliva. Here, we show that saliva supports survival of clinically relevant S. pneumoniae strains for more than 24 h in a capsule-independent manner. Moreover, saliva induced growth of S. pneumoniae in growth-permissive conditions, suggesting that S. pneumoniae is well adapted for uptake of nutrients from this bodily fluid. By using Tn-seq, a method for genome-wide negative selection screening, we identified 147 genes potentially required for growth and survival of S. pneumoniae in saliva, among which genes predicted to be involved in cell envelope biosynthesis, cell transport, amino acid metabolism, and stress response predominated. The Tn-seq findings were validated by testing a panel of directed gene deletion mutants for their ability to survive in saliva under two testing conditions: at room temperature without CO2, representing transmission, and at 37 °C with CO2, representing in-host carriage. These validation experiments confirmed that the plsX gene and the amiACDEF and aroDEBC operons, involved in respectively fatty acid metabolism, oligopeptide transport, and biosynthesis of aromatic amino acids play an important role in the growth and survival of S. pneumoniae in saliva at 37 °C. In conclusion, this study shows that S. pneumoniae is well-adapted for growth and survival in human saliva and provides a genome-wide list of genes potentially involved in adaptation. This notion supports earlier evidence that S. pneumoniae can use human saliva as a vector for transmission.

  14. Genome-Wide Identification of Genes Essential for the Survival of Streptococcus pneumoniae in Human Saliva

    Science.gov (United States)

    Verhagen, Lilly M.; de Jonge, Marien I.; Burghout, Peter; Schraa, Kiki; Spagnuolo, Lorenza; Mennens, Svenja; Eleveld, Marc J.; van der Gaast-de Jongh, Christa E.; Zomer, Aldert; Hermans, Peter W. M.; Bootsma, Hester J.

    2014-01-01

    Since Streptococcus pneumoniae transmits through droplet spread, this respiratory tract pathogen may be able to survive in saliva. Here, we show that saliva supports survival of clinically relevant S. pneumoniae strains for more than 24 h in a capsule-independent manner. Moreover, saliva induced growth of S. pneumoniae in growth-permissive conditions, suggesting that S. pneumoniae is well adapted for uptake of nutrients from this bodily fluid. By using Tn-seq, a method for genome-wide negative selection screening, we identified 147 genes potentially required for growth and survival of S. pneumoniae in saliva, among which genes predicted to be involved in cell envelope biosynthesis, cell transport, amino acid metabolism, and stress response predominated. The Tn-seq findings were validated by testing a panel of directed gene deletion mutants for their ability to survive in saliva under two testing conditions: at room temperature without CO2, representing transmission, and at 37°C with CO2, representing in-host carriage. These validation experiments confirmed that the plsX gene and the amiACDEF and aroDEBC operons, involved in respectively fatty acid metabolism, oligopeptide transport, and biosynthesis of aromatic amino acids play an important role in the growth and survival of S. pneumoniae in saliva at 37°C. In conclusion, this study shows that S. pneumoniae is well-adapted for growth and survival in human saliva and provides a genome-wide list of genes potentially involved in adaptation. This notion supports earlier evidence that S. pneumoniae can use human saliva as a vector for transmission. PMID:24586856

  15. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation.

    Science.gov (United States)

    Lin, Xiaorong; Chacko, Nadia; Wang, Linqi; Pavuluri, Yashwant

    2015-04-01

    Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.

  16. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  17. Genome-wide identification of enhancer elements.

    Science.gov (United States)

    Tulin, Sarah; Barsi, Julius C; Bocconcelli, Carlo; Smith, Joel

    2016-01-01

    We present a prospective genome-wide regulatory element database for the sea urchin embryo and the modified chromosome capture-related methodology used to create it. The method we developed is termed GRIP-seq for genome-wide regulatory element immunoprecipitation and combines features of chromosome conformation capture, chromatin immunoprecipitation, and paired-end next-generation sequencing with molecular steps that enrich for active cis-regulatory elements associated with basal transcriptional machinery. The first GRIP-seq database, available to the community, comes from S. purpuratus 24 hpf embryos and takes advantage of the extremely well-characterized cis-regulatory elements in this system for validation. In addition, using the GRIP-seq database, we identify and experimentally validate a novel, intronic cis-regulatory element at the onecut locus. We find GRIP-seq signal sensitively identifies active cis-regulatory elements with a high signal-to-noise ratio for both distal and intronic elements. This promising GRIP-seq protocol has the potential to address a rate-limiting step in resolving comprehensive, predictive network models in all systems.

  18. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?!

    Science.gov (United States)

    Banoei, Mohammad Mehdi; Houshmand, Massoud; Panahi, Mehdi Shafa Shariat; Shariati, Parvin; Rostami, Maryam; Manshadi, Masoumeh Dehghan; Majidizadeh, Tayebeh

    2007-11-01

    The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington's disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.

  19. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  20. Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5'-noncoding region of the viral RNA.

    Science.gov (United States)

    Racaniello, V R; Meriam, C

    1986-12-01

    The effect on viral replication of deleting nucleotide 10 of the poliovirus RNA genome was determined. This deletion, which removes a base pair from a predicted hairpin structure in the viral RNA, was introduced into full-length cDNA. Virus recovered after transfection of HeLa cells with the mutated cDNA contained the expected deletion and was temperature sensitive for plaque formation. Analysis of viral replication by one-step growth experiments indicated that mutant virus production at the nonpermissive temperature was at least 100 times less than that of wild type virus, and release of virus from mutant-infected cells was delayed. The synthesis of positive- and negative-strand viral RNA in mutant virus-infected cells was temperature sensitive. Virus-specific protein synthesis in mutant virus-infected cells was not temperature sensitive but occurred at a slower rate than that of wild type virus at permissive and nonpermissive temperatures. Replication of the mutant virus was sensitive to actinomycin D, in contrast to the wild type parent virus, which was resistant to the drug. Mutant virus stocks contained a small percentage of ts+ viruses that were able to form plaques at the nonpermissive temperature. Nucleotide sequence analysis of genomic RNA from these ts+ viruses revealed a single base change at position 34 from a G to U. In the positive RNA strand, the effect of this mutation is to restore to the hairpin structure the single base pair whose formation was prevented by the original deletion. The ts+ pseudorevertants replicated to similar titers as wild type virus at 33 and 38.5 degrees and were partially sensitive to actinomycin D.

  1. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  2. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666

    Directory of Open Access Journals (Sweden)

    Beatriz del Rio

    2015-12-01

    Full Text Available Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14 is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine into the biogenic amine putrescine by the agmatine deiminase (AGDI pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC [1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC [2], which is also transcriptionally regulated by carbon catabolic repression (CCR via glucose, but not by other sugars such as lactose and galactose [1,3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE59514.

  3. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Marta Perez

    2016-09-01

    Full Text Available The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC pathway Ladero et al. (2012 [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na+/H+ antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO database under accession no. GSE77864.

  4. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel M; Redruello, Begoña; Martin, Maria Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2015-12-01

    Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) is a dairy strain that catabolizes agmatine (a decarboxylated derivative of arginine) into the biogenic amine putrescine by the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are responsible for the deamination of agmatine to putrescine and are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC[1]. aguR encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2], which is also transcriptionally regulated by carbon catabolic repression (CCR) via glucose, but not by other sugars such as lactose and galactose [1], [3]. Here we report the transcriptional profiling of the aguR gene deletion mutant (L. lactis subsp. cremoris CECT 8666 ∆aguR) [2] compared to the wild type strain, both grown in M17 medium with galactose as carbon source and supplemented with agmatine. The transcriptional profiling data of AguR-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE59514.

  5. Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583.

    Science.gov (United States)

    Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; de Jong, Anne; Kuipers, Oscar P; Kok, Jan; Martin, M Cruz; Fernandez, Maria; Alvarez, Miguel A

    2016-09-01

    The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC) pathway Ladero et al. (2012) [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na(+)/H(+) antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC) [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE77864.

  6. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant Mrna transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  7. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    黄欣; 赵忠良; 袁正隆; 张明徽; 朱学军; 陈国友; 曹雪涛

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to- be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant mRNA transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  8. Cloning and characterization of a novel deletion mutant of heterogeneous nuclear ribonucleoprotein M4 from human dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To identify differentially expressed genes from antigen-stimulated human dendritic cells (DC), subtractive cloning was adopted and more than ten novel genes differentially expressed were cloned. One is a deletion mutant of heterogeneous nuclear ribonucleoprotein (hnRNP) M4 in which the residues from 159 to 197 of hnRNP M4 have been absent. The deletion mutant was shown to be co-expressed with hnRNP M4 in cell lines. The mutant was expressed in antigen-stimulated DC but not in normal DC. Northern blot analysis revealed the presence of a major hnRNP M4 deletion mutant mRNA transcript of 2.4 kilobase with the highest levels in peripheral lymphocytes, lung, liver and spleen. It was also expressed in bone marrow-derived stromal cells (BMSC), BMSC treated with several cytokines but not in BMSC treated with TNF-a. The results revealed a new member of hnRNP family and suggested that hnRNP would participate in antigen process and presentation.

  9. Phenotype MicroArray Analysis of Escherichia coli K-12 Mutants with Deletions of All Two-Component Systems

    Science.gov (United States)

    Zhou, Lu; Lei, Xiang-He; Bochner, Barry R.; Wanner, Barry L.

    2003-01-01

    Two-component systems are the most common mechanism of transmembrane signal transduction in bacteria. A typical system consists of a histidine kinase and a partner response regulator. The histidine kinase senses an environmental signal, which it transmits to its partner response regulator via a series of autophosphorylation, phosphotransfer, and dephosphorylation reactions. Much work has been done on particular systems, including several systems with regulatory roles in cellular physiology, communication, development, and, in the case of bacterial pathogens, the expression of genes important for virulence. We used two methods to investigate two-component regulatory systems in Escherichia coli K-12. First, we systematically constructed mutants with deletions of all two-component systems by using a now-standard technique of gene disruption (K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sci. USA 97:6640-6645, 2000). We then analyzed these deletion mutants with a new technology called Phenotype MicroArrays, which permits assays of nearly 2,000 growth phenotypes simultaneously. In this study we tested 100 mutants, including mutants with individual deletions of all two-component systems and several related genes, including creBC-regulated genes (cbrA and cbrBC), phoBR-regulated genes (phoA, phoH, phnCDEFGHIJKLMNOP, psiE, and ugpBAECQ), csgD, luxS, and rpoS. The results of this battery of nearly 200,000 tests provided a wealth of new information concerning many of these systems. Of 37 different two-component mutants, 22 showed altered phenotypes. Many phenotypes were expected, and several new phenotypes were also revealed. The results are discussed in terms of the biological roles and other information concerning these systems, including DNA microarray data for a large number of the same mutants. Other mutational effects are also discussed. PMID:12897016

  10. Effects of Chlorophyll Availability on Fluorescence Components of Photosystems in the ORF469-Deletion Mutant of Cyanobacterium

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    PCR-amplified ORF469 fragment from Synechocystis sp.PCC 6803 was cloned into pUC118 and a construct was made in which part of ORF469 was deleted and replaced by erythromycin resistance cassette.Transformation of wild type strain of Synechocystis sp.PCC 6803 with this construct yielded a mutant in which ORF469 was deleted.In the resulting mutant, the light-independent pathway of chlorophyll biosynthesis was inactivated and availability of chlorophyll was fully dependent on light.When propagated the mutant in dark, the chlorophyll was non-detectable and protochlorophyllide with 645 nm fluorescence emission peak was accumulated.Meanwhile, the fluorescence emission peaks (excited at 435 nm) of thylakoids at 685 nm, 695 nm and 725 nm, which represented relative chlorophyll-binding proteins, disappeared.Upon return of dark-grown ORF469 mutant to the light, greening occurred and chlorophyll was synthesized to assembly fluorescence emission components in photosystems.Newly synthesized chlorophyll combined the fluorescence component of 685 nm at first, then 725 nm and 695 nm at last, which indicates a pecking order for biogenesis of chlorophyll-binding proteins when availability of chlorophyll is limited.The mutant lacking ORF469 in Synechocystis sp.PCC 6803 was suggested as an excellent cyanobacterial system for studies on the interactions between chlorophyll and chlorophyll-binding proteins in photosystems.

  11. Genome-wide analysis correlates Ayurveda Prakriti.

    Science.gov (United States)

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S; Dedge, Amrish P; Bharadwaj, Ramachandra; Gangadharan, G G; Nair, Sreekumaran; Gopinath, Puthiya M; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-10-29

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as "Prakriti". To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10(-5)) were significantly different between Prakritis, without any confounding effect of stratification, after 10(6) permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India's traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine.

  12. Trapping of normal EB1 ligands in aggresomes formed by an EB1 deletion mutant

    Directory of Open Access Journals (Sweden)

    Askham Jon M

    2005-04-01

    Full Text Available Abstract Background EB1 is a microtubule tip-associated protein that interacts with the APC tumour suppressor protein and the p150glued subunit of dynactin. We previously reported that an EB1 deletion mutant that retains both of these interactions but does not directly associate with microtubules (EB1-ΔN2-GFP spontaneously formed perinuclear aggregates when expressed in COS-7 cells. Results In the present study live imaging indicated that EB1-ΔN2-GFP aggregates underwent dynamic microtubule-dependent changes in morphology and appeared to be internally cohesive. EB1-ΔN2-GFP aggregates were phase-dense structures that displayed microtubule-dependent accumulation around the centrosome, were immunoreactive for both the 20s subunit of the proteasome and ubiquitin, and induced the collapse of the vimentin cytoskeleton. Fractionation studies revealed that a proportion of EB1-ΔN2-GFP was detergent-insoluble and ubiquitylated, indicating that EB1-ΔN2-GFP aggregates are aggresomes. Immunostaining also revealed that APC and p150glued were present in EB1-ΔN2-GFP aggregates, whereas EB3 was not. Furthermore, evidence for p150glued degradation was found in the insoluble fraction of EB1-ΔN2-GFP transfected cultures. Conclusion Our data indicate that aggresomes can be internally cohesive and may not represent a simple "aggregate of aggregates" assembled around the centrosome. Our observations also indicate that a partially misfolded protein may retain the ability to interact with its normal physiological ligands, leading to their co-assembly into aggresomes. This supports the idea that the trapping and degradation of co-aggregated proteins might contribute to human pathologies characterised by aggresome formation.

  13. Genome-wide studies of telomere biology in budding yeast

    Directory of Open Access Journals (Sweden)

    Yaniv Harari

    2014-03-01

    Full Text Available Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  14. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  15. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  16. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.

    2000-01-01

    reading frames, the same PRRSV genetic locus codes for the ORF 3 "RKASLSTS" sequence, and a previously described ORF 4 epitope (Meulenherg, J. J. M., Van Nieuwstadt, A. P,, Van Essen-Zandbergen, A., and Langeveld, J. P. M., 1997, J. Virol. 71, 6061-6067). Sequence analysis identified naturally occurring...... deletion mutants at this ORF 3/4 site. Phylogenetic analysis showed the presence of a highly accurate ORF 3 molecular clock, according to which deletion mutants and nondeleted viruses evolved at differing speeds. Furthermore, deletion mutants and nondeleted viruses evolved as separate lineages...

  17. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  18. Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    OpenAIRE

    2008-01-01

    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 comp...

  19. Genome-wide association study and premature ovarian failure.

    Science.gov (United States)

    Christin-Maitre, S; Tachdjian, G

    2010-05-01

    Premature ovarian failure (POF) is defined as an amenorrhea for more than 4months, associated with elevated gonadotropins, usually higher than 20mIU/ml, occurring in a woman before the age of 40. Some candidate genes have been identified in the past 15years, such as FOXL2, FSHR, BMP15, GDF9, Xfra premutation. However, POF etiology remains unknown in more than 90% of cases. The first strategy to identify candidate gene, apart from studying genes involved in ovarian failure in animal models, relies on the study of X chromosome deletions and X;autosome translocations in patients. The second strategy is based on linkage analysis, the third one on Comparative Genomic Hybridization (CGH) array. The latest strategy relies on Genome-Wide Association Studies (GWAS). This technique consists in screening single nucleotide polymorphisms (SNPs) in patients and controls. So far, three studies have been performed and have identified different loci potentially linked to POF, such as PTHB1 and ADAMTS19. However, replications in independent cohorts need to be performed. GWAS studies on large cohorts of women with POF should find new candidate genes in the near future.

  20. A genome wide dosage suppressor network reveals genomic robustness

    Science.gov (United States)

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  1. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope

    Directory of Open Access Journals (Sweden)

    Tran Ngat

    2011-05-01

    Full Text Available Abstract Background A decline in the discovery of new antibacterial drugs, coupled with a persistent rise in the occurrence of drug-resistant bacteria, has highlighted antibiotics as a diminishing resource. The future development of new drugs with novel antibacterial activities requires a detailed understanding of adaptive responses to existing compounds. This study uses Streptomyces coelicolor A3(2 as a model system to determine the genome-wide transcriptional response following exposure to three antibiotics (vancomycin, moenomycin A and bacitracin that target distinct stages of cell wall biosynthesis. Results A generalised response to all three antibiotics was identified which involves activation of transcription of the cell envelope stress sigma factor σE, together with elements of the stringent response, and of the heat, osmotic and oxidative stress regulons. Attenuation of this system by deletion of genes encoding the osmotic stress sigma factor σB or the ppGpp synthetase RelA reduced resistance to both vancomycin and bacitracin. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. Sensitivity studies using mutants constructed on the basis of the transcriptome profiling confirmed a role for several such genes in antibiotic resistance, validating the usefulness of the approach. Conclusions Antibiotic inhibition of bacterial cell wall biosynthesis induces both common and compound-specific transcriptional responses. Both can be exploited to increase antibiotic susceptibility. Regulatory networks known to govern responses to environmental and nutritional stresses are also at the core of the common antibiotic response, and likely help cells survive until any specific resistance mechanisms are fully functional.

  2. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production.

    Science.gov (United States)

    Liu, Xiaoguang; Zhu, Ying; Yang, Shang-Tian

    2006-01-01

    Clostridium tyrobutyricum produces butyrate, acetate, H(2), and CO(2) as its main fermentation products from glucose and xylose. To improve butyric acid and hydrogen production, integrational mutagenesis was used to create a metabolically engineered mutant with inactivated ack gene, encoding acetate kinase (AK) associated with the acetate formation pathway. A non-replicative plasmid containing the acetate kinase gene (ack) fragment was constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome should inactivate the target ack gene and produce ack-deleted mutant, PAK-Em. Enzyme activity assays showed that the AK activity in PAK-Em decreased by approximately 50%; meanwhile, phosphotransacetylase (PTA) and hydrogenase activities each increased by approximately 40%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the expression of protein with approximately 32 kDa molecular mass was reduced significantly in the mutant. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37 degrees C, with a lower specific growth rate of 0.14 h(-1) (vs 0.21 h(-1) for the wild type), likely due to the partially impaired PTA-AK pathway. However, the mutant produced 23.5% more butyrate (0.42 vs 0.34 g/g glucose) at a higher final concentration of 41.7 g/L (vs 19.98 g/L) as a result of its higher butyrate tolerance as indicated in the growth kinetics study using various intial concentrations of butyrate in the media. The mutant also produced 50% more hydrogen (0.024 g/g) from glucose than the wild type. Immobilized-cell fermentation of PAK-Em in a fibrous-bed bioreactor (FBB) further increased the final butyric acid concentration (50.1 g/L) and the butyrate yield (0.45 g/g glucose). Furthermore, in the FBB fermentation at pH 5.0 with xylose as the substrate, only butyric acid was produced by the mutant, whereas the wild type produced large amounts

  3. Probabilistic protein function prediction from heterogeneous genome-wide data.

    Directory of Open Access Journals (Sweden)

    Naoki Nariai

    Full Text Available Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function.

  4. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  5. Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis

    DEFF Research Database (Denmark)

    Westergaard, Steen Lund; Bro, Christoffer; Olsson, Lisbeth

    2004-01-01

    The role of Grr1p in glucose sensing in Saccharomyces cerevisiae was elucidated through genome-wide transcription analysis. From triplicate analysis of a strain with deletion of the GRR1-gene from the genome and an isogenic reference strain, 68 genes were identified to have significantly altered...

  6. RDNA cloning vector pVE1, deletion and hybrid mutants and recombinant derivatives thereof products and processes

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, T.; Gibbons, P.H.

    1987-10-27

    This patent describes novel plasmid pVE1, deletion mutants thereof, recombinant derivatives thereof, which is the same as the genome or nucleic acid of such plasmids and derivatives of such genome, which are useful as recombinant DNA cloning vectors into host organisms, such as bacteria, for example, Streptomyces avermitilis. Portions of such plasmid genome are additionally useful as adjuncts in recombinant DNA cloning procedures, for examples: 1. to permit the maintenance of cloned DNA in the host, either in an integrated state or as an autonomous element; 2. to serve as promoters for increasing expression of endogenous or foreign genes wherein the promoters are ligated to such genes or otherwise serve as promoters; and 3. to serve as regulatory elements for achieving control over endogenous and foreign gene expression. As cloning vectors, pVE1 its deletion mutants, and other derivatives serve for the amplification and transfer of DNA sequences (genes) coding for useful functions. Such modified cloning vectors are introduced into the recipient organism by conjugation or transformation; wherein the hybrid DNA functions in an integrated mode and/or in plasmid mode.

  7. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island.

    Science.gov (United States)

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-10-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria.

  8. Genome-wide association study of clinical dimensions of schizophrenia

    DEFF Research Database (Denmark)

    Fanous, Ayman H; Zhou, Baiyu; Aggen, Steven H;

    2012-01-01

    Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia....

  9. A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin.

    Science.gov (United States)

    Aouida, Mustapha; Pagé, Nicolas; Leduc, Anick; Peter, Matthias; Ramotar, Dindial

    2004-02-01

    The potent DNA damaging agent bleomycin (BLM) is highly effective for treating various cancers, although, in certain individuals, the development of cellular resistance to the drug can severely diminish its antineoplastic properties. We performed two independent genome-wide screens using a Saccharomyces cerevisiae mutant collection to isolate variants exhibiting either sensitivity or resistance to BLM. This procedure reproducibly identified a relatively large collection of 231 BLM-hypersensitive mutants, representing genes belonging to diverse functional groups. In contrast, only five BLM-resistant mutants could be recovered by our screens. Among these latter mutants, three were deleted for genes involved in plasma membrane transport, including the L-carnitine transporter Agp2, as well as the kinases Ptk2 and Sky1, which are involved in regulating polyamine transport. We further showed that Agp2 acts as a transporter of BLM and that overexpression of this transporter significantly enhances BLM-induced cell killing. Our data strongly implicate membrane transport as a key determinant in BLM resistance in yeast. This finding is critical, given that very little is known about BLM transport in human cells. Indeed, characterization of analogous mechanisms in humans may ultimately lead to enhancement of the antitumor properties of BLM.

  10. Cancer genetic association studies in the genome-wide age

    OpenAIRE

    Savage, Sharon A

    2008-01-01

    Genome-wide association studies of hundreds of thousands of SNPs have led to a deluge of studies of genetic variation in cancer and other common diseases. Large case–control and cohort studies have identified novel SNPs as markers of cancer risk. Genome-wide association study SNP data have also advanced understanding of population-specific genetic variation. While studies of risk profiles, combinations of SNPs that may increase cancer risk, are not yet clinically applicable, future, large-sca...

  11. Genome-wide polymorphisms show unexpected targets of natural selection

    OpenAIRE

    Pespeni, Melissa H.; Garfield, David A.; Manier, Mollie K; Palumbi, Stephen R.

    2011-01-01

    Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species...

  12. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  13. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation.

    Science.gov (United States)

    Zhu, Ying; Liu, Xiaoguang; Yang, Shang-Tian

    2005-04-20

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium, producing butyrate and acetate as its main fermentation products. In order to decrease acetate and increase butyrate production, integrational mutagenesis was used to disrupt the gene associated with the acetate formation pathway in C. tyrobutyricum. A nonreplicative integrational plasmid containing the phosphotransacetylase gene (pta) fragment cloned from C. tyrobutyricum by using degenerate primers and an erythromycin resistance cassette were constructed and introduced into C. tyrobutyricum by electroporation. Integration of the plasmid into the homologous region on the chromosome inactivated the target pta gene and produced the pta-deleted mutant (PTA-Em), which was confirmed by Southern hybridization. SDS-PAGE and two-dimensional protein electrophoresis results indicated that protein expression was changed in the mutant. Enzyme activity assays using the cell lysate showed that the activities of PTA and acetate kinase (AK) in the mutant were reduced by more than 60% for PTA and 80% for AK. The mutant grew more slowly in batch fermentation with glucose as the substrate but produced 15% more butyrate and 14% less acetate as compared to the wild-type strain. Its butyrate productivity was approximately 2-fold higher than the wild-type strain. Moreover, the mutant showed much higher tolerance to butyrate inhibition, and the final butyrate concentration was improved by 68%. However, inactivation of pta gene did not completely eliminate acetate production in the fermentation, suggesting the existence of other enzymes (or pathways) also leading to acetate formation. This is the first-reported genetic engineering study demonstrating the feasibility of using a gene-inactivation technique to manipulate the acetic acid formation pathway in C. tyrobutyricum in order to improve butyric acid production from glucose.

  14. Genome-wide inference of regulatory networks in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2010-10-01

    Full Text Available Abstract Background The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. Results In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Conclusions Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  15. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  16. Genome-wide evaluation of the interplay between Caenorhabditis elegans and Yersinia pseudotuberculosis during in vivo biofilm formation.

    Science.gov (United States)

    Joshua, George W P; Atkinson, Steve; Goldstone, Robert J; Patrick, Hannah L; Stabler, Richard A; Purves, Joanne; Cámara, Miguel; Williams, Paul; Wren, Brendan W

    2015-01-01

    The formation of an incapacitating biofilm on Caenorhabditis elegans by Yersinia pseudotuberculosis represents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation by Y. pseudotuberculosis on C. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information on C. elegans in the presence and absence of biofilm and on wild-type Y. pseudotuberculosis and Y. pseudotuberculosis QS mutants. Infection of C. elegans with the wild-type Y. pseudotuberculosis resulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the corresponding C. elegans clec-49 and fat-3 deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis of Y. pseudotuberculosis revealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS and flhDC mutants. In addition, mutation of the regulatory gene hutC resulted in the loss of biofilm, increased expression of flhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS and flhDC. This work also indicates that biofilm formation by Y. pseudotuberculosis on C. elegans is an interactive process during which the initial attachment/recognition of Yersinia to/by C. elegans is followed by bacterial growth and biofilm formation.

  17. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant.

    Science.gov (United States)

    Kotwal, G J; Moss, B

    1988-12-01

    The principal objectives of this study were to analyze the structure and coding potential of a long segment of DNA missing from a previously isolated (B. Moss, E. Winters, and J. A. Cooper (1981) J. Virol. 40, 387-395) attenuated variant of vaccinia virus strain WR and to examine the precise changes in the genome accompanying the deletion. The sequences of a 14.5-kbp region located at the left end of the standard vaccinia virus genome, extending from within the inverted terminal repetition (ITR) of the HindIII C fragment to the end of the HindIII N fragment, and of a 3-kbp segment from a corresponding region of the variant genome were determined. A comparison of these sequences revealed that the variant contained a deletion of 12 kbp and an insertion of 2.1 kbp. The origin of the inserted DNA was traced to the HindIII B region by using oligonucleotide probes indicating that a transposition of unique DNA located adjacent to the right ITR had occurred. Structural analysis indicated no extensive homologies, nucleotide substitutions, additions, or deletions at the boundaries of the transposed DNA. Examination of the right end of the variant genome indicated that a copy of the transposed DNA was still present and, therefore, the length of the ITR had been increased by 2.1 kbp. The variant genome could have formed by a mechanism that resulted in the replacement of a 22-kbp left-terminal fragment with a 12-kbp right-terminal fragment. The DNA missing from the variant and contained within the standard vaccinia virus WR genome contains 17 contiguous open reading frames (ORFs), all of which are directed leftward and apparently not required for replication in cultured cells. One deleted ORF has a 60% sequence similarity to another gene encoding a 42,000-Da protein present within the ITR suggesting that duplications have previously occurred during the evolution of vaccinia virus. Another deleted ORF has a 39% sequence similarity to a complement 4b binding protein. The

  18. A Haemophilus ducreyi CpxR deletion mutant is virulent in human volunteers.

    Science.gov (United States)

    Labandeira-Rey, Maria; Dodd, Dana; Fortney, Kate R; Zwickl, Beth; Katz, Barry P; Janowicz, Diane M; Spinola, Stanley M; Hansen, Eric J

    2011-06-15

    Haemophilus ducreyi 35000HP contains a homolog of the CpxRA 2-component signal transduction system, which controls the cell envelope stress response system in other gram-negative bacteria and regulates some important H. ducreyi virulence factors. A H. ducreyi cpxR mutant was compared with its parent for virulence in the human challenge model of experimental chancroid. The pustule formation rate in 5 volunteers was 33% (95% confidence interval [CI], 1.3%-65.3%) at 15 parent sites and 40% (95% CI, 18.1%-61.9%) at 15 mutant sites (P = .35). Thus, the cpxR mutant was not attenuated for virulence. Inactivation of the H. ducreyi cpxR gene did not reduce the ability of this mutant to express certain proven virulence factors, including the DsrA serum resistance protein and the LspA2 protein, which inhibits phagocytosis. These results expand our understanding of the involvement of the CpxRA system in regulating virulence expression in H. ducreyi.

  19. Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion mutant.

    Science.gov (United States)

    Edmonds, M D; Cloeckaert, A; Hagius, S D; Samartino, L E; Fulton, W T; Walker, J V; Enright, F M; Booth, N J; Elzer, P H

    2002-06-01

    The Brucella melitensis mutant BM 25, which lacks the major 25 kDa outer membrane protein Omp25, has previously been found to be attenuated in the murine brucellosis model. In the present study, the capacity of the Deltaomp25 mutant to colonise and cause abortions in the caprine host was evaluated. The vaccine potential of BM 25 was also investigated in goats. Inoculation of nine pregnant goats in late gestation with the B. melitensis mutant resulted in 0/9 abortions, while the virulent parental strain, B. melitensis 16M, induced 6/6 dams to abort (Pgoats for two weeks post-infection. Owing to the ability of BM 25 to colonise both non-pregnant and pregnant adults without inducing abortions, a vaccine efficacy study was performed. Vaccination of goats prior to breeding with either BM 25 or the current caprine vaccine B. melitensis strain Rev. 1 resulted in 100 per cent protection against abortion following challenge in late gestation with virulent strain 16M (Pmelitensis Deltaomp25 mutant, BM 25, may be a safe and efficacious alternative to strain Rev. 1 when dealing with goat herds of mixed age and pregnancy status.

  20. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice

    Science.gov (United States)

    Kwon, H.J.E.; Park, E.K.; Jia, S.; Liu, H.; Lan, Y.

    2015-01-01

    Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest–derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1-/- mutant mice as well as in mice with neural crest–specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2-/- mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1-/-Osr2-/- mutants in comparison with Msx1-/- and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2-/- mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2-/-Runx2-/- compound mutants. In contrast to the Msx1-/-Osr2-/- compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2-/-Runx2-/- compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression in the dental

  1. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice.

    Science.gov (United States)

    Kwon, H J E; Park, E K; Jia, S; Liu, H; Lan, Y; Jiang, R

    2015-08-01

    Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest-derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1(-/-) mutant mice as well as in mice with neural crest-specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2(-/-) mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1(-/-)Osr2(-/-) mutants in comparison with Msx1(-/-) and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2(-/-) mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2(-/-)Runx2(-/-) compound mutants. In contrast to the Msx1(-/-)Osr2(-/-) compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2(-/-)Runx2(-/-) compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression

  2. Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5(T) and its deletion mutants.

    Science.gov (United States)

    Novototskaya-Vlasova, K A; Petrovskaya, L E; Rivkina, E M; Dolgikh, D A; Kirpichnikov, M P

    2013-04-01

    A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30-35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.

  3. Genes required for growth at high hydrostatic pressure in Escherichia coli K-12 identified by genome-wide screening.

    Science.gov (United States)

    Black, S Lucas; Dawson, Angela; Ward, F Bruce; Allen, Rosalind J

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure.

  4. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  5. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.

  6. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae.

  7. Functional Importance of Deletion Mutant Genotypes in an Insect Nucleopolyhedrovirus Population

    Science.gov (United States)

    Simón, Oihane; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2005-01-01

    A Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides. PMID:16085811

  8. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals

    DEFF Research Database (Denmark)

    Rau, Martin Holm; Calero Valdayo, Patricia; Lennen, Rebecca

    2016-01-01

    of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, Rpo...... approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol...... stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene...

  9. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Martina Gsell

    Full Text Available In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE depletion caused by deletion of the mitochondrial (M phosphatidylserine decarboxylase 1 (PSD1 (Gsell et al., 2013, PLoS One. 8(10:e77380. doi: 10.1371/journal.pone.0077380. Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC, triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.

  10. Deletion of luxS further attenuates the virulence of the avian pathogenic Escherichia coli aroA mutant.

    Science.gov (United States)

    Han, Xiangan; Bai, Hao; Tu, Jian; Yang, Lijun; Xu, Da; Wang, Shaohui; Qi, Kezong; Fan, Guobo; Zhang, Yuxi; Zuo, Jiakun; Tian, Mingxing; Ding, Chan; Yu, Shengqing

    2015-11-01

    In this study, an aroA-deletion avian pathogenic Escherichia coli (APEC) mutant (strain DE17ΔaroA) and aroA and luxS double deletion APEC mutant (strain DE17ΔluxSΔaroA) were constructed from the APEC DE17 strain. The results showed that as compared to DE17ΔaroA, the virulence of DE17ΔluxSΔaroA was further attenuated by 200- and 31.7-fold, respectively, in ducklings based on the 50% lethal dose. The adherence and invasion abilities of DE17ΔluxSΔaroA and DE17ΔaroA were reduced by 36.5%/42.5% and 25.8%/29.3%, respectively, as compared to the wild-type strain DE17 (p < 0.05 and 0.01, respectively). Furthermore, in vivo studies showed that the bacterial loads of DE17ΔluxSΔaroA were reduced by 8400- and 11,333-fold in the spleen and blood of infected birds, respectively, while those of DE17ΔaroA were reduced by 743- and 1000-fold, respectively, as compared to the wild-type strain DE17. Histopathological analysis showed both that the mutants were associated with reduced pathological changes in the liver, spleen, and kidney of ducklings, and changes in DE17ΔluxSΔaroA-infected ducklings were reduced to a greater degree than those infected with DE17ΔaroA. Real-time polymerase chain reaction analysis further demonstrated that the mRNA levels of virulence-related genes (i.e., tsh, ompA, vat, iucD, pfs, fyuA, and fimC) were significantly decreased in DE17ΔaroA, especially in DE17ΔluxSΔaroA, as compared to DE17 (p < 0.05). In addition, the deletion of aroA or the double deletion of aroA and luxS reduced bacterial motility. To evaluate the potential use of DE17ΔluxSΔaroA as a vaccine candidate, 50 7-day-old ducklings were divided randomly into five groups of ten each for the experiment. The results showed that the ducklings immunized with inactivated DE17, DE17ΔluxS, DE17ΔaroA, and DE17ΔluxSΔaroA were 70.0%, 70.0%, 70.0, and 80.0% protected, respectively, after challenge with strain APEC DE17. The results of this study suggest that the double deletion of

  11. Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis.

    Science.gov (United States)

    Kahl-McDonagh, Melissa M; Elzer, Philip H; Hagius, Sue D; Walker, Joel V; Perry, Quinesha L; Seabury, Christopher M; den Hartigh, Andreas B; Tsolis, Renee M; Adams, L Garry; Davis, Donald S; Ficht, Thomas A

    2006-06-12

    Pregnant goats were employed to assess unmarked deletion mutant vaccine candidates BMDeltaasp24, BMDeltacydBA, and BMDeltavirB2, as the target host species naturally infected with Brucella melitensis. Goats were assessed for the degree of pathology associated with the vaccine strains as well as the protective immunity afforded by each strain against abortion and infection after challenge with wild-type Brucella melitensis 16M. Both BMDeltaasp24 and BMDeltavirB2 were considered safe vaccine candidates in the pregnant goat model because they did not cause abortion or colonize fetal tissues. BMDeltaasp24 was isolated from the maternal tissues only, indicating a slower rate of clearance of the vaccine strain than for BMDeltavirB2, which was not isolated from any maternal or fetal tissues. Both strains were protective against abortion and against infection in the majority of pregnant goats, although BMDeltaasp24 was more efficacious than BMDeltavirB2 against challenge infection.

  12. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.

    Science.gov (United States)

    Shitsukawa, Naoki; Ikari, Chihiro; Shimada, Sanae; Kitagawa, Satoshi; Sakamoto, Koichi; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko; Takumi, Shigeo; Nasuda, Shuhei; Murai, Koji

    2007-04-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1.

  13. A novel statistic for genome-wide interaction analysis.

    Science.gov (United States)

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDRanalysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  14. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.;

    2000-01-01

    By using porcine immune sera to select a library of phage-displayed random peptides. we identified an antigenic sequence (RKASLSTS) in the C-terminus of the ORF 3 structural glycoprotein of European-type porcine reproductive and respiratory syndrome virus (PRRSV). Through the use of overlapping....... These distinctions suggested that deletion mutants were a hitherto unrecognized subtype of European-type PRRSV. Currently, deletion mutants appear to be outcompeting nondeleted viruses in the field, highlighting the importance of the porcine antibody response against the minor structural glycoproteins of European...

  15. Power analysis for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Klein Robert J

    2007-08-01

    Full Text Available Abstract Background Genome-wide association studies are a promising new tool for deciphering the genetics of complex diseases. To choose the proper sample size and genotyping platform for such studies, power calculations that take into account genetic model, tag SNP selection, and the population of interest are required. Results The power of genome-wide association studies can be computed using a set of tag SNPs and a large number of genotyped SNPs in a representative population, such as available through the HapMap project. As expected, power increases with increasing sample size and effect size. Power also depends on the tag SNPs selected. In some cases, more power is obtained by genotyping more individuals at fewer SNPs than fewer individuals at more SNPs. Conclusion Genome-wide association studies should be designed thoughtfully, with the choice of genotyping platform and sample size being determined from careful power calculations.

  16. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  17. Residual virulence and immunogenicity of CGV26 and CGV2631 B. melitensis Rev. 1 deletion mutant strains in sheep after subcutaneous or conjunctival vaccination.

    Science.gov (United States)

    Guilloteau, Laurence A; Laroucau, Karine; Olivier, Michel; Grillo, Maria Jesus; Marin, Clara M; Verger, Jean-Michel; Blasco, Jose-Maria

    2006-04-24

    The CGV26 and CGV2631 strains are novel engineered Brucella melitensis Rev.1 mutant strains deleted for the bp26 gene or for both bp26 and omp31 genes, respectively, coding for proteins of diagnostic significance. The residual virulence and immunogenicity of both mutants were compared to the parental Rev.1 strain in sheep after subcutaneous or conjunctival vaccination. The deletion of the bp26 gene or both bp26 and omp31 genes had no significant effect on the intracellular survival of the Rev.1 strain in ovine macrophage cultures. The kinetics of infection induced by both mutants in sheep was similar to the Rev.1 strain, and inoculation by the subcutaneous route produced wider and more generalized infections than the conjunctival route. All strains were cleared from lymph nodes and organs within 3 months after inoculation. The CGV26 and CGV2631 mutants induced both specific systemic antibody response and lymphoproliferation in sheep. The kinetics of the responses induced by the mutants was quite similar to that of the parental Rev.1 strain, except for the intensity of the lymphoproliferative response, which was attenuated for the CGV2631 mutant. In conclusion, the residual virulence of both CGV26 and CGV2631 mutants in sheep was similar to that of the parental Rev.1 vaccine strain. These mutants induced also significant specific antibody and cell-mediated immunity in sheep and are suitable to be evaluated as potential vaccine candidates against B. melitensis and B. ovis infections in sheep.

  18. Genome-wide analysis of copy number variation in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Britney L Grayson

    Full Text Available Type 1 diabetes (T1D tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs. We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D.

  19. A glycoprotein E deletion mutant of bovine herpesvirus 1 infects the same limited number of tissues in calves as wild-type virus, but for a shorter period

    NARCIS (Netherlands)

    Engelenburg, van F.A.C.; Kaashoek, M.J.; Oirschot, van J.T.; Rijsewijk, F.A.M.

    1995-01-01

    To gain insight into the role of glycoprotein E of bovine herpesvirus 1 (BHV-1), we compared the distribution of wild-type (wt) BHV-1 with that of a gE deletion mutant (gE-) in calves after intranasal inoculation. The wt-infected calves had severe clinical signs, but the gE--infected calves were vir

  20. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  1. Genome-Wide Scan Reveals Mutation Associated with Melanoma

    Science.gov (United States)

    ... Q R S T U V W X Y Z We want to hear from you You are here: News & Events 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Spotlight on Research 2012 July 2012 (historical) Genome-Wide Scan Reveals Mutation Associated with Melanoma A team of ...

  2. A genome-wide scan for preeclampsia in the Netherlands

    NARCIS (Netherlands)

    Lachmeijer, AMA; Arngrimsson, R; Bastiaans, EJ; Frigge, ML; Pals, G; Sigurdardottir, S; Stefansson, H; Palsson, B; Nicolae, D; Kong, A; Aarnoudse, JG; Gulcher, [No Value; Dekker, GA; ten Kate, LP; Stefansson, K

    2001-01-01

    Preeclampsia, hallmarked by de novo hypertension and proteinuria in pregnancy, has a familial tendency. Recently, a large Icelandic genome-wide scan provided evidence for a maternal susceptibility locus for preeclampsia on chromosome 2p13 which was confirmed by a genome scan from Australia and New

  3. Genome-wide RNA Tomography in the Zebrafish Embryo

    NARCIS (Netherlands)

    Junker, Jan Philipp; Noël, Emily S; Guryev, Victor; Peterson, Kevin A; Shah, Gopi; Huisken, Jan; McMahon, Andrew P; Berezikov, Eugene; Bakkers, Jeroen; van Oudenaarden, Alexander

    2014-01-01

    Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in

  4. Genome-wide RNA Tomography in the zebrafish embryo

    NARCIS (Netherlands)

    Junker, Jan Philipp; Noël, Emily S; Guryev, Victor; Peterson, Kevin A; Shah, Gopi; Huisken, Jan; McMahon, Andrew P; Berezikov, Eugene; Bakkers, Jeroen; van Oudenaarden, Alexander

    2014-01-01

    Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in

  5. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  6. A genome-wide association study of anorexia nervosa

    NARCIS (Netherlands)

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, Annemarie; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countri

  7. Genome-Wide Association Analysis in Primary Sclerosing Cholangitis

    NARCIS (Netherlands)

    T.H. Karlsen; A. Franke; E. Melum; A.. Kaser; J.R. Hov; T. Balschun; B.A. Lie; A. Bergquist; C. Schramm; T.J. Weismüller; D. Gotthardt; C. Rust; E.E.R. Philipp; T. Fritz; L. Henckaerts; R. Weersma; P. Stokkers; C.Y. Ponsioen; C. Wijmenga; M. Sterneck; M. Nothnagel; J. Hampe; A. Teufel; H. Runz; P. Rosenstiel; A. Stiehl; S. Vermeire; U. Beuers; M. Manns; E. Schrumpf; K.M. Boberg; S. Schreiber

    2010-01-01

    BACKGROUND & AIMS: We aimed to characterize the genetic susceptibility to primary sclerosing cholangitis (PSC) by means of a genome-wide association analysis of single nucleotide polymorphism (SNP) markers. METHODS: A total of 443,816 SNPs on the Affymetrix SNP Array 5.0 (Affymetrix, Santa Clara, CA

  8. Genome-wide association study of Tourette's syndrome

    NARCIS (Netherlands)

    Scharf, J. M.; Yu, D.; Mathews, C. A.; Neale, B. M.; Stewart, S. E.; Fagerness, J. A.; Evans, P.; Gamazon, E.; Edlund, C. K.; Service, S. K.; Tikhomirov, A.; Osiecki, L.; Illmann, C.; Pluzhnikov, A.; Konkashbaev, A.; Davis, L. K.; Han, B.; Crane, J.; Moorjani, P.; Crenshaw, A. T.; Parkin, M. A.; Reus, V. I.; Lowe, T. L.; Rangel-Lugo, M.; Chouinard, S.; Dion, Y.; Girard, S.; Cath, D. C.; Smit, J. H.; King, R. A.; Fernandez, T. V.; Leckman, J. F.; Kidd, K. K.; Kidd, J. R.; Pakstis, A. J.; State, M. W.; Herrera, L. D.; Romero, R.; Fournier, E.; Sandor, P.; Barr, C. L.; Phan, N.; Gross-Tsur, V.; Benarroch, F.; Pollak, Y.; Budman, C. L.; Bruun, R. D.; Erenberg, G.; Naarden, A. L.; Lee, P. C.; Weiss, N.; Kremeyer, B.; Berrio, G. B.; Campbell, D. D.; Cardona Silgado, J. C.; Ochoa, W. C.; Mesa Restrepo, S. C.; Muller, H.; Valencia Duarte, A. V.; Lyon, G. J.; Leppert, M.; Morgan, J.; Weiss, R.; Grados, M. A.; Anderson, K.; Davarya, S.; Singer, H.; Walkup, J.; Jankovic, J.; Tischfield, J. A.; Heiman, G. A.; Gilbert, D. L.; Hoekstra, P. J.; Robertson, M. M.; Kurlan, R.; Liu, C.; Gibbs, J. R.; Singleton, A.; Hardy, J.; Strengman, E.; Ophoff, R. A.; Wagner, M.; Moessner, R.; Mirel, D. B.; Posthuma, D.; Sabatti, C.; Eskin, E.; Conti, D. V.; Knowles, J. A.; Ruiz-Linares, A.; Rouleau, G. A.; Purcell, S.; Heutink, P.; Oostra, B. A.; McMahon, W. M.; Freimer, N. B.; Cox, N. J.; Pauls, D. L.

    2013-01-01

    Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association

  9. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, Stephan; Sanders, Alan R.; Kendler, Kenneth S.; Levinson, Douglas F.; Sklar, Pamela; Holmans, Peter A.; Lin, Dan-Yu; Duan, Jubao; Ophoff, Roel A.; Andreassen, Ole A.; Scolnick, Edward; Cichon, Sven; Clair, David St.; Corvin, Aiden; Gurling, Hugh; Werge, Thomas; Rujescu, Dan; Blackwood, Douglas H. R.; Pato, Carlos N.; Malhotra, Anil K.; Purcell, Shaun; Dudbridge, Frank; Neale, Benjamin M.; Rossin, Lizzy; Visscher, Peter M.; Posthuma, Danielle; Ruderfer, Douglas M.; Fanous, Ayman; Stefansson, Hreinn; Steinberg, Stacy; Mowry, Bryan J.; Golimbet, Vera; De Hert, Marc; Jonsson, Erik G.; Bitter, Istvan; Pietilainen, Olli P. H.; Collier, David A.; Tosato, Sarah; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amdur, Richard L.; Amin, Farooq; Bass, Nicholas; Bergen, Sarah E.; Black, Donald W.; Borglum, Anders D.; Brown, Matthew A.; Bruggeman, Richard; Buccola, Nancy G.; Byerley, William F.; Cahn, Wiepke; Cantor, Rita M.; Carr, Vaughan J.; Catts, Stanley V.; Choudhury, Khalid; Cloninger, C. Robert; Cormican, Paul; Craddock, Nicholas; Danoy, Patrick A.; Datta, Susmita; De Haan, Lieuwe; Demontis, Ditte; Dikeos, Dimitris; Djurovic, Srdjan; Donnelly, Peter; Donohoe, Gary; Duong, Linh; Dwyer, Sarah; Fink-Jensen, Anders; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Georgieva, Lyudmila; Giegling, Ina; Gill, Michael; Glenthoj, Birte; Godard, Stephanie; Hamshere, Marian; Hansen, Mark; Hansen, Thomas; Hartmann, Annette M.; Henskens, Frans A.; Hougaard, David M.; Hultman, Christina M.; Ingason, Andres; Jablensky, Assen V.; Jakobsen, Klaus D.; Jay, Maurice; Juergens, Gesche; Kahn, Renes; Keller, Matthew C.; Kenis, Gunter; Kenny, Elaine; Kim, Yunjung; Kirov, George K.; Konnerth, Heike; Konte, Bettina; Krabbendam, Lydia; Krasucki, Robert; Lasseter, Virginia K.; Laurent, Claudine; Lawrence, Jacob; Lencz, Todd; Lerer, F. Bernard; Liang, Kung-Yee; Lichtenstein, Paul; Lieberman, Jeffrey A.; Linszen, Don H.; Lonnqvist, Jouko; Loughland, Carmel M.; Maclean, Alan W.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Malloy, Pat; Mattheisen, Manuel; Mattingsdal, Morten; McGhee, Kevin A.; McGrath, John J.; McIntosh, Andrew; McLean, Duncan E.; McQuillin, Andrew; Melle, Ingrid; Michie, Patricia T.; Milanova, Vihra; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Moskvina, Valentina; Muglia, Pierandrea; Myin-Germeys, Inez; Nertney, Deborah A.; Nestadt, Gerald; Nielsen, Jimmi; Nikolov, Ivan; Nordentoft, Merete; Norton, Nadine; Noethen, Markus M.; O'Dushlaine, Colm T.; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Orntoft, Torben F.; Owen, Michael J.; Pantelis, Christos; Papadimitriou, George; Pato, Michele T.; Peltonen, Leena; Petursson, Hannes; Pickard, Ben; Pimm, Jonathan; Pulver, Ann E.; Puri, Vinay; Quested, Digby; Quinn, Emma M.; Rasmussen, Henrik B.; Rethelyi, Janos M.; Ribble, Robert; Rietschel, Marcella; Riley, Brien P.; Ruggeri, Mirella; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scott, Rodney J.; Shi, Jianxin; Sigurdsson, Engilbert; Silverman, Jeremy M.; Spencer, Chris C. A.; Stefansson, Kari; Strange, Amy; Strengman, Eric; Stroup, T. Scott; Suvisaari, Jaana; Terenius, Lars; Thirumalai, Srinivasa; Thygesen, Johan H.; Timm, Sally; Toncheva, Draga; van den Oord, Edwin; van Os, Jim; van Winkel, Ruud; Veldink, Jan; Walsh, Dermot; Wang, August G.; Wiersma, Durk; Wildenauer, Dieter B.; Williams, Hywel J.; Williams, Nigel M.; Wormley, Brandon; Zammit, Stan; Sullivan, Patrick F.; O'Donovan, Michael C.; Daly, Mark J.; Gejman, Pablo V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  10. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  11. Genome-wide association study identifies five new schizophrenia loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Sanders, Alan R; Kendler, Kenneth S

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yiel...

  12. Genome-wide significant risk associations for mucinous ovarian carcinoma

    DEFF Research Database (Denmark)

    Kelemen, Linda E; Lawrenson, Kate; Tyrer, Jonathan;

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10(-8)), rs711830 at...

  13. The yeast deletion collection: a decade of functional genomics.

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. Copyright © 2014 by the Genetics Society of America.

  14. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

    Science.gov (United States)

    Islamovic, Emir; García-Pedrajas, María D; Chacko, Nadia; Andrews, David L; Covert, Sarah F; Gold, Scott E

    2015-01-01

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.

  15. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice.

    Science.gov (United States)

    Poulogiannis, George; McIntyre, Rebecca E; Dimitriadi, Maria; Apps, John R; Wilson, Catherine H; Ichimura, Koichi; Luo, Feijun; Cantley, Lewis C; Wyllie, Andrew H; Adams, David J; Arends, Mark J

    2010-08-24

    In 100 primary colorectal carcinomas, we demonstrate by array comparative genomic hybridization (aCGH) that 33% show DNA copy number (DCN) loss involving PARK2, the gene encoding PARKIN, the E3 ubiquitin ligase whose deficiency is responsible for a form of autosomal recessive juvenile parkinsonism. PARK2 is located on chromosome 6 (at 6q25-27), a chromosome with one of the lowest overall frequencies of DNA copy number alterations recorded in colorectal cancers. The PARK2 deletions are mostly focal (31% approximately 0.5 Mb on average), heterozygous, and show maximum incidence in exons 3 and 4. As PARK2 lies within FRA6E, a large common fragile site, it has been argued that the observed DCN losses in PARK2 in cancer may represent merely the result of enforced replication of locally vulnerable DNA. However, we show that deficiency in expression of PARK2 is significantly associated with adenomatous polyposis coli (APC) deficiency in human colorectal cancer. Evidence of some PARK2 mutations and promoter hypermethylation is described. PARK2 overexpression inhibits cell proliferation in vitro. Moreover, interbreeding of Park2 heterozygous knockout mice with Apc(Min) mice resulted in a dramatic acceleration of intestinal adenoma development and increased polyp multiplicity. We conclude that PARK2 is a tumor suppressor gene whose haploinsufficiency cooperates with mutant APC in colorectal carcinogenesis.

  16. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice

    Science.gov (United States)

    Silva-Valenzuela, Cecilia A.; Molina-Quiroz, Roberto C.; Desai, Prerak; Valenzuela, Camila; Porwollik, Steffen; Zhao, Ming; Hoffman, Robert M.; Andrews-Polymenis, Helene; Contreras, Inés; Santiviago, Carlos A.; McClelland, Michael

    2016-01-01

    Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented KanR, SGD-K, or antisense-oriented CamR, SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems. PMID:26779130

  17. Genome-wide association studies and resting heart rate

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas

    2016-01-01

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10 years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms...... and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands...... of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal...

  18. Genome-wide patterns of selection in 230 ancient Eurasians

    Science.gov (United States)

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  19. Genome wide copy number analysis of single cells

    Science.gov (United States)

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  20. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection...

  1. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    Science.gov (United States)

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  2. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  3. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3.

    Directory of Open Access Journals (Sweden)

    Clara Sze-Man Tang

    Full Text Available Hirschsprung disease (HSCR is a congenital disorder characterized by aganglionosis of the distal intestine. To assess the contribution of copy number variants (CNVs to HSCR, we analysed the data generated from our previous genome-wide association study on HSCR patients, whereby we identified NRG1 as a new HSCR susceptibility locus. Analysis of 129 Chinese patients and 331 ethnically matched controls showed that HSCR patients have a greater burden of rare CNVs (p = 1.50 × 10(-5, particularly for those encompassing genes (p = 5.00 × 10(-6. Our study identified 246 rare-genic CNVs exclusive to patients. Among those, we detected a NRG3 deletion (p = 1.64 × 10(-3. Subsequent follow-up (96 additional patients and 220 controls on NRG3 revealed 9 deletions (combined p = 3.36 × 10(-5 and 2 de novo duplications among patients and two deletions among controls. Importantly, NRG3 is a paralog of NRG1. Stratification of patients by presence/absence of HSCR-associated syndromes showed that while syndromic-HSCR patients carried significantly longer CNVs than the non-syndromic or controls (p = 1.50 × 10(-5, non-syndromic patients were enriched in CNV number when compared to controls (p = 4.00 × 10(-6 or the syndromic counterpart. Our results suggest a role for NRG3 in HSCR etiology and provide insights into the relative contribution of structural variants in both syndromic and non-syndromic HSCR. This would be the first genome-wide catalog of copy number variants identified in HSCR.

  4. Genome-Wide Prediction of C. elegans Genetic Interactions

    OpenAIRE

    Zhong, Weiwei; Sternberg, Paul W.

    2006-01-01

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms—Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster—and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understandin...

  5. Genome-wide association study of relative telomere length.

    Science.gov (United States)

    Prescott, Jennifer; Kraft, Peter; Chasman, Daniel I; Savage, Sharon A; Mirabello, Lisa; Berndt, Sonja I; Weissfeld, Joel L; Han, Jiali; Hayes, Richard B; Chanock, Stephen J; Hunter, David J; De Vivo, Immaculata

    2011-05-10

    Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003) identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  6. Genome-wide association study of relative telomere length.

    Directory of Open Access Journals (Sweden)

    Jennifer Prescott

    Full Text Available Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses' Health Study and Women's Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = -0.03, P = 0.003 identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.

  7. Genome-wide association studies in pediatric endocrinology.

    Science.gov (United States)

    Dauber, Andrew; Hirschhorn, Joel N

    2011-01-01

    Genome-wide association (GWA) studies are a powerful tool for understanding the genetic underpinnings of human disease. In this article, we briefly review the role and findings of GWA studies in type 1 diabetes, stature, pubertal timing, obesity, and vitamin D deficiency. We then discuss the present and future implications of these findings with regards to disease prediction, uncovering basic biology, and the development of novel therapeutic agents.

  8. Statistical Approaches in Genome-Wide Association Studies

    OpenAIRE

    Yazdani, Akram

    2014-01-01

    Genome-wide association studies, GWAS, typically contain hundreds of thousands single nucleotide polymorphisms, SNPs, genotyped for few numbers of samples. The aim of these studies is to identify regions harboring SNPs or to predict the outcomes of interest. Since the number of predictors in the GWAS far exceeds the number of samples, it is impossible to analyze the data with classical statistical methods. In the current GWAS, the widely applied methods are based on single marker analysis th...

  9. Integrative genome-wide approaches in embryonic stem cell research.

    Science.gov (United States)

    Zhang, Xinyue; Huang, Jing

    2010-10-01

    Embryonic stem (ES) cells are derived from blastocysts. They can differentiate into the three embryonic germ layers and essentially any type of somatic cells. They therefore hold great potential in tissue regeneration therapy. The ethical issues associated with the use of human embryonic stem cells are resolved by the technical break-through of generating induced pluripotent stem (iPS) cells from various types of somatic cells. However, how ES and iPS cells self-renew and maintain their pluripotency is still largely unknown in spite of the great progress that has been made in the last two decades. Integrative genome-wide approaches, such as the gene expression microarray, chromatin immunoprecipitation based microarray (ChIP-chip) and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) offer unprecedented opportunities to elucidate the mechanism of the pluripotency, reprogramming and DNA damage response of ES and iPS cells. This frontier article summarizes the fundamental biological questions about ES and iPS cells and reviews the recent advances in ES and iPS cell research using genome-wide technologies. To this end, we offer our perspectives on the future of genome-wide studies on stem cells.

  10. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  11. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation.

    Science.gov (United States)

    Rudemiller, Nathan P; Lund, Hayley; Priestley, Jessica R C; Endres, Bradley T; Prokop, Jeremy W; Jacob, Howard J; Geurts, Aron M; Cohen, Eric P; Mattson, David L

    2015-05-01

    Human genome-wide association studies have linked SH2B adaptor protein 3 (SH2B3, LNK) to hypertension and renal disease, although little experimental investigation has been performed to verify a role for SH2B3 in these pathologies. SH2B3, a member of the SH2B adaptor protein family, is an intracellular adaptor protein that functions as a negative regulator in many signaling pathways, including inflammatory signaling processes. To explore a mechanistic link between SH2B3 and hypertension, we targeted the SH2B3 gene for mutation on the Dahl salt-sensitive (SS) rat genetic background with zinc-finger nucleases. The resulting mutation was a 6-bp, in-frame deletion within a highly conserved region of the Src homology 2 (SH2) domain of SH2B3. This mutation significantly attenuated Dahl SS hypertension and renal disease. Also, infiltration of leukocytes into the kidneys, a key mediator of Dahl SS pathology, was significantly blunted in the Sh2b3(em1Mcwi) mutant rats. To determine whether this was because of differences in immune signaling, bone marrow transplant studies were performed in which Dahl SS and Sh2b3(em1Mcwi) mutants underwent total body irradiation and were then transplanted with Dahl SS or Sh2b3(em1Mcwi) mutant bone marrow. Rats that received Sh2b3(em1Mcwi) mutant bone marrow had a significant reduction in mean arterial pressure and kidney injury when placed on a high salt diet (4% NaCl). These data further support a role for the immune system as a modulator of disease severity in the pathogenesis of hypertension and provide insight into inflammatory mechanisms at play in human hypertension and renal disease.

  12. Isolation and analysis of two Escherichia coli K-12 ilv attenuator deletion mutants with high-level constitutive expression of an ilv-lac fusion operon.

    OpenAIRE

    Bennett, D. C.; Umbarger, H E

    1984-01-01

    A lysogenizing lambda phage, lambda dilv-lac11, was constructed to carry an ilvD-lac operon fusion. Expression from the phage of the ilvE and lacZ genes is controlled by an intact ilv control region also carried by this phage. Two spontaneous mutants of lambda dilv-lac11 that have high-level constitutive expression of the ilv-lac fusion operon were isolated by growth on a beta-chloroalanine selective medium. The mutants were shown by nucleotide sequence determination to contain large deletion...

  13. Genome-wide compendium and functional assessment of in vivo heart enhancers.

    Science.gov (United States)

    Dickel, Diane E; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J; May, Dalit; Spurrell, Cailyn H; Plajzer-Frick, Ingrid; Pickle, Catherine S; Lee, Elizabeth; Garvin, Tyler H; Kato, Momoe; Akiyama, Jennifer A; Afzal, Veena; Lee, Ah Young; Gorkin, David U; Ren, Bing; Rubin, Edward M; Visel, Axel; Pennacchio, Len A

    2016-10-05

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.

  14. A genome-wide allelotype study of primary and corresponding recurrent glioblastoma multiforme in one patient

    Institute of Scientific and Technical Information of China (English)

    胡杰; 江澄川; 吴浩强; 彭颂先; 唐婉君; 陈商群

    2004-01-01

    @@Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor. Although comprehensive therapeutic measures are available, recurrence is very frequent and the prognosis of GBM remains dismal. To date, little is known about the molecular pathogenesis associated with GBM recurrence. According to Knudson ' s two-hit hypothesis of tumor suppressor gene (TSG) inactivation,1 deletion of a chromosomal region, as revealed by loss of heterozygosity (LOH), is often indicative of the presence of a potential TSG. Allelotype studies involving a comprehensive LOH analysis of the whole genome can provide more detailed and thorough information for detecting genetic anomalies than traditional LOH analysis. The present study is designed to conduct a genome-wide allelotype analysis of one patient ' s primary and corresponding recurrent GBM tumors in an effort to reveal molecular genetic alterations associated with the recurrence of this malignancy.

  15. Genome-wide Association Study of Obsessive-Compulsive Disorder

    Science.gov (United States)

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  16. Genome-wide landscapes of human local adaptation in Asia.

    Directory of Open Access Journals (Sweden)

    Wei Qian

    Full Text Available Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome.

  17. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  18. Construction and characterization of a glycoprotein E deletion mutant of bovine herpesvirus type 1.2 strain isolated in Brazil

    NARCIS (Netherlands)

    Franco, A.C.; Rijsewijk, F.A.M.; Flores, E.F.; Weiblen, R.; Roehe, P.M.

    2002-01-01

    This paper describes the construction and characterization of a Brazilian strain of bovine herpesvirus type 1.2a (BoHV-1.2a) with a deletion of the glycoprotein E (gE) gene. The deletion was introduced by co-transfection of a deletion fragment containing the 5´and 3´gE flanking regions and genomic D

  19. Genome-wide prediction of C. elegans genetic interactions.

    Science.gov (United States)

    Zhong, Weiwei; Sternberg, Paul W

    2006-03-10

    To obtain a global view of functional interactions among genes in a metazoan genome, we computationally integrated interactome data, gene expression data, phenotype data, and functional annotation data from three model organisms-Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster-and predicted genome-wide genetic interactions in C. elegans. The resulting genetic interaction network (consisting of 18,183 interactions) provides a framework for system-level understanding of gene functions. We experimentally tested the predicted interactions for two human disease-related genes and identified 14 new modifiers.

  20. Genome-wide association studies and contribution to cardiovascular physiology.

    Science.gov (United States)

    Munroe, Patricia B; Tinker, Andrew

    2015-09-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology.

  1. [Genome-wide association study for adolescent idiopathic scoliosis].

    Science.gov (United States)

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  2. Genome-wide approaches to understanding human ageing

    Directory of Open Access Journals (Sweden)

    Kaeberlein Matt

    2006-06-01

    Full Text Available Abstract The use of genomic technologies in biogerontology has the potential to greatly enhance our understanding of human ageing. High-throughput screens for alleles correlated with survival in long-lived people have uncovered novel genes involved in age-associated disease. Genome-wide longevity studies in simple eukaryotes are identifying evolutionarily conserved pathways that determine longevity. It is hoped that validation of these 'public' aspects of ageing in mice, along with analyses of variation in candidate human ageing genes, will provide targets for future interventions to slow the ageing process and retard the onset of age-associated pathologies.

  3. Genome-wide approaches to understanding behaviour in Drosophila melanogaster.

    Science.gov (United States)

    Neville, Megan; Goodwin, Stephen F

    2012-09-01

    Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.

  4. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  5. A genome-wide association study of female sexual dysfunction.

    Directory of Open Access Journals (Sweden)

    Andrea Burri

    Full Text Available BACKGROUND: Female sexual dysfunction (FSD is an important but controversial problem with serious negative impact on women's quality of life. Data from twin studies have shown a genetic contribution to the development and maintenance of FSD. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide association study (GWAS on 2.5 million single-nucleotide polymorphisms (SNPs in 1,104 female twins (25-81 years of age in a population-based register and phenotypic data on lifelong sexual functioning. Although none reached conventional genome-wide level of significance (10 × -8, we found strongly suggestive associations with the phenotypic dimension of arousal (rs13202860, P = 1.2 × 10(-7; rs1876525, P = 1.2 × 10(-7; and rs13209281 P = 8.3 × 10(-7 on chromosome 6, around 500 kb upstream of the locus HTR1E (5-hydroxytryptamine receptor 1E locus, related to the serotonin brain pathways. We could not replicate previously reported candidate SNPs associated with FSD in the DRD4, 5HT2A and IL-1B loci. CONCLUSIONS/SIGNIFICANCE: We report the first GWAS of FSD symptoms in humans. This has pointed to several "risk alleles" and the implication of the serotonin and GABA pathways. Ultimately, understanding key mechanisms via this research may lead to new FSD treatments and inform clinical practice and developments in psychiatric nosology.

  6. A genome-wide association study of aging.

    Science.gov (United States)

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  7. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Directory of Open Access Journals (Sweden)

    Varun Warrier

    Full Text Available Asperger Syndrome (AS is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC, which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448 were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448 lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  8. Genome-wide association studies of obesity and metabolic syndrome.

    Science.gov (United States)

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  10. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Science.gov (United States)

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  11. Genome-wide patterns of Arabidopsis gene expression in nature.

    Directory of Open Access Journals (Sweden)

    Christina L Richards

    Full Text Available Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg correlate to temperature and precipitation occurrence in the field. The largest PC(veg axes included thermoregulatory genes while the second major PC(veg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  12. Planning and executing a genome wide association study (GWAS).

    Science.gov (United States)

    Sale, Michèle M; Mychaleckyj, Josyf C; Chen, Wei-Min

    2009-01-01

    In recent years, genome-wide association approaches have proven a powerful and successful strategy to identify genetic contributors to complex traits, including a number of endocrine disorders. Their success has meant that genome wide association studies (GWAS) are fast becoming the default study design for discovery of new genetic variants that influence a clinical trait or phenotype. This chapter focuses on a number of key elements that require consideration for the successful conduct of a GWAS. Although many of the considerations are common to any genetic study, the greater cost, extreme multiple testing, and greater openness to data sharing require specific awareness and planning by investigators. In the section on designing a GWAS, we reflect on ethical considerations, study design, selection of phenotype/s, power considerations, sample tracking and storage issues, and genotyping product selection. During execution, important considerations include DNA quantity and preparation, genotyping methods, quality control checks of genotype data, in silico genotyping (imputation), tests of association, and replication of association signals. Although the field of human genetics is rapidly evolving, recent experiences can help guide an investigator in making practical and methodological choices that will eventually determine the overall quality of GWAS results. Given the investment to recruit patient populations or cohorts that are powered for a GWAS, and the still substantial costs associated with genotyping, it is helpful to be aware of these aspects to maximize the likelihood of success, especially where there is an opportunity for implementing them prospectively.

  13. Genome-wide patterns of nucleotide polymorphism in domesticated rice.

    Directory of Open Access Journals (Sweden)

    Ana L Caicedo

    2007-09-01

    Full Text Available Domesticated Asian rice (Oryza sativa is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models to explain contemporary patterns of polymorphisms in rice, including a (i selectively neutral population bottleneck model, (ii bottleneck plus migration model, (iii multiple selective sweeps model, and (iv bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been the dominant demographic model for domesticated species, cannot explain the derived nucleotide polymorphism site frequency spectrum in rice. Instead, a bottleneck model that incorporates selective sweeps, or a more complex demographic model that includes subdivision and gene flow, are more plausible explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection results only in a local signature of variation.

  14. Genome-wide mapping of DNA methylation in chicken.

    Directory of Open Access Journals (Sweden)

    Qinghe Li

    Full Text Available Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human, Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site (TSS and the transcription termination site (TTS. Most of the CpG islands in the chicken genome are kept in unmethylated state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in regulating gene transcription. This work contributes to our understanding of epigenetics in birds.

  15. Genome-Wide Scan for Methylation Profiles in Keloids

    Directory of Open Access Journals (Sweden)

    Lamont R. Jones

    2015-01-01

    Full Text Available Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63% were hypomethylated and 56 (37% hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.

  16. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies

    Science.gov (United States)

    Cowper-Sal·lari, Richard; Cole, Michael D.; Karagas, Margaret R.; Lupien, Mathieu; Moore, Jason H.

    2010-01-01

    The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in non-coding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfilment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin-immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease. PMID:21197657

  17. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole.

    Directory of Open Access Journals (Sweden)

    Gal Winter

    Full Text Available Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S, are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes.

  18. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae.

    Science.gov (United States)

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Park, Sook-Young; Huh, Aram; Dean, Ralph A; Lee, Yong-Hwan

    2015-02-24

    DNA methylation is an important epigenetic modification that regulates development of plants and mammals. To investigate the roles of DNA methylation in fungal development, we profiled genome-wide methylation patterns at single-nucleotide resolution during vegetative growth, asexual reproduction, and infection-related morphogenesis in a model plant pathogenic fungus, Magnaporthe oryzae. We found that DNA methylation occurs in and around genes as well as transposable elements and undergoes global reprogramming during fungal development. Such reprogramming of DNA methylation suggests that it may have acquired new roles other than controlling the proliferation of TEs. Genetic analysis of DNA methyltransferase deletion mutants also indicated that proper reprogramming in methylomes is required for asexual reproduction in the fungus. Furthermore, RNA-seq analysis showed that DNA methylation is associated with transcriptional silencing of transposable elements and transcript abundance of genes in context-dependent manner, reinforcing the role of DNA methylation as a genome defense mechanism. This comprehensive approach suggests that DNA methylation in fungi can be a dynamic epigenetic entity contributing to fungal development and genome defense. Furthermore, our DNA methylomes provide a foundation for future studies exploring this key epigenetic modification in fungal development and pathogenesis.

  19. A genome-wide association study of optic disc parameters.

    Directory of Open Access Journals (Sweden)

    Wishal D Ramdas

    2010-06-01

    Full Text Available The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR. Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72x10(-19 within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67x10(-33 within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15x10(-11 in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93x10(-10 within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612, and the TwinsUK cohort (N = 843. Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant, and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin.

  20. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    Science.gov (United States)

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  1. Genome-wide association study of antisocial personality disorder

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  2. High-resolution genome-wide mapping of histone modifications.

    Science.gov (United States)

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  3. Genome-wide association studies in pharmacogenomics of antidepressants.

    Science.gov (United States)

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  4. Genome-wide association studies in pediatric chronic kidney disease.

    Science.gov (United States)

    Gupta, Jayanta; Kanetsky, Peter A; Wuttke, Matthias; Köttgen, Anna; Schaefer, Franz; Wong, Craig S

    2016-08-01

    The genome-wide association study (GWAS) has become an established scientific method that provides an unbiased screen for genetic loci potentially associated with phenotypes of clinical interest, such as chronic kidney disease (CKD). Thus, GWAS provides opportunities to gain new perspectives regarding the genetic architecture of CKD progression by identifying new candidate genes and targets for intervention. As such, it has become an important arm of translational science providing a complementary line of investigation to identify novel therapeutics to treat CKD. In this review, we describe the method and the challenges of performing GWAS in the pediatric CKD population. We also provide an overview of successful GWAS for kidney disease, and we discuss the established pediatric CKD cohorts in North America and Europe that are poised to identify genetic risk variants associated with CKD progression.

  5. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  6. Genome-wide genetic changes during modern breeding of maize.

    Science.gov (United States)

    Jiao, Yinping; Zhao, Hainan; Ren, Longhui; Song, Weibin; Zeng, Biao; Guo, Jinjie; Wang, Baobao; Liu, Zhipeng; Chen, Jing; Li, Wei; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-06-03

    The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.

  7. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  8. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  9. Genome-wide measurement of RNA folding energies.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  10. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  11. Genome-Wide Association Study of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Naomi Ogawa

    2010-01-01

    Full Text Available Coronary artery disease (CAD is a multifactorial disease with environmental and genetic determinants. The genetic determinants of CAD have previously been explored by the candidate gene approach. Recently, the data from the International HapMap Project and the development of dense genotyping chips have enabled us to perform genome-wide association studies (GWAS on a large number of subjects without bias towards any particular candidate genes. In 2007, three chip-based GWAS simultaneously revealed the significant association between common variants on chromosome 9p21 and CAD. This association was replicated among other ethnic groups and also in a meta-analysis. Further investigations have detected several other candidate loci associated with CAD. The chip-based GWAS approach has identified novel and unbiased genetic determinants of CAD and these insights provide the important direction to better understand the pathogenesis of CAD and to develop new and improved preventive measures and treatments for CAD.

  12. A comparison of multivariate genome-wide association methods

    DEFF Research Database (Denmark)

    Galesloot, Tessel E; Van Steen, Kristel; Kiemeney, Lambertus A L M

    2014-01-01

    Joint association analysis of multiple traits in a genome-wide association study (GWAS), i.e. a multivariate GWAS, offers several advantages over analyzing each trait in a separate GWAS. In this study we directly compared a number of multivariate GWAS methods using simulated data. We focused on six...... methods that are implemented in the software packages PLINK, SNPTEST, MultiPhen, BIMBAM, PCHAT and TATES, and also compared them to standard univariate GWAS, analysis of the first principal component of the traits, and meta-analysis of univariate results. We simulated data (N = 1000) for three...... correlation. We compared the power of the methods using empirically fixed significance thresholds (α = 0.05). Our results showed that the multivariate methods implemented in PLINK, SNPTEST, MultiPhen and BIMBAM performed best for the majority of the tested scenarios, with a notable increase in power...

  13. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2016-12-16

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism.Experimental Design: We used EGFR-mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR.Results:EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations.Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 1-11. ©2016 AACR.

  14. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    Science.gov (United States)

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  15. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  16. Genome-wide significant loci for addiction and anxiety

    Science.gov (United States)

    Hodgson, K.; Almasy, L.; Knowles, E.E.M.; Kent, J.W.; Curran, J.E.; Dyer, T.D.; Göring, H.H.H.; Olvera, R.L.; Fox, P.T.; Pearlson, G.D.; Krystal, J.H.; Duggirala, R.; Blangero, J.; Glahn, D.C.

    2017-01-01

    Background Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Methods Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Results Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2–q21.2, LOD = 3.322) and a broad anxiety phenotype (12q24.32–q24.33, LOD = 2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg = 0.550–0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1–q33.2, LOD = 3.054) and drug dependence-anxiety (18p11.23–p11.22, LOD = 3.425). Conclusions This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics. PMID:27318301

  17. A genome-wide methylation study on obesity

    Science.gov (United States)

    Xu, Xiaojing; Su, Shaoyong; Barnes, Vernon A.; De Miguel, Carmen; Pollock, Jennifer; Ownby, Dennis; Shi, Huidong; Zhu, Haidong; Snieder, Harold; Wang, Xiaoling

    2013-01-01

    Besides differential methylation, DNA methylation variation has recently been proposed and demonstrated to be a potential contributing factor to cancer risk. Here we aim to examine whether differential variability in methylation is also an important feature of obesity, a typical non-malignant common complex disease. We analyzed genome-wide methylation profiles of over 470,000 CpGs in peripheral blood samples from 48 obese and 48 lean African-American youth aged 14–20 y old. A substantial number of differentially variable CpG sites (DVCs), using statistics based on variances, as well as a substantial number of differentially methylated CpG sites (DMCs), using statistics based on means, were identified. Similar to the findings in cancers, DVCs generally exhibited an outlier structure and were more variable in cases than in controls. By randomly splitting the current sample into a discovery and validation set, we observed that both the DVCs and DMCs identified from the first set could independently predict obesity status in the second set. Furthermore, both the genes harboring DMCs and the genes harboring DVCs showed significant enrichment of genes identified by genome-wide association studies on obesity and related diseases, such as hypertension, dyslipidemia, type 2 diabetes and certain types of cancers, supporting their roles in the etiology and pathogenesis of obesity. We generalized the recent finding on methylation variability in cancer research to obesity and demonstrated that differential variability is also an important feature of obesity-related methylation changes. Future studies on the epigenetics of obesity will benefit from both statistics based on means and statistics based on variances. PMID:23644594

  18. Genome-wide association studies in asthma: progress and pitfalls

    Directory of Open Access Journals (Sweden)

    March ME

    2015-01-01

    Full Text Available Michael E March,1 Patrick MA Sleiman,1,2 Hakon Hakonarson1,2 1Center for Applied Genomics, Children's Hospital of Philadelphia Research Institute, 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Abstract: Genetic studies of asthma have revealed that there is considerable heritability to the phenotype. An extensive history of candidate-gene studies has identified a long list of genes associated with immune function that are potentially involved in asthma pathogenesis. However, many of the results of candidate-gene studies have failed to be replicated, leaving in question the true impact of the implicated biological pathways on asthma. With the advent of genome-wide association studies, geneticists are able to examine the association of hundreds of thousands of genetic markers with a phenotype, allowing the hypothesis-free identification of variants associated with disease. Many such studies examining asthma or related phenotypes have been published, and several themes have begun to emerge regarding the biological pathways underpinning asthma. The results of many genome-wide association studies have currently not been replicated, and the large sample sizes required for this experimental strategy invoke difficulties with sample stratification and phenotypic heterogeneity. Recently, large collaborative groups of researchers have formed consortia focused on asthma, with the goals of sharing material and data and standardizing diagnosis and experimental methods. Additionally, research has begun to focus on genetic variants that affect the response to asthma medications and on the biology that generates the heterogeneity in the asthma phenotype. As this work progresses, it will move asthma patients closer to more specific, personalized medicine. Keywords: asthma, genetics, GWAS, pharmacogenetics, biomarkers

  19. A genome-wide association study of anorexia nervosa

    Science.gov (United States)

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  20. A genome-wide association study of anorexia nervosa.

    Science.gov (United States)

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  1. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  2. Structure of recombinant capsids formed by the beta-annulus deletion mutant -- rCP (Delta48-59) of Sesbania mosaic virus.

    Science.gov (United States)

    Pappachan, Anju; Subashchandrabose, Chinnathambi; Satheshkumar, P S; Savithri, H S; Murthy, M R N

    2008-05-25

    A unique feature of several T=3 icosahedral viruses is the presence of a structure called the beta-annulus formed by extensive hydrogen bonding between protein subunits related by icosahedral three-fold axis of symmetry. This unique structure has been suggested as a molecular switch that determines the T=3 capsid assembly. In order to examine the importance of the beta-annulus, a deletion mutant of Sesbania mosaic virus coat protein in which residues 48-59 involved in the formation of the beta-annulus were deleted retaining the rest of the residues in the amino terminal segment (rCP (Delta48-59)) was constructed. When expressed in Escherichia coli, the mutant protein assembled into virus like particles of sizes close to that of the wild type virus particles. The purified capsids were crystallized and their three dimensional structure was determined at 3.6 A resolution by X-ray crystallography. The mutant capsid structure closely resembled that of the native virus particles. However, surprisingly, the structure revealed that the assembly of the particles has proceeded without the formation of the beta-annulus. Therefore, the beta-annulus is not essential for T=3 capsid assembly as speculated earlier and may be formed as a consequence of the particle assembly. This is the first structural demonstration that the virus particle morphology with and without the beta-annulus could be closely similar.

  3. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS

    Directory of Open Access Journals (Sweden)

    Yee-Chin Wong

    2016-08-01

    Full Text Available Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  4. Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS

    KAUST Repository

    Wong, Yee-Chin

    2016-08-22

    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.

  5. A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker.

    Directory of Open Access Journals (Sweden)

    Yu-Kuo Tsai

    Full Text Available The streptomycin counter-selection system is a useful tool for constructing unmarked in-frame gene deletions, which is a fundamental approach to study bacteria and their pathogenicity at the molecular level. A prerequisite for this system is acquiring a streptomycin-resistant strain due to rpsL mutations, which encodes the ribosomal protein S12. However, in this study no streptomycin resistance was found to be caused by rpsL mutations in all 127 clinical strains of Klebsiella pneumoniae isolated from liver abscess patients. By screening 107 spontaneous mutants of streptomycin resistance from a clinical strain of K. pneumoniae, nucleotide substitution or insertion located within the rpsL was detected in each of these strains. Thirteen different mutants with varied S12 proteins were obtained, including nine streptomycin-dependent mutants. The virulence of all four streptomycin-resistant mutants was further evaluated. Compared with the parental strain, the K42N, K42T and K87R mutants showed a reduction in growth rate, and the K42N and K42T mutants became susceptible to normal human serum. In the mice LD50 (the bacterial dose that caused 50% death assay, the K42N and K42T mutants were ∼ 1,000-fold less lethal (∼ 2 × 10(5 CFU and the K87R mutant was ∼ 50-fold less lethal (∼ 1 × 10(4 CFU than the parental strain (∼ 2 × 10(2 CFU. A K42R mutant showed non-observable effects on the above assays, while this mutant exhibited a small cost (P < 0.01 in an in vitro growth competition experiment. In summary, most of the K. pneumoniae strains with streptomycin resistance caused by rpsL mutations are less virulent than their parental strain in the absence of streptomycin. The K42R mutant showed similar pathogenicity to its parental strain and should be one of the best choices when using rpsL as a counter-selection marker.

  6. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  7. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.

    Science.gov (United States)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-02-05

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement, and therefore, an altered redox metabolism. Identification of genes with significantly changed expression using a t-test and a Bonferroni correction yielded only 16 transcripts when accepting two false-positives, and 7 of these were Open Reading Frames (ORFs) with unknown function. Among the 16 transcripts the only one with a direct link to redox metabolism was GND1, encoding phosphogluconate dehydrogenase. To extract additional information we analyzed the transcription data for a gene subset consisting of all known genes encoding metabolic enzymes that use NAD(+) or NADP(+). The subset was analyzed for genes with significantly changed expression again with a t-test and correction for multiple testing. This approach was found to enrich the analysis since GND1, ZWF1 and ALD6, encoding the most important enzymes for regeneration of NADPH under anaerobic conditions, were down-regulated together with eight other genes encoding NADP(H)-dependent enzymes. This indicates a possible common redox-dependent regulation of these genes. Furthermore, we showed that it might be necessary to analyze the expression of a subset of genes to extract all available information from global transcription analysis.

  8. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  9. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.

    Science.gov (United States)

    Kim, Daesik; Bae, Sangsu; Park, Jeongbin; Kim, Eunji; Kim, Seokjoong; Yu, Hye Ryeong; Hwang, Jinha; Kim, Jong-Il; Kim, Jin-Soo

    2015-03-01

    Although RNA-guided genome editing via the CRISPR-Cas9 system is now widely used in biomedical research, genome-wide target specificities of Cas9 nucleases remain controversial. Here we present Digenome-seq, in vitro Cas9-digested whole-genome sequencing, to profile genome-wide Cas9 off-target effects in human cells. This in vitro digest yields sequence reads with the same 5' ends at cleavage sites that can be computationally identified. We validated off-target sites at which insertions or deletions were induced with frequencies below 0.1%, near the detection limit of targeted deep sequencing. We also showed that Cas9 nucleases can be highly specific, inducing off-target mutations at merely several, rather than thousands of, sites in the entire genome and that Cas9 off-target effects can be avoided by replacing 'promiscuous' single guide RNAs (sgRNAs) with modified sgRNAs. Digenome-seq is a robust, sensitive, unbiased and cost-effective method for profiling genome-wide off-target effects of programmable nucleases including Cas9.

  10. Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses.

    Science.gov (United States)

    Simón, Oihane; Palma, Leopoldo; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2012-01-01

    The Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A-I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366-27,225) and 60 bp (119,759-119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.

  11. IDH mutant and 1p/19q co-deleted oligodendrogliomas: tumor grade stratification using diffusion-, susceptibility-, and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Xing, Zhen; She, Dejun; Yang, Xiefeng; Zheng, Yingyan; Xiao, Zebin; Cao, Dairong [First Affiliated Hospital of Fujian Medical University, Department of Radiology, Fuzhou, Fujian (China); Wang, Xingfu [First Affiliated Hospital of Fujian Medical University, Department of Pathology, Fuzhou (China)

    2017-06-15

    Currently, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion are proven diagnostic biomarkers for both grade II and III oligodendrogliomas (ODs). Non-invasive diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) are widely used to provide physiological information (cellularity, hemorrhage, calcifications, and angiogenesis) of neoplastic histology and tumor grade. However, it is unclear whether DWI, SWI, and DSC-PWI are able to stratify grades of IDH-mutant and 1p/19q co-deleted ODs. We retrospectively reviewed the conventional MRI (cMRI), DWI, SWI, and DSC-PWI obtained on 33 patients with IDH-mutated and 1p/19q co-deleted ODs. Features of cMRI, normalized ADC (nADC), intratumoral susceptibility signals (ITSSs), normalized maxim CBV (nCBV), and normalized maximum CBF (nCBF) were compared between low-grade ODs (LGOs) and high-grade ODs (HGOs). Receiver operating characteristic curve and logistic regression were applied to determine diagnostic performances. HGOs tended to present with prominent edema and enhancement. nADC, ITSSs, nCBV, and nCBF were significantly different between groups (all P < 0.05). The combination of SWI and DSC-PWI for grading resulted in sensitivity and specificity of 100.00 and 93.33%, respectively. IDH-mutant and 1p/19q co-deleted ODs can be stratified by grades using cMRI and advanced magnetic resonance imaging techniques including DWI, SWI, and DSC-PWI. Combined ITSSs with nCBV appear to be a promising option for grading molecularly defined ODs in clinical practice. (orig.)

  12. Construction of deletion mutants in the phosphotransferase transport system and adenosine triphosphate-binding cassette transporters in Listeria monocytogenes and analysis of their growth under different stress conditions

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2013-10-01

    Full Text Available Functional genomics approaches enable us to investigate the biochemical, cellular, and physiological properties of each gene product and are nowadays applied to enhance food safety by understanding microbial stress responses in food and host-pathogen interactions. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to eliminate this pathogen since it can survive under multiple stress conditions such as low pH and low temperature. Detailed studies are needed to determine its mode of action and to understand the mechanisms that protect the pathogen when it is subjected to stress. In this study, deletion mutants of phosphotransferase transport system genes (PTS and adenosine triphosphate(ATP-binding cassette transporters (ABC of Listeria monocytogenes F2365 were created using molecular techniques. These mutants and the wild-type were tested under different stress conditions, such as in solutions with different NaCl concentration, pH value and for nisin resistance. Results demonstrate that the behaviour of these deletion mutants is different from the wild type. In particular, deleted genes may be involved in L. monocytogenes resistance to nisin and to acid and salt concentrations. Functional genomics research on L. monocytogenes allows a better understanding of the genes related to stress responses and this knowledge may help in intervention strategies to control this food-borne pathogen. Furthermore, specific gene markers can be used to identify and subtype L. monocytogenes. Thus, future development of this study will focus on additional functional analyses of important stress response-related genes, as well as on methods for rapid and sensitive detection of L. monocytogenes such as using DNA microarrays.

  13. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Nataly Perez

    Full Text Available The coordinated regulation of gene expression is essential for pathogens to infect and cause disease. A recently appreciated mechanism of regulation is that afforded by small regulatory RNA (sRNA molecules. Here, we set out to assess the prevalence of sRNAs in the human bacterial pathogen group A Streptococcus (GAS. Genome-wide identification of candidate GAS sRNAs was performed through a tiling Affymetrix microarray approach and identified 40 candidate sRNAs within the M1T1 GAS strain MGAS2221. Together with a previous bioinformatic approach this brings the number of novel candidate sRNAs in GAS to 75, a number that approximates the number of GAS transcription factors. Transcripts were confirmed by Northern blot analysis for 16 of 32 candidate sRNAs tested, and the abundance of several of these sRNAs were shown to be temporally regulated. Six sRNAs were selected for further study and the promoter, transcriptional start site, and Rho-independent terminator identified for each. Significant variation was observed between the six sRNAs with respect to their stability during growth, and with respect to their inter- and/or intra-serotype-specific levels of abundance. To start to assess the contribution of sRNAs to gene regulation in M1T1 GAS we deleted the previously described sRNA PEL from four clinical isolates. Data from genome-wide expression microarray, quantitative RT-PCR, and Western blot analyses are consistent with PEL having no regulatory function in M1T1 GAS. The finding that candidate sRNA molecules are prevalent throughout the GAS genome provides significant impetus to the study of this fundamental gene-regulatory mechanism in an important human pathogen.

  14. Genome-Wide Analysis Shows Increased Frequency of Copy Number Variation Deletions in Dutch Schizophrenia Patients

    NARCIS (Netherlands)

    Buizer-Voskamp, Jacobine E.; Muntjewerff, Jan-Willem; Strengman, Eric; Sabatti, Chiara; Stefansson, Hreinn; Vorstman, Jacob A. S.; Ophoff, Roel A.; GROUP investigators, [No Value

    2011-01-01

    Background: Since 2008, multiple studies have reported on copy number variations (CNVs) in schizophrenia. However, many regions are unique events with minimal overlap between studies. This makes it difficult to gain a comprehensive overview of all CNVs involved in the etiology of schizophrenia. We p

  15. Chemical analysis of a genome wide polyketide synthase gene deletion library in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Klejnstrup, Marie Louise; Nielsen, Jakob Blæsbjerg;

    Filamentous fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. The number of known and putative polyketide synthase genes greatly exceeds the number of polyketides (PKs) that these fungi are known to produce....

  16. Semantically enabling a genome-wide association study database

    Directory of Open Access Journals (Sweden)

    Beck Tim

    2012-12-01

    Full Text Available Abstract Background The amount of data generated from genome-wide association studies (GWAS has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits, and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH terminology suitable for describing all traits (diseases and medical signs and symptoms at various levels of granularity and the Human Phenotype Ontology (HPO most suitable for describing phenotypic abnormalities (medical signs and symptoms at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic

  17. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge.

    Science.gov (United States)

    Xie, Fang; Li, Gang; Zhou, Long; Zhang, Yanhe; Cui, Ning; Liu, Siguo; Wang, Chunlai

    2017-01-06

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, which leads to large economic losses to the swine industry worldwide. In this study, S-8△clpP△apxIIC, a double-deletion mutant of A. pleuropneumoniae was constructed, and its safety and protective efficacy were evaluated in pigs. The S-8△clpP△apxIIC mutant exhibited attenuated virulence in a murine (BALB/c) model, and caused no detrimental effects on pigs even at a dose of up to 1.0 × 10(9) CFU. Furthermore, the S-8△clpP△apxIIC mutant was able to induce a strong immune response in pigs, which included high levels of IgG1 and IgG2, stimulated gamma interferon (IFN-γ), interleukin 12 (IL-12), and interleukin 4 (IL-4) production, and conferred effective protection against the lethal challenge with A. pleuropneumoniae serovars 7 or 5a. The pigs in the S-8△clpP△apxIIC immunized groups have no lesions and reduced bacterial loads in the lung tissue after challenge. The data obtained in this study suggest that the S-8△clpP△apxIIC mutant can serve as a highly immunogenic and potential live attenuated vaccine candidate against A. pleuropneumoniae infection.

  18. Genome-wide significant risk associations for mucinous ovarian carcinoma

    Science.gov (United States)

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  19. Genome-Wide Analysis of Human MicroRNA Stability

    Directory of Open Access Journals (Sweden)

    Yang Li

    2013-01-01

    Full Text Available Increasing studies have shown that microRNA (miRNA stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.

  20. Genome-wide analyses of small noncoding RNAs in streptococci

    Directory of Open Access Journals (Sweden)

    Nadja ePatenge

    2015-05-01

    Full Text Available Streptococci represent a diverse group of Gram-positive bacteria, which colonize a wide range of hosts among animals and humans. Streptococcal species occur as commensal as well as pathogenic organisms. Many of the pathogenic species can cause severe, invasive infections in their hosts leading to a high morbidity and mortality. The consequence is a tremendous suffering on the part of men and livestock besides the significant financial burden in the agricultural and healthcare sectors. An environmentally stimulated and tightly controlled expression of virulence factor genes is of fundamental importance for streptococcal pathogenicity. Bacterial small noncoding RNAs (sRNAs modulate the expression of genes involved in stress response, sugar metabolism, surface composition, and other properties that are related to bacterial virulence. Even though the regulatory character is shared by this class of RNAs, variation on the molecular level results in a high diversity of functional mechanisms. The knowledge about the role of sRNAs in streptococci is still limited, but in recent years, genome-wide screens for sRNAs have been conducted in an increasing number of species. Bioinformatics prediction approaches have been employed as well as expression analyses by classical array techniques or next generation sequencing. This review will give an overview of whole genome screens for sRNAs in streptococci with a focus on describing the different methods and comparing their outcome considering sRNA conservation among species, functional similarities, and relevance for streptococcal infection.

  1. Reconstructing Roma history from genome-wide data.

    Directory of Open Access Journals (Sweden)

    Priya Moorjani

    Full Text Available The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000-1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs. We estimate that the Roma harbor about 80% West Eurasian ancestry-derived from a combination of European and South Asian sources-and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.

  2. Insights into kidney diseases from genome-wide association studies.

    Science.gov (United States)

    Wuttke, Matthias; Köttgen, Anna

    2016-09-01

    Over the past decade, genome-wide association studies (GWAS) have considerably improved our understanding of the genetic basis of kidney function and disease. Population-based studies, used to investigate traits that define chronic kidney disease (CKD), have identified >50 genomic regions in which common genetic variants associate with estimated glomerular filtration rate or urinary albumin-to-creatinine ratio. Case-control studies, used to study specific CKD aetiologies, have yielded risk loci for specific kidney diseases such as IgA nephropathy and membranous nephropathy. In this Review, we summarize important findings from GWAS and clinical and experimental follow-up studies. We also compare risk allele frequency, effect sizes, and specificity in GWAS of CKD-defining traits and GWAS of specific CKD aetiologies and the implications for study design. Genomic regions identified in GWAS of CKD-defining traits can contain causal genes for monogenic kidney diseases. Population-based research on kidney function traits can therefore generate insights into more severe forms of kidney diseases. Experimental follow-up studies have begun to identify causal genes and variants, which are potential therapeutic targets, and suggest mechanisms underlying the high allele frequency of causal variants. GWAS are thus a useful approach to advance knowledge in nephrology.

  3. Genome-Wide Association Study of Serum Selenium Concentrations

    Directory of Open Access Journals (Sweden)

    Ulrike Peters

    2013-05-01

    Full Text Available Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening and the Women’s Health Initiative (WHI. We tested association between 2,474,333 single nucleotide polymorphisms (SNPs and serum selenium concentrations using linear regression models. In the first stage (PLCO 41 SNPs clustered in 15 regions had p < 1 × 10−5. None of these 41 SNPs reached the significant threshold (p = 0.05/15 regions = 0.003 in the second stage (WHI. Three SNPs had p < 0.05 in the second stage (rs1395479 and rs1506807 in 4q34.3/AGA-NEIL3; and rs891684 in 17q24.3/SLC39A11 and had p between 2.62 × 10−7 and 4.04 × 10−7 in the combined analysis (PLCO + WHI. Additional studies are needed to replicate these findings. Identification of genetic variation that impacts selenium concentrations may contribute to a better understanding of which genes regulate circulating selenium concentrations.

  4. Genome-wide search for strabismus susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Fujiwara H

    2003-06-01

    Full Text Available The purpose of this study was to search for chromosomal susceptibility loci for comitant strabismus. Genomic DNA was isolated from 10mL blood taken from each member of 30 nuclear families in which 2 or more siblings are affected by either esotropia or exotropia. A genome-wide search was performed with amplification by polymerase chain reaction of 400 markers in microsatellite regions with approximately 10 cM resolution. For each locus, non-parametric affected sib-pair analysis and non-parametric linkage analysis for multiple pedigrees (Genehunter software, http://linkage.rockefeller.edu/soft/ were used to calculate multipoint lod scores and non-parametric linkage (NPL scores, respectively. In sib-pair analysis, lod scores showed basically flat lines with several peaks of 0.25 on all chromosomes. In non-parametric linkage analysis for multiple pedigrees, NPL scores showed one peak as high as 1.34 on chromosomes 1, 2, 4, 7, 10, 15, and 16, while 2 such peaks were found on chromosomes 3, 9, 11, 12, 18, and 20. Non-parametric linkage analysis for multiple pedigrees of 30 families with comitant strabismus suggested a number of chromosomal susceptibility loci. Our ongoing study involving a larger number of families will refine the accuracy of statistical analysis to pinpoint susceptibility loci for comitant strabismus.

  5. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  6. Natural selection on functional modules, a genome-wide analysis.

    Science.gov (United States)

    Serra, François; Arbiza, Leonardo; Dopazo, Joaquín; Dopazo, Hernán

    2011-03-01

    Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA), a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  7. Natural selection on functional modules, a genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    François Serra

    2011-03-01

    Full Text Available Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA, a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  8. Identification of differential translation in genome wide studies.

    Science.gov (United States)

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  9. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Directory of Open Access Journals (Sweden)

    Jinsil Kim

    2013-01-01

    Full Text Available The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3 gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.

  10. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  11. Reducing dimensionality for prediction of genome-wide breeding values

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2009-03-01

    Full Text Available Abstract Partial least square regression (PLSR and principal component regression (PCR are methods designed for situations where the number of predictors is larger than the number of records. The aim was to compare the accuracy of genome-wide breeding values (EBV produced using PLSR and PCR with a Bayesian method, 'BayesB'. Marker densities of 1, 2, 4 and 8 Ne markers/Morgan were evaluated when the effective population size (Ne was 100. The correlation between true breeding value and estimated breeding value increased with density from 0.611 to 0.681 and 0.604 to 0.658 using PLSR and PCR respectively, with an overall advantage to PLSR of 0.016 (s.e = 0.008. Both methods gave a lower accuracy compared to the 'BayesB', for which accuracy increased from 0.690 to 0.860. PLSR and PCR appeared less responsive to increased marker density with the advantage of 'BayesB' increasing by 17% from a marker density of 1 to 8Ne/M. PCR and PLSR showed greater bias than 'BayesB' in predicting breeding values at all densities. Although, the PLSR and PCR were computationally faster and simpler, these advantages do not outweigh the reduction in accuracy, and there is a benefit in obtaining relevant prior information from the distribution of gene effects.

  12. Genome-wide transcriptome analysis of 150 cell samples†

    Science.gov (United States)

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  13. Genome-wide transcriptome analysis of 150 cell samples.

    Science.gov (United States)

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  14. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  15. Reconstructing Roma History from Genome-Wide Data

    Science.gov (United States)

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  16. Genome-wide association study of circulating retinol levels.

    Science.gov (United States)

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  17. Genome-wide association study of proneness to anger.

    Directory of Open Access Journals (Sweden)

    Eric Mick

    Full Text Available BACKGROUND: Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger, hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease. METHODS: With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC study (n = 8,747. RESULTS: Subjects were, on average, 54 (range 45-64 years old at baseline enrollment, 47% (n = 4,117 were male, and all were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.8 ± 1.8 and 7.6 ± 2.2. We observed a nominally significant finding (p = 2.9E-08, λ = 1.027 - corrected pgc = 2.2E-07, λ = 1.0015 on chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn. CONCLUSIONS: Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3-gated channels to regulate calcium influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the expression of Angry Temperament.

  18. A genome-wide association study in multiple system atrophy

    Science.gov (United States)

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  19. Comparative analysis of methods for genome-wide nucleosome cartography.

    Science.gov (United States)

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  1. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes.

    Science.gov (United States)

    Wang, Da-Wei; Li, Da; Wang, Junjun; Zhao, Yue; Wang, Zhaojun; Yue, Guidong; Liu, Xin; Qin, Huanju; Zhang, Kunpu; Dong, Lingli; Wang, Daowen

    2017-03-16

    Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation RNA sequencing, full-length transcripts were identified for 52 gliadin genes in the bread wheat cultivar Xiaoyan 81. Of them, 42 were active and predicted to encode 25 α-, 11 γ-, one δ- and five ω-gliadins. Comparative proteomic analysis between Xiaoyan 81 and six newly-developed mutants each lacking one Gli locus indicated the accumulation of 38 gliadins in the mature grains. A novel group of α-gliadins (the CSTT group) was recognized to contain very few or no CD epitopes. The δ-gliadins identified here or previously did not carry CD epitopes. Finally, the mutant lacking Gli-D2 showed significant reductions in the most celiac-toxic α-gliadins and derivative CD epitopes. The insights and resources generated here should aid further studies on gliadin functions in CD and the breeding of healthier wheat.

  2. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes

    Science.gov (United States)

    Wang, Da-Wei; Li, Da; Wang, Junjun; Zhao, Yue; Wang, Zhaojun; Yue, Guidong; Liu, Xin; Qin, Huanju; Zhang, Kunpu; Dong, Lingli; Wang, Daowen

    2017-01-01

    Gliadins, specified by six compound chromosomal loci (Gli-A1/B1/D1 and Gli-A2/B2/D2) in hexaploid bread wheat, are the dominant carriers of celiac disease (CD) epitopes. Because of their complexity, genome-wide characterization of gliadins is a strong challenge. Here, we approached this challenge by combining transcriptomic, proteomic and bioinformatic investigations. Through third-generation RNA sequencing, full-length transcripts were identified for 52 gliadin genes in the bread wheat cultivar Xiaoyan 81. Of them, 42 were active and predicted to encode 25 α-, 11 γ-, one δ- and five ω-gliadins. Comparative proteomic analysis between Xiaoyan 81 and six newly-developed mutants each lacking one Gli locus indicated the accumulation of 38 gliadins in the mature grains. A novel group of α-gliadins (the CSTT group) was recognized to contain very few or no CD epitopes. The δ-gliadins identified here or previously did not carry CD epitopes. Finally, the mutant lacking Gli-D2 showed significant reductions in the most celiac-toxic α-gliadins and derivative CD epitopes. The insights and resources generated here should aid further studies on gliadin functions in CD and the breeding of healthier wheat. PMID:28300172

  3. Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat

    2011-06-01

    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

  4. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions

    DEFF Research Database (Denmark)

    Zhu, Xuefeng; Wirén, Marianna; Sinha, Indranil

    2006-01-01

    to investigate genome-wide localization of Mediator and the Srb8-11 module in fission yeast. Mediator and the Srb8-11 module display similar binding patterns, and interactions with promoters and upstream activating sequences correlate with increased transcription activity. Unexpectedly, Mediator also interacts...... with the downstream coding region of many genes. These interactions display a negative bias for positions closer to the 5' ends of open reading frames (ORFs) and appear functionally important, because downregulation of transcription in a temperature-sensitive med17 mutant strain correlates with increased Mediator...

  5. Exome sequencing and genome-wide copy number variant mapping reveal novel associations with sensorineural hereditary hearing loss.

    Science.gov (United States)

    Haraksingh, Rajini R; Jahanbani, Fereshteh; Rodriguez-Paris, Juan; Gelernter, Joel; Nadeau, Kari C; Oghalai, John S; Schrijver, Iris; Snyder, Michael P

    2014-12-20

    The genetic diversity of loci and mutations underlying hereditary hearing loss is an active area of investigation. To identify loci associated with predominantly non-syndromic sensorineural hearing loss, we performed exome sequencing of families and of single probands, as well as copy number variation (CNV) mapping in a case-control cohort. Analysis of three distinct families revealed several candidate loci in two families and a single strong candidate gene, MYH7B, for hearing loss in one family. MYH7B encodes a Type II myosin, consistent with a role for cytoskeletal proteins in hearing. High-resolution genome-wide CNV analysis of 150 cases and 157 controls revealed deletions in genes known to be involved in hearing (e.g. GJB6, OTOA, and STRC, encoding connexin 30, otoancorin, and stereocilin, respectively), supporting CNV contributions to hearing loss phenotypes. Additionally, a novel region on chromosome 16 containing part of the PDXDC1 gene was found to be frequently deleted in hearing loss patients (OR=3.91, 95% CI: 1.62-9.40, p=1.45×10(-7)). We conclude that many known as well as novel loci and distinct types of mutations not typically tested in clinical settings can contribute to the etiology of hearing loss. Our study also demonstrates the challenges of exome sequencing and genome-wide CNV mapping for direct clinical application, and illustrates the need for functional and clinical follow-up as well as curated open-access databases.

  6. Family based genome-wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics.

    Science.gov (United States)

    Veerappa, Avinash M; Saldanha, Marita; Padakannaya, Prakash; Ramachandra, Nallur B

    2014-10-01

    Developmental dyslexia (DD) is a complex heritable disorder with unexpected difficulty in learning to read and spell despite adequate intelligence, education, environment, and normal senses. We performed genome-wide screening for copy number variations (CNVs) in 10 large Indian dyslexic families using Affymetrix Genome-Wide Human SNP Array 6.0. Results revealed the complex genomic rearrangements due to one non-contiguous deletion and five contiguous micro duplications and micro deletions at 17q21.31 region in three dyslexic families. CNVs in this region harbor the genes KIAA1267, LRRC37A, ARL17A/B, NSFP1, and NSF. The CNVs in case 1 and case 2 at this locus were found to be in homozygous state and case 3 was a de novo CNV. These CNVs were found with at least one CNV having a common break and end points in the parents. This cluster of genes containing NSF is implicated in learning, cognition, and memory, though not formally associated with dyslexia. Molecular network analysis of these and other dyslexia related module genes suggests NSF and other genes to be associated with cellular/vesicular membrane fusion and synaptic transmission. Thus, we suggest that NSF in this cluster would be the nearest gene responsible for the learning disability phenotype.

  7. Effects of deletion of mutant huntingtin in steroidogenic factor 1 neurons on the psychiatric and metabolic phenotype in the BACHD mouse model of Huntington disease.

    Directory of Open Access Journals (Sweden)

    Barbara Baldo

    Full Text Available Psychiatric and metabolic features appear several years before motor disturbances in the neurodegenerative Huntington's disease (HD, caused by an expanded CAG repeat in the huntingtin (HTT gene. Although the mechanisms leading to these aspects are unknown, dysfunction in the hypothalamus, a brain region controlling emotion and metabolism, has been suggested. A direct link between the expression of the disease causing protein, huntingtin (HTT, in the hypothalamus and the development of metabolic and psychiatric-like features have been shown in the BACHD mouse model of HD. However, precisely which circuitry in the hypothalamus is critical for these features is not known. We hypothesized that expression of mutant HTT in the ventromedial hypothalamus, an area involved in the regulation of metabolism and emotion would be important for the development of these non-motor aspects. Therefore, we inactivated mutant HTT in a specific neuronal population of the ventromedial hypothalamus expressing the transcription factor steroidogenic factor 1 (SF1 in the BACHD mouse using cross-breeding based on a Cre-loxP system. Effects on anxiety-like behavior were assessed using the elevated plus maze and novelty-induced suppressed feeding test. Depressive-like behavior was assessed using the Porsolt forced swim test. Effects on the metabolic phenotype were analyzed using measurements of body weight and body fat, as well as serum insulin and leptin levels. Interestingly, the inactivation of mutant HTT in SF1-expressing neurons exerted a partial positive effect on the depressive-like behavior in female BACHD mice at 4 months of age. In this cohort of mice, no anxiety-like behavior was detected. The deletion of mutant HTT in SF1 neurons did not have any effect on the development of metabolic features in BACHD mice. Taken together, our results indicate that mutant HTT regulates metabolic networks by affecting hypothalamic circuitries that do not involve the SF1 neurons

  8. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    Science.gov (United States)

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient. © 2015 Wiley Periodicals, Inc.

  9. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    Science.gov (United States)

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. Copyright © 2015 Christopoulou et al.

  10. Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study

    Science.gov (United States)

    Dijkstra, Akkelies E.; Smolonska, Joanna; van den Berge, Maarten; Wijmenga, Ciska; Zanen, Pieter; Luinge, Marjan A.; Platteel, Mathieu; Lammers, Jan-Willem; Dahlback, Magnus; Tosh, Kerrie; Hiemstra, Pieter S.; Sterk, Peter J.; Spira, Avi; Vestbo, Jorgen; Nordestgaard, Borge G.; Benn, Marianne; Nielsen, Sune F.; Dahl, Morten; Verschuren, W. Monique; Picavet, H. Susan J.; Smit, Henriette A.; Owsijewitsch, Michael; Kauczor, Hans U.; de Koning, Harry J.; Nizankowska-Mogilnicka, Eva; Mejza, Filip; Nastalek, Pawel; van Diemen, Cleo C.; Cho, Michael H.; Silverman, Edwin K.; Crapo, James D.; Beaty, Terri H.; Lomas, David A.; Bakke, Per; Gulsvik, Amund; Bossé, Yohan; Obeidat, M. A.; Loth, Daan W.; Lahousse, Lies; Rivadeneira, Fernando; Uitterlinden, Andre G.; Hofman, Andre; Stricker, Bruno H.; Brusselle, Guy G.; van Duijn, Cornelia M.; Brouwer, Uilke; Koppelman, Gerard H.; Vonk, Judith M.; Nawijn, Martijn C.; Groen, Harry J. M.; Timens, Wim; Boezen, H. Marike; Postma, Dirkje S.

    2014-01-01

    Background Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10−6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3×10−9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH. PMID:24714607

  11. Genome-wide promoter methylome of small renal masses.

    Directory of Open Access Journals (Sweden)

    Ilsiya Ibragimova

    Full Text Available The majority of renal cell carcinoma (RCC is now incidentally detected and presents as small renal masses (SRMs defined as ≤ 4 cm in size. SRMs are heterogeneous comprising several histological types of RCC each with different biology and behavior, and benign tumors mainly oncocytoma. The varied prognosis of the different types of renal tumor has implications for management options. A key epigenetic alteration involved in the initiation and progression of cancer is aberrant methylation in the promoter region of a gene. The hypermethylation is associated with transcriptional repression and is an important mechanism of inactivation of tumor suppressor genes in neoplastic cells. We have determined the genome-wide promoter methylation profiles of 47 pT1a and 2 pT1b clear cell, papillary or chromophobe RCC, 25 benign renal oncocytoma ≤ 4 cm and 4 normal renal parenchyma specimens by Infinium HumanMethylation27 beadchip technology. We identify gene promoter hypermethylation signatures that distinguish clear cell and papillary from each other, from chromophobe and oncocytoma, and from normal renal cells. Pairwise comparisons revealed genes aberrantly hypermethylated in a tumor type but unmethylated in normal, and often unmethylated in the other renal tumor types. About 0.4% to 1.7% of genes comprised the promoter methylome in SRMs. The Infinium methylation score for representative genes was verified by gold standard technologies. The genes identified as differentially methylated implicate pathways involved in metabolism, tissue response to injury, epithelial to mesenchymal transition (EMT, signal transduction and G-protein coupled receptors (GPCRs, cancer, and stem cell regulation in the biology of RCC. Our findings contribute towards an improved understanding of the development of RCC, the different biology and behavior of histological types, and discovery of molecular subtypes. The differential methylation signatures may have utility in early

  12. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  13. Susceptibility to chronic mucus hypersecretion, a genome wide association study.

    Directory of Open Access Journals (Sweden)

    Akkelies E Dijkstra

    Full Text Available BACKGROUND: Chronic mucus hypersecretion (CMH is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA study of CMH in Caucasian populations. METHODS: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years. Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP. RESULTS: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10(-6, OR = 1.17, located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1 on chromosome 3. The risk allele (G was associated with higher mRNA expression of SATB1 (4.3×10(-9 in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. CONCLUSIONS: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.

  14. Genephony: a knowledge management tool for genome-wide research

    Science.gov (United States)

    Nuzzo, Angelo; Riva, Alberto

    2009-01-01

    Background One of the consequences of the rapid and widespread adoption of high-throughput experimental technologies is an exponential increase of the amount of data produced by genome-wide experiments. Researchers increasingly need to handle very large volumes of heterogeneous data, including both the data generated by their own experiments and the data retrieved from publicly available repositories of genomic knowledge. Integration, exploration, manipulation and interpretation of data and information therefore need to become as automated as possible, since their scale and breadth are, in general, beyond the limits of what individual researchers and the basic data management tools in normal use can handle. This paper describes Genephony, a tool we are developing to address these challenges. Results We describe how Genephony can be used to manage large datesets of genomic information, integrating them with existing knowledge repositories. We illustrate its functionalities with an example of a complex annotation task, in which a set of SNPs coming from a genotyping experiment is annotated with genes known to be associated to a phenotype of interest. We show how, thanks to the modular architecture of Genephony and its user-friendly interface, this task can be performed in a few simple steps. Conclusion Genephony is an online tool for the manipulation of large datasets of genomic information. It can be used as a browser for genomic data, as a high-throughput annotation tool, and as a knowledge discovery tool. It is designed to be easy to use, flexible and extensible. Its knowledge management engine provides fine-grained control over individual data elements, as well as efficient operations on large datasets. PMID:19728881

  15. Genome-Wide Association Study of Schizophrenia in Japanese Population

    Science.gov (United States)

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  16. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  17. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  18. Genome-wide methylation analyses in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Rose K Lai

    Full Text Available Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM. Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1, 5 methyl-deoxycytidine (5m-dC and 5 hydroxylmethyl-deoxycytidine (5hm-dC in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  19. Improved statistics for genome-wide interaction analysis.

    Science.gov (United States)

    Ueki, Masao; Cordell, Heather J

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new "joint effects" statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  20. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  1. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  2. Genome-wide signatures of convergent evolution in echolocating mammals.

    Science.gov (United States)

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J

    2013-10-10

    Evolution is typically thought to proceed through divergence of genes, proteins and ultimately phenotypes. However, similar traits might also evolve convergently in unrelated taxa owing to similar selection pressures. Adaptive phenotypic convergence is widespread in nature, and recent results from several genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution, although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show that convergence is not a rare process restricted to several loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four newly sequenced bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the bottlenose dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Unexpectedly, we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognized.

  3. Genome-wide association study of schizophrenia in Japanese population.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamada

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions. The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila-like 2] gene located on 9p21.3 (p = 0.00087. In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026. The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology.

  4. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  5. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    Science.gov (United States)

    2011-04-01

    al. (2007) “Efficient mapping of mendelian traits in dogs through genome-wide association.” Nat Genet 39:1321-1328. 12 Distribution A...collected data to genetically map superior intelligence in the military working dog. A behavioral testing regimen was developed by canine cognitive expert Dr...TERMS Military working dog genome-wide association study genetic marker intelligence 16

  6. Expression of brown-midrib in a spontaneous sorghum mutant is linked to a 5'-UTR deletion in lignin biosynthesis gene SbCAD2.

    Science.gov (United States)

    Li, Huang; Huang, Yinghua

    2017-09-15

    Brown midrib (bmr) mutants in sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses are associated with reduced lignin concentration, altered lignin composition and improved cell wall digestibility, which are desirable properties in biomass development for the emerging lignocellulosic biofuel industry. Studying bmr mutants has considerably expanded our understanding of the molecular basis underlying lignin biosynthesis and perturbation in grasses. In this study, we performed quantitative trait locus (QTL) analysis, identified and cloned a novel cinnamyl alcohol dehydrogenase allele (SbCAD2) that has an 8-bp deletion in its 5'-untranslated region (UTR), conferring the spontaneous brown midrib trait and lignin reduction in the sorghum germplasm line PI 595743. Complementation test and gene expression analysis revealed that this non-coding region alteration is associated with the significantly reduced expression of the SbCAD2 in PI 595743 throughout its growth stages. Moreover, a promoter-GUS fusion study with transgenic Arabidopsis thaliana plants found that SbCAD2 promoter is functionally conserved, driving a specific expression pattern in lignifying vascular tissues. Taken together, our results revealed the genetic basis of bmr occurrence in this spontaneous sorghum mutant and suggested the regulatory region of the SbCAD2 can be a target site for optimizing lignin modification in sorghum and other bioenergy crops.

  7. Bivalent vaccination against pneumonic pasteurellosis in domestic sheep and goats with modified-live in-frame lktA deletion mutants of Mannheimia haemolytica.

    Science.gov (United States)

    Briggs, Robert E; Hauglund, Melissa J; Maheswaran, Samuel K; Tatum, Fred M

    2013-11-01

    A temperature-sensitive shuttle vector, pBB80C, was utilized to generate in-frame deletion mutants of the leukotoxin structural gene (lktA) of Mannheimia haemolytica serotypes 1, 2, 5, 6, 7, 8, 9, and 12. Culture supernatants from the mutants contained a truncated protein with an approximate molecular weight of 66 kDa which was reactive to anti-leukotoxin monoclonal antibody. No protein reactive to anti-LktA monoclonal antibody was detected at the molecular weight 100-105 kDa of native LktA. Sheep and goats vaccinated intramuscularly with a mixture of serotypes 5 and 6 mutants were resistant to virulent challenge with a mixture of the wild-type parent strains. These vaccinates responded serologically to both vaccine serotypes and exhibited markedly-reduced lung lesion volume and pulmonary infectious load compared to control animals. Control animals yielded a mixture of serotypes from lung lobes, but the proportion even within an individual animal varied widely from 95% serotype 5-95% serotype 6. Cultures recovered from liver were homogeneous, but two animals yielded serotype 5 and the other two yielded serotype 6 in pure culture. Published by Elsevier Ltd.

  8. X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2006-07-21

    We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.

  9. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci

    Science.gov (United States)

    Rothman, Nathaniel; Garcia-Closas, Montserrat; Chatterjee, Nilanjan; Malats, Nuria; Wu, Xifeng; Figueroa, Jonine; Real, Francisco X; Van Den Berg, David; Matullo, Giuseppe; Baris, Dalsu; Thun, Michael; Kiemeney, Lambertus A; Vineis, Paolo; De Vivo, Immaculata; Albanes, Demetrius; Purdue, Mark P; Rafnar, Thorunn; Hildebrandt, Michelle A T; Kiltie, Anne E; Cussenot, Olivier; Golka, Klaus; Kumar, Rajiv; Taylor, Jack A; Mayordomo, Jose I; Jacobs, Kevin B; Kogevinas, Manolis; Hutchinson, Amy; Wang, Zhaoming; Fu, Yi-Ping; Prokunina-Olsson, Ludmila; Burdette, Laurie; Yeager, Meredith; Wheeler, William; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Lloreta, Josep; Johnson, Alison; Schwenn, Molly; Karagas, Margaret R; Schned, Alan; Andriole, Gerald; Grubb, Robert; Black, Amanda; Jacobs, Eric J; Diver, W Ryan; Gapstur, Susan M; Weinstein, Stephanie J; Virtamo, Jarmo; Cortessis, Victoria K; Gago-Dominguez, Manuela; Pike, Malcolm C; Stern, Mariana C; Yuan, Jian-Min; Hunter, David; McGrath, Monica; Dinney, Colin P; Czerniak, Bogdan; Chen, Meng; Yang, Hushan; Vermeulen, Sita H; Aben, Katja K; Witjes, J Alfred; Makkinje, Remco R; Sulem, Patrick; Besenbacher, Soren; Stefansson, Kari; Riboli, Elio; Brennan, Paul; Panico, Salvatore; Navarro, Carmen; Allen, Naomi E; Bueno-de-Mesquita, H Bas; Trichopoulos, Dimitrios; Caporaso, Neil; Landi, Maria Teresa; Canzian, Federico; Ljungberg, Borje; Tjonneland, Anne; Clavel-Chapelon, Francoise; Bishop, David T; Teo, Mark T W; Knowles, Margaret A; Guarrera, Simonetta; Polidoro, Silvia; Ricceri, Fulvio; Sacerdote, Carlotta; Allione, Alessandra; Cancel-Tassin, Geraldine; Selinski, Silvia; Hengstler, Jan G; Dietrich, Holger; Fletcher, Tony; Rudnai, Peter; Gurzau, Eugen; Koppova, Kvetoslava; Bolick, Sophia C E; Godfrey, Ashley; Xu, Zongli; Sanz-Velez, José I; García-Prats, María D; Sanchez, Manuel; Valdivia, Gabriel; Porru, Stefano; Benhamou, Simone; Hoover, Robert N; Fraumeni, Joseph F; Silverman, Debra T; Chanock, Stephen J

    2010-01-01

    We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120 controls of European descent (5 studies) followed by a replication strategy, which included 8,381 cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1; rs1014971, (P=8×10−12) maps to a non-genic region of chromosome 22q13.1; rs8102137 (P=2×10−11) on 19q12 maps to CCNE1; and rs11892031 (P=1×10−7) maps to the UGT1A cluster on 2q37.1. We confirmed four previous GWAS associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P=4×10−11) and a tag SNP for NAT2 acetylation status (P=4×10−11), as well as demonstrated smoking interactions with both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into mechanisms of carcinogenesis. PMID:20972438

  10. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  11. Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation

    Science.gov (United States)

    Piggott, Nina; Cook, Michael A.; Tyers, Mike; Measday, Vivien

    2011-01-01

    The ability of cells to respond to environmental changes and adapt their metabolism enables cell survival under stressful conditions. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is particularly well adapted to the harsh conditions of anaerobic wine fermentation. However, S. cerevisiae gene function has not been previously systematically interrogated under conditions of industrial fermentation. We performed a genome-wide study of essential and nonessential S. cerevisiae gene requirements during grape juice fermentation to identify deletion strains that are either depleted or enriched within the viable fermentative population. Genes that function in autophagy and ubiquitin-proteasome degradation are required for optimal survival during fermentation, whereas genes that function in ribosome assembly and peroxisome biogenesis impair fitness during fermentation. We also uncover fermentation phenotypes for 139 uncharacterized genes with no previously known cellular function. We demonstrate that autophagy is induced early in wine fermentation in a nitrogen-replete environment, suggesting that autophagy may be triggered by other forms of stress that arise during fermentation. These results provide insights into the complex fermentation process and suggest possible means for improvement of industrial fermentation strains. PMID:22384346

  12. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  13. A genome-wide copy number variant study of suicidal behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Gross

    Full Text Available Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.

  14. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants*#

    Science.gov (United States)

    Li, Wen-xu; Wu, San-ling; Liu, Yan-hua; Jin, Gu-lei; Zhao, Hai-jun; Fan, Long-jiang; Shu, Qing-yao

    2016-01-01

    Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate “transgene-clean” targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855–5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338–1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2–6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA. PMID:27921404

  15. Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant

    Science.gov (United States)

    Wong, Lai H.; Flibotte, Stephane; Sinha, Sunita; Chiang, Jennifer; Giaever, Guri; Nislow, Corey

    2017-01-01

    Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker’s yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug’s binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21. These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress. PMID:28235825

  16. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    Full Text Available BACKGROUND: The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. PRINCIPAL FINDINGS: Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells. CONCLUSION: Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  17. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  18. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Thomas Julie

    2010-02-01

    Full Text Available Abstract Background Genome-wide computational analysis of alternative splicing (AS in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much

  19. A Genome-wide Pleiotropy Scan for Prostate Cancer Risk

    Science.gov (United States)

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I.; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R.; Siddiq, Afshan; Papatheodorou, Stefania I.; Stanford, Janet L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J.; Diver, W. Ryan; Gapstur, Susan M.; Stevens, Victoria L.; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Gurrea, Aurelio Barricarte; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J. Michael; Hunter, DavidJ.; Koutros, Stella; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Wacholder, Sholom; Key, Timothy J.; Tsilidis, Konstantinos K

    2014-01-01

    Background No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). Objective To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. Design, setting, and participants SNPs implicated in any phenotype other than prostate cancer (p ≤ 10−7) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24 534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Outcome measurements and statistical analysis Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. Results and limitations A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p = 1.6 × 10-6), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95%CI 1.16–1.27; p = 3.22 × 10−18). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86–0.94; p = 2.5 × 10−6). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12,95% CI 1.06–1.19; p = 4.67 × 10−5); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. Conclusions We did

  20. Genome-wide association study of colorectal cancer in Hispanics

    Science.gov (United States)

    Schmit, Stephanie L.; Schumacher, Fredrick R.; Edlund, Christopher K.; Conti, David V.; Ihenacho, Ugonna; Wan, Peggy; Van Den Berg, David; Casey, Graham; Fortini, Barbara K.; Lenz, Heinz-Josef; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Moreno-Macías, Hortensia; Huerta-Chagoya, Alicia; Ordóñez-Sánchez, María Luisa; Rodríguez-Guillén, Rosario; Cruz-Bautista, Ivette; Rodríguez-Torres, Maribel; Muñóz-Hernández, Linda Liliana; Arellano-Campos, Olimpia; Gómez, Donají; Alvirde, Ulices; González-Villalpando, Clicerio; González-Villalpando, María Elena; Le Marchand, Loic; Haiman, Christopher A.; Figueiredo, Jane C.

    2016-01-01

    Genome-wide association studies (GWAS) have identified 58 susceptibility alleles across 37 regions associated with the risk of colorectal cancer (CRC) with P < 5×10−8. Most studies have been conducted in non-Hispanic whites and East Asians; however, the generalizability of these findings and the potential for ethnic-specific risk variation in Hispanic and Latino (HL) individuals have been largely understudied. We describe the first GWAS of common genetic variation contributing to CRC risk in HL (1611 CRC cases and 4330 controls). We also examine known susceptibility alleles and implement imputation-based fine-mapping to identify potential ethnicity-specific association signals in known risk regions. We discovered 17 variants across 4 independent regions that merit further investigation due to suggestive CRC associations (P < 1×10−6) at 1p34.3 (rs7528276; Odds Ratio (OR) = 1.86 [95% confidence interval (CI): 1.47–2.36); P = 2.5×10−7], 2q23.3 (rs1367374; OR = 1.37 (95% CI: 1.21–1.55); P = 4.0×10−7), 14q24.2 (rs143046984; OR = 1.65 (95% CI: 1.36–2.01); P = 4.1×10−7) and 16q12.2 [rs142319636; OR = 1.69 (95% CI: 1.37–2.08); P=7.8×10−7]. Among the 57 previously published CRC susceptibility alleles with minor allele frequency ≥1%, 76.5% of SNPs had a consistent direction of effect and 19 (33.3%) were nominally statistically significant (P < 0.05). Further, rs185423955 and rs60892987 were identified as novel secondary susceptibility variants at 3q26.2 (P = 5.3×10–5) and 11q12.2 (P = 6.8×10−5), respectively. Our findings demonstrate the importance of fine mapping in HL. These results are informative for variant prioritization in functional studies and future risk prediction modeling in minority populations. PMID:27207650

  1. Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Ian K. Blaby

    2010-01-01

    Full Text Available With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment.

  2. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  3. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosomes deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI; Feng; LI; Ying; JIANG; Wei; WANG; Zhenfang; LI; Jilun

    2005-01-01

    A magnetosome deleted mutant NM4 of Magnetospirillum gryphiswaldense MSR-1 was generated by mini-Tn5 transposon mutagenesis, and a 5045-bp fragment flanking mini-Tn5 in NM4 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved six putative open reading frames (ORFs); the mini-Tn5 was inserted into ORF4. Functional complementary test indicated that the 5045-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The protein encoded by ORF4 had 25% of identity with the chemotaxis protein CheYIII of Caulobacter crescentus CB15, and the protein encoded by ORF4 contained a conserved signal receiver domain that can receive the signal from the sensor partner of the bacterial two-component systems. It was suggested that the protein encoded by ORF4 may take part in the signal transduction relating to biosynthesis of magnetosomes.

  4. Dating the age of admixture via wavelet transform analysis of genome-wide data

    NARCIS (Netherlands)

    I. Pugach (Irina); R. Matveyev (Rostislav); A. Wollstein (Andreas); M.H. Kayser (Manfred); M. Stoneking (Mark)

    2011-01-01

    textabstractWe describe a PCA-based genome scan approach to analyze genome-wide admixture structure, and introduce wavelet transform analysis as a method for estimating the time of admixture. We test the wavelet transform method with simulations and apply it to genome-wide SNP data from eight admixe

  5. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J. L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schafer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genome-wide association studies (GWAS) are needed. Method: We used case-control analyses of 896 cases…

  6. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Mick, Eric; Todorov, Alexandre; Smalley, Susan; Hu, Xiaolan; Loo, Sandra; Todd, Richard D.; Biederman, Joseph; Byrne, Deirdre; Dechairo, Bryan; Guiney, Allan; McCracken, James; McGough, James; Nelson, Stanley F.; Reiersen, Angela M.; Wilens, Timothy E.; Wozniak, Janet; Neale, Benjamin M.; Faraone, Stephen V.

    2010-01-01

    Objective: Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of…

  7. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  8. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  9. A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

    NARCIS (Netherlands)

    Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide A

  10. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder;

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  11. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder.

    NARCIS (Netherlands)

    Neale, B.M.; Medland, S.E.; Ripke, S.; Asherson, P.; Franke, B.; Lesch, K.P.; Faraone, S.V.; Nguyen, T.T.; Schafer, H.; Holmans, P.; Daly, M.; Steinhausen, H.C.; Freitag, C.; Reif, A.; Renner, T.J.; Romanos, M.; Romanos, J.; Walitza, S.; Warnke, A.; Meyer, J.; Palmason, H.; Buitelaar, J.K.; Vasquez, A.A.; Lambregts-Rommelse, N.N.J.; Gill, M.; Anney, R.J.; Langely, K.; O'Donovan, M.; Williams, N.; Owen, M.; Thapar, A.; Kent, L.; Sergeant, J.A.; Roeyers, H.; Mick, E.; Biederman, J.; Doyle, A.; Smalley, S.; Loo, S.; Hakonarson, H.; Elia, J.; Todorov, A.; Miranda, A.; Mulas, F.; Ebstein, R.P.; Rothenberger, A.; Banaschewski, T.; Oades, R.D.; Sonuga-Barke, E.; McGough, J.; Nisenbaum, L.; Middleton, F.; Hu, X.; Nelson, S.

    2010-01-01

    OBJECTIVE: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded signifi

  12. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  13. VIGoR: Variational Bayesian Inference for Genome-Wide Regression

    Directory of Open Access Journals (Sweden)

    Akio Onogi

    2016-04-01

    Full Text Available Genome-wide regression using a number of genome-wide markers as predictors is now widely used for genome-wide association mapping and genomic prediction. We developed novel software for genome-wide regression which we named VIGoR (variational Bayesian inference for genome-wide regression. Variational Bayesian inference is computationally much faster than widely used Markov chain Monte Carlo algorithms. VIGoR implements seven regression methods, and is provided as a command line program package for Linux/Mac, and as a cross-platform R package. In addition to model fitting, cross-validation and hyperparameter tuning using cross-validation can be automatically performed by modifying a single argument. VIGoR is available at https://github.com/Onogi/VIGoR. The R package is also available at https://cran.r-project.org/web/packages/VIGoR/index.html.

  14. More heritability probably captured by psoriasis genome-wide association study in Han Chinese.

    Science.gov (United States)

    Jiang, Long; Liu, Lu; Cheng, Yuyan; Lin, Yan; Shen, Changbing; Zhu, Caihong; Yang, Sen; Yin, Xianyong; Zhang, Xuejun

    2015-11-15

    Missing heritability is a common problem in genome-wide association studies in complex diseases/traits. To quantify the unbiased heritability estimate, we applied the phenotype correlation-genotype correlation regression in psoriasis genome-wide association data in Han Chinese which comprises 1139 cases and 1132 controls. We estimated that 45.7% heritability of psoriasis in Han Chinese were captured by common variants (s.e.=12.5%), which reinforced that the majority of psoriasis heritability can be covered by common variants in genome-wide association data (68.2%). The results provided evidence that the heritability covered by psoriasis genome-wide genotyping data was probably underestimated in previous restricted maximum likelihood method. Our study highlights the broad role of common variants in the etiology of psoriasis and sheds light on the possibility to identify more common variants of small effect by increasing the sample size in psoriasis genome-wide association studies.

  15. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  16. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Mirjam Appel

    Full Text Available Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.

  17. Genome-wide screen of Pseudomonas aeruginosa In Saccharomyces cerevisiae identifies new virulence factors

    Directory of Open Access Journals (Sweden)

    Rafat eZrieq

    2015-11-01

    Full Text Available Pseudomonas aeruginosa is a human opportunistic pathogen that causes mortality in cystic fibrosis and immunocompromised patients. While many virulence factors of this pathogen have already been identified, several remain to be discovered. In this respect we set an unprecedented genome-wide screen of a P. aeruginosa expression library based on a yeast growth phenotype. 51 candidates were selected in a three-round screening process. The robustness of the screen was validated by the selection of three well known secreted proteins including one demonstrated virulence factor, the protease LepA. Further in silico sorting of the 51 candidates highlighted three potential new Pseudomonas effector candidates (Pec. By testing the cytotoxicity of wild type P. aeruginosa vs pec mutants towards macrophages and the virulence in the Caenorhabditis elegans model, we demonstrated that the three selected Pecs are novel virulence factors of P. aeruginosa. Additional cellular localization experiments in the host revealed specific localization for Pec1 and Pec2 that could inform about their respective functions.

  18. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  19. Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation1[OPEN

    Science.gov (United States)

    Tiffin, Peter; Guhlin, Joseph; Atkins, Paul; Baltes, Nicholas J.; Denny, Roxanne

    2017-01-01

    Genome-wide association (GWA) studies offer the opportunity to identify genes that contribute to naturally occurring variation in quantitative traits. However, GWA relies exclusively on statistical association, so functional validation is necessary to make strong claims about gene function. We used a combination of gene-disruption platforms (Tnt1 retrotransposons, hairpin RNA-interference constructs, and CRISPR/Cas9 nucleases) together with randomized, well-replicated experiments to evaluate the function of genes that an earlier GWA study in Medicago truncatula had identified as candidates contributing to variation in the symbiosis between legumes and rhizobia. We evaluated ten candidate genes found in six clusters of strongly associated single nucleotide polymorphisms, selected on the basis of their strength of statistical association, proximity to annotated gene models, and root or nodule expression. We found statistically significant effects on nodule production for three candidate genes, each validated in two independent mutants. Annotated functions of these three genes suggest their contributions to quantitative variation in nodule production occur through processes not previously connected to nodulation, including phosphorous supply and salicylic acid-related defense response. These results demonstrate the utility of GWA combined with reverse mutagenesis technologies to discover and validate genes contributing to naturally occurring variation in quantitative traits. The results highlight the potential for GWA to complement forward genetics in identifying the genetic basis of ecologically and economically important traits. PMID:28057894

  20. Computational modelling of genome-wide [corrected] transcription assembly networks using a fluidics analogy.

    Directory of Open Access Journals (Sweden)

    Yousry Y Azmy

    Full Text Available Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets.

  1. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  2. Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis

    Institute of Scientific and Technical Information of China (English)

    Li Song; Xiao-Yi Zhou; Li Li; Liang-Jiao Xue; Xi Yang; Hong-Wei Xue

    2009-01-01

    Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development;however,the mechanism of how they synergistically function is still largely unknown.To explore the underlying mechanisms in photomorphogenesis,genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL).Results showed that BR deficiency stimulates,while BL treatment suppresses,the expressions of lightresponsive genes and photomorphogenesis,confirming the negative effects of BR in photomorphogenesis.This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification,cellular metabolism and energy utilization during dark-light transition.Further analysis revealed that hormone biosynthesis and signaling-related genes,especially those of auxin,were altered under BL treatment or light stimuli,indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones.Additionally,suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light,hormone,and protein degradation.The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway,which will help to elucidate the molecular mechanism of plant photomorphogenesis.

  3. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster.

    Science.gov (United States)

    Appel, Mirjam; Scholz, Claus-Jürgen; Müller, Tobias; Dittrich, Marcus; König, Christian; Bockstaller, Marie; Oguz, Tuba; Khalili, Afshin; Antwi-Adjei, Emmanuel; Schauer, Tamas; Margulies, Carla; Tanimoto, Hiromu; Yarali, Ayse

    2015-01-01

    Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.

  4. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  5. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    models. Systematic analysis of biological processes by means of modelling and simulations has made the identification of metabolic networks and prediction of metabolic capabilities under different conditions possible. For facilitating such systemic analysis, we have developed the BioMet Toolbox, a web......-based resource for stoichiometric analysis and for integration of transcriptome and interactome data, thereby exploiting the capabilities of genome-scale metabolic models. The BioMet Toolbox provides an effective user-friendly way to perform linear programming simulations towards maximized or minimized growth...... rates, substrate uptake rates and metabolic production rates by detecting relevant fluxes, simulate single and double gene deletions or detect metabolites around which major transcriptional changes are concentrated. These tools can be used for high-throughput in silico screening and allows fully...

  6. Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073

    Science.gov (United States)

    Mehta, Heer H.; Liu, Yuxuan

    2015-01-01

    Uropathogenic Escherchia coli (UPEC) is the causative agent of urinary tract infections. Nitric oxide (NO) is a toxic water-soluble gas that is encountered by UPEC in the urinary tract. Therefore, UPEC probably requires mechanisms to detoxify NO in the host environment. Thus far, flavohaemoglobin (Hmp), an NO denitrosylase, is the only demonstrated NO detoxification system in UPEC. Here we show that, in E. coli strain CFT073, the NADH-dependent NO reductase flavorubredoxin (FlRd) also plays a major role in NO scavenging. We generated a mutant that lacks all known and candidate NO detoxification pathways (Hmp, FlRd and the respiratory nitrite reductase, NrfA). When grown and assayed anaerobically, this mutant expresses an NO-inducible NO scavenging activity, pointing to the existence of a novel detoxification mechanism. Expression of this activity is inducible by both NO and nitrate, and the enzyme is membrane-associated. Genome-wide transcriptional profiling of UPEC grown under anaerobic conditions in the presence of nitrate (as a source of NO) highlighted various aspects of the response of the pathogen to nitrate and NO. Several virulence-associated genes are upregulated, suggesting that host-derived NO is a potential regulator of UPEC virulence. Chromatin immunoprecipitation and sequencing was used to evaluate the NsrR regulon in CFT073. We identified 49 NsrR binding sites in promoter regions in the CFT073 genome, 29 of which were not previously identified in E. coli K-12. NsrR may regulate some CFT073 genes that do not have homologues in E. coli K-12.

  7. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae

    OpenAIRE

    Xiao, Han; Zhao, Huimin

    2014-01-01

    Background Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. Results By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes in...

  8. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    Almasy, L, Blangero, J. (2009) Human QTL linkage mapping. Genetica 136:333-340. Amos, CI. (2007) Successful design and conduct of genome-wide...quantitative trait loci. Genetica 136:237-243. Skol AD, Scott LJ, Abecasis GR, Boehnke M. (2006) Joint analysis is more efficient than replication

  9. Escherichia coli deletion mutants illuminate trade-offs between growth rate and flux through a foreign anabolic pathway.

    Science.gov (United States)

    Falls, Kelly C; Williams, Aimee L; Bryksin, Anton V; Matsumura, Ichiro

    2014-01-01

    Metabolic engineers strive to improve the production yields of microbial fermentations, sometimes by mutating the genomes of production strains. Some mutations are detrimental to the health of the organism, so a quantitative and mechanistic understanding of the trade-offs could inform better designs. We employed the bacterial luciferase operon (luxABCDE), which uses ubiquitous energetic cofactors (NADPH, ATP, FMNH2, acetyl-CoA) from the host cell, as a proxy for a novel anabolic pathway. The strains in the Escherichia coli Keio collection, each of which contains a single deletion of a non-essential gene, represent mutational choices that an engineer might make to optimize fermentation yields. The Keio strains and the parental BW25113 strain were transformed with a luxABCDE expression vector. Each transformant was propagated in defined M9 medium at 37 °C for 48 hours; the cell density (optical density at 600 nanometers, OD600) and luminescence were measured every 30 minutes. The trade-offs were visualized by plotting the maximum growth rate and luminescence/OD600 of each transformant across a "production possibility frontier". Our results show that some loss-of-function mutations enhance growth in vitro or light production, but that improvement in one trait generally comes at the expense of the other.

  10. Genome-wide allelotype study of primary glioblastoma multiforme

    Institute of Scientific and Technical Information of China (English)

    胡杰; 江澄川; 吴浩强; 彭颂先; 唐婉君; 陈商群

    2003-01-01

    Objective To investigate the molecular genetic pathogenesis of primary glioblastoma multiforme (GBM) and identify which chromosomes or chromosomal regions of the entire genome may harbor tumor suppressor genes (TSGs) associated with GBM.Methods A high-resolution allelotype study of 21 cases of primary GBM was performed by PCR-based loss of heterozygosity (LOH)analysis. Three hundred and eighty-two fluorescent dye-labeled microsatellite markers covering all 22 autosomes were applied. The mean genetic distance between two flanking markers was about 10 cM.Results LOH was observed on all 39 nonacrocentric autosomal arms examined in this study. The LOH frequencies of 10q, 10p, 9p, 17p and 13q were the highest (>50%). Furthermore, high LOH frequencies were detected in the regions containing known TSGs including PTEN, DMBT1, p16, p15, p53 and RB; the LOH frequencies on 14q, 3q, 22q, 11p, 9q, 19q were also high (>40.5%). Our study observed the following commonly deleted regions: 9p22-23, 10p12.2-14, 10q21.3, 13q12.1-14.1, 13q14.3-31, 17p11.2-12, 17p13, 3q25.2-26.2, 11p12-13, 14q13-31, 14q32.1, 14q11.1-13, 22q13.3, 4q35, 4q31.1-31.2, 6q27 and 6q21-23.3. Conclusions The molecular pathogenesis of GBM is very complicated and associated with a variety of genetic abnormalities on many chromosomal arms. The most closely related chromosomal arms to the pathogenesis of GBM are 10q, 10p, 9p, 17p and 13q. Besides the well-known TSGs including PTEN, DMBT1, p16, p15, p53 and RB, multiple unknown TSGs associated with GBM may be present on the commonly deleted regions detected in the present study.

  11. [Comparative proteomics analysis of extracellular proteins from Listeria monocytogenes and its isogenic prfA deletion mutant].

    Science.gov (United States)

    Yin, Yuelan; Bai, Chunguang; Wang, Guoliang; Jia, Yanyan; Qu, Jin; Fu, Hong; Gao, Yunfei; Jiao, Xin'an

    2013-04-04

    Positive regulatory factor A (PrfA) protein plays a key role in the pathogenicity of Listeria monocytogenes by regulating the expression of virulence genes. We studied the regulation functions of PrfA and its role in Listeria monocytogenes (Lm) virulence. Extracellular proteins were obtained from the supernatants of parental strain LM4 and mutant strain LM4deltaprfA cultured in minimal medium. We used two-dimensional gel electrophoresis and matrix associated laser dissociation/ionization time of flight mass spectrometry (MALDI- TOF-MS) to analyze the differences of secreted proteins between LM4 and LM4deltaprfA. The electrophoresis results show that 31 different spots, 19 spots corresponding 12 proteins were identified by MALDI- TOF-MS. Some virulence related proteins were verified, such as InlC, ActA and LLO. Some new proteins that are regulated by PrfA include D-alanyl-D-alanine carboxypeptidase, dipeptide Glycine and Trytophan (GW) repeat-containing surface protein, transcriptional regulator and some hypothetical proteins with unknown functions. Real-time quantitative PCR was conducted to verify the proteomics results. The mRNA expression level of hly, actA and inlC gene was significantly reduced, and that of D-alanyl-D-alanine carboxypeptidase and GW repeat-containing surface protein's synthesis also had a reduction in LM4deltaprfA strain. PrfA plays key roles on the regulation of genes in LIPI- I and LIPI- II.

  12. Genome-wide copy number profiling using high-density SNP array in chickens.

    Science.gov (United States)

    Yi, G; Qu, L; Chen, S; Xu, G; Yang, N

    2015-04-01

    Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome-wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high-density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high-density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high-density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens. © 2015 Stichting International Foundation for Animal Genetics.

  13. Genome-wide analysis of chimpanzee genes with premature termination codons

    Directory of Open Access Journals (Sweden)

    Cavelier Lucia

    2009-01-01

    Full Text Available Abstract Background Premature termination codons (PTCs cause mRNA degradation or a truncated protein and thereby contribute to the transcriptome and proteome divergence between species. Here we present the first genome-wide study of PTCs in the chimpanzee. By comparing the human and chimpanzee genome sequences we identify and characterize genes with PTCs, in order to understand the contribution of these mutations to the transcriptome diversity between the species. Results We have studied a total of 13,487 human-chimpanzee gene pairs and found that ~8% were affected by PTCs in the chimpanzee. A majority (764/1,109 of PTCs were caused by insertions or deletions and the remaining part was caused by substitutions. The distribution of PTC genes varied between chromosomes, with Y having the highest proportion. Furthermore, the density of PTC genes varied on a megabasepair scale within chromosomes and we found the density to be correlated both with indel divergence and proximity to the telomere. Within genes, PTCs were more common close to the 5' and 3' ends of the amino acid sequence. Gene Ontology classification revealed that olfactory receptor genes were over represented among the PTC genes. Conclusion Our results showed that the density of PTC genes fluctuated across the genome depending on the local genomic context. PTCs were preferentially located in the terminal parts of the transcript, which generally have a lower frequency of functional domains, indicating that selection was operating against PTCs at sites central to protein function. The enrichment of GO terms associated with olfaction suggests that PTCs may have influenced the difference in the repertoire of olfactory genes between humans and chimpanzees. In summary, 8% of the chimpanzee genes were affected by PTCs and this type of variation is likely to have an important effect on the transcript and proteomic divergence between humans and chimpanzees.

  14. A genome-wide association analysis of chromosomal aberrations and Hirschsprung disease.

    Science.gov (United States)

    Bae, Joon Seol; Koh, InSong; Cheong, Hyun Sub; Seo, Jeong-Meen; Kim, Dae-Yeon; Oh, Jung-Tak; Kim, Hyun-Young; Jung, Kyuwhan; Sul, Jae Hoon; Park, Woong-Yang; Kim, Jeong-Hyun; Shin, Hyoung Doo

    2016-11-01

    Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of intramural ganglion cells along variable lengths of the gastrointestinal tract. Although the RET proto-oncogene is considered to be the main risk factor for HSCR, only about 30% of the HSCR cases can be explained by variations in previously known genes including RET. Recently, copy number variation (CNV) and loss of heterozygosity (LOH) have emerged as new ways to understand human genomic variation. The goal of this present study is to identify new HSCR genetic factors related to CNV in Korean patients. In the genome-wide genotyping, using Illumina's HumanOmni1-Quad BeadChip (1,140,419 markers), of 123 HSCR patients and 432 unaffected subjects (total n = 555), a total of 8,188 CNVs (1 kb ∼ 1 mb) were identified by CNVpartition. As a result, 16 CNV regions and 13 LOH regions were identified as associated with HSCR (minimum P = 0.0005). Two top CNV regions (deletions at chr6:32675155-32680480 and chr22:20733495-21607293) were successfully validated by additional real-time quantitative polymerase chain reaction analysis. In addition, 2 CNV regions (6p21.32 and 22q11.21) and 2 LOH regions (3p22.2 and 14q23.3) were discovered to be unique to the HSCR patients group. Regarding the large-scale chromosomal aberrations (>1 mb), 11 large aberrations in the HSCR patients group were identified, which suggests that they may be a risk factor for HSCR. Although further replication in a larger cohort is needed, our findings may contribute to the understanding of the etiology of HSCR.

  15. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    Science.gov (United States)

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment. Copyright © 2014 Wiley Periodicals, Inc.

  16. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  17. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  18. A genome-wide CNV analysis of schizophrenia reveals a potential role for a multiple-hit model.

    Science.gov (United States)

    Rudd, Danielle S; Axelsen, Michael; Epping, Eric A; Andreasen, Nancy C; Wassink, Thomas H

    2014-12-01

    Schizophrenia is a chronic and severe psychiatric disorder that is highly heritable. While both common and rare genetic variants contribute to disease risk, many questions still remain about disease etiology. We performed a genome-wide analysis of copy number variants (CNVs) in 166 schizophrenia subjects and 52 psychiatrically healthy controls. First, overall CNV characteristics were compared between cases and controls. The only statistically significant finding was that deletions comprised a greater proportion of CNVs in cases. High interest CNVs were then identified as conservative using the following filtering criteria: (i) known deleterious CNVs; (ii) CNVs > 1 Mb that were novel (not found in a database of control individuals); and (iii) CNVs 1 Mb) or with multiple conservative CNVs. Two case individuals with the highest burden of conservative CNVs also share a recurrent 15q11.2 BP1-2 deletion, indicating a role for a potential multiple-hit CNV model for schizophrenia. In total, we report three 15q11.2 BP1-2 deletion individuals with schizophrenia, adding to a growing body of evidence that this CNV is involved in disease etiology.

  19. Genome-wide analysis of effectors of peroxisome biogenesis.

    Directory of Open Access Journals (Sweden)

    Ramsey A Saleem

    Full Text Available Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.

  20. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  1. Genome-wide association studies of female reproduction in tropically adapted beef cattle

    National Research Council Canada - National Science Library

    Hawken, R J; Zhang, Y D; Fortes, M R S; Collis, E; Barris, W C; Corbet, N J; Williams, P J; Fordyce, G; Holroyd, R G; Walkley, J R W; Barendse, W; Johnston, D J; Prayaga, K C; Tier, B; Reverter, A; Lehnert, S A

    2012-01-01

    .... To elucidate the genetics underlying reproduction in beef cattle, we performed a genome-wide association study using the bovine SNP50 chip in 2 tropically adapted beef cattle breeds, Brahman and Tropical Composite...

  2. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealin...

  3. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  4. The Capacity of Listeria Monocytogenes Mutants with In-Frame Deletions in Putative ATP-Binding Cassette Transporters to form Biofilms and Comparison with the Wild Type

    Science.gov (United States)

    Ceruso, Marina; Fratamico, Pina; Chirollo, Claudia; Taglialatela, Rosanna; Cortesi, Maria Luisa

    2014-01-01

    Listeria monocytogenes (Lm) is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC) transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877) were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that ΔLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment. PMID:27800311

  5. Genome-wide association study of smoking initiation and current smoking

    DEFF Research Database (Denmark)

    Vink, Jacqueline M; Smit, August B; de Geus, Eco J C;

    2009-01-01

    For the identification of genes associated with smoking initiation and current smoking, genome-wide association analyses were carried out in 3497 subjects. Significant genes that replicated in three independent samples (n = 405, 5810, and 1648) were visualized into a biologically meaningful network......) and cell-adhesion molecules (e.g., CDH23). We conclude that a network-based genome-wide association approach can identify genes influencing smoking behavior....

  6. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    OpenAIRE

    Stahl, Eli A; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.

    2010-01-01

    To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P

  7. A genome-wide 20 K citrus microarray for gene expression analysis

    OpenAIRE

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA...

  8. Genome-wide association analysis of imputed rare variants: application to seven common complex diseases.

    Science.gov (United States)

    Mägi, Reedik; Asimit, Jennifer L; Day-Williams, Aaron G; Zeggini, Eleftheria; Morris, Andrew P

    2012-12-01

    Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome-wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome-wide genotype data up to high-density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re-sequencing experiments. By application of this approach to genome-wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome-wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome-wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.

  9. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  10. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.

    Science.gov (United States)

    Teixeira, Miguel C; Raposo, Luís R; Mira, Nuno P; Lourenço, Artur B; Sá-Correia, Isabel

    2009-09-01

    The understanding of the molecular basis of yeast resistance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. In this study, the yeast disruptome was screened for mutants with differential susceptibility to stress induced by high ethanol concentrations in minimal growth medium. Over 250 determinants of resistance to ethanol were identified. The most significant gene ontology terms enriched in this data set are those associated with intracellular organization, biogenesis, and transport, in particular, regarding the vacuole, the peroxisome, the endosome, and the cytoskeleton, and those associated with the transcriptional machinery. Clustering the proteins encoded by the identified determinants of ethanol resistance by their known physical and genetic interactions highlighted the importance of the vacuolar protein sorting machinery, the vacuolar H(+)-ATPase complex, and the peroxisome protein import machinery. Evidence showing that vacuolar acidification and increased resistance to the cell wall lytic enzyme beta-glucanase occur in response to ethanol-induced stress was obtained. Based on the genome-wide results, the particular role of the FPS1 gene, encoding a plasma membrane aquaglyceroporin which mediates controlled glycerol efflux, in ethanol stress resistance was further investigated. FPS1 expression contributes to decreased [(3)H]ethanol accumulation in yeast cells, suggesting that Fps1p may also play a role in maintaining the intracellular ethanol level during active fermentation. The increased expression of FPS1 confirmed the important role of this gene in alcoholic fermentation, leading to increased final ethanol concentration under conditions that lead to high ethanol production.

  11. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583.

    Directory of Open Access Journals (Sweden)

    Kouki Shioya

    Full Text Available Small RNA molecules (sRNAs are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.

  12. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  13. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  14. [Ferric iron absorption in deltar p f F xoo, a gene deletion mutant of Xanthomonas oryzae pv. oryzae, assayed using atomic absorption spectrophotometry].

    Science.gov (United States)

    Sun, Lei; Wu, Mao-Sen; He, Chen-Yang

    2010-04-01

    The ferric iron absorption is one of the most important limiting factors of bacterial growth of Xanthomonas oryzae pv. oryzae. It has been previously speculated that r p f F xoo might be involved in the ferric iron metabolism of the pathogen. In the present study, deltar p f F xoo, a gene deletion mutant, was generated from the wild-type strain PXO99A of Xoo through the homologous recombination, and Fe content was assayed using flame atomic absorption in PXO99A and deltar p f F xoo. The results indicated that the recovery was 99.7% and the relative standard deviation was 1.89 under optimized AAS operating conditions. The increase in Fe absorption in PXO99A and deltar p f F xoo was observed with the increasing time. However, the ferric content of deltar p f F xoo was significantly lower than that of PXO99A (P < 0.05). It is suggested that r p f F xoo is involved in iron metabolism in Xanthomonas oryzae pv. oryzae.

  15. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid.

    Science.gov (United States)

    Cheng, Zhao; Yin, Junlei; Kang, Xilong; Geng, Shizhong; Hu, Maozhi; Pan, Zhiming; Jiao, Xinan

    2016-08-01

    With an aim to develop a safe, immunogenic fowl typhoid (FT) vaccine, the safety and efficacy of 1009ΔspiCΔcrp, a spiC and crp deletion mutant of Salmonella gallinarum, were evaluated in chickens. Three-day-old chickens were intramuscularly immunized with 1009ΔspiCΔcrp (1×10(7)CFU) and boosted 7days later (at 10-days old) with the same dose and via the same route (vaccinated group). The vaccinated group showed no clinical symptoms and no differences in body weight compared to the unvaccinated control group. 1009ΔspiCΔcrp bacteria colonized and persisted in the liver and spleen of vaccinated chickens for >14days, and significant specific humoral and cellular immune responses were induced. Vaccinated chickens were challenged with S. gallinarum strain SG9 at 21days post-immunization (24-day-old chickens), and efficient protection was observed based on the mortality and clinical symptoms, as compared to those in the control group. These results demonstrate that 1009ΔspiCΔcrp can be used as a live attenuated vaccine.

  16. Cloning and functional analysis of the sequences flanking mini-Tn5 in the magnetosome-deleted mutant NM21 of Magnetospirillum gryphiswaldense MSR-1

    Institute of Scientific and Technical Information of China (English)

    LI Feng; LI Ying; JIANG Wei; WANG ZhenFang; LI JiLun

    2009-01-01

    A magnetosome-deleted mutant NM21 of MagnetospMIlum gryphiswaldense MSR-1 was generated by mini-Tn5 lacZ2 transposon mutagenesis, and a 3073-bp fragment flanking mini-Tn5 lacZ2 in NM21 was cloned by Anchored PCR. Sequencing analysis showed that this fragment involved three putative ORFs; the mini-Tn5 lacZ2 was inserted into ORF1. Functional complementary test indicated that the 3073-bp fragment was required for biosynthesis of magnetosomes in M. gryphiswaldense MSR-1. The majority of proteins, which bad homology with the protein encoded by ORF1, were the cation transporter. Transmembrane domain analysis showed that the protein encoded by ORF1 contained four trans-membrane domains. It may be a transmembrane protein. The protein encoded by ORF1 contained two putative conserved domains: COG0053 and PRK09509. The MMT1 and FieF, containing conserved domains COG0053 and PRK09509 too, were Fe2+ transporter (cation diffusion facilitator superfamily). It was suggested that the protein encoded by ORF1 might take part in the magnetosomes biosynthesis as Fe2+ transporter.

  17. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.

    Science.gov (United States)

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-07-15

    CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms.

  18. Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium.

    Directory of Open Access Journals (Sweden)

    Xinglin Zhang

    2012-06-01

    Full Text Available Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM, leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism.

  19. Construction of fbpA-deletion Mutant of Listeria Monocytogenes%单核细胞增生性李斯特菌fbpa基因敲除菌株的构建

    Institute of Scientific and Technical Information of China (English)

    李胜军; 阎雪晶; 王舰

    2013-01-01

    Objective To construct an fbpA-deletion mutant of Listeria monocytogenes. Methods The fbpA gene and its upstream, downstream genes of Listeria monocytogenes were cloned into plasmid pCR Ⅱ. The upstream and downstream fragments were ligated into the pAULA using restriction enzyme as pAULA-ΔfbpA. To achieve allelic exchange, pAULA-ΔfbpA was introduced into Listeria monocytogenes by electroporation. The mutant was confirmed by PCR and Western blot. Results The fbpA gene was not detected in genome of fbpA-deletion mutant of Listeria monocytogenes,and FbpA was not expressed in fbpA-deletion mutant of Listeria monocytogenes. Conclusion The fbpA-deletion mutant of Listeria monocytogenes was constructed successfully.%目的 构建单核细胞增生性李斯特菌fbpa基因敲除菌株.方法 克隆fbpa及其上、下游基因,构建其载体质粒;通过酶切反应将上、下游基因分别重组到载体质粒中,形成同源重组质粒;同源重组质粒电转入细菌内,进行同源重组;采用PCR、Western blot鉴定敲除菌株.结果 单核细胞增生性李斯特菌fbpa基因敲除菌株基因组DNA无fbpa基因片段,且无FbpA蛋白表达.结论 成功构建单核细胞增生性李斯特菌fbpa基因敲除菌株.

  20. Spontaneous asj-2J mutant mouse as a model for generalized arterial calcification of infancy: a large deletion/insertion mutation in the Enpp1 gene.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Generalized arterial calcification of infancy (GACI, an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. The affected individuals in most cases die within the first year of life, and there is currently no effective treatment for this disorder. In this study, we characterized a spontaneous mutant mouse, asj-2J, as a model for GACI. These mice were identified as part of a phenotypic deviant search in a large-scale production colony of BALB/cJ mice at The Jackson Laboratory. They demonstrated a characteristic gait due to stiffening of the joints, with phenotypic similarity to a previously characterized asj ("ages with stiffened joints" mouse, caused by a missense mutation in the Enpp1 gene. Complementation testing indicated that asj-2J and asj were allelic. PCR-based mutation detection strategy revealed in asj-2J mice a large, 40,035 bp, deletion spanning from intron 1 to the 3'-untranslated region of the Enpp1 gene, coupled with a 74 bp insertion. This was accompanied with a significant reduction in the plasma PPi concentration and reduced PPi/Pi ratio. As a consequence, extensive aberrant mineralization affecting the arterial vasculature, a number of internal organs, and the dermal sheath of vibrissae, a progressive biomarker of the ectopic mineralization process, was demonstrated by a combination of micro computed tomography, histopathology with calcium-specific stains, and direct chemical assay of calcium. Comparison of the asj and asj-2J mice demonstrated that the latter ones, particularly when placed on an acceleration diet high in phosphate and low in magnesium, had more extensive mineralization. Thus, the asj-2J mouse serves as a novel model for GACI, a currently intractable disorder.

  1. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress.

    Science.gov (United States)

    Han, Ziying; Madara, Jonathan J; Liu, Yuliang; Liu, Wenbo; Ruthel, Gordon; Freedman, Bruce D; Harty, Ronald N

    2015-10-01

    Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress.

  2. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

    Science.gov (United States)

    Jo, William J; Loguinov, Alex; Chang, Michelle; Wintz, Henri; Nislow, Corey; Arkin, Adam P; Giaever, Guri; Vulpe, Chris D

    2008-01-01

    Iron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved. Here we report a systematic screen using yeast deletion mutants to identify genes involved in the toxic response to growth-inhibitory concentrations of iron and copper sulfate. We aimed to understand the cellular responses to toxic concentrations of these two metals by analyzing the different subnetworks and biological processes significantly enriched with these genes. Our results indicate the presence of two different detoxification pathways for iron and copper that converge toward the vacuole. The product of several of the identified genes in these pathways form molecular complexes that are conserved in mammals and include the retromer, endosomal sorting complex required for transport (ESCRT) and AP-3 complexes, suggesting that the mechanisms involved can be extrapolated to humans. Our data also suggest a disruption in ion homeostasis and, in particular, of iron after copper exposure. Moreover, the identification of treatment-specific genes associated with biological processes such as DNA double-strand break repair for iron and tryptophan biosynthesis for copper suggests differences in the mechanisms by which these two metals are toxic at high concentrations.

  3. Detection of Hereditary 1,25-Hydroxyvitamin D-Resistant Rickets Caused by Uniparental Disomy of Chromosome 12 Using Genome-Wide Single Nucleotide Polymorphism Array

    Science.gov (United States)

    Tamura, Mayuko; Isojima, Tsuyoshi; Kawashima, Minae; Yoshida, Hideki; Yamamoto, Keiko; Kitaoka, Taichi; Namba, Noriyuki; Oka, Akira; Ozono, Keiichi; Tokunaga, Katsushi; Kitanaka, Sachiko

    2015-01-01

    Context Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is an autosomal recessive disease caused by biallelic mutations in the vitamin D receptor (VDR) gene. No patients have been reported with uniparental disomy (UPD). Objective Using genome-wide single nucleotide polymorphism (SNP) array to confirm whether HVDRR was caused by UPD of chromosome 12. Materials and Methods A 2-year-old girl with alopecia and short stature and without any family history of consanguinity was diagnosed with HVDRR by typical laboratory data findings and clinical features of rickets. Sequence analysis of VDR was performed, and the origin of the homozygous mutation was investigated by target SNP sequencing, short tandem repeat analysis, and genome-wide SNP array. Results The patient had a homozygous p.Arg73Ter nonsense mutation. Her mother was heterozygous for the mutation, but her father was negative. We excluded gross deletion of the father’s allele or paternal discordance. Genome-wide SNP array of the family (the patient and her parents) showed complete maternal isodisomy of chromosome 12. She was successfully treated with high-dose oral calcium. Conclusions This is the first report of HVDRR caused by UPD, and the third case of complete UPD of chromosome 12, in the published literature. Genome-wide SNP array was useful for detecting isodisomy and the parental origin of the allele. Comprehensive examination of the homozygous state is essential for accurate genetic counseling of recurrence risk and appropriate monitoring for other chromosome 12 related disorders. Furthermore, oral calcium therapy was effective as an initial treatment for rickets in this instance. PMID:26153892

  4. Detection of Hereditary 1,25-Hydroxyvitamin D-Resistant Rickets Caused by Uniparental Disomy of Chromosome 12 Using Genome-Wide Single Nucleotide Polymorphism Array.

    Directory of Open Access Journals (Sweden)

    Mayuko Tamura

    Full Text Available Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR is an autosomal recessive disease caused by biallelic mutations in the vitamin D receptor (VDR gene. No patients have been reported with uniparental disomy (UPD.Using genome-wide single nucleotide polymorphism (SNP array to confirm whether HVDRR was caused by UPD of chromosome 12.A 2-year-old girl with alopecia and short stature and without any family history of consanguinity was diagnosed with HVDRR by typical laboratory data findings and clinical features of rickets. Sequence analysis of VDR was performed, and the origin of the homozygous mutation was investigated by target SNP sequencing, short tandem repeat analysis, and genome-wide SNP array.The patient had a homozygous p.Arg73Ter nonsense mutation. Her mother was heterozygous for the mutation, but her father was negative. We excluded gross deletion of the father's allele or paternal discordance. Genome-wide SNP array of the family (the patient and her parents showed complete maternal isodisomy of chromosome 12. She was successfully treated with high-dose oral calcium.This is the first report of HVDRR caused by UPD, and the third case of complete UPD of chromosome 12, in the published literature. Genome-wide SNP array was useful for detecting isodisomy and the parental origin of the allele. Comprehensive examination of the homozygous state is essential for accurate genetic counseling of recurrence risk and appropriate monitoring for other chromosome 12 related disorders. Furthermore, oral calcium therapy was effective as an initial treatment for rickets in this instance.

  5. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population

    DEFF Research Database (Denmark)

    Wu, Xiaoping; Fang, Ming; Liu, Lin;

    2013-01-01

    Background: Genome-wide association study (GWAS) is a powerful tool for revealing the genetic basis of quantitative traits. However, studies using GWAS for conformation traits of cattle is comparatively less. This study aims to use GWAS to find the candidates genes for body conformation traits.......Results: The Illumina BovineSNP50 BeadChip was used to identify single nucleotide polymorphisms (SNPs) that are associated with body conformation traits. A least absolute shrinkage and selection operator (LASSO) was applied to detect multiple SNPs simultaneously for 29 body conformation traits with 1,314 Chinese...... Holstein cattle and 52,166 SNPs. Totally, 59 genome-wide significant SNPs associated with 26 conformation traits were detected by genome-wide association analysis; five SNPs were within previously reported QTL regions (Animal Quantitative Trait Loci (QTL) database) and 11 were very close to the reported...

  6. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    Science.gov (United States)

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  7. Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Brevik, Erlend J; van Donkelaar, Marjolein M J; Weber, Heike; Sánchez-Mora, Cristina; Jacob, Christian; Rivero, Olga; Kittel-Schneider, Sarah; Garcia-Martínez, Iris; Aebi, Marcel; van Hulzen, Kimm; Cormand, Bru; Ramos-Quiroga, Josep A; Lesch, Klaus-Peter; Reif, Andreas; Ribasés, Marta; Franke, Barbara; Posserud, Maj-Britt; Johansson, Stefan; Lundervold, Astri J; Haavik, Jan; Zayats, Tetyana

    2016-07-01

    Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  8. Meta-Analysis in Genome-Wide Association Datasets: Strategies and Application in Parkinson Disease

    Science.gov (United States)

    Evangelou, Evangelos; Maraganore, Demetrius M.; Ioannidis, John P.A.

    2007-01-01

    Background Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Methodology/Principal Findings Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I2 = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Conclusions/Significance Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies. PMID:17332845

  9. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease.

    Science.gov (United States)

    Evangelou, Evangelos; Maraganore, Demetrius M; Ioannidis, John P A

    2007-02-07

    Genome-wide association studies hold substantial promise for identifying common genetic variants that regulate susceptibility to complex diseases. However, for the detection of small genetic effects, single studies may be underpowered. Power may be improved by combining genome-wide datasets with meta-analytic techniques. Both single and two-stage genome-wide data may be combined and there are several possible strategies. In the two-stage framework, we considered the options of (1) enhancement of replication data and (2) enhancement of first-stage data, and then, we also considered (3) joint meta-analyses including all first-stage and second-stage data. These strategies were examined empirically using data from two genome-wide association studies (three datasets) on Parkinson disease. In the three strategies, we derived 12, 5, and 49 single nucleotide polymorphisms that show significant associations at conventional levels of statistical significance. None of these remained significant after conservative adjustment for the number of performed analyses in each strategy. However, some may warrant further consideration: 6 SNPs were identified with at least 2 of the 3 strategies and 3 SNPs [rs1000291 on chromosome 3, rs2241743 on chromosome 4 and rs3018626 on chromosome 11] were identified with all 3 strategies and had no or minimal between-dataset heterogeneity (I(2) = 0, 0 and 15%, respectively). Analyses were primarily limited by the suboptimal overlap of tested polymorphisms across different datasets (e.g., only 31,192 shared polymorphisms between the two tier 1 datasets). Meta-analysis may be used to improve the power and examine the between-dataset heterogeneity of genome-wide association studies. Prospective designs may be most efficient, if they try to maximize the overlap of genotyping platforms and anticipate the combination of data across many genome-wide association studies.

  10. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Côtôé

    2016-11-01

    Full Text Available Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo. To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli. Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms.

  11. Constitutional mosaic genome-wide uniparental disomy due to diploidisation: an unusual cancer-predisposing mechanism.

    Science.gov (United States)

    Romanelli, Valeria; Nevado, Julián; Fraga, Mario; Trujillo, Alex Martín; Mori, Maria Ángeles; Fernández, Luis; Pérez de Nanclares, Guiomar; Martínez-Glez, Víctor; Pita, Guillermo; Meneses, Heloisa; Gracia, Ricardo; García-Miñaur, Sixto; García de Miguel, Purificación; Lecumberri, Beatriz; Rodríguez, José Ignacio; González Neira, Anna; Monk, David; Lapunzina, Pablo

    2011-03-01

    Molecular studies in a patient with Beckwith-Wiedemann syndrome phenotype who developed two different tumours revealed an unexpected observation of almost complete loss of heterozygosity of all chromosomes. It is shown, by means of numerous molecular methods, that the absence of maternal contribution in somatic cells is due to high-degree (∼ 85%) genome-wide paternal uniparental disomy (UPD). The observations indicate that the genome-wide UPD results from diploidisation, and have important implications for genetic counselling and tumour surveillance for the growing number of UPD associated imprinting disorders.

  12. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Dietrich, Nikolaj; Pasini, Diego;

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Pol......The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find...

  13. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  14. Quality control and conduct of genome-wide association meta-analyses

    DEFF Research Database (Denmark)

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C

    2014-01-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC...... at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide...

  15. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  16. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Science.gov (United States)

    2010-01-01

    Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are

  17. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system.

    Science.gov (United States)

    Umetani, Miki; Hosokawa, Norimune; Kitayama, Yohko; Iwasaki, Hideo

    2014-02-01

    Cyanobacteria are unique organisms with remarkably stable circadian oscillations. These are controlled by a network architecture that comprises two regulatory factors: posttranslational oscillation (PTO) and a transcription/translation feedback loop (TTFL). The clock proteins KaiA, KaiB, and KaiC are essential for the circadian rhythm of the unicellular species Synechococcus elongatus PCC 7942. Temperature-compensated autonomous cycling of KaiC phosphorylation has been proposed as the primary oscillator mechanism that maintains the circadian clock, even in the dark, and it controls genome-wide gene expression rhythms under continuous-light conditions (LL). However, the kaiC(EE) mutation (where "EE" represents the amino acid changes Ser431Glu and Thr432Glu), where phosphorylation cycling does not occur in vivo, has a damped but clear kaiBC expression rhythm with a long period. This suggests that there must be coupling between the robust PTO and the "slave" unstable TTFL. Here, we found that the kaiC(EE) mutant strain in LL was hypersensitive to the dark acclimation required for phase shifting. Twenty-three percent of the genes in the kaiC(EE) mutant strain exhibited genome-wide transcriptional rhythms with a period of 48 h in LL. The circadian phase distribution was also conserved significantly in most of the wild-type and kaiC(EE) mutant strain cycling genes, which suggests that the output mechanism was not damaged severely even in the absence of KaiC phosphorylation cycles. These results strongly suggest that the KaiC phosphorylation cycle is not essential for generating the genome-wide rhythm under light conditions, whereas it is important for appropriate circadian timing in the light and dark.

  18. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization

    NARCIS (Netherlands)

    Bonnelykke, Klaus; Matheson, Melanie C.; Pers, Tune H.; Granell, Raquel; Strachan, David P.; Alves, Alexessander Couto; Linneberg, Allan; Curtin, John A.; Warrington, Nicole M.; Standl, Marie; Kerkhof, Marjan; Jonsdottir, Ingileif; Bukvic, Blazenka K.; Kaakinen, Marika; Sleimann, Patrick; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Schramm, Katharina; Baltic, Svetlana; Kreiner-Moller, Eskil; Simpson, Angela; St Pourcain, Beate; Coin, Lachlan; Hui, Jennie; Walters, Eugene H.; Tiesler, Carla M. T.; Duffy, David L.; Jones, Graham; Ring, Susan M.; McArdle, Wendy L.; Price, Loren; Robertson, Colin F.; Pekkanen, Juha; Tang, Clara S.; Thiering, Elisabeth; Montgomery, Grant W.; Hartikainen, Anna-Liisa; Dharmage, Shyamali C.; Husemoen, Lise L.; Herder, Christian; Kemp, John P.; Elliot, Paul; James, Alan; Waldenberger, Melanie; Abramson, Michael J.; Fairfax, Benjamin P.; Knight, Julian C.; Gupta, Ramneek; Thompson, Philip J.; Holt, Patrick; Sly, Peter; Hirschhorn, Joel N.; Blekic, Mario; Weidinger, Stephan; Hakonarsson, Hakon; Stefansson, Kari; Heinrich, Joachim; Postma, Dirkje S.; Custovic, Adnan; Pennell, Craig E.; Jarvelin, Marjo-Riitta; Koppelman, Gerard H.; Timpson, Nicholas; Ferreira, Manuel A.; Bisgaard, Hans; Henderson, A. John

    2013-01-01

    Allergen-specific immunoglobulin E (present in allergic sensitization) has a central role in the pathogenesis of allergic disease. We performed the first large-scale genome-wide association study (GWAS) of allergic sensitization in 5,789 affected individuals and 10,056 controls and followed up the t

  19. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  20. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ...

  1. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

    NARCIS (Netherlands)

    Chambers, John C; Zhang, Weihua; Sehmi, Joban; Li, Xinzhong; Wass, Mark N; Van der Harst, Pim; Holm, Hilma; Sanna, Serena; Kavousi, Maryam; Baumeister, Sebastian E; Coin, Lachlan J; Deng, Guohong; Gieger, Christian; Heard-Costa, Nancy L; Hottenga, Jouke-Jan; Kühnel, Brigitte; Kumar, Vinod; Lagou, Vasiliki; Liang, Liming; Luan, Jian'an; Vidal, Pedro Marques; Mateo Leach, Irene; O'Reilly, Paul F; Peden, John F; Rahmioglu, Nilufer; Soininen, Pasi; Speliotes, Elizabeth K; Yuan, Xin; Thorleifsson, Gudmar; Alizadeh, Behrooz Z; Atwood, Larry D; Borecki, Ingrid B; Brown, Morris J; Charoen, Pimphen; Cucca, Francesco; Das, Debashish; de Geus, Eco J C; Dixon, Anna L; Döring, Angela; Ehret, Georg; Eyjolfsson, Gudmundur I; Farrall, Martin; Forouhi, Nita G; Friedrich, Nele; Goessling, Wolfram; Gudbjartsson, Daniel F; Harris, Tamara B; Hartikainen, Anna-Liisa; Heath, Simon; Hirschfield, Gideon M; Hofman, Albert; Homuth, Georg; Hyppönen, Elina; Janssen, Harry L A; Johnson, Toby; Kangas, Antti J; Kema, Ido P; Kühn, Jens P; Lai, Sandra; Lathrop, Mark; Lerch, Markus M; Li, Yun; Liang, T Jake; Lin, Jing-Ping; Loos, Ruth J F; Martin, Nicholas G; Moffatt, Miriam F; Montgomery, Grant W; Munroe, Patricia B; Musunuru, Kiran; Nakamura, Yusuke; O'Donnell, Christopher J; Olafsson, Isleifur; Penninx, Brenda W; Pouta, Anneli; Prins, Bram P; Prokopenko, Inga; Puls, Ralf; Ruokonen, Aimo; Savolainen, Markku J; Schlessinger, David; Schouten, Jeoffrey N L; Seedorf, Udo; Sen-Chowdhry, Srijita; Siminovitch, Katherine A; Smit, Johannes H; Spector, Timothy D; Tan, Wenting; Teslovich, Tanya M; Tukiainen, Taru; Uitterlinden, Andre G; Van der Klauw, Melanie M; Vasan, Ramachandran S; Wallace, Chris; Wallaschofski, Henri; Wichmann, H-Erich; Willemsen, Gonneke; Würtz, Peter; Xu, Chun; Yerges-Armstrong, Laura M; Abecasis, Goncalo R; Ahmadi, Kourosh R; Boomsma, Dorret I; Caulfield, Mark; Cookson, William O; van Duijn, Cornelia M; Froguel, Philippe; Matsuda, Koichi; McCarthy, Mark I; Meisinger, Christa; Mooser, Vincent; Pietiläinen, Kirsi H; Schumann, Gunter; Snieder, Harold; Sternberg, Michael J E; Stolk, Ronald P; Thomas, Howard C; Thorsteinsdottir, Unnur; Uda, Manuela; Waeber, Gérard; Wareham, Nicholas J; Waterworth, Dawn M; Watkins, Hugh; Whitfield, John B; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Fox, Caroline S; Ala-Korpela, Mika; Stefansson, Kari; Vollenweider, Peter; Völzke, Henry; Schadt, Eric E; Scott, James; Järvelin, Marjo-Riitta; Elliott, Paul; Kooner, Jaspal S

    2011-01-01

    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190))

  2. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    Science.gov (United States)

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  3. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    DEFF Research Database (Denmark)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ...

  4. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flicldnger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gailagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Laengstroem, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nwulia, Evaristus A.; Nyholt, Dale R.; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; Cair, David St.; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutdiffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; Van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Kendler, Kenneth S.; Weiss, Lauren A.; Wray, Naomi R.; Zhao, Zhaoming; Geschwind, Daniel H.; Sullivan, Patrick F.; Smoller, Jordan W.; Holmans, Peter A.; Breen, Gerome

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ove

  5. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S. Hong; Ripke, Stephan; Neale, Benjamin M.; Faraone, Stephen V.; Purcell, Shaun M.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breen, Gerome; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gallagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Geschwind, Daniel H.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A.; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Langstrom, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lee, Phil H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nurnberger, John I.; Nwulia, Evaristus A.; Nyholt, Dale R.; O'Dushlaine, Colm; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Antoni Ramos-Quiroga, Josep; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutcliffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Sullivan, Patrick F.; Smoller, Jordan W.; Kendler, Kenneth S.; Wray, Naomi R.

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  6. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci

    NARCIS (Netherlands)

    Stahl, Eli A.; Raychaudhuri, Soumya; Remmers, Elaine F.; Xie, Gang; Eyre, Stephen; Thomson, Brian P.; Li, Yonghong; Kurreeman, Fina A. S.; Zhernakova, Alexandra; Hinks, Anne; Guiducci, Candace; Chen, Robert; Alfredsson, Lars; Amos, Christopher I.; Ardlie, Kristin G.; Barton, Anne; Bowes, John; Brouwer, Elisabeth; Burtt, Noel P.; Catanese, Joseph J.; Coblyn, Jonathan; Coenen, Marieke J. H.; Costenbader, Karen H.; Criswell, Lindsey A.; Crusius, J. Bart A.; Cui, Jing; de Bakker, Paul I. W.; De Jager, Philip L.; Ding, Bo; Emery, Paul; Flynn, Edward; Harrison, Pille; Hocking, Lynne J.; Huizinga, Tom W. J.; Kastner, Daniel L.; Ke, Xiayi; Lee, Annette T.; Liu, Xiangdong; Martin, Paul; Morgan, Ann W.; Padyukov, Leonid; Posthumus, Marcel D.; Radstake, Timothy R. D. J.; Reid, David M.; Seielstad, Mark; Seldin, Michael F.; Shadick, Nancy A.; Steer, Sophia; Tak, Paul P.; Thomson, Wendy; van der Helm-van Mil, Annette H. M.; van der Horst-Bruinsma, Irene E.; van der Schoot, C. Ellen; van Riel, Piet L. C. M.; Weinblatt, Michael E.; Wilson, Anthony G.; Wolbink, Gert Jan; Wordsworth, B. Paul; Wijmenga, Cisca; Karlson, Elizabeth W.; Toes, Rene E. M.; de Vries, Niek; Begovich, Ann B.; Worthington, Jane; Siminovitch, Katherine A.; Gregersen, Peter K.; Klareskog, Lars; Plenge, Robert M.

    2010-01-01

    To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheum

  7. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark Alan; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Brge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bonnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldorsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kahonen, Mika; Kanoni, Stavroula; Keltigangas-Jarvinen, Liisa; Kiemeney, Lambertus A. L. M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Mael P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C. M.; Loukola, Anu; Madden, Pamela A.; Magi, Reedik; Maki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E. R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Raikkonen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J. A.; Venturini, Cristina; Vinkhuyzen, Anna A. E.; Volker, Uwe; Volzke, Henry; Vonk, Judith M.; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jorgen; Gratten, Jacob; Groenen, Patrick J. F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppnen, Elina; Iacono, William G.; Jacobsson, Bo; Jarvelin, Marjo-Riitta; Jockel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L. R.; Lehtimaki, Terho; Lehrer, Steven F.; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W. J. H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sorensen, Thorkild I. A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, Andre G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tonu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends

  8. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M. K.; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G.; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M.; Heikkila, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G.; Traynor, Bryan J.; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B. R.; Gibbs, J. Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W.; Boomsma, Dorret I.; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P.; Kubisch, Christian; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J.; Nyholt, Dale R.; Chasman, Daniel I.; Palotie, Aarno

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 9

  9. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D'Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Mateo Leach, Irene; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with se

  10. Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study

    NARCIS (Netherlands)

    Gottlieb, D.J.; Hek, K.; Chen, T.H.; Watson, N.F.; Eiriksdottir, G.; Byrne, E.M.; Cornelis, M.; Warby, S.C.; Bandinelli, S.; Cherkas, L.; Evans, D.S.; Grabe, H.J.; Lahti, J.; Li, M.; Lehtimaki, T.; Lumley, T.; Marciante, K.D.; Pérusse, L.; Psaty, B.M.; Robbins, J.; Tranah, G.J.; Vink, J.M.; Wilk, J.B.; Stafford, J.M.; Bellis, C.; Biffar, R.; Bouchard, C.; Cade, B.; Curhan, G.C.; Eriksson, J.G.; Ewert, R.; Ferrucci, L.; Fulop, T.; Gehrman, P.R.; Goodloe, R.; Harris, T.B.; Heath, A.C.; Hernandez, D.G.; Hofman, A.; Hottenga, J.J.; Hunter, D.J.; Jensen, M.K.; Johnson, A.D.; Kahonen, M.; Kao, L.; Kraft, P.; Larkin, E.K.; Lauderdale, D.S.; Luik, A.I.; Medici, M.; Montgomery, G.W.; Palotie, A.; Patel, S.R.; Pistis, G.; Porcu, E.; Quaye, L.; Raitakari, O.; Redline, S.; Rimm, E.B.; Rotter, J.I.; Smith, A.V.; Spector, T.D.; Teumer, A.; Uitterlinden, A.G.; Vohl, M.C.; Widen, E.; Willemsen, G.; Young, T.; Zhang, X.; Liu, Y.; Blangero, J.; Boomsma, D.I.; Gudnason, V.; Hu, F.; Mangino, M.; Martin, N.G.; O'Connor, G.T.; Stone, K.L.; Tanaka, T.; Viikari, J.; Gharib, S.A.; Punjabi, N.M.; Raikkonen, K.; Völzke, H.; Mignot, E.; Tiemeier, H.

    2015-01-01

    Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based

  11. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  12. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    Wain, Louise V.; Verwoert, Germaine C.; O'Reilly, Paul F.; Shi, Gang; Johnson, Toby; Johnson, Andrew D.; Bochud, Murielle; Rice, Kenneth M.; Henneman, Peter; Smith, Albert V.; Ehret, Georg B.; Amin, Najaf; Larson, Martin G.; Mooser, Vincent; Hadley, David; Doerr, Marcus; Bis, Joshua C.; Aspelund, Thor; Esko, Tonu; Janssens, A. Cecile J. W.; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian'an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U.; Webster, Rebecca J.; Zhang, Feng; Peden, John F.; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hottenga, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I.; Trompet, Stella; Bragg-Gresham, Jennifer L.; Alizadeh, Behrooz Z.; Chambers, John C.; Guo, Xiuqing; Lehtimaki, Terho; Kuehnel, Brigitte; Lopez, Lorna M.; Polasek, Ozren; Boban, Mladen; Nelson, Christopher P.; Morrison, Alanna C.; Pihur, Vasyl; Ganesh, Santhi K.; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco U. S.; Rivadeneira, Fernando; Sijbrands, Eric J. G.; Uitterlinden, Andre G.; Hwang, Shih-Jen; Vasan, Ramachandran S.; Wang, Thomas J.; Bergmann, Sven; Vollenweider, Peter; Waeber, Gerard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L.; Kroemer, Heyo K.; Voelker, Uwe; Voelzke, Henry; Glazer, Nicole L.; Taylor, Kent D.; Harris, Tamara B.; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Ines; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sober, Siim; Lu, Xiaowen; Nolte, Ilja M.; Penninx, Brenda W.; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F.; Melander, Olle; O'Donnell, Christopher J.; Salomaa, Veikko; d'Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, Fabiola M.; Facheris, Maurizio; Collins, Francis S.; Bergman, Richard N.; Beilby, John P.; Hung, Joseph; Musk, A. William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S.; Navarro, Pau; Wild, Sarah H.; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco J. C.; Willemsen, Gonneke; Parker, Alex N.; Rose, Lynda M.; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M.; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L.; Kahonen, Mika; Viikari, Jorma; Doering, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M.; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H.; 't Hoen, Peter A. C.; Koenig, Inke R.; Felix, Janine F.; Clarke, Robert; Hopewell, Jemma C.; Ongen, Halit; Breteler, Monique; Debette, Stephanie; DeStefano, Anita L.; Fornage, Myriam; Mitchell, Gary F.; Smith, Nicholas L.; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J.; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J.; Wichmann, H-Erich; Raitakari, Olli T.; Palmas, Walter; Kooner, Jaspal S.; Stolk, Ronald P.; Jukema, J. Wouter; Wright, Alan F.; Boomsma, Dorret I.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wilson, James F.; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D.; Palmer, Lyle J.; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth J. F.; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J.; Oostra, Ben A.; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P.; Beckmann, Jacques S.; Witteman, Jacqueline C. M.; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M.; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R.; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B.; Psaty, Bruce M.; Caulfield, Mark J.; Rao, Dabeeru C.; Tobin, Martin D.; Elliott, Paul; van Duijn, Cornelia M.

    2011-01-01

    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans(1-3). We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we

  13. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of Euro

  14. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    Science.gov (United States)

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  15. Genome wide association analysis for residual feed intake in Danish Duroc boars

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring;

    2013-01-01

    gain (30-100 kg). RFI2 was the same as RFI1 except that it was also regressed on backfat (BF). A total of 868 boars had phenotypic and genotype (i.e. Illumina Porcine SNP60 BeadChip) records. A total of 33945 SNPs were available for genome wide association studies (GWAS) after quality control...

  16. A Genome-Wide Scan for Breast Cancer Risk Haplotypes among African American Women

    Science.gov (United States)

    Song, Chi; Chen, Gary K.; Millikan, Robert C.; Ambrosone, Christine B.; John, Esther M.; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J.; Ziegler, Regina G.; Nyante, Sarah; Bandera, Elisa V.; Ingles, Sue A.; Press, Michael F.; Deming, Sandra L.; Rodriguez-Gil, Jorge L.; Chanock, Stephen J.; Wan, Peggy; Sheng, Xin; Pooler, Loreall C.; Van Den Berg, David J.; Le Marchand, Loic; Kolonel, Laurence N.; Henderson, Brian E.; Haiman, Chris A.; Stram, Daniel O.

    2013-01-01

    Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density. PMID:23468962

  17. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  18. Identification of six Loci associated with pelvic organ prolapse using genome-wide association analysis.

    NARCIS (Netherlands)

    Allen-Brady, K.; Cannon-Albright, L.; Farnham, J.M.; Teerlink, C.; Vierhout, M.E.; Kempen, L.C.L.T. van; Kluivers, K.B.; Norton, P.A.

    2011-01-01

    OBJECTIVE: : There is evidence that both environmental and genetic factors contribute to pelvic organ prolapse. We conducted a genome-wide association study to investigate whether common genetic variants modify the risk of pelvic organ prolapse. METHODS: : We recruited women who had been evaluated

  19. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci

    NARCIS (Netherlands)

    Melum, Espen; Franke, Andre; Schramm, Christoph; Weismueller, Tobias J.; Gotthardt, Daniel Nils; Offner, Felix A.; Juran, Brian D.; Laerdahl, Jon K.; Labi, Verena; Bjoernsson, Einar; Weersma, Rinse K.; Henckaerts, Liesbet; Teufel, Andreas; Rust, Christian; Ellinghaus, Eva; Balschun, Tobias; Boberg, Kirsten Muri; Ellinghaus, David; Bergquist, Annika; Sauer, Peter; Ryu, Euijung; Hov, Johannes Roksund; Wedemeyer, Jochen; Lindkvist, Bjoern; Wittig, Michael; Porte, Robert J.; Holm, Kristian; Gieger, Christian; Wichmann, H-Erich; Stokkers, Pieter; Ponsioen, Cyriel Y.; Runz, Heiko; Stiehl, Adolf; Wijmenga, Cisca; Sterneck, Martina; Vermeire, Severine; Beuers, Ulrich; Villunger, Andreas; Schrumpf, Erik; Lazaridis, Konstantinos N.; Manns, Michael P.; Schreiber, Stefan; Karlsen, Tom H.

    Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4-7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and

  20. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Maegi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W-K; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K-T; Luben, R. N.; Wang, J. J.; Mannisto, S.; Perala, M-M; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Doering, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellstrom, D.; Hottenga, J. J.; Prokopenko, I.; Toenjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H-J; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppoenen, E.; Jarvelin, M-R; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  1. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin; K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao; G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara B.); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. van Duijn (Cock); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  2. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.; Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J.S.; Huikari, V.; Cavadino, A.; Nolte, I.M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M.K.; Vink, J.M.; Zhao, J.H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R.N.; Eriksson, J.; Musani, S.K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Magi, R.; Dimitriou, M.; Garcia, M.E.; Ho, W.K.; Wright, M.J.; Rose, L.M.; Magnusson, P.K.E.; Pedersen, N.L.; Couper, D.; Oostra, B.A.; Hofman, A.; Ikram, M.A.; Tiemeier, H.W.; Uitterlinden, A.G.; Rooij, F.J. van; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R.P.; Baumeister, S.E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D.R., Jr.; Forouhi, N.G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K.T.; Luben, R.N.; Wang, J.J.; Mannisto, S.; Perala, M.M.; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B.M.; Doring, A.; Heath, A.C.; Montgomery, G.W.; Dahmen, N.; Carithers, T.; Tucker, K.L.; Ferrucci, L.; Boyd, H.A.; Melbye, M.; Treur, J.L.; Mellstrom, D.; Hottenga, J.J.; Prokopenko, I.; Tonjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D.K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M.A.; Zonderman, A.B.; Franke, L.; Kristal, B.S.; Karjalainen, J.; Reed, D.R.; Westra, H.J.; Evans, M.K.; Saleheen, D.; Harris, T.B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L.R.; Feenstra, B.; Bandinelli, S.; Ordovas, J.M.; Chan, A.T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N.G.; Waldenberger, M.; Siscovick, D.S.; Raitakari, O.; Eriksson, J.G.; Mitchell, P.; Hunter, D.J.; Kraft, P.; Rimm, E.B.; Boomsma, D.I.; Borecki, I.B.; Loos, R.J.F.; Wareham, N.J.; Vollenweider, P.; Caporaso, N.; Grabe, H.J.; Neuhouser, M.L.; Wolffenbuttel, B.H.R.; Hu, F.B.; Hypponen, E.; Jarvelin, M.R.; Cupples, L.A.; Franks, P.W.; Ridker, P.M.; Duijn, C.M. van; Heiss, G.; Metspalu, A.; North, K.E.; Ingelsson, E.; Nettleton, J.A.; Dam, R.M. van; Chasman, D.I.

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  3. Genome-Wide Association Study for Response to Eimeria maxima Challenge in Broilers

    DEFF Research Database (Denmark)

    Hamzic, Edin; Bed'hom, Bertrand; Hérault, Frédéric

    Use of genetic tools for improvement of host’s response is considered as a promising complementary approach for coccidiosis control. Therefore, we performed genome wide association study (GWAS) for response to Eimeria maxima challenge in broilers. The challenge was done on 2024 Cobb500 broilers. ...

  4. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  5. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    Science.gov (United States)

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  6. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    Science.gov (United States)

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  7. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  8. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    NARCIS (Netherlands)

    Adams, Hieab H. H.; Hibar, Derrek P.; Chouraki, Vincent; Stein, Jason L.; Nyquist, Paul A.; Renteria, Miguel E.; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivieres, Sylvane; Beecham, Ashley H.; Jahanshad, Neda; Wittfeld, Katharine; Van der Lee, Sven J.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C.; Blanken, Laura M. E.; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Greven, Corina U.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K.; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liao, Jiemin; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mazoyer, Bernard; Mckay, David R.; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L.; Maniega, Susana Munoz; Nho, Kwangsik; Nugent, Allison C.; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Puetz, Benno; Rajan, Kumar B.; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rommelse, Nanda; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Saemann, Philipp G.; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Aggarwal, Neelum T.; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Chen, Christopher; Cheng, Ching -Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Geus, Eco J. C.; De Jager, Philip L.; de Zubicaray, Greig I.; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L.; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Espeseth, Thomas; Evans, Denis A.; Fedko, Iryna; Fernandez, Guillen; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Goring, Harald H. H.; Grabe, Hans J.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Ikram, M. Kamran; Jack, Clifford R.; Jenldnson, Mark; Johnson, Robert; Jonsson, Erik G.; Jukema, J. Wouter; Kahn, Rene S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaitre, Herve; Liu, Xinmin; Longo, Dan L.; Longstreth, W. T.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Katie L.; McMahon, Francis J.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Muhleisen, Thomas W.; Mueller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Noethen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schofield, Peter R.; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hindu.; Srikanth, Velandai; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Tzourio, Christophe; Uitterlinden, Andre G.; Hernandez, Maria C. Valdes; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J. A.; Van Duijn, Cornelia M.; Van Haren, Neeltje E. M.; Van't Ent, Dennis; Van Tol, Marie Jose; Vardarajan, Badri N.; Veltman, Dick J.; Vernooij, Meike W.; Voelzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, H. Ronald; Zonderman, Alan B.; Deary, Ian J.; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G.; De Craen, Anton J. M.; Wright, Margaret J.; Launer, Lenore J.; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stephanie; Medland, Sarah E.; Ikram, M. Arfan; Thompson, Paul M.

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unk

  9. Using Genome-Wide Pathway Analysis to Unravel the Etiology of Complex Diseases

    NARCIS (Netherlands)

    Elbers, Clara C.; van Eijk, Kristel R.; Franke, Lude; Mulder, Flip; van der Schouw, Yvonne T.; Wijmenga, Cisca; Onland-Moret, N. Charlotte

    2009-01-01

    Several genome-wide association studies (GWAS) have been published on various complex diseases. Although, new loci are found to be associated with these diseases, still only very little of the genetic risk for these diseases can be explained. As GWAS are still underpowered to find small main effects

  10. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis

    NARCIS (Netherlands)

    D.S. Evans (Daniel); F. Cailotto (Frederic); N. Parimi (Neeta); A.M. Valdes (Ana Maria); M.C. Castaño Betancourt (Martha); Y. Liu (Youfang); R.C. Kaplan (Robert); M. Bidlingmaier (Martin); R.S. Vasan (Ramachandran Srini); A. Teumer (Alexander); G.J. Tranah (Gregory); M.C. Nevitt (Michael); S. Cummings; E.S. Orwoll (Eric); E. Barrett-Connor (Elizabeth); J.B. Renner (Jordan); J.M. Jordan (Joanne); M. Doherty (Michael); S. Doherty (Sally); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); T.D. Spector (Timothy); R.J. Lories (Rik); N.E. Lane

    2014-01-01

    textabstractObjectives To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. Methods The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and

  11. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    Science.gov (United States)

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  12. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes.

    Directory of Open Access Journals (Sweden)

    María José Aranzana

    2005-11-01

    Full Text Available There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.

  13. Critical reasoning on causal inference in genome-wide linkage and association studies

    NARCIS (Netherlands)

    Li, Yang; Tesson, Bruno M.; Churchill, Gary A.; Jansen, Ritsert C.

    2010-01-01

    Genome-wide linkage and association studies of tens of thousands of clinical and molecular traits are currently underway, offering rich data for inferring causality between traits and genetic variation. However, the inference process is based on discovering subtle patterns in the correlation between

  14. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus

    NARCIS (Netherlands)

    Radstake, Timothy R D J; Gorlova, Olga; Rueda, Blanca; Martin, Jose-Ezequiel; Alizadeh, Behrooz Z; Palomino-Morales, Rogelio; Coenen, Marieke J; Vonk, Madelon C; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Broen, Jasper C; van Riel, Piet L C M; van 't Slot, Ruben; Italiaander, Annet; Ophoff, Roel A; Riemekasten, Gabriela; Hunzelmann, Nico; Simeon, Carmen P; Ortego-Centeno, Norberto; González-Gay, Miguel A; González-Escribano, María F; Airo, Paolo; van Laar, Jaap; Herrick, Ariane; Worthington, Jane; Hesselstrand, Roger; Smith, Vanessa; de Keyser, Filip; Houssiau, Fredric; Chee, Meng May; Madhok, Rajan; Shiels, Paul; Westhovens, Rene; Kreuter, Alexander; Kiener, Hans; de Baere, Elfride; Witte, Torsten; Padykov, Leonid; Klareskog, Lars; Beretta, Lorenzo; Scorza, Rafaella; Lie, Benedicte A; Hoffmann-Vold, Anna-Maria; Carreira, Patricia; Varga, John; Hinchcliff, Monique; Gregersen, Peter K; Lee, Annette T; Ying, Jun; Han, Younghun; Weng, Shih-Feng; Amos, Christopher I; Wigley, Fredrick M; Hummers, Laura; Nelson, J Lee; Agarwal, Sandeep K; Assassi, Shervin; Gourh, Pravitt; Tan, Filemon K; Koeleman, Bobby P C; Arnett, Frank C; Martin, Javier; Mayes, Maureen D

    2010-01-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify new SSc susceptibility loci, we conducted the first genome-wide association study in a population of European ancestry includ

  15. Genome-wide association analyses identify variants in developmental genes associated with hypospadias

    DEFF Research Database (Denmark)

    Geller, Frank; Feenstra, Bjarke; Carstensen, Lisbeth

    2014-01-01

    Hypospadias is a common congenital condition in boys in which the urethra opens on the underside of the penis. We performed a genome-wide association study on 1,006 surgery-confirmed hypospadias cases and 5,486 controls from Denmark. After replication genotyping of an additional 1,972 cases and 1...

  16. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    NARCIS (Netherlands)

    Loth, Daan W.; Artigas, Maria Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess D.; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kaonen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Vinuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wik, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietilainen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Voezke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, Andre G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B. J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L.; Rantanen, Taina; O'Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbe, Harry; Morris, Andrew P.; Glaeser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gucinason, Vilrnundur; Hancock, Dana B.; Williams, Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Villanen, Anne; Heliovaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, Hendrika; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melen, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josee; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 addit

  17. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels;

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  18. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flicldnger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gailagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Laengstroem, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  19. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S. Hong; Ripke, Stephan; Neale, Benjamin M.; Faraone, Stephen V.; Purcell, Shaun M.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breen, Gerome; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gallagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Geschwind, Daniel H.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A.; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Langstrom, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lee, Phil H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nurnberger, John I.; Nwulia, Evaristus A.; Nyholt, Dale R.; O'Dushlaine, Colm; Oades, Robert D.

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  20. A mega-analysis of genome-wide association studies for major depressive disorder

    NARCIS (Netherlands)

    Sullivan, Patrick F.; Daly, Mark J.; Ripke, Stephan; Lewis, Cathryn M.; Lin, Dan-Yu; Wray, Naomi R.; Neale, Benjamin; Levinson, Douglas F.; Breen, Gerome; Byrne, Enda M.; Wray, Naomi R.; Levinson, Douglas F.; Rietschel, Marcella; Hoogendijk, Witte; Ripke, Stephan; Sullivan, Patrick F.; Hamilton, Steven P.; Levinson, Douglas F.; Lewis, Cathryn M.; Ripke, Stephan; Weissman, Myrna M.; Wray, Naomi R.; Breuer, Rene; Cichon, Sven; Degenhardt, Franziska; Frank, Josef; Gross, Magdalena; Herms, Stefan; Hoefels, Susanne; Maier, Wolfgang; Mattheisen, Manuel; Noeethen, Markus M.; Rietschel, Marcella; Schulze, Thomas G.; Steffens, Michael; Treutlein, Jens; Boomsma, Dorret I.; De Geus, Eco J.; Hoogendijk, Witte; Hottenga, Jouke Jan; Jung-Ying, Tzeng; Lin, Dan-Yu; Middeldorp, Christel M.; Nolen, Willem A.; Penninx, Brenda P.; Smit, Johannes H.; Sullivan, Patrick F.; van Grootheest, Gerard; Willemsen, Gonneke; Zitman, Frans G.; Coryell, William H.; Knowles, James A.; Lawson, William B.; Levinson, Douglas F.; Potash, James B.; Scheftner, William A.; Shi, Jianxin; Weissman, Myrna M.; Holsboer, Florian; Muglia, Pierandrea; Tozzi, Federica; Blackwood, Douglas H. R.; Boomsma, Dorret I.; De Geus, Eco J.; Hottenga, Jouke Jan; MacIntyre, Donald J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Penninx, Brenda P.; Ripke, Stephan; Smit, Johannes H.; Sullivan, Patrick F.; van Grootheest, Gerard; Willemsen, Gonneke; Zitman, Frans G.; van den Oord, Edwin J. C. G.; Holsboer, Florian; Lucae, Susanne; Binder, Elisabeth; Mueller-Myhsok, Bertram; Ripke, Stephan; Czamara, Darina; Kohli, Martin A.; Ising, Marcus; Uhr, Manfred; Bettecken, Thomas; Barnes, Michael R.; Breen, Gerome; Craig, Ian W.; Farmer, Anne E.; Lewis, Cathryn M.; McGuffin, Peter; Muglia, Pierandrea; Byrne, Enda; Gordon, Scott D.; Heath, Andrew C.; Henders, Anjali K.; Hickie, Ian B.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant M.; Nyholt, Dale R.; Pergadia, Michele L.; Wray, Naomi R.; Hamilton, Steven P.; McGrath, Patrick J.; Shyn, Stanley I.; Slager, Susan L.; Oskarsson, Hoegni; Sigurdsson, Engilbert; Stefansson, Hreinn; Stefansson, Kari; Steinberg, Stacy; Thorgeirsson, Thorgeir; Levinson, Douglas F.; Potash, James B.; Shi, Jianxin; Weissman, Myrna M.; Guipponi, Michel; Lewis, Glyn; O'Donovan, Michael; Tansey, Katherine E.; Uher, Rudolf; Coryell, William H.; Knowles, James A.; Lawson, William B.; Levinson, Douglas F.; Potash, James B.; Scheftner, William A.; Shi, Jianxin; Weissman, Myrna M.; Castro, Victor M.; Churchill, Susanne E.; Fava, Maurizio; Gainer, Vivian S.; Gallagher, Patience J.; Goryachev, Sergey; Iosifescu, Dan V.; Kohane, Isaac S.; Murphy, Shawn N.; Perlis, Roy H.; Smoller, Jordan W.; Weilburg, Jeffrey B.; Kutalik, Zoltan; Preisig, Martin; Grabe, Hans J.; Nauck, Matthias; Schulz, Andrea; Teumer, Alexander; Voelzke, Henry; Landen, Mikael; Lichtenstein, Paul; Magnusson, Patrik; Pedersen, Nancy; Viktorin, Alexander

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X

  1. Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours

    DEFF Research Database (Denmark)

    Almstrup, K; Hoei-Hansen, C E; Nielsen, J E

    2005-01-01

    into CIS occurs early during foetal life. Progression into an overt tumour, however, typically first happens after puberty, where CIS cells transform into either a seminoma (SEM) or a nonseminoma (N-SEM). Here, we have compared the genome-wide gene expression of CIS cells to that of testicular SEM...

  2. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  3. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and it

  4. Genome-wide association study of insect bite hypersensitivity in Dutch Shetland pony mares

    NARCIS (Netherlands)

    Schurink, A.; Ducro, B.J.; Bastiaansen, J.W.M.; Frankena, K.; Arendonk, van J.A.M.

    2013-01-01

    Insect bite hypersensitivity (IBH) is the most common allergic disease present in horses worldwide. It has been shown that IBH is under genetic control, but the knowledge of associated genes is limited. We conducted a genome-wide association study to identify and quantify genomic regions contributin

  5. Genome-wide association studies (GWAS) and their importance in asthma

    National Research Council Canada - National Science Library

    García-Sánchez, A; Isidoro-García, M; García-Solaesa, V; Sanz, C; Hernández-Hernández, L; Padrón-Morales, J; Lorente-Toledano, F; Dávila, I

    ...: the so-called genome-wide association studies (GWAS). The first GWAS was published in 2007, and described a new locus associated to asthma in chromosome 17q12-q21, involving the ORMDL3, GSDMB and ZPBP2 genes...

  6. Genome-wide association study identifies four loci associated with eruption of permanent teeth

    DEFF Research Database (Denmark)

    Geller, Frank; Feenstra, Bjarke; Zhang, Hao

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years...

  7. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle

    DEFF Research Database (Denmark)

    Sahana, G; Guldbrandtsen, B; Bendixen, C;

    2010-01-01

    A genome-wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were...

  8. Genome-wide pathway analysis identifies oxidative stress related gene MSRA as rheumatoid arthritis susceptibility locus

    NARCIS (Netherlands)

    Martin, Jose Ezequiel; Alizadeh, Behrooz Z.; Gonzalez-Gay, Miguel A.; Balsa, Alejandro; Pascual-Salcedo, Dora; Fernandez-Gutierrez, Benjamín; Raya, Enrique

    2010-01-01

    Objective: Genome-wide association studies (GWASs) carried out in rheumatoid arthritis (RA) have led to the discovery of several genetic associations with this disease. Still, the current associated genetic variations can explain only part of the genetic risk involved in RA, and it is well recognise

  9. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22

    NARCIS (Netherlands)

    J.M. Kerkhof (Hanneke); R.J. Lories (Rik); I. Meulenbelt (Ingrid); I. Jonsdottir (Ingileif); A.M. Valdes (Ana Maria); P.P. Arp (Pascal); T. Ingvarsson (Torvaldur); M. Jhamai (Mila); H. Jonsson (Helgi); L. Stolk (Lisette); G. Thorleifsson (Gudmar); G. Zhai (Guangju); F. Zhang (Feng); Y. Zhu (Yicheng); R. van der Breggen (Ruud); M. Doherty (Michael); D. Felson; A. Gonzalez (Antonio); B.V. Halldorsson (Bjarni); D.J. Hart (Deborah); V.B. Hauksson (Valdimar); A. Hofman (Albert); J.P.A. Ioannidis (John); M. Kloppenburg (Margreet); N.E. Lane (Nancy); J. Loughlin (John); F.P. Luyten (Frank); M.C. Nevitt (Michael); N. Parimi (Neeta); H.A.P. Pols (Huib); F. Rivadeneira Ramirez (Fernando); E. Slagboom (Eline); U. Styrkarsdottir (Unnur); A. Tsezou (Aspasia); T. van de Putte (Tom); J. Zmuda (Joseph); T.D. Spector (Timothy); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); A.J. Carr (Andrew Jonathan)

    2010-01-01

    markdownabstract__Objective__ To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. Methods. We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2

  10. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory l

  11. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    NARCIS (Netherlands)

    Adams, Hieab H. H.; Hibar, Derrek P.; Chouraki, Vincent; Stein, Jason L.; Nyquist, Paul A.; Renteria, Miguel E.; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivieres, Sylvane; Beecham, Ashley H.; Jahanshad, Neda; Wittfeld, Katharine; Van der Lee, Sven J.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C.; Blanken, Laura M. E.; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Greven, Corina U.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K.; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liao, Jiemin; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; Mazoyer, Bernard; Mckay, David R.; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L.; Maniega, Susana Munoz; Nho, Kwangsik; Nugent, Allison C.; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Puetz, Benno; Rajan, Kumar B.; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rommelse, Nanda; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Saemann, Philipp G.; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M. J.; Van Eijk, Kristel R.; Van Erp, Theo G. M.; Van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Aggarwal, Neelum T.; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Chen, Christopher; Cheng, Ching -Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; De Geus, Eco J. C.; De Jager, Philip L.; de Zubicaray, Greig I.; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L.; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Espeseth, Thomas; Evans, Denis A.; Fedko, Iryna; Fernandez, Guillen; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Goring, Harald H. H.; Grabe, Hans J.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Ikram, M. Kamran; Jack, Clifford R.; Jenldnson, Mark; Johnson, Robert; Jonsson, Erik G.; Jukema, J. Wouter; Kahn, Rene S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaitre, Herve; Liu, Xinmin; Longo, Dan L.; Longstreth, W. T.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Katie L.; McMahon, Francis J.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Muhleisen, Thomas W.; Mueller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Noethen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schofield, Peter R.; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hindu.; Srikanth, Velandai; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Tzourio, Christophe; Uitterlinden, Andre G.; Hernandez, Maria C. Valdes; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J. A.; Van Duijn, Cornelia M.; Van Haren, Neeltje E. M.; Van't Ent, Dennis; Van Tol, Marie Jose; Vardarajan, Badri N.; Veltman, Dick J.; Vernooij, Meike W.; Voelzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, H. Ronald; Zonderman, Alan B.; Deary, Ian J.; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G.; De Craen, Anton J. M.; Wright, Margaret J.; Launer, Lenore J.; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stephanie; Medland, Sarah E.; Ikram, M. Arfan; Thompson, Paul M.

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unk

  12. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark Alan; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Brge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; St Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bonnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldorsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kahonen, Mika; Kanoni, Stavroula; Keltigangas-Jarvinen, Liisa; Kiemeney, Lambertus A. L. M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Mael P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C. M.; Loukola, Anu; Madden, Pamela A.; Magi, Reedik; Maki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E. R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Raikkonen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J. A.; Venturini, Cristina; Vinkhuyzen, Anna A. E.; Volker, Uwe; Volzke, Henry; Vonk, Judith M.; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jorgen; Gratten, Jacob; Groenen, Patrick J. F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppnen, Elina; Iacono, William G.; Jacobsson, Bo; Jarvelin, Marjo-Riitta; Jockel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L. R.; Lehtimaki, Terho; Lehrer, Steven F.; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W. J. H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sorensen, Thorkild I. A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, Andre G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends

  13. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    A. Okbay (Aysu); J.P. Beauchamp (Jonathan); Fontana, M.A. (Mark Alan); J.J. Lee (James J.); T.H. Pers (Tune); Rietveld, C.A. (Cornelius A.); P. Turley (Patrick); Chen, G.-B. (Guo-Bo); V. Emilsson (Valur); Meddens, S.F.W. (S. Fleur W.); Oskarsson, S. (Sven); Pickrell, J.K. (Joseph K.); Thom, K. (Kevin); Timshel, P. (Pascal); R. de Vlaming (Ronald); M. Abdellaoui (Mohammed); T.S. Ahluwalia (Tarunveer Singh); J. Bacelis (Jonas); C. Baumbach (Clemens); Bjornsdottir, G. (Gyda); J.H. Brandsma (Johan); Pina Concas, M. (Maria); J. Derringer; Furlotte, N.A. (Nicholas A.); T.E. Galesloot (Tessel); S. Girotto; Gupta, R. (Richa); L.M. Hall (Leanne M.); S.E. Harris (Sarah); E. Hofer; Horikoshi, M. (Momoko); J.E. Huffman (Jennifer E.); Kaasik, K. (Kadri); I.-P. Kalafati (Ioanna-Panagiota); R. Karlsson (Robert); A. Kong (Augustine); J. Lahti (Jari); S. van der Lee (Sven); Deleeuw, C. (Christiaan); P.A. Lind (Penelope); Lindgren, K.-O. (Karl-Oskar); Liu, T. (Tian); M. Mangino (Massimo); J. Marten (Jonathan); E. Mihailov (Evelin); M. Miller (Mike); P.J. van der Most (Peter); C. Oldmeadow (Christopher); A. Payton (Antony); N. Pervjakova (Natalia); W.J. Peyrot (Wouter ); Qian, Y. (Yong); O. Raitakari (Olli); Rueedi, R. (Rico); Salvi, E. (Erika); Schmidt, B. (Börge); Schraut, K.E. (Katharina E.); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); R.A. Poot (Raymond); B. St Pourcain (Beate); A. Teumer (Alexander); G. Thorleifsson (Gudmar); N. Verweij (Niek); D. Vuckovic (Dragana); Wellmann, J. (Juergen); H.J. Westra (Harm-Jan); Yang, J. (Jingyun); Zhao, W. (Wei); Zhu, Z. (Zhihong); B.Z. Alizadeh (Behrooz); N. Amin (Najaf); Bakshi, A. (Andrew); S.E. Baumeister (Sebastian); G. Biino; K. Bønnelykke (Klaus); P.A. Boyle (Patricia); H. Campbell (Harry); Cappuccio, F.P. (Francesco P.); G. Davies (Gail); J.E. de Neve (Jan-Emmanuel); P. Deloukas (Panagiotis); I. Demuth (Ilja); Ding, J. (Jun); Eibich, P. (Peter); Eisele, L. (Lewin); N. Eklund (Niina); D.M. Evans (David); J.D. Faul (Jessica D.); M.F. Feitosa (Mary Furlan); A.J. Forstner; I. Gandin (Ilaria); Gunnarsson, B. (Bjarni); B.V. Halldorsson (Bjarni); T.B. Harris (Tamara); E.G. Holliday (Elizabeth); A.C. Heath (Andrew C.); L.J. Hocking; G. Homuth (Georg); M. Horan (Mike); J.J. Hottenga (Jouke Jan); P.L. de Jager (Philip); P.K. Joshi (Peter); A. Juqessur (Astanand); M. Kaakinen (Marika); M. Kähönen (Mika); S. Kanoni (Stavroula); Keltigangas-Järvinen, L. (Liisa); L.A.L.M. Kiemeney (Bart); I. Kolcic (Ivana); Koskinen, S. (Seppo); A. Kraja (Aldi); Kroh, M. (Martin); Z. Kutalik (Zoltán); A. Latvala (Antti); L.J. Launer (Lenore); Lebreton, M.P. (Maël P.); D.F. Levinson (Douglas F.); P. Lichtenstein (Paul); P. Lichtner (Peter); D.C. Liewald (David C.); A. Loukola (Anu); P.A. Madden (Pamela); R. Mägi (Reedik); Mäki-Opas, T. (Tomi); R.E. Marioni (Riccardo); P. Marques-Vidal; Meddens, G.A. (Gerardus A.); G. Mcmahon (George); C. Meisinger (Christa); T. Meitinger (Thomas); Milaneschi, Y. (Yusplitri); L. Milani (Lili); G.W. Montgomery (Grant); R. Myhre (Ronny); C.P. Nelson (Christopher P.); D.R. Nyholt (Dale); W.E.R. Ollier (William); A. Palotie (Aarno); L. Paternoster (Lavinia); N.L. Pedersen (Nancy); K. Petrovic (Katja); D.J. Porteous (David J.); K. Räikkönen (Katri); Ring, S.M. (Susan M.); A. Robino (Antonietta); O. Rostapshova (Olga); I. Rudan (Igor); A. Rustichini (Aldo); V. Salomaa (Veikko); Sanders, A.R. (Alan R.); A.-P. Sarin; R. Schmidt (Reinhold); R.J. Scott (Rodney); B.H. Smith (Blair); J.A. Smith (Jennifer A); J.A. Staessen (Jan); E. Steinhagen-Thiessen (Elisabeth); K. Strauch (Konstantin); A. Terracciano; M.D. Tobin (Martin); S. Ulivi (Shelia); S. Vaccargiu (Simona); L. Quaye (Lydia); F.J.A. van Rooij (Frank); C. Venturini (Cristina); A.A.E. Vinkhuyzen (Anna A.); U. Völker (Uwe); Völzke, H. (Henry); J.M. Vonk (Judith); D. Vozzi (Diego); J. Waage (Johannes); E.B. Ware (Erin B.); G.A.H.M. Willemsen (Gonneke); J. Attia (John); D.A. Bennett (David A.); Berger, K. (Klaus); L. Bertram (Lars); H. Bisgaard (Hans); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); U. Bültmann (Ute); C.F. Chabris (Christopher F.); F. Cucca (Francesco); D. Cusi (Daniele); I.J. Deary (Ian J.); G.V. Dedoussis (George); C.M. van Duijn (Cock); K. Hagen (Knut); B. Franke (Barbara); L. Franke (Lude); P. Gasparini (Paolo); P.V. Gejman (Pablo); C. Gieger (Christian); H.J. Grabe (Hans Jörgen); J. Gratten (Jacob); P.J.F. Groenen (Patrick); V. Gudnason (Vilmundur); P. van der Harst (Pim); C. Hayward (Caroline)

    2016-01-01

    textabstractEducational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that

  14. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    DEFF Research Database (Denmark)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire;

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We...

  15. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N. Timpson (Nicholas); S.F. Grant; V.W.V. Jaddoe (Vincent W. V.); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation sc

  16. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire; van der Valk, Ralf J P; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M; Cousminer, Diana L; Marsh, Julie A; Lehtimäki, Terho; Curtin, John A; Vioque, Jesus; Ahluwalia, Tarunveer S; Myhre, Ronny; Price, Thomas S; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M A; Hirschhorn, Joel N; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A; Lewin, Alexandra M; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E; McMahon, George; Mentch, Frank D; Middeldorp, Christel M; Murray, Clare S; Pahkala, Katja; Pers, Tune H; Pfäffle, Roland; Postma, Dirkje S; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M T; Torrent, Maties; Uitterlinden, André G; van Meurs, Joyce B; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S; Dedoussis, George V; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R; Custovic, Adnan; Raitakari, Olli T; Pennell, Craig E; Widén, Elisabeth; Boomsma, Dorret I; Koppelman, Gerard H; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M; Smith, George Davey; Sørensen, Thorkild I A; Timpson, Nicholas J; Grant, Struan F A; Jaddoe, Vincent W V

    2015-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We in

  17. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D'Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Mateo Leach, Irene; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  18. A mega-analysis of genome-wide association studies for major depressive disorder

    NARCIS (Netherlands)

    Sullivan, Patrick F.; Daly, Mark J.; Ripke, Stephan; Lewis, Cathryn M.; Lin, Dan-Yu; Wray, Naomi R.; Neale, Benjamin; Levinson, Douglas F.; Breen, Gerome; Byrne, Enda M.; Wray, Naomi R.; Levinson, Douglas F.; Rietschel, Marcella; Hoogendijk, Witte; Ripke, Stephan; Sullivan, Patrick F.; Hamilton, Steven P.; Levinson, Douglas F.; Lewis, Cathryn M.; Ripke, Stephan; Weissman, Myrna M.; Wray, Naomi R.; Breuer, Rene; Cichon, Sven; Degenhardt, Franziska; Frank, Josef; Gross, Magdalena; Herms, Stefan; Hoefels, Susanne; Maier, Wolfgang; Mattheisen, Manuel; Noeethen, Markus M.; Rietschel, Marcella; Schulze, Thomas G.; Steffens, Michael; Treutlein, Jens; Boomsma, Dorret I.; De Geus, Eco J.; Hoogendijk, Witte; Hottenga, Jouke Jan; Jung-Ying, Tzeng; Lin, Dan-Yu; Middeldorp, Christel M.; Nolen, Willem A.; Penninx, Brenda P.; Smit, Johannes H.; Sullivan, Patrick F.; van Grootheest, Gerard; Willemsen, Gonneke; Zitman, Frans G.; Coryell, William H.; Knowles, James A.; Lawson, William B.; Levinson, Douglas F.; Potash, James B.; Scheftner, William A.; Shi, Jianxin; Weissman, Myrna M.; Holsboer, Florian; Muglia, Pierandrea; Tozzi, Federica; Blackwood, Douglas H. R.; Boomsma, Dorret I.; De Geus, Eco J.; Hottenga, Jouke Jan; MacIntyre, Donald J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Penninx, Brenda P.; Ripke, Stephan; Smit, Johannes H.; Sullivan, Patrick F.; van Grootheest, Gerard; Willemsen, Gonneke; Zitman, Frans G.; van den Oord, Edwin J. C. G.; Holsboer, Florian; Lucae, Susanne; Binder, Elisabeth; Mueller-Myhsok, Bertram; Ripke, Stephan; Czamara, Darina; Kohli, Martin A.; Ising, Marcus; Uhr, Manfred; Bettecken, Thomas; Barnes, Michael R.; Breen, Gerome; Craig, Ian W.; Farmer, Anne E.; Lewis, Cathryn M.; McGuffin, Peter; Muglia, Pierandrea; Byrne, Enda; Gordon, Scott D.; Heath, Andrew C.; Henders, Anjali K.; Hickie, Ian B.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant M.; Nyholt, Dale R.; Pergadia, Michele L.; Wray, Naomi R.; Hamilton, Steven P.; McGrath, Patrick J.; Shyn, Stanley I.; Slager, Susan L.; Oskarsson, Hoegni; Sigurdsson, Engilbert; Stefansson, Hreinn; Stefansson, Kari; Steinberg, Stacy; Thorgeirsson, Thorgeir; Levinson, Douglas F.; Potash, James B.; Shi, Jianxin; Weissman, Myrna M.; Guipponi, Michel; Lewis, Glyn; O'Donovan, Michael; Tansey, Katherine E.; Uher, Rudolf; Coryell, William H.; Knowles, James A.; Lawson, William B.; Levinson, Douglas F.; Potash, James B.; Scheftner, William A.; Shi, Jianxin; Weissman, Myrna M.; Castro, Victor M.; Churchill, Susanne E.; Fava, Maurizio; Gainer, Vivian S.; Gallagher, Patience J.; Goryachev, Sergey; Iosifescu, Dan V.; Kohane, Isaac S.; Murphy, Shawn N.; Perlis, Roy H.; Smoller, Jordan W.; Weilburg, Jeffrey B.; Kutalik, Zoltan; Preisig, Martin; Grabe, Hans J.; Nauck, Matthias; Schulz, Andrea; Teumer, Alexander; Voelzke, Henry; Landen, Mikael; Lichtenstein, Paul; Magnusson, Patrik; Pedersen, Nancy; Viktorin, Alexander

    2013-01-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chro

  19. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source

    Directory of Open Access Journals (Sweden)

    Børglum Anders D

    2011-07-01

    Full Text Available Abstract Background The search to identify disease-susceptible genes requires access to biological material from numerous well-characterized subjects. Archived residual dried blood spot (DBS samples, also known as Guthrie cards, from national newborn screening programs may provide a DNA source for entire populations. Combined with clinical information from medical registries, DBS samples could provide a rich source for productive research. However, the amounts of DNA which can be extracted from these precious samples are minute and may be prohibitive for numerous genotypings. Previously, we demonstrated that DBS DNA can be whole-genome amplified and used for reliable genetic analysis on different platforms, including genome-wide scanning arrays. However, it remains unclear whether this approach is workable on a large sample scale. We examined the robustness of using DBS samples for whole-genome amplification following genome-wide scanning, using arrays from Illumina and Affymetrix. Results This study is based on 4,641 DBS samples from the Danish Newborn Screening Biobank, extracted for three separate genome-wide association studies. The amount of amplified DNA was significantly (P Conclusion Our study indicates that archived DBS samples from the Danish Newborn Screening Biobank represent a reliable resource of DNA for whole-genome amplification and subsequent genome-wide association studies. With call-rates equivalent to high quality DNA samples, our results point to new opportunities for using the neonatal biobanks available worldwide in the hunt for genetic components of disease.

  20. Genome-wide association and functional follow-up reveals new loci for kidney function

    NARCIS (Netherlands)

    C. Pattaro (Cristian); A. Köttgen (Anna); A. Teumer (Alexander); C.A. Böger (Carsten); C. Fuchsberger (Christian); M. Olden (Matthias); M-H. Chen (Ming-Huei); M. Li (Man); X. Gao (Xiaoyi); M. Gorski (Mathias); Q. Yang (Qiong Fang); C.M. O'Seaghdha (Conall); N.L. Glazer (Nicole); A.J. Isaacs (Aaron); C.-T. Liu (Ching-Ti); A.V. Smith (Albert Vernon); J.R. O´Connell; M.V. Struchalin (Maksim); T. Tanaka (Toshiko); A.D. Johnson (Andrew); M.F. Feitosa (Mary Furlan); S.J. Hwang; K. Lohman (Kurt); M. Cornelis (Marilyn); A. Johansson (Åsa); A. Tönjes (Anke); A. Dehghan (Abbas); V. Chouraki (Vincent); E.G. Holliday (Elizabeth); R. Sorice; Z. Kutalik (Zoltán); T. Lehtimäki (Terho); T. Esko (Tõnu); S. Ulivi (Shelia); S. Trompet (Stella); M. Imboden (Medea); B. Kollerits (Barbara); G. Pistis (Giorgio); T.B. Harris (Tamara); L.J. Launer (Lenore); T. Aspelund (Thor); G. Eiriksdottir (Gudny); B.D. Mitchell (Braxton); E.A. Boerwinkle (Eric); R. Schmidt (Reinhold); M. Cavalieri (Margherita); F.B. Hu (Frank); A. Demirkan (Ayşe); B.A. Oostra (Ben); M. de Andrade (Mariza); J.S. Andrews (Jeanette S.); W. Koenig (Wolfgang); T. Illig (Thomas); A. Döring (Angela); H.E. Wichmann (Erich); I. Kolcic (Ivana); T. Zemunik (Tatijana); M. Boban (Mladen); W. Igl (Wilmar); G. Zaboli (Ghazal); S.H. Wild (Sarah); A.F. Wright (Alan); H. Campbell (Harry); R. Biffar (Reiner); F.D.J. Ernst (Florian); G. Homuth (Georg); H.K. Kroemer (Heyo); M. Nauck (Matthias); P. Kovacs (Peter); M. Stumvoll (Michael); R. Mägi (Reedik); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); O. Polasek (Ozren); N. Hastie (Nick); V. Vitart (Veronique); J.J. Wang (Jie Jin); S.M. Bergmann (Sven); M. Kähönen (Mika); J. Viikari (Jorma); M.A. Province (Mike); S. Ketkar (Shamika); A.S.F. Doney (Alex); I. Ford (Ian); B.M. Buckley (Brendan M.); B. Paulweber (Bernhard); M. Haun (Margot); C. Sala (Cinzia); M. Ciullo; P. Vollenweider (Peter); O. Raitakari (Olli); A. Metspalu (Andres); C.N.A. Palmer (Colin); P. Gasparini (Paolo); J.W. Jukema (Jan Wouter); F. Kronenberg (Florian); D. Toniolo (Daniela); V. Gudnason (Vilmundur); A.R. Shuldiner (Alan); J. Coresh (Josef); L. Ferrucci (Luigi); D.S. Siscovick (David); P. Tikka-Kleemola (Päivi); I.B. Borecki (Ingrid); S.L.R. Kardia (Sharon); G.C. Curhan (Gary); I. Rudan (Igor); U. Gyllensten (Ulf); J.F. Wilson (James); A. Franke (Andre); P.P. Pramstaller (Peter Paul); R. Rettig (Rainer); I. Prokopenko (Inga); J.C.M. Witteman (Jacqueline); C. Hayward (Caroline); P.M. Ridker (Paul); A. Parsa (Afshin); M. Bochud (Murielle); I.M. Heid (Iris); W. Goessling (Wolfram); D.I. Chasman (Daniel); W.H.L. Kao (Wen); C.S. Fox (Caroline)

    2012-01-01

    textabstractChronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimate

  1. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium

    NARCIS (Netherlands)

    McKay, J.D.; Truong, T.; Gaborieau, V.; Chabrier, A.; Chuang, S.C.; Byrnes, G.; Zaridze, D.; Shangina, O.; Szeszenia-Dabrowska, N.; Lissowska, J.; Rudnai, P.; Fabianova, E.; Bucur, A.; Bencko, V.; Holcatova, I.; Janout, V.; Foretova, L.; Lagiou, P.; Trichopoulos, D.; Benhamou, S.; Bouchardy, C.; Ahrens, W.; Merletti, F.; Richiardi, L.; Talamini, R.; Barzan, L.; Kjaerheim, K.; Macfarlane, G.J.; Macfarlane, T.V.; Simonato, L.; Canova, C.; Agudo, A.; Castellsague, X.; Lowry, R.; Conway, D.I.; McKinney, P.A.; Healy, C.M.; Toner, M.E.; Znaor, A.; Curado, M.P.; Koifman, S.; Menezes, A.; Wunsch-Filho, V.; Neto, J.E.; Garrote, L.F.; Boccia, S.; Cadoni, G.; Arzani, D.; Olshan, A.F.; Weissler, M.C.; Funkhouser, W.K.; Luo, J.; Lubinski, J.; Trubicka, J.; Lener, M.; Oszutowska, D.; Schwartz, S.M.; Chen, C.; Fish, S.; Doody, D.R.; Muscat, J.E.; Lazarus, P.; Gallagher, C.J.; Chang, S.C.; Zhang, Z.F.; Wei, Q.; Sturgis, E.M.; Wang, L.E.; Franceschi, S.; Herrero, R.; Kelsey, K.T.; McClean, M.D.; Marsit, C.J.; Nelson, H.H.; Romkes, M.; Buch, S.; Nukui, T.; Zhong, S.; Lacko, M.; Manni, J.J.; Peters, W.H.M.; Hung, R.J.; McLaughlin, J.; Vatten, L.; Njolstad, I.; Goodman, G.E.; Field, J.K.; Liloglou, T.; Vineis, P.; Clavel-Chapelon, F.; Palli, D.; Tumino, R.; Krogh, V.; Panico, S.; Gonzalez, C.A.; Quiros, J.R.; Martinez, C.; Navarro, C.; Ardanaz, E.; Larranaga, N.

    2011-01-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers.

  2. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding the...

  3. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    NARCIS (Netherlands)

    Loth, Daan W.; Artigas, Maria Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess D.; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kaonen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Vinuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wik, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietilainen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Voezke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, Andre G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B. J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L.; Rantanen, Taina; O'Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbe, Harry; Morris, Andrew P.; Glaeser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gucinason, Vilrnundur; Hancock, Dana B.; Williams, Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Villanen, Anne; Heliovaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, Hendrika; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melen, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josee; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917

  4. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    NARCIS (Netherlands)

    D.W. Loth (Daan); M.S. Artigas; S.A. Gharib (Sina); L.V. Wain (Louise); N. Franceschini (Nora); B. Koch (Beate); T.D. Pottinger (Tess); G.D. Smith; Q. Duan (Qing); C. Oldmeadow (Christopher); M.K. Lee (Mi Kyeong); D.P. Strachan (David); A.L. James (Alan); J.E. Huffman (Jennifer); V. Vitart (Veronique); A. Ramasamy (Adaikalavan); N.J. Wareham (Nick); J. Kaprio (Jaakko); X.-Q. Wang (Xin-Qun); H. Trochet (Holly); M. Kähönen (Mika); C. Flexeder (Claudia); E. Albrecht (Eva); L.M. Lopez (Lorna); B. Thyagarajan (Bharat); A.C. Alves (Alexessander Couto); S. Enroth (Stefan); E. Omenaas (Ernst); P.K. Joshi (Peter); M. Fall (Magnus); A. Viñuela (Ana); L.J. Launer (Lenore); L.R. Loehr (Laura); M. Fornage (Myriam); G. Li (Guo); J.B. Wilk (Jemma); W. Tang (Wenbo); A. Manichaikul (Ani); L. Lahousse (Lies); T.B. Harris (Tamara); K.E. North (Kari); A.R. Rudnicka (Alicja); J. Hui (Jennie); X. Gu (Xiangjun); T. Lumley (Thomas); A.F. Wright (Alan); N. Hastie (Nick); S. Campbell (Susan); R. Kumar (Rajesh); I. Pin (Isabelle); R.A. Scott (Robert); K.H. Pietilainen (Kirsi Hannele); I. Surakka (Ida); Y. Liu (Yongmei); E.G. Holliday (Elizabeth); H. Schulz (Holger); J. Heinrich (Joachim); G. Davies (Gail); J.M. Vonk (Judith); M.K. Wojczynski (Mary ); A. Pouta (Anneli); A. Johansson (Åsa); S.H. Wild (Sarah); E. Ingelsson (Erik); F. Rivadeneira Ramirez (Fernando); H. Völzke (Henry); P.G. Hysi (Pirro); G. Eiriksdottir (Gudny); A.C. Morrison (Alanna); J.I. Rotter (Jerome); W. Gao (Wei); D.S. Postma (Dirkje); W.B. White (Wendy); S.S. Rich (Stephen); A. Hofman (Albert); T. Aspelund (Thor); D. Couper (David); L.J. Smith (Lewis); B.M. Psaty (Bruce); K. Lohman (Kurt); E.G. Burchard (Esteban); A.G. Uitterlinden (André); M. Garcia (Melissa); B.R. Joubert (Bonnie); W.L. McArdle (Wendy); A.W. Musk (Arthur); C.R.W. Hansel (Christian); S.R. Heckbert (Susan); L. Zgaga (Lina); J.B.J. van Meurs (Joyce); P. Navarro (Pau); I. Rudan (Igor); Y.-M. Oh (Yeon-Mok); S. Redline (Susan); D.L. Jarvis (Deborah); J.H. Zhao (Jing); T. Rantanen (Taina); G.T. O'Connor (George); S. Ripatti (Samuli); R.J. Scott (Rodney); S. Karrasch (Stefan); H. Grallert (Harald); N.C. Gaddis (Nathan); J.M. Starr (John); C. Wijmenga (Cisca); R.L. Minster (Ryan); C.W. Lederer (Carsten); J. Pekkanen (Juha); U. Gyllensten (Ulf); H. Campbell (Harry); A.P. Morris (Andrew); S. Gläser (Sven); C.J. Hammond (Christopher); K.M. Burkart (Kristin); J.P. Beilby (John); S.B. Kritchevsky (Stephen); V. Gudnason (Vilmundur); D.B. Hancock (Dana); O.D. Williams (Dale); O. Polasek (Ozren); T. Zemunik (Tatijana); I. Kolcic (Ivana); M.F. Petrini (Marcy); K.T. de Jong (Kim); M. Wjst (Matthias); W.H. Kim (Woo); D.J. Porteous (David J.); G. Scotland (Generation); B.H. Smith (Blair); A. Viljanen (Anne); M. Heliovaara (Markku); J. Attia (John); I. Sayers (Ian); R. Hampel (Regina); C. Gieger (Christian); I.J. Deary (Ian); H.M. Boezen (Marike); A.B. Newman (Anne); M.-R. Jarvelin (Marjo-Riitta); J.F. Wilson (James); L. Lind (Lars); B.H.Ch. Stricker (Bruno); A. Teumer (Alexander); T.D. Spector (Timothy); E. Melén (Erik); M.J. Peters (Marjolein); L.A. Lange (Leslie); R.G. Barr (Graham); K.R. Bracke (Ken); F.M. Verhamme (Fien); J. Sung (Joohon); P.S. Hiemstra (Pieter); P.A. Cassano (Patricia); A. Sood (Akshay); C. Hayward (Caroline); J. Dupuis (Josée); I.P. Hall (Ian); G.G. Brusselle (Guy); M.D. Tobin (Martin); S.J. London (Stephanie)

    2014-01-01

    textabstractForced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in

  5. A genome wide association study links glutamate receptor pathway to sporadic Creutzfeldt-Jakob disease risk

    NARCIS (Netherlands)

    P. Sanchez-Juan (Pascual); M.T. Bishop (Matthew); G.G. Kovacs (Gabor); M. Calero (Miguel); Y.S. Aulchenko (Yurii); A. Ladogana (Anna); A. Boyd (Alison); V. Lewis (Victoria); C. Ponto (Claudia); Calero, O. (Olga); A. Poleggi (Anna); A. Carracedo (Angel); S. van der Lee (Sven); T. Ströbel (Thomas); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); S. Haik; O. Combarros (Onofre); J. Berciano (José); A.G. Uitterlinden (André); S.J. Collins (Steven); H. Budka (Herbert); J-P. Brandel (Jean-Philippe); J.-L. Laplanche (Jean-Louis); M. Pocchiari (Maurizio); I. Zerr (Inga); R. Knight (Richard); R.G. Will (Robert); C.M. van Duijn (Cock)

    2015-01-01

    textabstractWe performed a genome-wide association (GWA) study in 434 sporadic Creutzfeldt-Jakob disease (sCJD) patients and 1939 controls from the United Kingdom, Germany and The Netherlands. The findings were replicated in an independent sample of 1109 sCJD and 2264 controls provided by a

  6. A genome-wide association search for type 2 diabetes genes in African Americans

    DEFF Research Database (Denmark)

    Palmer, Nicholette D; McDonough, Caitrin W; Hicks, Pamela J

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wid...

  7. Genome-wide responses of Synechocystis PCC6803 to nitrogen deprivation

    NARCIS (Netherlands)

    Krasikov, V.; Aguirre von Wobeser, E.; Huisman, J.; Ibelings, B; Matthijs, H.C.P.; Matthijs, H. C. P.

    2005-01-01

    Genome-wide responses of Synechocystis PCC6803 to nitrogen deprivation Vladimir Krasikov1, Eneas Aguirre-von-Wobeser1, Jef Huisman1, Bas Ibelings2, Hans C.P. Matthijs1 1Universiteit van Amsterdam, Amsterdam, the Netherlands; 2Netherlands Institute of Ecology, Limnological Institute, Nieuwersluis, th

  8. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  9. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  10. Methods for meta-analysis of genome-wide association studies

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. For increasing N, results from different GWA can be combined in a meta-analysis (MA-...

  11. Implementing Meta-analysis for genome-wide association studies of pork quality traits

    Science.gov (United States)

    Pork quality is a critical concern in the meat industry. Implementation of genome-wide association studies (GWA) allows identification of genomic regions that explain a substantial portion of the variation of relevant traits. It is also important to determine the consistency of results of GWA across...

  12. Meta-analysis of genome wide association studies for pork quality traits

    Science.gov (United States)

    Given the importance of pork quality in the meat processing industry, genome-wide association studies were performed for eight meat quality traits and also, a meta-analysis (MA) of GWA was implemented combining independent results from pig populations. Data from three pig datasets (USMARC, Commercia...

  13. Implementing meta-analysis from genome-wide association studies for pork quality traits

    Science.gov (United States)

    Pork quality plays an important role in the meat processing industry, thus different methodologies have been implemented to elucidate the genetic architecture of traits affecting meat quality. One of the most common and widely used approaches is to perform genome-wide association (GWA) studies. Howe...

  14. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin; K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao; G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara B.); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. Van Duijn (Cornelia M.); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  15. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.; Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J.S.; Huikari, V.; Cavadino, A.; Nolte, I.M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M.K.; Vink, J.M.; Zhao, J.H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R.N.; Eriksson, J.; Musani, S.K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Magi, R.; Dimitriou, M.; Garcia, M.E.; Ho, W.K.; Wright, M.J.; Rose, L.M.; Magnusson, P.K.; Pedersen, N.L.; Couper, D.; Oostra, B.A.; Hofman, A.; Ikram, M.A.; Tiemeier, H.W.; Uitterlinden, A.G.; Rooij, F.J. van; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R.P.; Baumeister, S.E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D.R., Jr.; Forouhi, N.G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K.T.; Luben, R.N.; Wang, J.J.; Mannisto, S.; Perala, M.M.; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B.M.; Doring, A.; Heath, A.C.; Montgomery, G.W.; Dahmen, N.; Carithers, T.; Tucker, K.L.; Ferrucci, L.; Boyd, H.A.; Melbye, M.; Treur, J.L.; Mellstrom, D.; Hottenga, J.J.; Prokopenko, I.; Tonjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D.K.; Liu, Y.; Danesh, J.; Rasheed, A.; Bloem, B.R.; Post, B.; Scheffer, H.; Warrenburg, B.P.C. van de

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  16. A genome wide association study links glutamate receptor pathway to sporadic Creutzfeldt-Jakob disease risk

    NARCIS (Netherlands)

    P. Sanchez-Juan (Pascual); M.T. Bishop (Matthew); G.G. Kovacs (Gabor); M. Calero (Miguel); Y.S. Aulchenko (Yurii); A. Ladogana (Anna); A. Boyd (Alison); V. Lewis (Victoria); C. Ponto (Claudia); Calero, O. (Olga); A. Poleggi (Anna); A. Carracedo (Angel); S. van der Lee (Sven); T. Ströbel (Thomas); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); S. Haik; O. Combarros (Onofre); J. Berciano (José); A.G. Uitterlinden (André); S.J. Collins (Steven); H. Budka (Herbert); J-P. Brandel (Jean-Philippe); J.-L. Laplanche (Jean-Louis); M. Pocchiari (Maurizio); I. Zerr (Inga); R. Knight (Richard); R.G. Will (Robert); C.M. van Duijn (Cock)

    2015-01-01

    textabstractWe performed a genome-wide association (GWA) study in 434 sporadic Creutzfeldt-Jakob disease (sCJD) patients and 1939 controls from the United Kingdom, Germany and The Netherlands. The findings were replicated in an independent sample of 1109 sCJD and 2264 controls provided by a multinat

  17. Software engineering the mixed model for genome-wide association studies on large samples

    Science.gov (United States)

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  18. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus

    NARCIS (Netherlands)

    Medema, M.H.; Alam, M.T.; Heijne, W.H.M.; Berg, M.A. van den; Müller, U.; Trefzer, A.; Bovenberg, R.A.L.; Breitling, R.; Takano, E.

    2011-01-01

    To increase production of the important pharmaceutical compound clavulanic acid, a beta-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expressi

  19. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flicldnger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gailagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Laengstroem, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nwulia, Evaristus A.; Nyholt, Dale R.; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; Cair, David St.; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutdiffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; Van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Kendler, Kenneth S.; Weiss, Lauren A.; Wray, Naomi R.; Zhao, Zhaoming; Geschwind, Daniel H.; Sullivan, Patrick F.; Smoller, Jordan W.; Holmans, Peter A.; Breen, Gerome

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ove

  20. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    NARCIS (Netherlands)

    Ghoussaini, M.; Fletcher, O.; Michailidou, K.; Turnbull, C.; Schmidt, M.K.; Dicks, E.; Dennis, J.; Wang, Q.; Humphreys, M.K.; Luccarini, C.; Baynes, C.; Conroy, D.; Maranian, M.; Ahmed, S.; Driver, K.; Johnson, N.; Orr, N.; dos Santos Silva, I.; Waisfisz, Q.; Meijers-Heijboer, H.; Uitterlinden, A.G.; Rivadeneira, F.; Hall, P.; Czene, K.; Irwanto, A.; Liu, J.; Nevanlinna, H.; Aittomaki, K.; Blomqvist, C.; Meindl, A.; Schmutzler, R.K.; Muller-Myhsok, B.; Lichtner, P.; Chang-Claude, J.; Hein, R.; Nickels, S.; Flesch-Janys, D.; Tsimiklis, H.; Makalic, E.; Schmidt, D.; Bui, M.; Hopper, J.L.; Apicella, C.; Park, D.J.; Southey, M.; Hunter, D.J.; Chanock, S.J.; Broeks, A.; Verhoef, S.; Hogervorst, F.B.; Fasching, P.A.; Lux, M.P.; Beckmann, M.W.; Ekici, A.B.; Sawyer, E.; Tomlinson, I.; Kerin, M.; Marme, F.; Schneeweiss, A.; Sohn, C.; Burwinkel, B.; Guenel, P.; Truong, T.; Cordina-Duverger, E.; Menegaux, F.; Bojesen, S.E.; Nordestgaard, B.G.; Nielsen, S.F.; Flyger, H.; Milne, R.L.; Alonso, M.R.; Gonzalez-Neira, A.; Benitez, J.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Dur, C.C.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Justenhoven, C.; Brauch, H.; Bruning, T.; Wang-Gohrke, S.; Eilber, U.; Dork, T.; Schurmann, P.; Bremer, M.; Hillemanns, P.; Bogdanova, N.V.; Antonenkova, N.N.; Rogov, Y.I.; Karstens, J.H.; Bermisheva, M.; Prokofieva, D.; Ligtenberg, M.J.

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for approximately 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies

  1. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  2. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao; S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  3. Genome-wide association studies in economics and entrepreneurship research: Promises and limitations

    NARCIS (Netherlands)

    Ph.D. Koellinger (Philipp); M.J.H.M. van der Loos (Matthijs); P.J.F. Groenen (Patrick); A.R. Thurik (Roy); F. Rivadeneira Ramirez (Fernando); F.J.A. van Rooij (Frank); A.G. Uitterlinden (André); A. Hofman (Albert)

    2010-01-01

    textabstractThe recently developed genome-wide association study (GWAS) design enables the identification of genes specifically associated with economic outcomes such as occupational and other choices. This is a promising new approach for economics research which we aim to apply to the choice for en

  4. Genome-wide association studies in economics and entrepreneurship research: promises and limitations

    NARCIS (Netherlands)

    Ph.D. Koellinger (Philipp); M.J.H.M. van der Loos (Matthijs); P.J.F. Groenen (Patrick); A.R. Thurik (Roy); F. Rivadeneira Ramirez (Fernando); F.J.A. van Rooij (Frank)

    2010-01-01

    textabstractThe recently developed genome-wide association study (GWAS) design enables the identification of genes specifically associated with economic outcomes such as occupational and other choices. This is a promising new approach for economics research which we aim to apply to the choice for en

  5. Regulatory Network Construction in Arabidopsis using genome-wide gene expression QTLs

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Fu, J.J.; Terpstra, I.R.; Garcia, J.M.; van den Ackerveken, G.; Snoek, L.B.; Peeters, A.J.M.; Vreugdenhil, D.; Koornreef, M.; Jansen, R.C.

    2007-01-01

    Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci.Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC. Laboratory of Genetics, Wageningen University, Arboretumlaan 4,

  6. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci

    NARCIS (Netherlands)

    Keurentjes, Joost J.B.; Fu, Jingyuan; Terpstra, Inez R.; Garcia, Juan M.; Ackerveken, Guido van den; Snoek, L. Basten; Peeters, Anton J.M.; Vreugdenhil, Dick; Koornneef, Maarten; Jansen, Ritsert C.

    2007-01-01

    Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation

  7. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  8. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,...

  9. Genome-Wide Association Study in African-Americans with Systemic Lupus Erythematosus

    Science.gov (United States)

    2013-09-01

    Americans with Systemic Lupus Erythematosus PRINCIPAL INVESTIGATOR: John Harley, M.D., Ph.D...September 2012 – 31 August 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genome-Wide Association Study in African-Americans with Systemic Lupus ...SUPPLEMENTARY NOTES 14. ABSTRACT Systemic lupus erythematosus ( lupus ) is a potentially deadly systemic autoimmune disease that disproportionately

  10. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I. Barroso (Inês); M.