WorldWideScience

Sample records for genome wide search

  1. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  2. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases

    Directory of Open Access Journals (Sweden)

    William Murk

    2016-07-01

    Full Text Available The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs with minor allele frequency (MAF ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10−12. Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized.

  3. A genome-wide association search for type 2 diabetes genes in African Americans

    DEFF Research Database (Denmark)

    Palmer, Nicholette D; McDonough, Caitrin W; Hicks, Pamela J

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide...... Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n¿=¿550 independent loci) were genotyped in a replication cohort and 122 SNPs (n¿=¿98 independent loci) were...... further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P...

  4. A genome-wide association search for type 2 diabetes genes in African Americans.

    Directory of Open Access Journals (Sweden)

    Nicholette D Palmer

    Full Text Available African Americans are disproportionately affected by type 2 diabetes (T2DM yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD and 1029 population-based controls. The most significant SNPs (n = 550 independent loci were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071, were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05. Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8. SNP rs7560163 (P = 7.0×10(-9, OR (95% CI = 0.75 (0.67-0.84 is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217 were associated with T2DM (P<0.05 and reached more nominal levels of significance (P<2.5×10(-5 in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.

  5. GLIDERS - A web-based search engine for genome-wide linkage disequilibrium between HapMap SNPs

    Directory of Open Access Journals (Sweden)

    Broxholme John

    2009-10-01

    Full Text Available Abstract Background A number of tools for the examination of linkage disequilibrium (LD patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb. We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers. Description GLIDERS is an easy to use web tool that only requires the user to enter rs numbers of SNPs they want to retrieve genome-wide LD for (both nearby and long-range. The intuitive web interface handles both manual entry of SNP IDs as well as allowing users to upload files of SNP IDs. The user can limit the resulting inter SNP associations with easy to use menu options. These include MAF limit (5-45%, distance limits between SNPs (minimum and maximum, r2 (0.3 to 1, HapMap population sample (CEU, YRI and JPT+CHB combined and HapMap build/release. All resulting genome-wide inter-SNP associations are displayed on a single output page, which has a link to a downloadable tab delimited text file. Conclusion GLIDERS is a quick and easy way to retrieve genome-wide inter-SNP associations and to explore LD patterns for any number of SNPs of interest. GLIDERS can be useful in identifying SNPs with long-range LD. This can highlight mis-mapping or other potential association signal localisation problems.

  6. Genome-Wide Search for Host Association Factors during Ovine Progressive Pneumonia Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jesse Thompson

    Full Text Available Ovine progressive pneumonia virus (OPPV is an important virus that causes serious diseases in sheep and goats with a prevalence of 36% in the USA. Although OPPV was discovered more than half of a century ago, little is known about the infection and pathogenesis of this virus. In this report, we used RNA-seq technology to conduct a genome-wide probe for cellular factors that are associated with OPPV infection. A total of approximately 22,000 goat host genes were detected of which 657 were found to have been significantly up-regulated and 889 down-regulated at 12 hours post-infection. In addition to previously known restriction factors from other viral infections, a number of factors which may be specific for OPPV infection were uncovered. The data from this RNA-seq study will be helpful in our understanding of OPPV infection, and also for further study in the prevention and intervention of this viral disease.

  7. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS. Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models.In this study, two scoring functions (Bayesian network based K2-score and Gini-score are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models.We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR, specificity (SPC, positive predictive value (PPV and accuracy (ACC. Our method has identified two SNPs (rs3775652 and rs10511467 that may be also associated with disease in AMD dataset.

  8. A genome-wide search for genes involved in the radiation-induced gastroschisis

    International Nuclear Information System (INIS)

    Hillebrandt, S.; Streffer, C.

    1997-01-01

    Whole genome linkage analysis of gastroschisis (abdominal wall defect) using geno-typing with micro-satellites of affected BC1 mice [(HLGxC57BL/6J)xHLG] was performed. The HLG inbred strain shows an increased risk in gastroschisis after irradiation of embryos in the 1-cell stage. Previous studies demonstrated, that gastroschisis is a poly-genic trait with a recessive mode of inheritance. Since a recessive inheritance of gastroschisis is assumed, the involved genes must be linked to markers showing a high level of homozygosity in the affected animals. For marker loci on the chromosome 13 and 19 a significantly increased number of homozygotes has been found in mice with gastroschisis comparing to mice without this malformation. The linkage analysis performed by us allowed determining intervals likely to contain genes related to gastroschisis on these two chromosomes. The highest lod score value has been found for the marker locus D19MIT27 very close to Pax2 (lod score=1.23; p=0.017). For the marker D13MIT99 a lod score of 0.85 (p=0.047) was calculated. However, markers more close to the homeo-box gene Msx-2 on the chromosome 13 show lower lod score values than D13MIT99, suggesting that this homeo-box gene is probably not involved in gastroschisis. According to the classification of results of the linkage analysis of complex traits described by Lander and Kruglyak (1995), our data provide a suggestive evidence for the involvement of the analyzed intervals on the chromosomes 19 and 13 to gastroschisis. Further studies are necessary to prove this linkage. (authors)

  9. A genome-wide search for genes involved in type 2 diabetes in a recently genetically isolated population from the Netherlands

    NARCIS (Netherlands)

    Y.S. Aulchenko (Yurii); N. Vaessen (Norbert); P. Heutink (Peter); J. Pullen (Jan); P.J.L.M. Snijders (Pieter); A. Hofman (Albert); L.A. Sandkuijl (Lodewijk); J.J. Houwing-Duistermaat (Jeanine); S. Bennett (Simon); B.A. Oostra (Ben); C.M. van Duijn (Cornelia); M. Edwards (Mark)

    2003-01-01

    textabstractMultiple genes, interacting with the environment, contribute to the susceptibility to type 2 diabetes. We performed a genome-wide search to localize type 2 diabetes susceptibility genes in a recently genetically isolated population in the Netherlands. We identified 79 nuclear families

  10. An R package "VariABEL" for genome-wide searching of potentially interacting loci by testing genotypic variance heterogeneity

    Directory of Open Access Journals (Sweden)

    Struchalin Maksim V

    2012-01-01

    Full Text Available Abstract Background Hundreds of new loci have been discovered by genome-wide association studies of human traits. These studies mostly focused on associations between single locus and a trait. Interactions between genes and between genes and environmental factors are of interest as they can improve our understanding of the genetic background underlying complex traits. Genome-wide testing of complex genetic models is a computationally demanding task. Moreover, testing of such models leads to multiple comparison problems that reduce the probability of new findings. Assuming that the genetic model underlying a complex trait can include hundreds of genes and environmental factors, testing of these models in genome-wide association studies represent substantial difficulties. We and Pare with colleagues (2010 developed a method allowing to overcome such difficulties. The method is based on the fact that loci which are involved in interactions can show genotypic variance heterogeneity of a trait. Genome-wide testing of such heterogeneity can be a fast scanning approach which can point to the interacting genetic variants. Results In this work we present a new method, SVLM, allowing for variance heterogeneity analysis of imputed genetic variation. Type I error and power of this test are investigated and contracted with these of the Levene's test. We also present an R package, VariABEL, implementing existing and newly developed tests. Conclusions Variance heterogeneity analysis is a promising method for detection of potentially interacting loci. New method and software package developed in this work will facilitate such analysis in genome-wide context.

  11. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Shete, Sanjay; Lau, Ching C; Houlston, Richard S

    2011-01-01

    .S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have...... implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma.......-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge...

  12. Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach

    Directory of Open Access Journals (Sweden)

    Ding Jiandong

    2012-06-01

    Full Text Available Abstract Background MiRNA are about 22nt long small noncoding RNAs that post transcriptionally regulate gene expression in animals, plants and protozoa. Confident identification of MiRNA-Target Interactions (MTI is vital to understand their function. Currently, several integrated computational programs and databases are available for animal miRNAs, the mechanisms of which are significantly different from plant miRNAs. Methods Here we present an integrated MTI prediction and analysis toolkit (imiRTP for Arabidopsis thaliana. It features two important functions: (i combination of several effective plant miRNA target prediction methods provides a sufficiently large MTI candidate set, and (ii different filters allow for an efficient selection of potential targets. The modularity of imiRTP enables the prediction of high quality targets on genome-wide scale. Moreover, predicted MTIs can be presented in various ways, which allows for browsing through the putative target sites as well as conducting simple and advanced analyses. Results Results show that imiRTP could always find high quality candidates compared with single method by choosing appropriate filter and parameter. And we also reveal that a portion of plant miRNA could bind target genes out of coding region. Based on our results, imiRTP could facilitate the further study of Arabidopsis miRNAs in real use. All materials of imiRTP are freely available under a GNU license at (http://admis.fudan.edu.cn/projects/imiRTP.htm.

  13. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    Science.gov (United States)

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    Science.gov (United States)

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  15. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of Petunia axillaris and Petunia exserta.

    Science.gov (United States)

    Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao

    2018-05-15

    A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.

  16. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Searching for genomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lio` , P [Cambridge, Univ. (United Kingdom). Genetics Dept.; Ruffo, S [Florence, Univ. (Italy). Fac. di Ingegneria. Dipt. di Energetica ` S. Stecco`

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call `genomic constraints` from the rules that depend on the `external natural selection` acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour.

  18. Searching for genomic constraints

    International Nuclear Information System (INIS)

    Lio', P.; Ruffo, S.

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour

  19. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR in the Family Investigation of Nephropathy and Diabetes (FIND.

    Directory of Open Access Journals (Sweden)

    Farook Thameem

    Full Text Available Estimated glomerular filtration rate (eGFR, a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL that influence eGFR.Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND study. This study included 954 African Americans (AA, 781 American Indians (AI, 614 European Americans (EA and 1,611 Mexican Americans (MA. A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD formula.The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4 × 10(-5 in MA and chromosome 15q12 (LOD = 2.84; P = 1.5 × 10(-4 in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5 × 10(-4 at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome.The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers

  20. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND).

    Science.gov (United States)

    Thameem, Farook; Igo, Robert P; Freedman, Barry I; Langefeld, Carl; Hanson, Robert L; Schelling, Jeffrey R; Elston, Robert C; Duggirala, Ravindranath; Nicholas, Susanne B; Goddard, Katrina A B; Divers, Jasmin; Guo, Xiuqing; Ipp, Eli; Kimmel, Paul L; Meoni, Lucy A; Shah, Vallabh O; Smith, Michael W; Winkler, Cheryl A; Zager, Philip G; Knowler, William C; Nelson, Robert G; Pahl, Madeline V; Parekh, Rulan S; Kao, W H Linda; Rasooly, Rebekah S; Adler, Sharon G; Abboud, Hanna E; Iyengar, Sudha K; Sedor, John R

    2013-01-01

    Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR. Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula. The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4 × 10(-5)) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5 × 10(-4)) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5 × 10(-4)) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome. The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers

  1. Fungal Screening on Olive Oil for Extracellular Triacylglycerol Lipases: Selection of a Trichoderma harzianum Strain and Genome Wide Search for the Genes

    Science.gov (United States)

    Canseco-Pérez, Miguel Angel; Castillo-Avila, Genny Margarita; Islas-Flores, Ignacio; Apolinar-Hernández, Max M.; Rivera-Muñoz, Gerardo; Gamboa-Angulo, Marcela; Couoh-Uicab, Yeny

    2018-01-01

    A lipolytic screening with fungal strains isolated from lignocellulosic waste collected in banana plantation dumps was carried out. A Trichoderma harzianum strain (B13-1) showed good extracellular lipolytic activity (205 UmL−1). Subsequently, functional screening of the lipolytic activity on Rhodamine B enriched with olive oil as the only carbon source was performed. The successful growth of the strain allows us to suggest that a true lipase is responsible for the lipolytic activity in the B13-1 strain. In order to identify the gene(s) encoding the protein responsible for the lipolytic activity, in silico identification and characterization of triacylglycerol lipases from T. harzianum is reported for the first time. A survey in the genome of this fungus retrieved 50 lipases; however, bioinformatic analyses and putative functional descriptions in different databases allowed us to choose seven lipases as candidates. Suitability of the bioinformatic screening to select the candidates was confirmed by reverse transcription polymerase chain reaction (RT-PCR). The gene codifying 526309 was expressed when the fungus grew in a medium with olive oil as carbon source. This protein shares homology with commercial lipases, making it a candidate for further applications. The success in identifying a lipase gene inducible with olive oil and the suitability of the functional screening and bioinformatic survey carried out herein, support the premise that the strategy can be used in other microorganisms with sequenced genomes to search for true lipases, or other enzymes belonging to large protein families. PMID:29370083

  2. Genome-Wide Search for Competing Endogenous RNAs Responsible for the Effects Induced by Ebola Virus Replication and Transcription Using a trVLP System

    Directory of Open Access Journals (Sweden)

    Zhong-Yi Wang

    2017-11-01

    Full Text Available Understanding how infected cells respond to Ebola virus (EBOV and how this response changes during the process of viral replication and transcription are very important for establishing effective antiviral strategies. In this study, we conducted a genome-wide screen to identify long non-coding RNAs (lncRNAs, circular RNAs (circRNAs, micro RNAs (miRNAs, and mRNAs differentially expressed during replication and transcription using a tetracistronic transcription and replication-competent virus-like particle (trVLP system that models the life cycle of EBOV in 293T cells. To characterize the expression patterns of these differentially expressed RNAs, we performed a series cluster analysis, and up- or down-regulated genes were selected to establish a gene co-expression network. Competing endogenous RNA (ceRNA networks based on the RNAs responsible for the effects induced by EBOV replication and transcription in human cells, including circRNAs, lncRNAs, miRNAs, and mRNAs, were constructed for the first time. Based on these networks, the interaction details of circRNA-chr19 were explored. Our results demonstrated that circRNA-chr19 targeting miR-30b-3p regulated CLDN18 expression by functioning as a ceRNA. These findings may have important implications for further studies of the mechanisms of EBOV replication and transcription. These RNAs potentially have important functions and may be promising targets for EBOV therapy.

  3. Genomic selection: genome-wide prediction in plant improvement.

    Science.gov (United States)

    Desta, Zeratsion Abera; Ortiz, Rodomiro

    2014-09-01

    Association analysis is used to measure relations between markers and quantitative trait loci (QTL). Their estimation ignores genes with small effects that trigger underpinning quantitative traits. By contrast, genome-wide selection estimates marker effects across the whole genome on the target population based on a prediction model developed in the training population (TP). Whole-genome prediction models estimate all marker effects in all loci and capture small QTL effects. Here, we review several genomic selection (GS) models with respect to both the prediction accuracy and genetic gain from selection. Phenotypic selection or marker-assisted breeding protocols can be replaced by selection, based on whole-genome predictions in which phenotyping updates the model to build up the prediction accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A genome-wide search for linkage to asthma phenotypes in the genetics of asthma international network families : evidence for a major susceptibility locus on chromosome 2p

    NARCIS (Netherlands)

    Pillai, SG; Chiano, MN; White, NJ; Speer, M; Barnes, KC; Carlsen, K; Gerritsen, Jorrit; Helms, P; Lenney, W; Silverman, M; Sly, P; Sundy, J; Tsanakas, J; von Berg, A; Whyte, M; Varsani, S; Skelding, P; Hauser, M; Vance, J; Pericak-Vance, M; Burns, DK; Middleton, LT; Brewster, [No Value; Anderson, WH; Riley, JH

    Asthma is a complex disease and the intricate interplay between genetic and environmental factors underlies the overall phenotype of the disease. Families with at least two siblings with asthma were collected from Europe, Australia and the US. A genome scan using a set of 364 families with a panel

  5. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  6. Genome-wide association studies and resting heart rate

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas

    2016-01-01

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10 years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms...... and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands...... of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal...

  7. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    to protein: through epigenetic modifications, transcription regulators or post-transcriptional controls. The following papers concern several layers of gene regulation with questions answered by different HTS approaches. Genome-wide screening of epigenetic changes by ChIP-seq allowed us to study both spatial...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V...

  8. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  9. Gigwa-Genotype investigator for genome-wide analyses.

    Science.gov (United States)

    Sempéré, Guilhem; Philippe, Florian; Dereeper, Alexis; Ruiz, Manuel; Sarah, Gautier; Larmande, Pierre

    2016-06-06

    Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.

  10. Genome-wide identification of significant aberrations in cancer genome.

    Science.gov (United States)

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  11. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  12. Genome-Wide Mutagenesis in Borrelia burgdorferi.

    Science.gov (United States)

    Lin, Tao; Gao, Lihui

    2018-01-01

    population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex ® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.

  13. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  14. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  15. An Open Access Database of Genome-wide Association Results

    Directory of Open Access Journals (Sweden)

    Johnson Andrew D

    2009-01-01

    Full Text Available Abstract Background The number of genome-wide association studies (GWAS is growing rapidly leading to the discovery and replication of many new disease loci. Combining results from multiple GWAS datasets may potentially strengthen previous conclusions and suggest new disease loci, pathways or pleiotropic genes. However, no database or centralized resource currently exists that contains anywhere near the full scope of GWAS results. Methods We collected available results from 118 GWAS articles into a database of 56,411 significant SNP-phenotype associations and accompanying information, making this database freely available here. In doing so, we met and describe here a number of challenges to creating an open access database of GWAS results. Through preliminary analyses and characterization of available GWAS, we demonstrate the potential to gain new insights by querying a database across GWAS. Results Using a genomic bin-based density analysis to search for highly associated regions of the genome, positive control loci (e.g., MHC loci were detected with high sensitivity. Likewise, an analysis of highly repeated SNPs across GWAS identified replicated loci (e.g., APOE, LPL. At the same time we identified novel, highly suggestive loci for a variety of traits that did not meet genome-wide significant thresholds in prior analyses, in some cases with strong support from the primary medical genetics literature (SLC16A7, CSMD1, OAS1, suggesting these genes merit further study. Additional adjustment for linkage disequilibrium within most regions with a high density of GWAS associations did not materially alter our findings. Having a centralized database with standardized gene annotation also allowed us to examine the representation of functional gene categories (gene ontologies containing one or more associations among top GWAS results. Genes relating to cell adhesion functions were highly over-represented among significant associations (p -14, a finding

  16. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  17. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  18. Genome-Wide Comparative Gene Family Classification

    Science.gov (United States)

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  19. A Genome-Wide Landscape of Retrocopies in Primate Genomes.

    Science.gov (United States)

    Navarro, Fábio C P; Galante, Pedro A F

    2015-07-29

    Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. a potential source of spurious associations in genome-wide ...

    Indian Academy of Sciences (India)

    2010-04-01

    Apr 1, 2010 ... Genome-wide association studies (GWAS) examine the entire human genome with the goal of identifying genetic variants. (usually single nucleotide polymorphisms (SNPs)) that are associated with phenotypic traits such as disease status and drug response. The discordance of significantly associated ...

  1. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  3. Genome-wide association study of clinical dimensions of schizophrenia

    DEFF Research Database (Denmark)

    Fanous, Ayman H; Zhou, Baiyu; Aggen, Steven H

    2012-01-01

    Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia.......Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia....

  4. A Genome-Wide Breast Cancer Scan in African Americans

    Science.gov (United States)

    2010-06-01

    SNPs from the African American breast cancer scan to COGs , a European collaborative study which is has designed a SNP array with that will be genotyped...Award Number: W81XWH-08-1-0383 TITLE: A Genome-wide Breast Cancer Scan in African Americans PRINCIPAL INVESTIGATOR: Christopher A...SUBTITLE A Genome-wide Breast Cancer Scan in African Americans 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0383 5c. PROGRAM

  5. GWAMA: software for genome-wide association meta-analysis

    Directory of Open Access Journals (Sweden)

    Mägi Reedik

    2010-05-01

    Full Text Available Abstract Background Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions The GWAMA (Genome-Wide Association Meta-Analysis software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  6. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Directory of Open Access Journals (Sweden)

    Huihua Wang

    Full Text Available Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed.We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality and EDAR (associated with hair thickness were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9 were associated with pre-weaning gain in our previous genome-wide association study.Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  7. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Science.gov (United States)

    Wang, Huihua; Zhang, Li; Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  8. A World Wide Web Region-Based Image Search Engine

    DEFF Research Database (Denmark)

    Kompatsiaris, Ioannis; Triantafyllou, Evangelia; Strintzis, Michael G.

    2001-01-01

    In this paper the development of an intelligent image content-based search engine for the World Wide Web is presented. This system will offer a new form of media representation and access of content available in WWW. Information Web Crawlers continuously traverse the Internet and collect images...

  9. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  10. Adiponectin Concentrations: A Genome-wide Association Study

    OpenAIRE

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP a...

  11. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  12. Genome-wide association study of schizophrenia in Japanese population.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamada

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions. The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila-like 2] gene located on 9p21.3 (p = 0.00087. In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026. The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology.

  13. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, S.; Sanders, A. R.; Kendler, K. S.; Levinson, D. F.; Sklar, P.; Holmans, P. A.; Lin, D. Y.; Duan, J.; Ophoff, R. A.; Andreassen, O. A.; Scolnick, E.; Cichon, S.; St Clair, D.; Corvin, A.; Gurling, H.; Werge, T.; Rujescu, D.; Blackwood, D. H.; Pato, C. N.; Malhotra, A. K.; Purcell, S.; Dudbridge, F.; Neale, B. M.; Rossin, L.; Visscher, P. M.; Posthuma, D.; Ruderfer, D. M.; Fanous, A.; Stefansson, H.; Steinberg, S.; Mowry, B. J.; Golimbet, V.; de Hert, M.; Jonsson, E. G.; Bitter, I.; Pietilainen, O. P.; Collier, D. A.; Tosato, S.; Agartz, I.; Albus, M.; Alexander, M.; Amdur, R. L.; Amin, F.; Bass, N.; Bergen, S. E.; Black, D. W.; Borglum, A. D.; Brown, M. A.; Bruggeman, R.; Buccola, N. G.; Byerley, W. F.; Cahn, W.; Cantor, R. M.; Carr, V. J.; Catts, S. V.; Choudhury, K.; Cloninger, C. R.; Cormican, P.; Craddock, N.; Danoy, P. A.; Datta, S.; de Haan, L.; Demontis, D.; Dikeos, D.; Djurovic, S.; Donnely, P.; Donohoe, G.; Duong, L.; Dwyer, S.; Fink-Jensen, A.; Freedman, R.; Freimer, N. B.; Friedl, M.; Georgieva, L.; Giegling, I.; Gill, M.; Glenthoj, B.; Godard, S.; Hamshere, M.; Hansen, M.; Hartmann, A. M.; Henskens, F. A.; Hougaard, D. M.; Hultman, C. M.; Ingason, A.; Jablensky, A. V.; Jakobsen, K. D.; Jay, M.; Jurgens, G.; Kahn, R. S.; Keller, M. C.; Kenis, G.; Kenny, E.; Kim, Y.; Kirov, G. K.; Konnerth, H.; Konte, B.; Krabbendam, L.; Krasucki, R.; Lasseter, V. K.; Laurent, C.; Lawrence, J.; Lencz, T.; Lerer, F. B.; Liang, K. Y.; Lichtenstein, P.; Lieberman, J. A.; Linszen, D. H.; Lonnqvist, J.; Loughland, C. M.; Maclean, A. W.; Maher, B. S.; Maier, W.; Mallet, J.; Malloy, P.; Mattheisen, M.; Mattingsdal, M.; McGhee, K. A.; McGrath, J. J.; McIntosh, A.; McLean, D. E.; McQuillin, A.; Melle, I.; Michie, P. T.; Milanova, V.; Morris, D. W.; Mors, O.; Mortensen, P. B.; Moskvina, V.; Muglia, P.; Myin-Germeys, I.; Nertney, D. A.; Nestadt, G.; Nielsen, J.; Nikolov, I.; Nordentoft, M.; Norton, N.; Nothen, M. M.; O'Dushlaine, C. T.; Olincy, A.; Olsen, L.; O'Neill, F. A.; Orntoft, T. F.; Owen, M. J.; Pantelis, C.; Papadimitriou, G.; Pato, M. T.; Peltonen, L.; Petursson, H.; Pickard, B.; Pimm, J.; Pulver, A. E.; Puri, V.; Quested, D.; Quinn, E. M.; Rasmussen, H. B.; Rethelyi, J. M.; Ribble, R.; Rietschel, M.; Riley, B. P.; Ruggeri, M.; Schall, U.; Schulze, T. G.; Schwab, S. G.; Scott, R. J.; Shi, J.; Sigurdsson, E.; Silvermann, J. M.; Spencer, C. C.; Stefansson, K.; Strange, A.; Strengman, E.; Stroup, T. S.; Suvisaari, J.; Terenius, L.; Thirumalai, S.; Thygesen, J. H.; Timm, S.; Toncheva, D.; van den Oord, E.; van Os, J.; van Winkel, R.; Veldink, J.; Walsh, D.; Wang, A. G.; Wiersma, D.; Wildenauer, D. B.; Williams, H. J.; Williams, N. M.; Wormley, B.; Zammit, S.; Sullivan, P. F.; O'Donovan, M. C.; Daly, M. J.; Gejman, P. V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  14. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  15. Genome-wide association study of Tourette's syndrome

    NARCIS (Netherlands)

    Scharf, J. M.; Yu, D.; Mathews, C. A.; Neale, B. M.; Stewart, S. E.; Fagerness, J. A.; Evans, P.; Gamazon, E.; Edlund, C. K.; Service, S. K.; Tikhomirov, A.; Osiecki, L.; Illmann, C.; Pluzhnikov, A.; Konkashbaev, A.; Davis, L. K.; Han, B.; Crane, J.; Moorjani, P.; Crenshaw, A. T.; Parkin, M. A.; Reus, V. I.; Lowe, T. L.; Rangel-Lugo, M.; Chouinard, S.; Dion, Y.; Girard, S.; Cath, D. C.; Smit, J. H.; King, R. A.; Fernandez, T. V.; Leckman, J. F.; Kidd, K. K.; Kidd, J. R.; Pakstis, A. J.; State, M. W.; Herrera, L. D.; Romero, R.; Fournier, E.; Sandor, P.; Barr, C. L.; Phan, N.; Gross-Tsur, V.; Benarroch, F.; Pollak, Y.; Budman, C. L.; Bruun, R. D.; Erenberg, G.; Naarden, A. L.; Hoekstra, P. J.

    2013-01-01

    Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association

  16. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  17. Genome-wide association studies (GWAS) of adiposity

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Ingelsson, Erik

    2016-01-01

    Adiposity is strongly heritable and one of the leading risk factors for type 2 diabetes, cardiovascular disease, cancer, and premature death. In the past 8 years, genome-wide association studies (GWAS) have greatly increased our understanding of the genes and biological pathways that regulate...

  18. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  19. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Science.gov (United States)

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  20. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  1. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome...

  2. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence...... data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...

  3. Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Chen Jiun-Ching

    2007-05-01

    Full Text Available Abstract Background Genome-wide identification of specific oligonucleotides (oligos is a computationally-intensive task and is a requirement for designing microarray probes, primers, and siRNAs. An artificial neural network (ANN is a machine learning technique that can effectively process complex and high noise data. Here, ANNs are applied to process the unique subsequence distribution for prediction of specific oligos. Results We present a novel and efficient algorithm, named the integration of ANN and BLAST (IAB algorithm, to identify specific oligos. We establish the unique marker database for human and rat gene index databases using the hash table algorithm. We then create the input vectors, via the unique marker database, to train and test the ANN. The trained ANN predicted the specific oligos with high efficiency, and these oligos were subsequently verified by BLAST. To improve the prediction performance, the ANN over-fitting issue was avoided by early stopping with the best observed error and a k-fold validation was also applied. The performance of the IAB algorithm was about 5.2, 7.1, and 6.7 times faster than the BLAST search without ANN for experimental results of 70-mer, 50-mer, and 25-mer specific oligos, respectively. In addition, the results of polymerase chain reactions showed that the primers predicted by the IAB algorithm could specifically amplify the corresponding genes. The IAB algorithm has been integrated into a previously published comprehensive web server to support microarray analysis and genome-wide iterative enrichment analysis, through which users can identify a group of desired genes and then discover the specific oligos of these genes. Conclusion The IAB algorithm has been developed to construct SpecificDB, a web server that provides a specific and valid oligo database of the probe, siRNA, and primer design for the human genome. We also demonstrate the ability of the IAB algorithm to predict specific oligos through

  4. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  5. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  6. Assessing Predictive Properties of Genome-Wide Selection in Soybeans

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2016-08-01

    Full Text Available Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr. We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.

  7. Assessing Predictive Properties of Genome-Wide Selection in Soybeans.

    Science.gov (United States)

    Xavier, Alencar; Muir, William M; Rainey, Katy Martin

    2016-08-09

    Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. Copyright © 2016 Xavie et al.

  8. Genome-wide association study of pathological gambling.

    Science.gov (United States)

    Lang, M; Leménager, T; Streit, F; Fauth-Bühler, M; Frank, J; Juraeva, D; Witt, S H; Degenhardt, F; Hofmann, A; Heilmann-Heimbach, S; Kiefer, F; Brors, B; Grabe, H-J; John, U; Bischof, A; Bischof, G; Völker, U; Homuth, G; Beutel, M; Lind, P A; Medland, S E; Slutske, W S; Martin, N G; Völzke, H; Nöthen, M M; Meyer, C; Rumpf, H-J; Wurst, F M; Rietschel, M; Mann, K F

    2016-08-01

    Pathological gambling is a behavioural addiction with negative economic, social, and psychological consequences. Identification of contributing genes and pathways may improve understanding of aetiology and facilitate therapy and prevention. Here, we report the first genome-wide association study of pathological gambling. Our aims were to identify pathways involved in pathological gambling, and examine whether there is a genetic overlap between pathological gambling and alcohol dependence. Four hundred and forty-five individuals with a diagnosis of pathological gambling according to the Diagnostic and Statistical Manual of Mental Disorders were recruited in Germany, and 986 controls were drawn from a German general population sample. A genome-wide association study of pathological gambling comprising single marker, gene-based, and pathway analyses, was performed. Polygenic risk scores were generated using data from a German genome-wide association study of alcohol dependence. No genome-wide significant association with pathological gambling was found for single markers or genes. Pathways for Huntington's disease (P-value=6.63×10(-3)); 5'-adenosine monophosphate-activated protein kinase signalling (P-value=9.57×10(-3)); and apoptosis (P-value=1.75×10(-2)) were significant. Polygenic risk score analysis of the alcohol dependence dataset yielded a one-sided nominal significant P-value in subjects with pathological gambling, irrespective of comorbid alcohol dependence status. The present results accord with previous quantitative formal genetic studies which showed genetic overlap between non-substance- and substance-related addictions. Furthermore, pathway analysis suggests shared pathology between Huntington's disease and pathological gambling. This finding is consistent with previous imaging studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Genome-wide single-generation signatures of local selection in the panmictic European eel

    DEFF Research Database (Denmark)

    Pujolar, J. M.; Jacobsen, M. W.; Als, Thomas Damm

    2014-01-01

    Next-generation sequencing and the collection of genome-wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD-sequenced European eel individuals (glass eels) from eight locations between 34 and 64oN, we examined the patterns...... of genome-wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using FST-based outlier tests and by testing for significant associations between allele frequencies and environmental variables. The overall low genetic differentiation...... with single-generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand...

  10. Adiponectin Concentrations: A Genome-wide Association Study

    Science.gov (United States)

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda; Yoon, Sungjoo Kim; Jang, Yangsoo; Beaty, Terri H.

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10−15 in the initial sample, p = 6.58 × 10−39 in the second genome-wide sample, and p = 2.12 × 10−32 in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10−83. The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10−58) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults. PMID:20887962

  11. Passage relevance models for genomics search

    Directory of Open Access Journals (Sweden)

    Frieder Ophir

    2009-03-01

    Full Text Available Abstract We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus.

  12. A genome-wide association study of aging.

    Science.gov (United States)

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Genome-wide association study of Tourette Syndrome

    Science.gov (United States)

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  14. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Directory of Open Access Journals (Sweden)

    Varun Warrier

    Full Text Available Asperger Syndrome (AS is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC, which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448 were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448 lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  15. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  16. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  17. Genephony: a knowledge management tool for genome-wide research

    Directory of Open Access Journals (Sweden)

    Riva Alberto

    2009-09-01

    Full Text Available Abstract Background One of the consequences of the rapid and widespread adoption of high-throughput experimental technologies is an exponential increase of the amount of data produced by genome-wide experiments. Researchers increasingly need to handle very large volumes of heterogeneous data, including both the data generated by their own experiments and the data retrieved from publicly available repositories of genomic knowledge. Integration, exploration, manipulation and interpretation of data and information therefore need to become as automated as possible, since their scale and breadth are, in general, beyond the limits of what individual researchers and the basic data management tools in normal use can handle. This paper describes Genephony, a tool we are developing to address these challenges. Results We describe how Genephony can be used to manage large datesets of genomic information, integrating them with existing knowledge repositories. We illustrate its functionalities with an example of a complex annotation task, in which a set of SNPs coming from a genotyping experiment is annotated with genes known to be associated to a phenotype of interest. We show how, thanks to the modular architecture of Genephony and its user-friendly interface, this task can be performed in a few simple steps. Conclusion Genephony is an online tool for the manipulation of large datasets of genomic information. It can be used as a browser for genomic data, as a high-throughput annotation tool, and as a knowledge discovery tool. It is designed to be easy to use, flexible and extensible. Its knowledge management engine provides fine-grained control over individual data elements, as well as efficient operations on large datasets.

  18. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  19. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  20. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    Directory of Open Access Journals (Sweden)

    van Manen Daniëlle

    2012-08-01

    Full Text Available Abstract Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis. Recently, genome-wide association studies (GWAS were utilized for unbiased searches at a genome-wide level to discover novel genetic factors and pathways involved in HIV-1 infection. This review gives an overview of findings from the GWAS performed on HIV infection, within different cohorts, with variable patient and phenotype selection. Furthermore, novel techniques and strategies in research that might contribute to the complete understanding of virus-host interactions and its role on the pathogenesis of HIV infection are discussed.

  1. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    Science.gov (United States)

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  2. Genetically contextual effects of smoking on genome wide DNA methylation.

    Science.gov (United States)

    Dogan, Meeshanthini V; Beach, Steven R H; Philibert, Robert A

    2017-09-01

    Smoking is the leading cause of death in the United States. It exerts its effects by increasing susceptibility to a variety of complex disorders among those who smoke, and if pregnant, to their unborn children. In prior efforts to understand the epigenetic mechanisms through which this increased vulnerability is conveyed, a number of investigators have conducted genome wide methylation analyses. Unfortunately, secondary to methodological limitations, these studies were unable to examine methylation in gene regions with significant amounts of genetic variation. Using genome wide genetic and epigenetic data from the Framingham Heart Study, we re-examined the relationship of smoking status to genome wide methylation status. When only methylation status is considered, smoking was significantly associated with differential methylation in 310 genes that map to a variety of biological process and cellular differentiation pathways. However, when SNP effects on the magnitude of smoking associated methylation changes are also considered, cis and trans-interaction effects were noted at a total of 266 and 4353 genes with no marked enrichment for any biological pathways. Furthermore, the SNP variation participating in the significant interaction effects is enriched for loci previously associated with complex medical illnesses. The enlarged scope of the methylome shown to be affected by smoking may better explicate the mediational pathways linking smoking with a myriad of smoking related complex syndromes. Additionally, these results strongly suggest that combined epigenetic and genetic data analyses may be critical for a more complete understanding of the relationship between environmental variables, such as smoking, and pathophysiological outcomes. © 2017 Wiley Periodicals, Inc.

  3. Genome-wide association study of antisocial personality disorder.

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-09-06

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53-3.14), P=1.9 × 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37-1.85), P=1.6 × 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.

  4. Developing as new search engine and browser for libraries to search and organize the World Wide Web library resources

    OpenAIRE

    Sreenivasulu, V.

    2000-01-01

    Internet Granthalaya urges world wide advocates and targets at the task of creating a new search engine and dedicated browseer. Internet Granthalaya may be the ultimate search engine exclusively dedicated for every library use to search and organize the world wide web libary resources

  5. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.

    Directory of Open Access Journals (Sweden)

    Clive J Hoggart

    2008-07-01

    Full Text Available Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.

  6. Nature-inspired novel Cuckoo Search Algorithm for genome

    Indian Academy of Sciences (India)

    This study aims to produce a novel optimization algorithm, called the Cuckoo Search Algorithm (CS), for solving the genome sequence assembly problem. ... Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India; Department of Information Technology, ...

  7. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  8. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists

    Directory of Open Access Journals (Sweden)

    Matheus Sanitá Lima

    2017-11-01

    Full Text Available Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb, indicating that most of the organelle DNA—coding and noncoding—is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells.

  9. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    Science.gov (United States)

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  10. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  11. Genome-wide association studies of obesity and metabolic syndrome.

    Science.gov (United States)

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    Science.gov (United States)

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and pCRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  13. Genome-Wide Association Study of Antiphospholipid Antibodies

    Directory of Open Access Journals (Sweden)

    M. Ilyas Kamboh

    2013-01-01

    Full Text Available Background. The persistent presence of antiphospholipid antibodies (APA may lead to the development of primary or secondary antiphospholipid syndrome. Although the genetic basis of APA has been suggested, the identity of the underlying genes is largely unknown. In this study, we have performed a genome-wide association study (GWAS in an effort to identify susceptibility loci/genes for three main APA: anticardiolipin antibodies (ACL, lupus anticoagulant (LAC, and anti-β2 glycoprotein I antibodies (anti-β2GPI. Methods. DNA samples were genotyped using the Affymetrix 6.0 array containing 906,600 single-nucleotide polymorphisms (SNPs. Association of SNPs with the antibody status (positive/negative was tested using logistic regression under the additive model. Results. We have identified a number of suggestive novel loci with Pgenome-wide significance, many of the suggestive loci are potential candidates for the production of APA. We have replicated the previously reported associations of HLA genes and APOH with APA but these were not the top loci. Conclusions. We have identified a number of suggestive novel loci for APA that will stimulate follow-up studies in independent and larger samples to replicate our findings.

  14. Genome-wide association analyses of expression phenotypes.

    Science.gov (United States)

    Chen, Gary K; Zheng, Tian; Witte, John S; Goode, Ellen L; Gao, Lei; Hu, Pingzhao; Suh, Young Ju; Suktitipat, Bhoom; Szymczak, Silke; Woo, Jung Hoon; Zhang, Wei

    2007-01-01

    A number of issues arise when analyzing the large amount of data from high-throughput genotype and expression microarray experiments, including design and interpretation of genome-wide association studies of expression phenotypes. These issues were considered by contributions submitted to Group 1 of the Genetic Analysis Workshop 15 (GAW15), which focused on the association of quantitative expression data. These contributions evaluated diverse hypotheses, including those relevant to cancer and obesity research, and used various analytic techniques, many of which were derived from information theory. Several observations from these reports stand out. First, one needs to consider the genetic model of the trait of interest and carefully select which single nucleotide polymorphisms and individuals are included early in the design stage of a study. Second, by targeting specific pathways when analyzing genome-wide data, one can generate more interpretable results than agnostic approaches. Finally, for datasets with small sample sizes but a large number of features like the Genetic Analysis Workshop 15 dataset, machine learning approaches may be more practical than traditional parametric approaches. (c) 2007 Wiley-Liss, Inc.

  15. Genome-wide association studies in asthma: progress and pitfalls

    Directory of Open Access Journals (Sweden)

    March ME

    2015-01-01

    Full Text Available Michael E March,1 Patrick MA Sleiman,1,2 Hakon Hakonarson1,2 1Center for Applied Genomics, Children's Hospital of Philadelphia Research Institute, 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Abstract: Genetic studies of asthma have revealed that there is considerable heritability to the phenotype. An extensive history of candidate-gene studies has identified a long list of genes associated with immune function that are potentially involved in asthma pathogenesis. However, many of the results of candidate-gene studies have failed to be replicated, leaving in question the true impact of the implicated biological pathways on asthma. With the advent of genome-wide association studies, geneticists are able to examine the association of hundreds of thousands of genetic markers with a phenotype, allowing the hypothesis-free identification of variants associated with disease. Many such studies examining asthma or related phenotypes have been published, and several themes have begun to emerge regarding the biological pathways underpinning asthma. The results of many genome-wide association studies have currently not been replicated, and the large sample sizes required for this experimental strategy invoke difficulties with sample stratification and phenotypic heterogeneity. Recently, large collaborative groups of researchers have formed consortia focused on asthma, with the goals of sharing material and data and standardizing diagnosis and experimental methods. Additionally, research has begun to focus on genetic variants that affect the response to asthma medications and on the biology that generates the heterogeneity in the asthma phenotype. As this work progresses, it will move asthma patients closer to more specific, personalized medicine. Keywords: asthma, genetics, GWAS, pharmacogenetics, biomarkers

  16. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    S.I. Berndt (Sonja); S. Gustafsson (Stefan); R. Mägi (Reedik); A. Ganna (Andrea); E. Wheeler (Eleanor); M.F. Feitosa (Mary Furlan); A.E. Justice (Anne); K.L. Monda (Keri); D.C. Croteau-Chonka (Damien); F.R. Day (Felix); T. Esko (Tõnu); M. Fall (Magnus); T. Ferreira (Teresa); D. Gentilini (Davide); A.U. Jackson (Anne); J. Luan; J.C. Randall (Joshua); S. Vedantam (Sailaja); C.J. Willer (Cristen); T.W. Winkler (Thomas); A.R. Wood (Andrew); T. Workalemahu (Tsegaselassie); Y.-J. Hu (Yi-Juan); S.H. Lee (Sang Hong); L. Liang (Liming); D.Y. Lin (Dan); J. Min (Josine); B.M. Neale (Benjamin); G. Thorleifsson (Gudmar); J. Yang (Jian); E. Albrecht (Eva); N. Amin (Najaf); J.L. Bragg-Gresham (Jennifer L.); G. Cadby (Gemma); M. den Heijer (Martin); N. Eklund (Niina); K. Fischer (Krista); A. Goel (Anuj); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); I. Jarick (Ivonne); A. Johansson (Åsa); T. Johnson (Toby); S. Kanoni (Stavroula); M.E. Kleber (Marcus); I.R. König (Inke); K. Kristiansson (Kati); Z. Kutalik (Zoltán); C. Lamina (Claudia); C. Lecoeur (Cécile); G. Li (Guo); M. Mangino (Massimo); W.L. McArdle (Wendy); M.C. Medina-Gomez (Carolina); M. Müller-Nurasyid (Martina); J.S. Ngwa; I.M. Nolte (Ilja); L. Paternoster (Lavinia); S. Pechlivanis (Sonali); M. Perola (Markus); M.J. Peters (Marjolein); M. Preuss (Michael); L.M. Rose (Lynda); J. Shi (Jianxin); D. Shungin (Dmitry); G.D. Smith; R.J. Strawbridge (Rona); I. Surakka (Ida); A. Teumer (Alexander); M.D. Trip (Mieke); J.P. Tyrer (Jonathan); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); L. Waite (Lindsay); J.H. Zhao (Jing Hua); D. Absher (Devin); F.W. Asselbergs (Folkert); M. Atalay (Mustafa); A.P. Attwood (Antony); A.J. Balmforth (Anthony); D.C.G. Basart (Dick); J.P. Beilby (John); L.L. Bonnycastle (Lori); P. Brambilla (Paolo); M. Bruinenberg (M.); H. Campbell (Harry); D.I. Chasman (Daniel); P.S. Chines (Peter); F.S. Collins (Francis); J. Connell (John); W. O Cookson (William); U. de Faire (Ulf); F. de Vegt (Femmie); M. Dei (Mariano); M. Dimitriou (Maria); T. Edkins (Ted); K. Estrada Gil (Karol); D.M. Evans (David); M. Farrall (Martin); F. Ferrario (Franco); J. Ferrières (Jean); L. Franke (Lude); F. Frau (Francesca); P.V. Gejman (Pablo); H. Grallert (Harald); H. Grönberg (Henrik); V. Gudnason (Vilmundur); A. Hall (Anne); A.S. Hall (Alistair); A.L. Hartikainen; C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.C. Heath (Andrew); J. Hebebrand (Johannes); G. Homuth (Georg); F.B. Hu (Frank); S.E. Hunt (Sarah); E. Hyppönen (Elina); C. Iribarren (Carlos); K.B. Jacobs (Kevin); J.-O. Jansson (John-Olov); A. Jula (Antti); M. Kähönen (Mika); S. Kathiresan (Sekar); F. Kee (F.); K-T. Khaw (Kay-Tee); M. Kivimaki (Mika); W. Koenig (Wolfgang); A. Kraja (Aldi); M. Kumari (Meena); K. Kuulasmaa (Kari); J. Kuusisto (Johanna); J. Laitinen (Jaana); T.A. Lakka (Timo); C. Langenberg (Claudia); L.J. Launer (Lenore); L. Lind (Lars); J. Lindstrom (Jaana); J. Liu (Jianjun); A. Liuzzi (Antonio); M.L. Lokki; M. Lorentzon (Mattias); P.A. Madden (Pamela); P.K. Magnusson (Patrik); P. Manunta (Paolo); D. Marek (Diana); W. März (Winfried); I.M. Leach (Irene Mateo); B. McKnight (Barbara); S.E. Medland (Sarah Elizabeth); E. Mihailov (Evelin); L. Milani (Lili); G.W. Montgomery (Grant); V. Mooser (Vincent); T.W. Mühleisen (Thomas); P. Munroe (Patricia); A.W. Musk (Arthur); N. Narisu (Narisu); G. Navis (Gerjan); G. Nicholson (Ggeorge); C. Nohr (Christian); K. Ong (Ken); B.A. Oostra (Ben); C.N.A. Palmer (Colin); A. Palotie (Aarno); J. Peden (John); N. Pedersen; A. Peters (Annette); O. Polasek (Ozren); A. Pouta (Anneli); P.P. Pramstaller (Peter Paul); I. Prokopenko (Inga); C. Pütter (Carolin); A. Radhakrishnan (Aparna); O. Raitakari (Olli); A. Rendon (Augusto); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); T. Saaristo (Timo); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); S. Sanna (Serena); J. Saramies (Jouko); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); S.-Y. Shin; S. Signorini (Stefano); J. Sinisalo (Juha); B. Skrobek (Boris); N. Soranzo (Nicole); A. Stancáková (Alena); K. Stark (Klaus); J. Stephens (Jonathan); K. Stirrups (Kathy); R.P. Stolk (Ronald); M. Stumvoll (Michael); A.J. Swift (Amy); E.V. Theodoraki (Eirini); B. Thorand (Barbara); D.-A. Tregouet (David-Alexandre); E. Tremoli (Elena); M.M. van der Klauw (Melanie); J.B.J. van Meurs (Joyce); S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); J. Virtamo (Jarmo); V. Vitart (Veronique); G. Waeber (Gérard); Z. Wang (Zhaoming); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); B. Winkelmann; J.C.M. Witteman (Jacqueline); B.H.R. Wolffenbuttel (Bruce); A. Wong (Andrew); A.F. Wright (Alan); M.C. Zillikens (Carola); P. Amouyel (Philippe); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); L.A. Cupples (Adrienne); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); J.G. Eriksson (Johan); P.W. Franks (Paul); P. Froguel (Philippe); C. Gieger (Christian); U. Gyllensten (Ulf); A. Hamsten (Anders); T.B. Harris (Tamara); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hinney (Anke); A. Hofman (Albert); G.K. Hovingh (Kees); K. Hveem (Kristian); T. Illig (Thomas); M.-R. Jarvelin (Marjo-Riitta); K.-H. Jöckel (Karl-Heinz); S. Keinanen-Kiukaanniemi (Sirkka); L.A.L.M. Kiemeney (Bart); D. Kuh (Diana); M. Laakso (Markku); T. Lehtimäki (Terho); D.F. Levinson (Douglas); N.G. Martin (Nicholas); A. Metspalu (Andres); A.D. Morris (Andrew); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); W.H. Ouwehand (Willem); C. Palmer (Cameron); B.W.J.H. Penninx (Brenda); C. Power (Christopher); M.A. Province (Mike); B.M. Psaty (Bruce); L. Qi (Lu); R. Rauramaa (Rainer); P.M. Ridker (Paul); S. Ripatti (Samuli); V. Salomaa (Veikko); N.J. Samani (Nilesh); H. Snieder (Harold); H.G. Sorensen; T.D. Spector (Timothy); J-A. Zwart (John-Anker); A. Tönjes (Anke); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); P. van der Harst (Pim); P. Vollenweider (Peter); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); J.F. Wilson (James F); G.R. Abecasis (Gonçalo); T.L. Assimes (Themistocles); I.E. Barroso (Inês); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C. Fox (Craig); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunian (Talin); I.M. Heid (Iris); D. Hunter (David); R.C. Kaplan (Robert); F. Karpe (Fredrik); M.F. Moffatt (Miriam); K.L. Mohlke (Karen); J.R. O´Connell; Y. Pawitan (Yudi); E.E. Schadt (Eric); D. Schlessinger (David); V. Steinthorsdottir (Valgerdur); D.P. Strachan (David); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cornelia); P.M. Visscher (Peter); A.M. Di Blasio (Anna Maria); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia); A.D. Morris (Andrew); D. Meyre (David); A. Scherag (Andre); M.I. McCarthy (Mark); E.K. Speliotes (Elizabeth); K.E. North (Kari); R.J.F. Loos (Ruth); E. Ingelsson (Erik)

    2013-01-01

    textabstractApproaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of

  17. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass

  18. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian'an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Asa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William O.; de Faire, Ulf; de Vegt, Femmie; dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N. A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; van der Klauw, Melanie M.; van Meurs, Joyce B. J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C. M.; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam F.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J. F.; Ingelsson, Erik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass

  19. Sex-stratified Genome-wide Association Studies Including 270000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    NARCIS (Netherlands)

    Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpeläinen, T.O.; Esko, T.; Mägi, R.; Li, S.; Workalemahu, T.; Feitosa, M.F.; Croteau-Chonka, D.C.; Day, F.R.; Fall, T.; Ferreira, T.; Gustafsson, S.; Locke, A.E.; Mathieson, I.; Scherag, A.; Vedantam, S.; Wood, A.R.; Liang, L.; Steinthorsdottir, V.; Thorleifsson, G.; Dermitzakis, E.T.; Dimas, A.S.; Karpe, F.; Min, J.L.; Nicholson, G.; Clegg, D.J.; Person, T.; Krohn, J.P.; Bauer, S.; Buechler, C.; Eisinger, K.; Bonnefond, A.; Froguel, P.; Hottenga, J.J.; Prokopenko, I.; Waite, L.L.; Harris, T.B.; Smith, A.V.; Shuldiner, A.R.; McArdle, W.L.; Caulfield, M.J.; Munroe, P.B.; Grönberg, H.; Chen, Y.D.; Li, G.; Beckmann, J.S.; Johnson, T.; Thorsteinsdottir, U.; Teder-Laving, M.; Khaw, K.T.; Wareham, N.J.; Zhao, J.H.; Amin, N.; Oostra, B.A.; Kraja, A.T.; Province, M.A.; Cupples, L.A.; Heard-Costa, N.L.; Kaprio, J.; Ripatti, S.; Surakka, I.; Collins, F.S.; Saramies, J.; Tuomilehto, J.; Jula, A.; Salomaa, V.; Erdmann, J.; Hengstenberg, C.; Loley, C.; Schunkert, H.; Lamina, C.; Wichmann, H.E.; Albrecht, E.; Gieger, C.; Hicks, A.A.; Johansson, A.; Pramstaller, P.P.; Kathiresan, S.; Speliotes, E.K.; Penninx, B.W.J.H.; Hartikainen, A.L.; Järvelin, M.R.; Gyllensten, U.; Boomsma, D.I.; Campbell, H.; Wilson, J.F.; Chanock, S.J.; Farrall, M.; Goel, A.; Medina-Gomez, C.; Rivadeneira, F.; Estrada, K.; Uitterlinden, A.G.; Hofman, A.; Zillikens, M.C.; den Heijer, M.; Kiemeney, L.A.; Maschio, A.; Hall, P.; Tyrer, J.; Teumer, A.; Völzke, H.; Kovacs, P.; Tönjes, A.; Mangino, M.; Spector, T.D.; Hayward, C.; Rudan, I.; Hall, A.S.; Samani, N.J.; Attwood, A.P.; Sambrook, J.G.; Hung, J.; Palmer, L.J.; Lokki, M.L.; Sinisalo, J.; Boucher, G.; Huikuri, H.V.; Lorentzon, M.; Ohlsson, C.; Eklund, N.; Eriksson, J.G.; Barlassina, C.; Rivolta, C.; Nolte, I.M.; Snieder, H.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Gejman, P.V.; Shi, J.; Jacobs, K.B.; Wang, Z.; Bakker, S.J.; Mateo Leach, I.; Navis, G.; van der Harst, P.; Martin, N.G.; Medland, S.E.; Montgomery, G.W.; Yang, J.; Chasman, D.I.; Ridker, P.M.; Rose, L.M.; Lehtimäki, T.; Raitakari, O.; Absher, D.; Iribarren, C.; Basart, H.; Hovingh, K.G.; Hyppönen, E.; Power, C.; Anderson, D.; Beilby, J.P.; Hui, J.; Jolley, J.; Sager, H.; Bornstein, S.R.; Schwarz, P.E.; Kristiansson, K.; Perola, M.; Lindström, J.; Swift, A.J.; Uusitupa, M.; Atalay, M.; Lakka, T.A.; Rauramaa, R.; Bolton, J.L.; Fowkes, G.; Fraser, R.M.; Price, J.F.; Fischer, K.; Krjuta Kov, K.; Metspalu, A.; Mihailov, E.; Langenberg, C.; Luan, J.; Ong, K.K.; Chines, P.S.; Keinanen-Kiukaanniemie, S.; Saaristo, T.E.; Edkins, S.; Franks, P.W.; Hallmans, G.; Shungin, D.; Morris, A.D.; Palmer, C.N.A.; Erbel, R.; Moebus, S.; Nöthen, M.M.; Pechlivanis, S.; Hveem, K.; Narisu, N.; Hamsten, A.; Humphries, S.E.; Strawbridge, R.J.; Tremoli, E.; Grallert, H.; Thorand, B.; Illig, T.; Koenig, W.; Müller-Nurasyid, M.; Peters, A.; Boehm, B.O.; Kleber, M.E.; März, W.; Winkelmann, B.R.; Kuusisto, J.; Laakso, M.; Arveiler, D.; Cesana, G.; Kuulasmaa, K.; Virtamo, J.; Yarnell, J.W.; Kuh, D; Wong, A.; Lind, L.; de Faire, U.; Gigante, B.; Magnusson, P.K.E.; Pedersen, N.L.; Dedoussis, G.; Dimitriou, M.; Kolovou, G.; Kanoni, S.; Stirrups, K.; Bonnycastle, L.L.; Njolstad, I.; Wilsgaard, T.; Ganna, A.; Rehnberg, E.; Hingorani, A.D.; Kivimaki, M.; Kumari, M.; Assimes, T.L.; Barroso, I.; Boehnke, M.; Borecki, I.B.; Deloukas, P.; Fox, C.S.; Frayling, T.M.; Groop, L.C.; Haritunians, T.; Hunter, D.; Ingelsson, E.; Kaplan, R.; Mohlke, K.L.; O'Connell, J.R.; Schlessinger, D.; Strachan, D.P.; Stefansson, K.; van Duijn, C.M.; Abecasis, G.R.; McCarthy, M.I.; Hirschhorn, J.N.; Qi, L.; Loos, R.J.; Lindgren, C.M.; North, K.E.; Heid, I.M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  20. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    DEFF Research Database (Denmark)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass ...

  1. Spiders and Worms and Crawlers, Oh My: Searching on the World Wide Web.

    Science.gov (United States)

    Eagan, Ann; Bender, Laura

    Searching on the world wide web can be confusing. A myriad of search engines exist, often with little or no documentation, and many of these search engines work differently from the standard search engines people are accustomed to using. Intended for librarians, this paper defines search engines, directories, spiders, and robots, and covers basics…

  2. Genome-wide selection signatures in Pinzgau cattle

    Directory of Open Access Journals (Sweden)

    Radovan Kasarda

    2015-08-01

    Full Text Available The aim of this study was to identify the evidence of recent selection based on estimation of the integrated Haplotype Score (iHS, population differentiation index (FST and characterize affected regions near QTL associated with traits under strong selection in Pinzgau cattle. In total 21 Austrian and 19 Slovak purebreed bulls genotyped with Illumina bovineHD and  bovineSNP50 BeadChip were used to identify genomic regions under selection. Only autosomal loci with call rate higher than 90%, minor allele frequency higher than 0.01 and Hardy-Weinberg equlibrium limit of 0.001 were included in the subsequent analyses of selection sweeps presence. The final dataset was consisted from 30538 SNPs with 81.86 kb average adjacent SNPs spacing. The iHS score were averaged into non-overlapping 500 kb segments across the genome. The FST values were also plotted against genome position based on sliding windows approach and averaged over 8 consecutive SNPs. Based on integrated Haplotype Score evaluation only 7 regions with iHS score higher than 1.7 was found. The average iHS score observed for each adjacent syntenic regions indicated slight effect of recent selection in analysed group of Pinzgau bulls. The level of genetic differentiation between Austrian and Slovak bulls estimated based on FST index was low. Only 24% of FST values calculated for each SNP was greather than 0.01. By using sliding windows approach was found that 5% of analysed windows had higher value than 0.01. Our results indicated use of similar selection scheme in breeding programs of Slovak and Austrian Pinzgau bulls. The evidence for genome-wide association between signatures of selection and regions affecting complex traits such as milk production was insignificant, because the loci in segments identified as affected by selection were very distant from each other. Identification of genomic regions that may be under pressure of selection for phenotypic traits to better understanding of the

  3. Genome-wide association study of antisocial personality disorder

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  4. Genome-wide association studies in Alzheimer's disease.

    Science.gov (United States)

    Bertram, Lars; Tanzi, Rudolph E

    2009-10-15

    Genome-wide association studies (GWAS) have gained considerable momentum over the last couple of years for the identification of novel complex disease genes. In the field of Alzheimer's disease (AD), there are currently eight published and two provisionally reported GWAS, highlighting over two dozen novel potential susceptibility loci beyond the well-established APOE association. On the basis of the data available at the time of this writing, the most compelling novel GWAS signal has been observed in GAB2 (GRB2-associated binding protein 2), followed by less consistently replicated signals in galanin-like peptide (GALP), piggyBac transposable element derived 1 (PGBD1), tyrosine kinase, non-receptor 1 (TNK1). Furthermore, consistent replication has been recently announced for CLU (clusterin, also known as apolipoprotein J). Finally, there are at least three replicated loci in hitherto uncharacterized genomic intervals on chromosomes 14q32.13, 14q31.2 and 6q24.1 likely implicating the existence of novel AD genes in these regions. In this review, we will discuss the characteristics and potential relevance to pathogenesis of the outcomes of all currently available GWAS in AD. A particular emphasis will be laid on findings with independent data in favor of the original association.

  5. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  6. Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study

    DEFF Research Database (Denmark)

    Dijkstra, Akkelies E; Smolonska, Joanna; van den Berge, Maarten

    2014-01-01

    by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism...... (SNP). RESULTS: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10(-6), OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression...... of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. METHODS: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed...

  7. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  8. A comparison of multivariate genome-wide association methods

    DEFF Research Database (Denmark)

    Galesloot, Tessel E; Van Steen, Kristel; Kiemeney, Lambertus A L M

    2014-01-01

    Joint association analysis of multiple traits in a genome-wide association study (GWAS), i.e. a multivariate GWAS, offers several advantages over analyzing each trait in a separate GWAS. In this study we directly compared a number of multivariate GWAS methods using simulated data. We focused on six...... methods that are implemented in the software packages PLINK, SNPTEST, MultiPhen, BIMBAM, PCHAT and TATES, and also compared them to standard univariate GWAS, analysis of the first principal component of the traits, and meta-analysis of univariate results. We simulated data (N = 1000) for three...... for scenarios with an opposite sign of genetic and residual correlation. All multivariate analyses resulted in a higher power than univariate analyses, even when only one of the traits was associated with the QTL. Hence, use of multivariate GWAS methods can be recommended, even when genetic correlations between...

  9. A Genome-Wide Association Study Primer for Clinicians

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Wang

    2009-06-01

    Full Text Available Genome-wide association studies (GWAS use high-throughput genotyping technology to relate hundreds of thousands of genetic markers (genotypes to clinical conditions and measurable traits (phenotypes. This review is intended to serve as an introduction to GWAS for clinicians, to allow them to better appreciate the value and limitations of GWAS for genotype-disease association studies. The input of clinicians is vital for GWAS, since disease heterogeneity is frequently a confounding factor that can only really be solved by clinicians. For diseases that are difficult to diagnose, clinicians should ensure that the cases do indeed have the disease; for common diseases, clinicians should ensure that the controls are truly disease-free.

  10. Type 1 diabetes genome-wide association studies

    DEFF Research Database (Denmark)

    Pociot, Flemming

    2017-01-01

    Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained...... by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data...... with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed...

  11. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been...

  12. Genome-wide expression profiling of complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Eun-Heui Jin

    Full Text Available Complex regional pain syndrome (CRPS is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II and 5 controls (cut-off value: 1.5-fold change and p<0.05. Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1, matrix metalloproteinase 9 (MMP9, alanine aminopeptidase N (ANPEP, l-histidine decarboxylase (HDC, granulocyte colony-stimulating factor 3 receptor (G-CSF3R, and signal transducer and activator of transcription 3 (STAT3 genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10(-4. The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression.

  13. A genome-wide association study of attempted suicide

    Science.gov (United States)

    Willour, Virginia L.; Seifuddin, Fayaz; Mahon, Pamela B.; Jancic, Dubravka; Pirooznia, Mehdi; Steele, Jo; Schweizer, Barbara; Goes, Fernando S.; Mondimore, Francis M.; MacKinnon, Dean F.; Perlis, Roy H.; Lee, Phil Hyoun; Huang, Jie; Kelsoe, John R.; Shilling, Paul D.; Rietschel, Marcella; Nöthen, Markus; Cichon, Sven; Gurling, Hugh; Purcell, Shaun; Smoller, Jordan W.; Craddock, Nicholas; DePaulo, J. Raymond; Schulze, Thomas G.; McMahon, Francis J.; Zandi, Peter P.; Potash, James B.

    2011-01-01

    The heritable component to attempted and completed suicide is partly related to psychiatric disorders and also partly independent of them. While attempted suicide linkage regions have been identified on 2p11–12 and 6q25–26, there are likely many more such loci, the discovery of which will require a much higher resolution approach, such as the genome-wide association study (GWAS). With this in mind, we conducted an attempted suicide GWAS that compared the single nucleotide polymorphism (SNP) genotypes of 1,201 bipolar (BP) subjects with a history of suicide attempts to the genotypes of 1,497 BP subjects without a history of suicide attempts. 2,507 SNPs with evidence for association at p<0.001 were identified. These associated SNPs were subsequently tested for association in a large and independent BP sample set. None of these SNPs were significantly associated in the replication sample after correcting for multiple testing, but the combined analysis of the two sample sets produced an association signal on 2p25 (rs300774) at the threshold of genome-wide significance (p= 5.07 × 10−8). The associated SNPs on 2p25 fall in a large linkage disequilibrium block containing the ACP1 gene, a gene whose expression is significantly elevated in BP subjects who have completed suicide. Furthermore, the ACP1 protein is a tyrosine phosphatase that influences Wnt signaling, a pathway regulated by lithium, making ACP1 a functional candidate for involvement in the phenotype. Larger GWAS sample sets will be required to confirm the signal on 2p25 and to identify additional genetic risk factors increasing susceptibility for attempted suicide. PMID:21423239

  14. World Wide Web Metaphors for Search Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    A software program that searches and browses mission data emulates a Web browser, containing standard meta - phors for Web browsing. By taking advantage of back-end URLs, users may save and share search states. Also, since a Web interface is familiar to users, training time is reduced. Familiar back and forward buttons move through a local search history. A refresh/reload button regenerates a query, and loads in any new data. URLs can be constructed to save search results. Adding context to the current search is also handled through a familiar Web metaphor. The query is constructed by clicking on hyperlinks that represent new components to the search query. The selection of a link appears to the user as a page change; the choice of links changes to represent the updated search and the results are filtered by the new criteria. Selecting a navigation link changes the current query and also the URL that is associated with it. The back button can be used to return to the previous search state. This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  15. Minimalist instruction for learning to search the World Wide Web

    NARCIS (Netherlands)

    Lazonder, Adrianus W.

    2001-01-01

    This study examined the efficacy of minimalist instruction to develop self-regulatory skills involved in Web searching. Two versions of minimalist self-regulatory skill instruction were compared to a control group that was merely taught procedural skills to operate the search engine. Acquired skills

  16. Genomic research and wide data sharing: views of prospective participants.

    Science.gov (United States)

    Trinidad, Susan Brown; Fullerton, Stephanie M; Bares, Julie M; Jarvik, Gail P; Larson, Eric B; Burke, Wylie

    2010-08-01

    Sharing study data within the research community generates tension between two important goods: promoting scientific goals and protecting the privacy interests of study participants. This study was designed to explore the perceptions, beliefs, and attitudes of research participants and possible future participants regarding genome-wide association studies and repository-based research. Focus group sessions with (1) current research participants, (2) surrogate decision-makers, and (3) three age-defined cohorts (18-34 years, 35-50, >50). Participants expressed a variety of opinions about the acceptability of wide sharing of genetic and phenotypic information for research purposes through large, publicly accessible data repositories. Most believed that making de-identified study data available to the research community is a social good that should be pursued. Privacy and confidentiality concerns were common, although they would not necessarily preclude participation. Many participants voiced reservations about sharing data with for-profit organizations. Trust is central in participants' views regarding data sharing. Further research is needed to develop governance models that enact the values of stewardship.

  17. Genome-Wide Association Study of Serum Selenium Concentrations

    Directory of Open Access Journals (Sweden)

    Ulrike Peters

    2013-05-01

    Full Text Available Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening and the Women’s Health Initiative (WHI. We tested association between 2,474,333 single nucleotide polymorphisms (SNPs and serum selenium concentrations using linear regression models. In the first stage (PLCO 41 SNPs clustered in 15 regions had p < 1 × 10−5. None of these 41 SNPs reached the significant threshold (p = 0.05/15 regions = 0.003 in the second stage (WHI. Three SNPs had p < 0.05 in the second stage (rs1395479 and rs1506807 in 4q34.3/AGA-NEIL3; and rs891684 in 17q24.3/SLC39A11 and had p between 2.62 × 10−7 and 4.04 × 10−7 in the combined analysis (PLCO + WHI. Additional studies are needed to replicate these findings. Identification of genetic variation that impacts selenium concentrations may contribute to a better understanding of which genes regulate circulating selenium concentrations.

  18. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  19. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents

    NARCIS (Netherlands)

    Zhu, Haidong; Wang, Xiaoling; Shi, Huidong; Su, Shaoyong; Harshfield, Gregory A.; Gutin, Bernard; Snieder, Harold; Dong, Yanbin

    Objectives To test the hypothesis that changes in DNA methylation are involved in vitamin D deficiency-related immune cell regulation using an unbiased genome-wide approach combined with a genomic and epigenomic integrative approach. Study design We performed a genome-wide methylation scan using the

  20. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  1. Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli.

    Science.gov (United States)

    Glebes, Tirzah Y; Sandoval, Nicholas R; Gillis, Jacob H; Gill, Ryan T

    2015-01-01

    Engineering both feedstock and product tolerance is important for transitioning towards next-generation biofuels derived from renewable sources. Tolerance to chemical inhibitors typically results in complex phenotypes, for which multiple genetic changes must often be made to confer tolerance. Here, we performed a genome-wide search for furfural-tolerant alleles using the TRackable Multiplex Recombineering (TRMR) method (Warner et al. (2010), Nature Biotechnology), which uses chromosomally integrated mutations directed towards increased or decreased expression of virtually every gene in Escherichia coli. We employed various growth selection strategies to assess the role of selection design towards growth enrichments. We also compared genes with increased fitness from our TRMR selection to those from a previously reported genome-wide identification study of furfural tolerance genes using a plasmid-based genomic library approach (Glebes et al. (2014) PLOS ONE). In several cases, growth improvements were observed for the chromosomally integrated promoter/RBS mutations but not for the plasmid-based overexpression constructs. Through this assessment, four novel tolerance genes, ahpC, yhjH, rna, and dicA, were identified and confirmed for their effect on improving growth in the presence of furfural. © 2014 Wiley Periodicals, Inc.

  2. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    Science.gov (United States)

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  3. Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.

    Science.gov (United States)

    Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P

    2017-01-01

    Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia. Further research will be required to confirm these

  4. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

    DEFF Research Database (Denmark)

    Thorleifsson, Gudmar; Walters, G Bragi; Gudbjartsson, Daniel F

    2009-01-01

    Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305......,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish...... individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P

  5. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  6. Optimal Control of Sensor Threshold for Autonomous Wide Area Search Munitions

    National Research Council Canada - National Science Library

    Kish, Brian A; Jacques, David R; Pachter, Meir

    2005-01-01

    The optimal employment of autonomous wide area search munitions is addressed. The scenario considered involves an airborne munition searching a battle space for stationary targets in the presence of false targets...

  7. A Genome-wide Association Study of Myasthenia Gravis

    Science.gov (United States)

    Renton, Alan E.; Pliner, Hannah A.; Provenzano, Carlo; Evoli, Amelia; Ricciardi, Roberta; Nalls, Michael A.; Marangi, Giuseppe; Abramzon, Yevgeniya; Arepalli, Sampath; Chong, Sean; Hernandez, Dena G.; Johnson, Janel O.; Bartoccioni, Emanuela; Scuderi, Flavia; Maestri, Michelangelo; Raphael Gibbs, J.; Errichiello, Edoardo; Chiò, Adriano; Restagno, Gabriella; Sabatelli, Mario; Macek, Mark; Scholz, Sonja W.; Corse, Andrea; Chaudhry, Vinay; Benatar, Michael; Barohn, Richard J.; McVey, April; Pasnoor, Mamatha; Dimachkie, Mazen M.; Rowin, Julie; Kissel, John; Freimer, Miriam; Kaminski, Henry J.; Sanders, Donald B.; Lipscomb, Bernadette; Massey, Janice M.; Chopra, Manisha; Howard, James F.; Koopman, Wilma J.; Nicolle, Michael W.; Pascuzzi, Robert M.; Pestronk, Alan; Wulf, Charlie; Florence, Julaine; Blackmore, Derrick; Soloway, Aimee; Siddiqi, Zaeem; Muppidi, Srikanth; Wolfe, Gil; Richman, David; Mezei, Michelle M.; Jiwa, Theresa; Oger, Joel; Drachman, Daniel B.; Traynor, Bryan J.

    2016-01-01

    IMPORTANCE Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10−8 was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10−8; odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10−8; odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10−9; odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10−12; odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected

  8. Reconstructing Roma history from genome-wide data.

    Directory of Open Access Journals (Sweden)

    Priya Moorjani

    Full Text Available The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000-1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs. We estimate that the Roma harbor about 80% West Eurasian ancestry-derived from a combination of European and South Asian sources-and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.

  9. Genome-wide association study of proneness to anger.

    Directory of Open Access Journals (Sweden)

    Eric Mick

    Full Text Available Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger, hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease.With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC study (n = 8,747.Subjects were, on average, 54 (range 45-64 years old at baseline enrollment, 47% (n = 4,117 were male, and all were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.8 ± 1.8 and 7.6 ± 2.2. We observed a nominally significant finding (p = 2.9E-08, λ = 1.027 - corrected pgc = 2.2E-07, λ = 1.0015 on chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn.Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3-gated channels to regulate calcium influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the expression of Angry Temperament.

  10. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  11. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach

    Directory of Open Access Journals (Sweden)

    Claudia Bartoli

    2017-05-01

    Full Text Available The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes. In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.

  12. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...

  13. A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB

    Science.gov (United States)

    Need, Anna C.; Attix, Deborah K.; McEvoy, Jill M.; Cirulli, Elizabeth T.; Linney, Kristen L.; Hunt, Priscilla; Ge, Dongliang; Heinzen, Erin L.; Maia, Jessica M.; Shianna, Kevin V.; Weale, Michael E.; Cherkas, Lynn F.; Clement, Gail; Spector, Tim D.; Gibson, Greg; Goldstein, David B.

    2009-01-01

    Psychiatric disorders such as schizophrenia are commonly accompanied by cognitive impairments that are treatment resistant and crucial to functional outcome. There has been great interest in studying cognitive measures as endophenotypes for psychiatric disorders, with the hope that their genetic basis will be clearer. To investigate this, we performed a genome-wide association study involving 11 cognitive phenotypes from the Cambridge Neuropsychological Test Automated Battery. We showed these measures to be heritable by comparing the correlation in 100 monozygotic and 100 dizygotic twin pairs. The full battery was tested in ∼750 subjects, and for spatial and verbal recognition memory, we investigated a further 500 individuals to search for smaller genetic effects. We were unable to find any genome-wide significant associations with either SNPs or common copy number variants. Nor could we formally replicate any polymorphism that has been previously associated with cognition, although we found a weak signal of lower than expected P-values for variants in a set of 10 candidate genes. We additionally investigated SNPs in genomic loci that have been shown to harbor rare variants that associate with neuropsychiatric disorders, to see if they showed any suggestion of association when considered as a separate set. Only NRXN1 showed evidence of significant association with cognition. These results suggest that common genetic variation does not strongly influence cognition in healthy subjects and that cognitive measures do not represent a more tractable genetic trait than clinical endpoints such as schizophrenia. We discuss a possible role for rare variation in cognitive genomics. PMID:19734545

  14. Genome-wide characterization of microsatelittes and marker development in the carcinogenic liver fluke Clonorchis sinensis

    Science.gov (United States)

    Nguyen, Thao T.B.; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J.; Blair, David; Laha, Thewarach; Sripa, Banchob

    2015-01-01

    Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers have been used for identification and genetic diversity, however, no information about microsatellites of this liver fluke published so far. We here report microsatellite characterization and marker development for genetic diversity study in C. sinensis using genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥ 12 base pairs) were identified from genome database of C. sinensis with hexa-nucleotide motif being the most abundant (51%) followed by penta-nucleotide (18.3%) and tri-nucleotide (12.7%). The tetra-nucleotide, di-nucleotide and mononucleotide motifs accounted for 9.75 %, 7.63% and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72 % of 547 Mb of the whole genome size and the frequency of microsatellites were found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri, and tetra-nucleotide, the repeat numbers redundant are six (28%), four (45%) and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and O. viverrini. Seven out of 24 loci showed heterozygous with observed heterozygosity ranged from 0.467 to 1. Four-primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites and the genome-wide markers developed may be a useful tool for genetic study of C. sinensis. PMID:25782682

  15. Genome-wide characterization of microsatellites and marker development in the carcinogenic liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Nguyen, Thao T B; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J; Blair, David; Laha, Thewarach; Sripa, Banchob

    2015-06-01

    Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers that have been used for identification and genetic diversity; however, no information about microsatellites of this liver fluke is published so far. We here report microsatellite characterization and marker development for a genetic diversity study in C. sinensis, using a genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥12 base pairs) were identified from a genome database of C. sinensis, with hexanucleotide motif being the most abundant (51%) followed by pentanucleotide (18.3%) and trinucleotide (12.7%). The tetranucleotide, dinucleotide, and mononucleotide motifs accounted for 9.75, 7.63, and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72% of 547 Mb of the whole genome size, and the frequency of microsatellites was found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri-, and tetranucleotide, the repeat numbers redundant are six (28%), four (45%), and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT, and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and Opisthorchis viverrini. Seven out of 24 loci showed to be heterozygous with observed heterozygosity that ranged from 0.467 to 1. Four primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites, and the genome-wide markers developed may be a useful tool for the genetic study of C. sinensis.

  16. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  17. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    Science.gov (United States)

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  18. Exploring relationships between host genome and microbiome: new insights from genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Muslihudeen Abdul-Razaq Abdul-Aziz

    2016-10-01

    Full Text Available As our understanding of the human microbiome expands, impacts on health and disease continue to be revealed. Alterations in the microbiome can result in dysbiosis, which has now been linked to subsequent autoimmune and metabolic diseases, highlighting the need to identify factors that shape the microbiome. Research has identified that the composition and functions of the human microbiome can be influenced by diet, age, gender, and environment. More recently, studies have explored how human genetic variation may also influence the microbiome. Here, we review several recent analytical advances in this new research area, including those that use genome-wide association studies to examine host genome-microbiome interactions, while controlling for the influence of other factors. We find that current research is limited by small sample sizes, lack of cohort replication, and insufficient confirmatory mechanistic studies. In addition, we discuss the importance of understanding long-term interactions between the host genome and microbiome, as well as the potential impacts of disrupting this relationship, and explore new research avenues that may provide information about the co-evolutionary history of humans and their microorganisms.

  19. Genome accessibility is widely preserved and locally modulated during mitosis.

    Science.gov (United States)

    Hsiung, Chris C-S; Morrissey, Christapher S; Udugama, Maheshi; Frank, Christopher L; Keller, Cheryl A; Baek, Songjoon; Giardine, Belinda; Crawford, Gregory E; Sung, Myong-Hee; Hardison, Ross C; Blobel, Gerd A

    2015-02-01

    Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements. © 2015 Hsiung et al.; Published by

  20. Susceptibility to chronic mucus hypersecretion, a genome wide association study.

    Directory of Open Access Journals (Sweden)

    Akkelies E Dijkstra

    Full Text Available Chronic mucus hypersecretion (CMH is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA study of CMH in Caucasian populations.GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years. Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP.A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10(-6, OR = 1.17, located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1 on chromosome 3. The risk allele (G was associated with higher mRNA expression of SATB1 (4.3×10(-9 in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture.Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.

  1. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  2. Genomic consequences of selection and genome-wide association mapping in soybean.

    Science.gov (United States)

    Wen, Zixiang; Boyse, John F; Song, Qijian; Cregan, Perry B; Wang, Dechun

    2015-09-03

    Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits. To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified. These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.

  3. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  4. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy.

    Science.gov (United States)

    Li, Jingyun; Zhang, Yuan; Zhang, Luo

    2015-02-01

    Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.

  5. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  6. Statistical power of model selection strategies for genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Zheyang Wu

    2009-07-01

    Full Text Available Genome-wide association studies (GWAS aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the

  7. Wide Binaries in TGAS: Search Method and First Results

    Science.gov (United States)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-04-01

    Half of all stars reside in binary systems, many of which have orbital separations in excess of 1000 AU. Such binaries are typically identified in astrometric catalogs by matching the proper motions vectors of close stellar pairs. We present a fully Bayesian method that properly takes into account positions, proper motions, parallaxes, and their correlated uncertainties to identify widely separated stellar binaries. After applying our method to the >2 × 106 stars in the Tycho-Gaia astrometric solution from Gaia DR1, we identify over 6000 candidate wide binaries. For those pairs with separations less than 40,000 AU, we determine the contamination rate to be ~5%. This sample has an orbital separation (a) distribution that is roughly flat in log space for separations less than ~5000 AU and follows a power law of a -1.6 at larger separations.

  8. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  9. Quality control and conduct of genome-wide association meta-analyses

    DEFF Research Database (Denmark)

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C

    2014-01-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC...

  10. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  11. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    DEFF Research Database (Denmark)

    Sud, Amit; Thomsen, Hauke; Law, Philip J.

    2017-01-01

    Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 co...

  12. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    NARCIS (Netherlands)

    Sud, A. (Amit); Thomsen, H. (Hauke); Law, P.J. (Philip J.); A. Försti (Asta); Filho, M.I.D.S. (Miguel Inacio Da Silva); Holroyd, A. (Amy); P. Broderick (Peter); Orlando, G. (Giulia); Lenive, O. (Oleg); Wright, L. (Lauren); R. Cooke (Rosie); D.F. Easton (Douglas); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); J. Peto (Julian); F. Canzian (Federico); Eeles, R. (Rosalind); Z. Kote-Jarai; K.R. Muir (K.); Pashayan, N. (Nora); B.E. Henderson (Brian); C.A. Haiman (Christopher); S. Benlloch (Sara); F.R. Schumacher (Fredrick R); Olama, A.A.A. (Ali Amin Al); S.I. Berndt (Sonja); G. Conti (Giario); F. Wiklund (Fredrik); S.J. Chanock (Stephen); Stevens, V.L. (Victoria L.); C.M. Tangen (Catherine M.); Batra, J. (Jyotsna); Clements, J. (Judith); H. Grönberg (Henrik); Schleutker, J. (Johanna); D. Albanes (Demetrius); Weinstein, S. (Stephanie); K. Wolk (Kerstin); West, C. (Catharine); Mucci, L. (Lorelei); Cancel-Tassin, G. (Géraldine); Koutros, S. (Stella); Sorensen, K.D. (Karina Dalsgaard); L. Maehle; D. Neal (David); S.P.L. Travis (Simon); Hamilton, R.J. (Robert J.); S.A. Ingles (Sue); B.S. Rosenstein (Barry S.); Lu, Y.-J. (Yong-Jie); Giles, G.G. (Graham G.); A. Kibel (Adam); Vega, A. (Ana); M. Kogevinas (Manolis); Penney, K.L. (Kathryn L.); Park, J.Y. (Jong Y.); Stanford, J.L. (Janet L.); C. Cybulski (Cezary); B.G. Nordestgaard (Børge); Brenner, H. (Hermann); Maier, C. (Christiane); Kim, J. (Jeri); E.M. John (Esther); P.J. Teixeira; Neuhausen, S.L. (Susan L.); De Ruyck, K. (Kim); Razack, A. (Azad); Newcomb, L.F. (Lisa F.); Lessel, D. (Davor); Kaneva, R. (Radka); N. Usmani (Nawaid); F. Claessens; Townsend, P.A. (Paul A.); Dominguez, M.G. (Manuela Gago); Roobol, M.J. (Monique J.); F. Menegaux (Florence); P. Hoffmann (Per); M.M. Nöthen (Markus); K.-H. JöCkel (Karl-Heinz); Strandmann, E.P.V. (Elke Pogge Von); Lightfoot, T. (Tracy); Kane, E. (Eleanor); Roman, E. (Eve); Lake, A. (Annette); Montgomery, D. (Dorothy); Jarrett, R.F. (Ruth F.); A.J. Swerdlow (Anthony ); A. Engert (Andreas); N. Orr (Nick); K. Hemminki (Kari); Houlston, R.S. (Richard S.)

    2017-01-01

    textabstractSeveral susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and

  13. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  14. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  15. Genome-wide comparison of medieval and modern Mycobacterium leprae.

    Science.gov (United States)

    Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A; Krause-Kyora, Ben; Jäger, Günter; Bos, Kirsten I; Herbig, Alexander; Economou, Christos; Benjak, Andrej; Busso, Philippe; Nebel, Almut; Boldsen, Jesper L; Kjellström, Anna; Wu, Huihai; Stewart, Graham R; Taylor, G Michael; Bauer, Peter; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Tucker, Katie; Roffey, Simon; Sow, Samba O; Cole, Stewart T; Nieselt, Kay; Krause, Johannes

    2013-07-12

    Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.

  16. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    The rapid progress of molecular biology tools for directed genetic modifications, accurate quantitative experimental approaches, high-throughput measurements, together with development of genome sequencing has made the foundation for a new area of metabolic engineering that is driven by metabolic...

  17. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    Science.gov (United States)

    2008-04-01

    Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka , J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. 2005. Genome sequencing in microfabricated...software after filtering to exclude bad spots. qPCR validation. Primer pairs used in Figure 1 were designed to cover three peaks and three troughs in

  18. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  19. Genome-wide variation in recombination rate in Eucalyptus.

    Science.gov (United States)

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst

  20. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    Science.gov (United States)

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  1. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor

    2006-01-01

    . We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... that share similar compositional properties with the annotated exons and have significant homology to other plant proteins. Elucidating and mapping of all transcribed regions revealed an association between global transcription and cytological chromosome features, and an overall similarity of transcriptional......Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species...

  2. General metabolism of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Curreem Shirly O

    2011-04-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of L. hongkongensis and correlated them with its phenotypic characteristics. Results The L. hongkongensis genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and β-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in Neisseria gonorrhoeae, Neisseria meningitidis and Chromobacterium violaceum. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter. Conclusions The L. hongkongensis genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.

  3. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    Science.gov (United States)

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  4. Genome-wide comparison of medieval and modern Mycobacterium leprae

    DEFF Research Database (Denmark)

    Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A

    2013-01-01

    Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly...... origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human...

  5. Meta-analysis for genome-wide association studies using case-control design: application and practice.

    Science.gov (United States)

    Shim, Sungryul; Kim, Jiyoung; Jung, Wonguen; Shin, In-Soo; Bae, Jong-Myon

    2016-01-01

    This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy-Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The 'genhwcci' and 'metan' commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the 'metareg' command of STATA should be conducted to evaluate related factors of heterogeneities.

  6. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sleiman, Patrick; Nielsen, Kasper

    2014-01-01

    Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6......1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin......-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes....

  7. Meta-analysis for genome-wide association studies using case-control design: application and practice

    Directory of Open Access Journals (Sweden)

    Sungryul Shim

    2016-12-01

    Full Text Available This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA. The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–Weinberg equilibrium (HWE in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate related factors of heterogeneities.

  8. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  9. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes.

    Directory of Open Access Journals (Sweden)

    Sophie Garnier

    Full Text Available In order to assess whether gene expression variability could be influenced by several SNPs acting in cis, either through additive or more complex haplotype effects, a systematic genome-wide search for cis haplotype expression quantitative trait loci (eQTL was conducted in a sample of 758 individuals, part of the Cardiogenics Transcriptomic Study, for which genome-wide monocyte expression and GWAS data were available. 19,805 RNA probes were assessed for cis haplotypic regulation through investigation of ~2,1 × 10(9 haplotypic combinations. 2,650 probes demonstrated haplotypic p-values >10(4-fold smaller than the best single SNP p-value. Replication of significant haplotype effects were tested for 412 probes for which SNPs (or proxies that defined the detected haplotypes were available in the Gutenberg Health Study composed of 1,374 individuals. At the Bonferroni correction level of 1.2 × 10(-4 (~0.05/412, 193 haplotypic signals replicated. 1000 G imputation was then conducted, and 105 haplotypic signals still remained more informative than imputed SNPs. In-depth analysis of these 105 cis eQTL revealed that at 76 loci genetic associations were compatible with additive effects of several SNPs, while for the 29 remaining regions data could be compatible with a more complex haplotypic pattern. As 24 of the 105 cis eQTL have previously been reported to be disease-associated loci, this work highlights the need for conducting haplotype-based and 1000 G imputed cis eQTL analysis before commencing functional studies at disease-associated loci.

  10. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.

    Science.gov (United States)

    Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A

    2017-10-15

    Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A

    Science.gov (United States)

    Lane, Jérôme; McLaren, Paul J.; Dorrell, Lucy; Shianna, Kevin V.; Stemke, Amanda; Pelak, Kimberly; Moore, Stephen; Oldenburg, Johannes; Alvarez-Roman, Maria Teresa; Angelillo-Scherrer, Anne; Boehlen, Francoise; Bolton-Maggs, Paula H.B.; Brand, Brigit; Brown, Deborah; Chiang, Elaine; Cid-Haro, Ana Rosa; Clotet, Bonaventura; Collins, Peter; Colombo, Sara; Dalmau, Judith; Fogarty, Patrick; Giangrande, Paul; Gringeri, Alessandro; Iyer, Rathi; Katsarou, Olga; Kempton, Christine; Kuriakose, Philip; Lin, Judith; Makris, Mike; Manco-Johnson, Marilyn; Tsakiris, Dimitrios A.; Martinez-Picado, Javier; Mauser-Bunschoten, Evelien; Neff, Anne; Oka, Shinichi; Oyesiku, Lara; Parra, Rafael; Peter-Salonen, Kristiina; Powell, Jerry; Recht, Michael; Shapiro, Amy; Stine, Kimo; Talks, Katherine; Telenti, Amalio; Wilde, Jonathan; Yee, Thynn Thynn; Wolinsky, Steven M.; Martinson, Jeremy; Hussain, Shehnaz K.; Bream, Jay H.; Jacobson, Lisa P.; Carrington, Mary; Goedert, James J.; Haynes, Barton F.; McMichael, Andrew J.; Goldstein, David B.; Fellay, Jacques

    2013-01-01

    Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979–1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population. PMID:23372042

  12. Genome-Wide Association Study of Short-Acting beta(2)-Agonists A Novel Genome-Wide Significant Locus on Chromosome 2 near ASB3

    NARCIS (Netherlands)

    Israel, Elliot; Lasky-Su, Jessica; Markezich, Amy; Damask, Amy; Szefler, Stanley J.; Schuemann, Brooke; Klanderman, Barbara; Sylvia, Jody; Kazani, Shamsah; Wu, Rongling; Martinez, Fernando; Boushey, Homer A.; Chinchilli, Vernon M.; Mauger, Dave; Weiss, Scott T.; Tantisira, Kelan G.; de Zeeuw, Dick; Navis, Gerjan J.

    2015-01-01

    Rationale: [beta(2)-Agonists are the most common form of treatment of asthma, but there is significant variability in response to these medications. A significant proportion of this responsiveness may be heritable. Objectives: To investigate whether a genome-wide association study (GWAS) could

  13. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S.H.; Ripke, S.; Neale, B.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B. J.; Thapar, A.; Goddard, M.E.; Witte, J.S.; Absher, D.; Agartz, I.; Akil, H.; Amin, F.; Andreassen, O.A.; Anjorin, A.; Anney, R.; Anttila, V.; Arking, D.E.; Asherson, P.; Azevedo, M.H.; Backlund, L.; Badner, J.A.; Bailey, A.J.; Banaschewski, T.; Barchas, J.D.; Barnes, M.R.; Barrett, T.B.; Bass, N.; Battaglia, A.; Bauer, M.; Bayés, M.; Bellivier, F.; Bergen, S.E.; Berrettini, W.; Betancur, C.; Bettecken, T.; Biederman, J; Binder, E.B.; Black, D.W.; Blackwood, D.H.; Bloss, C.S.; Boehnke, M.; Boomsma, D.I.; Breen, G.; Breuer, R.; Bruggeman, R.; Cormican, P.; Buccola, N.G.; Buitelaar, J.K.; Bunney, W.E.; Buxbaum, J.D.; Byerley, W. F.; Byrne, E.M.; Caesar, S.; Cahn, W.; Cantor, R.M.; Casas, M.; Chakravarti, A.; Chambert, K.; Choudhury, K.; Cichon, S.; Cloninger, C. R.; Collier, D.A.; Cook, E.H.; Coon, H.; Corman, B.; Corvin, A.; Coryell, W.H.; Craig, D.W.; Craig, I.W.; Crosbie, J.; Cuccaro, M.L.; Curtis, D.; Czamara, D.; Datta, S.; Dawson, G.; Day, R.; de Geus, E.J.C.; Degenhardt, F.; Djurovic, S.; Donohoe, G.; Doyle, A.E.; Duan, J.; Dudbridge, F.; Duketis, E.; Ebstein, R.P.; Edenberg, H.J.; Elia, J.; Ennis, S.; Etain, B.; Fanous, A.; Farmer, A.E.; Ferrier, I.N.; Flickinger, M.; Fombonne, E.; Foroud, T.; Frank, J.; Franke, B.; Fraser, C.; Freedman, R.; Freimer, N.B.; Freitag, C.; Friedl, M.; Frisén, L.; Gallagher, L.; Gejman, P.V.; Georgieva, L.; Gershon, E.S.; Geschwind, D.H.; Giegling, I.; Gill, M.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Greenwood, T.A.; Grice, D.E.; Gross, M.; Grozeva, D.; Guan, W.; Gurling, H.; de Haan, L.; Haines, J.L.; Hakonarson, H.; Hallmayer, J.; Hamilton, S.P.; Hamshere, M.L.; Hansen, T.F.; Hartmann, A.M.; Hautzinger, M.; Heath, A.C.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoefels, S.; Holmans, P.A.; Holsboer, F.; Hoogendijk, W.J.G.; Hottenga, J.J.; Hultman, C. M.; Hus, V.; Ingason, A.; Ising, M.; Jamain, S.; Jones, E.G.; Jones, I.; Jones, L.; Tzeng, J.Y.; Kähler, A.K.; Kahn, R.S.; Kandaswamy, R.; Keller, M.C.; Kennedy, J.L.; Kenny, E.; Kent, L.; Kim, Y.; Kirov, G. K.; Klauck, S.M.; Klei, L.; Knowles, J.A.; Kohli, M.A.; Koller, D.L.; Konte, B.; Korszun, A.; Krabbendam, L.; Krasucki, R.; Kuntsi, J.; Kwan, P.; Landén, M.; Langstrom, N.; Lathrop, M.; Lawrence, J.; Lawson, W.B.; Leboyer, M.; Ledbetter, D.H.; Lee, P.H.; Lencz, T.; Lesch, K.P.; Levinson, D.F.; Lewis, C.M.; Li, J.; Lichtenstein, P.; Lieberman, J. A.; Lin, D.Y.; Linszen, D.H.; Liu, C.; Lohoff, F.W.; Loo, S.K.; Lord, C.; Lowe, J.K.; Lucae, S.; MacIntyre, D.J.; Madden, P.A.F.; Maestrini, E.; Magnusson, P.K.E.; Mahon, P.B.; Maier, W.; Malhotra, A.K.; Mane, S.M.; Martin, C.L.; Martin, N.G.; Mattheisen, M.; Matthews, K.; Mattingsdal, M.; McCarroll, S.A.; McGhee, K.A.; McGough, J.J.; McGrath, P.J.; McGuffin, P.; McInnis, M.G.; McIntosh, A.; McKinney, R.; McLean, A.W.; McMahon, F.J.; McMahon, W.M.; McQuillin, A.; Medeiros, H.; Medland, S.E.; Meier, S.; Melle, I.; Meng, F.; Meyer, J.; Middeldorp, C.M.; Middleton, L.; Milanova, V.; Miranda, A.; Monaco, A.P.; Montgomery, G.W.; Moran, J.L.; Moreno-De Luca, D.; Morken, G.; Morris, D.W.; Morrow, E.M.; Moskvina, V.; Muglia, P.; Mühleisen, T.W.; Muir, W.J.; Müller-Myhsok, B.; Murtha, M.; Myers, R.M.; Myin-Germeys, I.; Neale, M.C.; Nelson, S.F.; Nievergelt, C.M.; Nikolov, I.; Nimgaonkar, V.L.; Nolen, W.A.; Nöthen, M.M.; Nurnberger, J.I.; Nwulia, E.A.; Nyholt, DR; O'Dushlaine, C.; Oades, R.D.; Olincy, A.; Oliveira, G.; Olsen, L.; Ophoff, R.A.; Osby, U.; Owen, M.J.; Palotie, A.; Parr, J.R.; Paterson, A.D.; Pato, C.N.; Pato, M.T.; Penninx, B.W.J.H.; Pergadia, M.L.; Pericak-Vance, M.A.; Pickard, B.S.; Pimm, J.; Piven, J.; Posthuma, D.; Potash, J.B.; Poustka, F.; Propping, P.; Puri, V.; Quested, D.; Quinn, E.M.; Ramos-Quiroga, J.A.; Rasmussen, H.B.; Raychaudhuri, S.; Rehnström, K.; Reif, A.; Ribasés, M.; Rice, J.P.; Rietschel, M.; Roeder, K.; Roeyers, H.; Rossin, L.; Rothenberger, A.; Rouleau, G.; Ruderfer, D.; Rujescu, D.; Sanders, A.R.; Sanders, S.J.; Santangelo, S.; Sergeant, J.A.; Schachar, R.; Schalling, M.; Schatzberg, A.F.; Scheftner, W.A.; Schellenberg, G.D.; Scherer, S.W.; Schork, N.J.; Schulze, T.G.; Schumacher, J.; Schwarz, M.; Scolnick, E.; Scott, L.J.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Silverman, J.M.; Slager, S.L.; Smalley, S.L.; Smit, J.H.; Smith, E.N.; Sonuga-Barke, E.J.; St Clair, D.; State, M.; Steffens, M; Steinhausen, H.C.; Strauss, J.; Strohmaier, J.; Stroup, T.S.; Sutcliffe, J.; Szatmari, P.; Szelinger, S.; Thirumalai, S.; Thompson, R.C.; Todorov, A.A.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.C.G.; Grootheest, G.; van Os, J.; Vicente, A.; Vieland, V.; Vincent, J.B.; Visscher, P.M.; Walsh, C.A.; Wassink, T.H.; Watson, S.J.; Weissman, M.M.; Werge, T.; Wienker, T.F.; Wijsman, E.M.; Willemsen, G.; Williams, N.; Willsey, A.J.; Witt, S.H.; Xu, W.; Young, A.H.; Yu, T.W.; Zammit, S.; Zandi, P.P.; Zhang, P.; Zitman, F.G.; Zöllner, S.; Devlin, B.; Kelsoe, J.; Sklar, P.; Daly, M.J.; O'Donovan, M.C.; Craddock, N.; Sullivan, P.F.; Smoller, J.W.; Kendler, K.S.; Wray, N.R.

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  14. Genome-wide approaches towards identification of susceptibility genes in complex diseases

    NARCIS (Netherlands)

    Franke, L.H.

    2008-01-01

    Throughout the human genome millions of places exist where humans differ gentically. The aim of this PhD thesis was to systematically assess this genetic variation and its biological consequences in a genome-wide way, through the utilization of DNA oligonucleotide arrays that assess hundres of

  15. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    NARCIS (Netherlands)

    Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; Fitzpatrick, K.; Kanakis, A.; Barrick, T.R.; Moynihan, B.; Lewis, C.M.; Boncoraglio, G.B.; Lemmens, R.; Thijs, V.; Sudlow, C.; Wardlaw, J.; Rothwell, P.M.; Meschia, J.F.; Worrall, B.B.; Levi, C.; Bevan, S.; Furie, K.L.; Dichgans, M.; Rosand, J.; Markus, H.S.; Rost, N.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

  16. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

    NARCIS (Netherlands)

    Scott, Robert A; Scott, Laura J; Mägi, Reedik; Marullo, Letizia; Gaulton, Kyle J; Kaakinen, Marika; Pervjakova, Natalia; Pers, Tune H; Johnson, Andrew D; Eicher, John D; Jackson, Anne U; Ferreira, Teresa; Lee, Yeji; Ma, Clement; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Van Zuydam, Natalie R; Mahajan, Anubha; Chen, Han; Almgren, Peter; Voight, Ben F; Grallert, Harald; Müller-Nurasyid, Martina; Ried, Janina S; Rayner, William N; Robertson, Neil; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Fuchsberger, Christian; Kwan, Phoenix; Teslovich, Tanya M; Chanda, Pritam; Li, Man; Lu, Yingchang; Dina, Christian; Thuillier, Dorothee; Yengo, Loic; Jiang, Longda; Sparso, Thomas; Kestler, Hans A; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Frånberg, Mattias; Strawbridge, Rona J; Benediktsson, Rafn; Hreidarsson, Astradur B; Kong, Augustine; Sigurðsson, Gunnar; Kerrison, Nicola D; Luan, Jian'an; Liang, Liming; Meitinger, Thomas; Roden, Michael; Thorand, Barbara; Esko, Tõnu; Mihailov, Evelin; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Isomaa, Bo; Lyssenko, Valeriya; Tuomi, Tiinamaija; Couper, David J; Pankow, James S; Grarup, Niels; Have, Christian T; Jørgensen, Marit E; Jørgensen, Torben; Linneberg, Allan; Cornelis, Marilyn C; van Dam, Rob M; Hunter, David J; Kraft, Peter; Sun, Qi; Edkins, Sarah; Owen, Katharine R; Perry, John Rb; Wood, Andrew R; Zeggini, Eleftheria; Tajes-Fernandes, Juan; Abecasis, Goncalo R; Bonnycastle, Lori L; Chines, Peter S; Stringham, Heather M; Koistinen, Heikki A; Kinnunen, Leena; Sennblad, Bengt; Mühleisen, Thomas W; Nöthen, Markus M; Pechlivanis, Sonali; Baldassarre, Damiano; Gertow, Karl; Humphries, Steve E; Tremoli, Elena; Klopp, Norman; Meyer, Julia; Steinbach, Gerald; Wennauer, Roman; Eriksson, Johan G; Mӓnnistö, Satu; Peltonen, Leena; Tikkanen, Emmi; Charpentier, Guillaume; Eury, Elodie; Lobbens, Stéphane; Gigante, Bruna; Leander, Karin; McLeod, Olga; Bottinger, Erwin P; Gottesman, Omri; Ruderfer, Douglas; Blüher, Matthias; Kovacs, Peter; Tonjes, Anke; Maruthur, Nisa M; Scapoli, Chiara; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; de Faire, Ulf; Hamsten, Anders; Stumvoll, Michael; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Ripatti, Samuli; Salomaa, Veikko; Pedersen, Nancy L; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Hansen, Torben; Pedersen, Oluf; Barroso, Inês; Lannfelt, Lars; Ingelsson, Erik; Lind, Lars; Lindgren, Cecilia M; Cauchi, Stephane; Froguel, Philippe; Loos, Ruth Jf; Balkau, Beverley; Boeing, Heiner; Franks, Paul W; Gurrea, Aurelio Barricarte; Palli, Domenico; van der Schouw, Yvonne T; Altshuler, David; Groop, Leif C; Langenberg, Claudia; Wareham, Nicholas J; Sijbrands, Eric; van Duijn, Cornelia M; Florez, Jose C; Meigs, James B; Boerwinkle, Eric; Gieger, Christian; Strauch, Konstantin; Metspalu, Andres; Morris, Andrew D; Palmer, Colin Na; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Dupuis, Josée; Morris, Andrew P; Boehnke, Michael; McCarthy, Mark I; Prokopenko, Inga

    2017-01-01

    To characterise type 2 diabetes (T2D) associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes multi-ethnic reference panel.

  17. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  18. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond K.; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura M.; Hinney, Anke; Daly, Mark J.; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M.; Adan, RAH

    2017-01-01

    Objective: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method: Following uniformquality control and imputation procedures using the 1000 Genomes Project (phase 3) in

  19. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M; Kas, Martinus J.H.

    2017-01-01

    OBJECTIVE: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. METHOD: Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3)

  20. Genome-wide analysis of Polycomb targets in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  1. Ascertainment bias in studies of human genome-wide polymorphism

    DEFF Research Database (Denmark)

    Clark, Andrew G.; Hubisz, Melissa J.; Bustamente, Carlos D.

    2005-01-01

    of the SNPs that are found are influenced by the discovery sampling effort. The International HapMap project relied on nearly any piece of information available to identify SNPs-including BAC end sequences, shotgun reads, and differences between public and private sequences-and even made use of chimpanzee...... was a resequencing-by-hybridization effort using the 24 people of diverse origin in the Polymorphism Discovery Resource. Here we take these two data sets and contrast two basic summary statistics, heterozygosity and FST, as well as the site frequency spectra, for 500-kb windows spanning the genome. The magnitude...... of disparity between these samples in these measures of variability indicates that population genetic analysis on the raw genotype data is ill advised. Given the knowledge of the discovery samples, we perform an ascertainment correction and show how the post-correction data are more consistent across...

  2. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

    DEFF Research Database (Denmark)

    Bulik-Sullivan, Brendan K.; Loh, Po-Ru; Finucane, Hilary K.

    2015-01-01

    Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from...

  3. A genome-wide approach to children's aggressive behavior: The EAGLE consortium

    NARCIS (Netherlands)

    Pappa, I.; St Pourcain, B.; Benke, K.S.; Cavadino, A.; Hakulinen, C.; Nivard, M.G.; Nolte, I.M.; Tiesler, C.M.T.; Bakermans-Kranenburg, M.J.; Davies, G.E.; Evans, D.M.; Geoffroy, M.C.; Grallert, H.; Blokhuis, M.M.; Hudziak, J.J.; Kemp, J.P.; Keltikangas-Järvinen, L.; McMahon, G.; Mileva-Seitz, V.R.; Motazedi, E.; Power, C.; Raitakari, O.T.; Ring, S.M.; Rivadeneira, F.; Rodriguez, A.; Scheet, P.; Seppälä, I.; Snieder, H.; Standl, M.; Thiering, E.; Timpson, N.J.; Veenstra, R.; Velders, F.P.; Whitehouse, A.J.O.; Davey Smith, G.; Heinrich, J.; Hypponen, E.; Lehtimäki, T.; Middeldorp, C.M.; Oldehinkel, A.J.; Pennell, C.E.; Boomsma, D.I.; Tiemeier, H.

    2016-01-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of

  4. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc; Phelan, Jody; Hill-Cawthorne, Grant A.; Nair, Mridul; Mallard, Kim; Ali, Shahjahan; Abdallah, Abdallah; Alghamdi, Saad; Alsomali, Mona; Ahmed, Abdallah O.; Portelli, Stephanie; Oppong, Yaa; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Caws, Maxine; Chatterjee, Anirvan; Crampin, Amelia C.; Dheda, Keertan; Furnham, Nicholas; Glynn, Judith R.; Grandjean, Louis; Minh Ha, Dang; Hasan, Rumina; Hasan, Zahra; Hibberd, Martin L.; Joloba, Moses; Jones-Ló pez, Edward C.; Matsumoto, Tomoshige; Miranda, Anabela; Moore, David J.; Mocillo, Nora; Panaiotov, Stefan; Parkhill, Julian; Penha, Carlos; Perdigã o, Joã o; Portugal, Isabel; Rchiad, ‍ Zineb; Robledo, Jaime; Sheen, Patricia; Shesha, Nashwa Talaat; Sirgel, Frik A.; Sola, Christophe; Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; Helden, Paul Van; Viveiros, Miguel; Warren, Robert M.; McNerney, Ruth; Pain, Arnab; Clark, Taane G.

    2018-01-01

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed

  5. Predicting genome-wide redundancy using machine learning

    Directory of Open Access Journals (Sweden)

    Shasha Dennis E

    2010-11-01

    Full Text Available Abstract Background Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case used here. Results Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1, suggesting that redundancy is stable over long evolutionary periods. Conclusions Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.

  6. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    Science.gov (United States)

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  7. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    OpenAIRE

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-01-01

    Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eu...

  8. Genome-wide association study of smoking initiation and current smoking

    DEFF Research Database (Denmark)

    Vink, Jacqueline M; Smit, August B; de Geus, Eco J C

    2009-01-01

    For the identification of genes associated with smoking initiation and current smoking, genome-wide association analyses were carried out in 3497 subjects. Significant genes that replicated in three independent samples (n = 405, 5810, and 1648) were visualized into a biologically meaningful network......) and cell-adhesion molecules (e.g., CDH23). We conclude that a network-based genome-wide association approach can identify genes influencing smoking behavior....

  9. Genome-Wide Association Study (GWAS) and Genome-Wide Environment Interaction Study (GWEIS) of Depressive Symptoms in African American and Hispanic/Latina Women

    Science.gov (United States)

    Dunn, Erin C.; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M.; Gogarten, Stephanie M.; Sofer, Tamar; Faul, Jessica D.; Kardia, Sharon L.R.; Smith, Jennifer A.; Weir, David R.; Zhao, Wei; Soare, Thomas W.; Mirza, Saira S.; Hek, Karin; Tiemeier, Henning W.; Goveas, Joseph S.; Sarto, Gloria E.; Snively, Beverly M.; Cornelis, Marilyn; Koenen, Karestan C.; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J.; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W.

    2016-01-01

    Background Genome-wide association studies (GWAS) have been unable to identify variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (G×E) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide environment interaction study (GWEIS) of depressive symptoms. Methods Using data from the SHARe cohort of the Women’s Health Initiative, comprising African Americans (n=7179) and Hispanics/Latinas (n=3138), we examined genetic main effects and G×E with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. Results No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20kb from GPR139, p=5.75×10−8) and rs75407252 (intronic to CACNA2D3, p=6.99×10−7). In Hispanics/Latinas, the top signals were rs2532087 (located 27kb from CD38, p=2.44×10−7) and rs4542757 (intronic to DCC, p=7.31×10−7). In the GWEIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; p=4.10×10−10; located 14kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG=0.95), suggesting that common variation underlying depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Conclusions Our results underscore the need for larger samples, more GWEIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. PMID:27038408

  10. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect

  11. Genome Wide Association Study for Predictors of Progression Free Survival in Patients on Capecitabine, Oxaliplatin, Bevacizumab and Cetuximab in First-Line Therapy of Metastatic Colorectal Cancer

    NARCIS (Netherlands)

    Pander, Jan; van Huis-Tanja, Lieke; Böhringer, Stefan; van der Straaten, Tahar; Gelderblom, Hans; Punt, Cornelis; Guchelaar, Henk-Jan

    2015-01-01

    Despite expanding options for systemic treatment, survival for metastatic colorectal cancer (mCRC) remains limited and individual response is difficult to predict. In search of pre-treatment predictors, pharmacogenetic research has mainly used a candidate gene approach. Genome wide association (GWA)

  12. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C.; Winkler, Thomas W.; Kutalik, Zoltán; Berndt, Sonja I.; Jackson, Anne U.; Monda, Keri L.; Kilpeläinen, Tuomas O.; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F.; Croteau-Chonka, Damien C.; Day, Felix R.; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E.; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Karpe, Fredrik; Min, Josine L.; Nicholson, George; Clegg, Deborah J.; Person, Thomas; Krohn, Jon P.; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L.; Harris, Tamara B.; Smith, Albert Vernon; Shuldiner, Alan R.; McArdle, Wendy L.; Caulfield, Mark J.; Munroe, Patricia B.; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S.; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J.; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A.; Kraja, Aldi T.; Province, Michael A.; Cupples, L. Adrienne; Heard-Costa, Nancy L.; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S.; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H. Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A.; Johansson, Asa; Pramstaller, Peter P.; Kathiresan, Sekar; Speliotes, Elizabeth K.; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I.; Campbell, Harry; Wilson, James F.; Chanock, Stephen J.; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G.; Hofman, Albert; Zillikens, M. Carola; den Heijer, Martin; Kiemeney, Lambertus A.; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D.; Hayward, Caroline; Rudan, Igor; Hall, Alistair S.; Samani, Nilesh J.; Attwood, Antony Paul; Sambrook, Jennifer G.; Hung, Joseph; Palmer, Lyle J.; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G.; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M.; Snieder, Harold; van der Klauw, Melanie M.; van Vliet-Ostaptchouk, Jana V.; Gejman, Pablo V.; Shi, Jianxin; Jacobs, Kevin B.; Wang, Zhaoming; Bakker, Stephan J. L.; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Yang, Jian; Chasman, Daniel I.; Ridker, Paul M.; Rose, Lynda M.; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G.; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P.; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R.; Schwarz, Peter E. H.; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J.; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A.; Rauramaa, Rainer; Bolton, Jennifer L.; Fowkes, Gerry; Fraser, Ross M.; Price, Jackie F.; Fischer, Krista; Krjutå Kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K.; Chines, Peter S.; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Edkins, Sarah; Franks, Paul W.; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N. A.; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M.; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E.; Strawbridge, Rona J.; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O.; Kleber, Marcus E.; März, Winfried; Winkelmann, Bernhard R.; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W. G.; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L.; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; McCarthy, Mark I.; Hirschhorn, Joel N.; Qi, Lu; Loos, Ruth J. F.; Lindgren, Cecilia M.; North, Kari E.; Heid, Iris M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  13. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    DEFF Research Database (Denmark)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133...

  14. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    NARCIS (Netherlands)

    Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpelainen, T.O.; Esko, T.; Magi, R.; Li, S.; Workalemahu, T.; Feitosa, M.F.; Croteau-Chonka, D.C.; Day, F.R.; Fall, T.; Ferreira, T.; Gustafsson, S.; Locke, A.E.; Mathieson, I.; Scherag, A.; Vedantam, S.; Wood, A.R.; Liang, L.; Steinthorsdottir, V.; Thorleifsson, G.; Dermitzakis, E.T.; Dimas, A.S.; Karpe, F.; Min, J.L.; Nicholson, G.; Clegg, D.J.; Person, T.; Krohn, J.P.; Bauer, S.; Buechler, C.; Eisinger, K.; Bonnefond, A.; Froguel, P.; Hottenga, J.J.; Prokopenko, I.; Waite, L.L.; Harris, T.B.; Smith, A.V.; Shuldiner, A.R.; McArdle, W.L.; Caulfield, M.J.; Munroe, P.B.; Gronberg, H.; Chen, Y.D.; Li, G.; Beckmann, J.S.; Johnson, T.; Thorsteinsdottir, U.; Teder-Laving, M.; Khaw, K.T.; Wareham, N.J.; Zhao, J.H.; Amin, N.; Oostra, B.A.; Kraja, A.T.; Province, M.A.; Cupples, L.A.; Heard-Costa, N.L.; Kaprio, J.; Ripatti, S.; Surakka, I.; Collins, F.S.; Saramies, J.; Tuomilehto, J.; Jula, A.; Salomaa, V.; Erdmann, J.; Hengstenberg, C.; Loley, C.; Schunkert, H.; Lamina, C.; Wichmann, H.E.; Albrecht, E.; Gieger, C.; Hicks, A.A.; Johansson, A; Pramstaller, P.P.; Kathiresan, S.; Speliotes, E.K.; Penninx, B.; Hartikainen, A.L.; Jarvelin, M.R.; Gyllensten, U.; Boomsma, D.I.; Campbell, H.; Wilson, J.F.; Chanock, S.J.; Farrall, M.; Goel, A.; Medina-Gomez, C.; Rivadeneira, F.; Estrada, K.; Uitterlinden, A.G.; Heijer, M. den; Kiemeney, L.A.L.M.; et al.,

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  15. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán; Berndt, Sonja I; Jackson, Anne U; Monda, Keri L; Kilpeläinen, Tuomas O; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F; Croteau-Chonka, Damien C; Day, Felix R; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T; Dimas, Antigone S; Karpe, Fredrik; Min, Josine L; Nicholson, George; Clegg, Deborah J; Person, Thomas; Krohn, Jon P; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Smith, Albert Vernon; Zhao, Jing Hua; Penninx, Brenda; Nolte, Ilja M; Snieder, Harold; Van der Klauw, Melanie M; Van Vliet-Ostaptchouk, Jana V; Bakker, Stephan J L; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Kumari, Meena

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  16. Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia.

    Science.gov (United States)

    Zheutlin, Amanda B; Viehman, Rachael W; Fortgang, Rebecca; Borg, Jacqueline; Smith, Desmond J; Suvisaari, Jaana; Therman, Sebastian; Hultman, Christina M; Cannon, Tyrone D

    2016-01-01

    We performed a whole-genome expression study to clarify the nature of the biological processes mediating between inherited genetic variations and cognitive dysfunction in schizophrenia. Gene expression was assayed from peripheral blood mononuclear cells using Illumina Human WG6 v3.0 chips in twins discordant for schizophrenia or bipolar disorder and control twins. After quality control, expression levels of 18,559 genes were screened for association with the California Verbal Learning Test (CVLT) performance, and any memory-related probes were then evaluated for variation by diagnostic status in the discovery sample (N = 190), and in an independent replication sample (N = 73). Heritability of gene expression using the twin design was also assessed. After Bonferroni correction (p schizophrenia patients, with comparable effect sizes in the same direction in the replication sample. For 41 of these 43 transcripts, expression levels were heritable. Nearly all identified genes contain common or de novo mutations associated with schizophrenia in prior studies. Genes increasing risk for schizophrenia appear to do so in part via effects on signaling cascades influencing memory. The genes implicated in these processes are enriched for those related to RNA processing and DNA replication and include genes influencing G-protein coupled signal transduction, cytokine signaling, and oligodendrocyte function. (c) 2015 APA, all rights reserved).

  17. Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice

    Directory of Open Access Journals (Sweden)

    Youko Oono

    2016-01-01

    Full Text Available Rice growth is severely affected by toxic concentrations of the nonessential heavy metal cadmium (Cd. To elucidate the molecular basis of the response to Cd stress, we performed mRNA sequencing of rice following our previous study on exposure to high concentrations of Cd (Oono et al., 2014. In this study, rice plants were hydroponically treated with low concentrations of Cd and approximately 211 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence. Many genes, including some identified under high Cd concentration exposure in our previous study, were found to be responsive to low Cd exposure, with an average of about 11,000 transcripts from each condition. However, genes expressed constitutively across the developmental course responded only slightly to low Cd concentrations, in contrast to their clear response to high Cd concentration, which causes fatal damage to rice seedlings according to phenotypic changes. The expression of metal ion transporter genes tended to correlate with Cd concentration, suggesting the potential of the RNA-Seq strategy to reveal novel Cd-responsive transporters by analyzing gene expression under different Cd concentrations. This study could help to develop novel strategies for improving tolerance to Cd exposure in rice and other cereal crops.

  18. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  19. Genome-wide analysis of codon usage bias in Ebolavirus.

    Science.gov (United States)

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  1. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  2. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary.

    Science.gov (United States)

    Brynildsrud, Ola; Bohlin, Jon; Scheffer, Lonneke; Eldholm, Vegard

    2016-11-25

    Genome-wide association studies (GWAS) have become indispensable in human medicine and genomics, but very few have been carried out on bacteria. Here we introduce Scoary, an ultra-fast, easy-to-use, and widely applicable software tool that scores the components of the pan-genome for associations to observed phenotypic traits while accounting for population stratification, with minimal assumptions about evolutionary processes. We call our approach pan-GWAS to distinguish it from traditional, single nucleotide polymorphism (SNP)-based GWAS. Scoary is implemented in Python and is available under an open source GPLv3 license at https://github.com/AdmiralenOla/Scoary .

  3. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    Science.gov (United States)

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  4. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  5. Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    Yosef G. Kidane

    2017-09-01

    Full Text Available Septoria tritici blotch (STB is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The identification, development, and employment of resistant wheat genetic material is the key to overcoming costs and limitations of fungicide treatments. The search for resistance sources in untapped genetic material may speed up the deployment of STB genetic resistance in the field. Ethiopian durum wheat landraces represent a valuable source of such diversity. In this study, 318 Ethiopian durum wheat genotypes, for the most part traditional landraces, were phenotyped for resistance to different aspects of STB infection. Phenology, yield and yield component traits were concurrently measured the collection. Here we describe the distribution of STB resistance traits in modern varieties and in landraces, and the relation existing between STB resistance and other agronomic traits. STB resistance sources were found in landraces as well as in modern varieties tested, suggesting the presence of alleles of breeding relevance. The genetic material was genotyped with more than 16 thousand genome-wide polymorphic markers to describe the linkage disequilibrium and genetic structure existing within the panel of genotypes, and a genome-wide association (GWA study was run to allow the identification of genomic loci involved in STB resistance. High diversity and low genetic structure in the panel allowed high efficiency GWA. The GWA scan detected five major putative QTL for STB resistance, only partially overlapping those already reported in the wheat literature. We report four putative loci for Septoria resistance with no match in previous literature: two highly significant ones on Chr 3A and 5A, and two suggestive ones on Chr 4B and 5B. Markers underlying these QTL explained as much as 10% of the phenotypic variance for disease resistance. We found three cases in which putative QTL for agronomic traits overlapped marker trait association

  6. Genome-wide discovery of drug-dependent human liver regulatory elements.

    Directory of Open Access Journals (Sweden)

    Robin P Smith

    2014-10-01

    Full Text Available Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR and three active regulatory marks (p300, H3K4me1, H3K27ac on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4% that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements.

  7. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening

    DEFF Research Database (Denmark)

    Wang, M.J.; Lamberth, K.; Harndahl, M.

    2007-01-01

    are present in the emerging bird flu isolates. Our study demonstrates that present technology enables a fast global screening for T cell immune epitopes of potential diagnostics and vaccine interest. This technology includes immuno-bioinformatics predictors with the capacity to perform fast genome-, pathogen......-, and HLA-wide searches for immune targets. To exploit this new potential, a coordinated international effort to analyze the precious source of information represented by rare patients, such as the current victims of bird flu, would be essential....

  8. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  9. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    Science.gov (United States)

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  10. Characterisation of genome-wide PLZF/RARA target genes.

    Directory of Open Access Journals (Sweden)

    Salvatore Spicuglia

    Full Text Available The PLZF/RARA fusion protein generated by the t(11;17(q23;q21 translocation in acute promyelocytic leukaemia (APL is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear.We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.

  11. A genome-wide characterization of microRNA genes in maize.

    Directory of Open Access Journals (Sweden)

    Lifang Zhang

    2009-11-01

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR-RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with approximately 35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes.

  12. Genomics for public health improvement: relevant international ethical and policy issues around genome-wide association studies and biobanks.

    Science.gov (United States)

    Pang, T

    2013-01-01

    Genome-wide association studies and biobanks are at the forefront of genomics research and possess unprecedented potential to improve public health. However, for public health genomics to ultimately fulfill its potential, technological and scientific advances alone are insufficient. Scientists, ethicists, policy makers, and regulators must work closely together with research participants and communities in order to craft an equitable and just ethical framework, and a sustainable environment for effective policies. Such a framework should be a 'hybrid' form which balances equity and solidarity with entrepreneurship and scientific advances. A good balance between research and policy on one hand, and privacy, protection and trust on the other is the key for public health improvement based on advances in genomics science. Copyright © 2013 S. Karger AG, Basel.

  13. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkilä, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Mägi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W.-K.; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaëlsson, K.; Morris, A.; Jensen, M.; Khaw, K.-T.; Luben, R. N.; Wang, J. J.; Männistö, S.; Perälä, M.-M.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Döring, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellström, D.; Hottenga, J. J.; Prokopenko, I.; Tönjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H.-J.; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppönen, E.; Järvelin, M.-R.; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.; Nalls, Michael A.; Plagnol, Vincent; Hernandez, Dena G.; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Hershey, Milton S.; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; O' Sullivan, Sean S.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Pollak, Pierre; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Martinez, Maria; Sabatier, Paul; Wood, Nicholas W.; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Box, P. O.

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  14. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Maegi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W-K; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K-T; Luben, R. N.; Wang, J. J.; Mannisto, S.; Perala, M-M; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Doering, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellstrom, D.; Hottenga, J. J.; Prokopenko, I.; Toenjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H-J; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppoenen, E.; Jarvelin, M-R; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  15. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin (Najaf); K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao (Jing Hua); G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. van Duijn (Cornelia); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  16. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory

  17. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Genome-wide linkage analysis of malaria infection intensity and mild disease.

    Directory of Open Access Journals (Sweden)

    Christian Timmann

    2007-03-01

    Full Text Available Although balancing selection with the sickle-cell trait and other red blood cell disorders has emphasized the interaction between malaria and human genetics, no systematic approach has so far been undertaken towards a comprehensive search for human genome variants influencing malaria. By screening 2,551 families in rural Ghana, West Africa, 108 nuclear families were identified who were exposed to hyperendemic malaria transmission and were homozygous wild-type for the established malaria resistance factors of hemoglobin (HbS, HbC, alpha(+ thalassemia, and glucose-6-phosphate-dehydrogenase deficiency. Of these families, 392 siblings aged 0.5-11 y were characterized for malaria susceptibility by closely monitoring parasite counts, malaria fever episodes, and anemia over 8 mo. An autosome-wide linkage analysis based on 10,000 single-nucleotide polymorphisms was conducted in 68 selected families including 241 siblings forming 330 sib pairs. Several regions were identified which showed evidence for linkage to the parasitological and clinical phenotypes studied, among them a prominent signal on Chromosome 10p15 obtained with malaria fever episodes (asymptotic z score = 4.37, empirical p-value = 4.0 x 10(-5, locus-specific heritability of 37.7%; 95% confidence interval, 15.7%-59.7%. The identification of genetic variants underlying the linkage signals may reveal as yet unrecognized pathways influencing human resistance to malaria.

  19. Controversy and debate on clinical genomics sequencing-paper 2: clinical genome-wide sequencing: don't throw out the baby with the bathwater!

    Science.gov (United States)

    Adam, Shelin; Friedman, Jan M

    2017-12-01

    Genome-wide (exome or whole genome) sequencing with appropriate genetic counseling should be considered for any patient with a suspected Mendelian disease that has not been identified by conventional testing. Clinical genome-wide sequencing provides a powerful and effective means of identifying specific genetic causes of serious disease and improving clinical care. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we exami...

  1. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research.

    Science.gov (United States)

    Zhang, Y-P; Zhang, Y-Y; Duan, D D

    2016-01-01

    Obesity is a condition in which excess body fat has accumulated over an extent that increases the risk of many chronic diseases. The current clinical classification of obesity is based on measurement of body mass index (BMI), waist-hip ratio, and body fat percentage. However, these measurements do not account for the wide individual variations in fat distribution, degree of fatness or health risks, and genetic variants identified in the genome-wide association studies (GWAS). In this review, we will address this important issue with the introduction of phenome, phenomics, and phenome-wide association study (PheWAS). We will discuss the new paradigm shift from GWAS to PheWAS in obesity research. In the era of precision medicine, phenomics and PheWAS provide the required approaches to better definition and classification of obesity according to the association of obese phenome with their unique molecular makeup, lifestyle, and environmental impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  3. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    Science.gov (United States)

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  4. Updates on genome-wide association findings in eating disorders and future application to precision medicine.

    Science.gov (United States)

    Breithaupt, Lauren; Hubel, Christopher; Bulik, Cynthia M

    2018-02-22

    Heterogeneity, frequent diagnostic fluctuation across presentations, and global concerns with the absence of effective treatments all encourage science that moves the field toward individualized or precision medicine in eating disorders. We review recent advances in psychiatric genetics focusing on genome-wide association studies (GWAS) in eating disorders and enumerate the prospects and challenges of a genomics-driven approach towards personalized intervention. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  6. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    Science.gov (United States)

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  7. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nho

    Full Text Available Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus in northeast Asia, can be distinctly divided into two groups (type I and type II by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109 were determined and compared with the previously determined genome of a Korean strain (KCTC 11537. The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.

  8. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution.

    Science.gov (United States)

    Renner, Daniel W; Szpara, Moriah L

    2018-01-01

    Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. Copyright © 2017 Renner and Szpara.

  9. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution

    Science.gov (United States)

    Renner, Daniel W.

    2017-01-01

    ABSTRACT Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. PMID:29046445

  10. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind

    2014-01-25

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  11. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind; Martin, Darren Patrick; Navas-Castillo, Jesú s; Moriones, Enrique; Herná ndez-Zepeda, Cecilia; Idris, Ali; Murilo Zerbini, F.; Brown, Judith K.

    2014-01-01

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  12. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    Science.gov (United States)

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  13. Genome-wide survey in African Americans demonstrates potential epistasis of fitness in the human genome.

    Science.gov (United States)

    Wang, Heming; Choi, Yoonha; Tayo, Bamidele; Wang, Xuefeng; Morris, Nathan; Zhang, Xiang; Broeckel, Uli; Hanis, Craig; Kardia, Sharon; Redline, Susan; Cooper, Richard S; Tang, Hua; Zhu, Xiaofeng

    2017-02-01

    The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two-locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P-value = 4.01 × 10 -8 ) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome. © 2016 WILEY PERIODICALS, INC.

  14. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-12-01

    The mycolic acid bacteria are a distinct suprageneric group of asporogenous Grampositive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread availability of bacterial genome data, a computational framework that simulates DNA-DNA hybridisation was developed and validated using multiscale bootstrap resampling. The tool classifies microbial genomes based on whole genome DNA, and was deployed as a web-application using PHP and Javascript. It is accessible online at http://cbrc.kaust.edu.sa/dna_hybridization/ A third study was a computational and statistical methods in the identification and analysis of a putative minimal mycolic acid bacterial genome so as to better understand (1) the genomic requirements to encode a mycolic acid bacterial cell and (2) the role and type of genes and genetic elements that lead to the massive increase in genome size in environmental mycolic acid bacteria. Using a reciprocal comparison approach, a total of 690 orthologous gene clusters forming a putative minimal genome were identified across 24 mycolic acid bacterial species. In order to identify new potential drug

  15. Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    NARCIS (Netherlands)

    Zendejas, Dominguez J.; Koppenhoefer, J.; Saglia, R.; Birkby, J.L.; Hodgkin, S.; Kovács, G.; Pinfield, D.; Sipocz, B.; Barrado, D.; Bender, R.; Burgo, del C.; Cappetta, M.; Martín, E.; Nefs, B.; Riffeser, A.; Steele, P.

    2013-01-01

    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light

  16. Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.

    Science.gov (United States)

    Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E

    2016-11-18

    Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.

  17. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    Science.gov (United States)

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  18. GIGGLE: a search engine for large-scale integrated genome analysis

    Science.gov (United States)

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-01-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation. PMID:29309061

  19. GIGGLE: a search engine for large-scale integrated genome analysis.

    Science.gov (United States)

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-02-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation.

  20. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes.

    Directory of Open Access Journals (Sweden)

    Elijah R Behr

    Full Text Available Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP, treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7, odds ratio = 2, 95% confidence intervals: 1.5-2.6. The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9. Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs.

  1. Meta-analysis of Genome-Wide Association Studies for Extraversion

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, K. J. H.

    2016-01-01

    small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found...... at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero...

  2. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  3. A genome-wide association study of cognitive function in Chinese adult twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Wu, Yili

    2017-01-01

    Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants....... Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive...

  4. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica).

    Science.gov (United States)

    Jia, Guanqing; Huang, Xuehui; Zhi, Hui; Zhao, Yan; Zhao, Qiang; Li, Wenjun; Chai, Yang; Yang, Lifang; Liu, Kunyan; Lu, Hengyun; Zhu, Chuanrang; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Guo, Yunli; Huang, Tao; Zhang, Lei; Lu, Tingting; Feng, Qi; Hao, Hangfei; Liu, Hongkuan; Lu, Ping; Zhang, Ning; Li, Yuhui; Guo, Erhu; Wang, Shujun; Wang, Suying; Liu, Jinrong; Zhang, Wenfei; Chen, Guoqiu; Zhang, Baojin; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Li, Jiayang; Diao, Xianmin; Han, Bin

    2013-08-01

    Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.

  5. Genome-wide association study of swine farrowing traits. Part I: genetic and genomic parameter estimates.

    Science.gov (United States)

    Schneider, J F; Rempel, L A; Rohrer, G A

    2012-10-01

    The primary objective of this study was to determine genetic and genomic parameters among swine (Sus scrofa) farrowing traits. Genetic parameters were obtained using MTDFREML. Genomic parameters were obtained using GENSEL. Genetic and residual variances obtained from MTDFREML were used as priors for the Bayes C analysis of GENSEL. Farrowing traits included total number born (TNB), number born alive (NBA), number born dead (NBD), number stillborn (NSB), number of mummies (MUM), litter birth weight (LBW), and average piglet birth weight (ABW). Statistically significant heritabilities included TNB (0.09, P = 0.048), NBA (0.09, P = 0.041), LBW (0.20, P = 0.002), and ABW (0.26, P NBA (0.97, P NBA-LBW (0.56, P NBA (0.06), NBD (0.00), NSB (0.01), MUM (0.00), LBW (0.11), and ABW (0.31). Limited information is available in the literature about genomic parameters. Only the GP estimate for NSB is significantly lower than what has been published. The GP estimate for ABW is greater than the estimate for heritability found in this study. Other traits with significant heritability had GP estimates half the value of heritability. This research indicates that significant genetic markers will be found for TNB, NBA, LBW, and ABW that will have either immediate use in industry or provide a roadmap to further research with fine mapping or sequencing of areas of significance. Furthermore, these results indicate that genomic selection implemented at an early age would have similar annual progress as traditional selection, and could be incorporated along with traditional selection procedures to improve genetic progress of litter traits.

  6. Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA

    NARCIS (Netherlands)

    Amaral, A.J.; Ferretti, L.; Megens, H.J.W.C.; Crooijmans, R.P.M.A.; Nie, H.; Ramos-Onsins, S.E.; Perez-Enciso, M.; Schook, L.B.; Groenen, M.A.M.

    2011-01-01

    Background Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. Methodology/Main Findings Genome wide footprints of pig domestication and

  7. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  8. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    Science.gov (United States)

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  9. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  10. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  11. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  12. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  13. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    Science.gov (United States)

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  14. GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes

    Directory of Open Access Journals (Sweden)

    Nakayama Yoichi

    2006-03-01

    Full Text Available Abstract Background Successful realization of a "systems biology" approach to analyzing cells is a grand challenge for our understanding of life. However, current modeling approaches to cell simulation are labor-intensive, manual affairs, and therefore constitute a major bottleneck in the evolution of computational cell biology. Results We developed the Genome-based Modeling (GEM System for the purpose of automatically prototyping simulation models of cell-wide metabolic pathways from genome sequences and other public biological information. Models generated by the GEM System include an entire Escherichia coli metabolism model comprising 968 reactions of 1195 metabolites, achieving 100% coverage when compared with the KEGG database, 92.38% with the EcoCyc database, and 95.06% with iJR904 genome-scale model. Conclusion The GEM System prototypes qualitative models to reduce the labor-intensive tasks required for systems biology research. Models of over 90 bacterial genomes are available at our web site.

  15. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  16. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize

    Directory of Open Access Journals (Sweden)

    Thirunavukkarasu Nepolean

    2017-04-01

    Full Text Available Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis. Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.

  17. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    Science.gov (United States)

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  18. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  19. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  20. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  2. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I.E. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  3. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci

    NARCIS (Netherlands)

    Keurentjes, Joost J.B.; Fu, Jingyuan; Terpstra, Inez R.; Garcia, Juan M.; Ackerveken, Guido van den; Snoek, L. Basten; Peeters, Anton J.M.; Vreugdenhil, Dick; Koornneef, Maarten; Jansen, Ritsert C.

    2007-01-01

    Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation

  4. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  5. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Bruggeman, Richard; Nolen, Willem A.; Penninx, Brenda W.

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  6. Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway

    Science.gov (United States)

    Low plasma B-vitamin levels and elevated homocysteine have been associated with cancer, cardiovascular disease, and neurodegenerative disorders. Common variants in FUT2 on chromosome 19q13 were associated with plasma vitamin B12 levels among women in a genome-wide association study (GWAS) in the Nur...

  7. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.

    Science.gov (United States)

    Levy, Daniel; Neuhausen, Susan L; Hunt, Steven C; Kimura, Masayuki; Hwang, Shih-Jen; Chen, Wei; Bis, Joshua C; Fitzpatrick, Annette L; Smith, Erin; Johnson, Andrew D; Gardner, Jeffrey P; Srinivasan, Sathanur R; Schork, Nicholas; Rotter, Jerome I; Herbig, Utz; Psaty, Bruce M; Sastrasinh, Malinee; Murray, Sarah S; Vasan, Ramachandran S; Province, Michael A; Glazer, Nicole L; Lu, Xiaobin; Cao, Xiaojian; Kronmal, Richard; Mangino, Massimo; Soranzo, Nicole; Spector, Tim D; Berenson, Gerald S; Aviv, Abraham

    2010-05-18

    Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.

  8. Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent

    DEFF Research Database (Denmark)

    Smith, Caren E; Follis, Jack L; Dashti, Hassan S

    2018-01-01

    SCOPE: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. METHODS AND RESULTS: A genome-wide interaction study to discover genetic variants that account for variati...

  9. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.; Ekholm, J.; Forabosco, P.; Franke, F.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenkel, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schäfer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.; Steinhausen, H.C.; van der Meulen, E.; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  10. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    DEFF Research Database (Denmark)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ...

  11. Case-control genome-wide association study of attention-deficit/hyperactivity disorder.

    NARCIS (Netherlands)

    Neale, B.M.; Medland, S.; Ripke, S.; Anney, R.J.; Asherson, P.; Buitelaar, J.K.; Franke, B.; Gill, M.; Kent, L.; Holmans, P.; Middleton, F.; Thapar, A.; Lesch, K.P.; Faraone, S.V.; Daly, M.; Nguyen, T.T.; Schafer, H.; Steinhausen, H.C.; Reif, A.; Renner, T.J.; Romanos, M.; Romanos, J.; Warnke, A.; Walitza, S.; Freitag, C.; Meyer, J.; Palmason, H.; Rothenberger, A.; Hawi, Z.; Sergeant, J.A.; Roeyers, H.; Mick, E.; Biederman, J.

    2010-01-01

    OBJECTIVE: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genomewide association studies (GWAS) are needed.

  12. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder.

    NARCIS (Netherlands)

    Zhou, K.; Dempfle, A.; Arcos-Burgos, M.; Bakker, S.C.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Castellanos, F.X.; Doyle, A.; Ebstein, R.P.; Ekholm, J.; Forabosco, P.; Franke, B.; Freitag, C.; Friedel, S.; Gill, M.; Hebebrand, J.; Hinney, A.; Jacob, C.; Lesch, K.P.; Loo, S.K.; Lopera, F.; McCracken, J.T.; McGough, J.J.; Meyer, J.; Mick, E.; Miranda, A.; Muenke, M.; Mulas, F.; Nelson, S.F.; Nguyen, T.T.; Oades, R.D.; Ogdie, M.N.; Palacio, J.D.; Pineda, D.; Reif, A.; Renner, T.J.; Roeyers, H.; Romanos, M.; Rothenberger, A.; Schafer, H.; Sergeant, J.A.; Sinke, R.J.; Smalley, S.L.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Meulen, E. van der; Walitza, S.; Warnke, A.; Lewis, C.M.; Faraone, S.V.; Asherson, P.

    2008-01-01

    Genetic contribution to the development of attention deficit hyperactivity disorder (ADHD) is well established. Seven independent genome-wide linkage scans have been performed to map loci that increase the risk for ADHD. Although significant linkage signals were identified in some of the studies,

  13. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) an...

  14. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Matheson, Melanie C; Pers, Tune Hannes

    2013-01-01

    Allergen-specific immunoglobulin E (present in allergic sensitization) has a central role in the pathogenesis of allergic disease. We performed the first large-scale genome-wide association study (GWAS) of allergic sensitization in 5,789 affected individuals and 10,056 controls and followed up th...

  15. A genome-wide comparison of mesenchymal stem cells derived from human placenta and umbilical cord

    Directory of Open Access Journals (Sweden)

    Sen-Wen Teng

    2017-10-01

    Conclusion: We identified the consistence and specific DEGs of human placenta and umbilical cord based on the genome-wide comparison. Our results indicated that hMSCs derived from umbilical cord and placenta have different gene expression patterns, and most of specific genes are involved in the cell cycle, cell division, cell death, and cell developmental processes.

  16. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  17. Sandwich corrected standard errors in family-based genome-wide association studies

    NARCIS (Netherlands)

    Minica, C.C.; Dolan, C.V.; Kampert, M.M.D.; Boomsma, D.I.; Vink, J.M.

    2015-01-01

    Given the availability of genotype and phenotype data collected in family members, the question arises which estimator ensures the most optimal use of such data in genome-wide scans. Using simulations, we compared the Unweighted Least Squares (ULS) and Maximum Likelihood (ML) procedures. The former

  18. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels

    NARCIS (Netherlands)

    J.B. Richards (Brent); D. Waterworth (Dawn); S. O'Rahilly (Stephen); M.-F. Hivert (Marie-France); R.J.F. Loos (Ruth); J.R.B. Perry (John); T. Tanaka (Toshiko); N.J. Timpson (Nicholas); R.K. Semple (Robert); N. Soranzo (Nicole); K. Song (Kijoung); N. Rocha (Nuno); E. Grundberg (Elin); J. Dupuis (Josée); J.C. Florez (Jose); C. Langenberg (Claudia); I. Prokopenko (Inga); R. Saxena (Richa); R. Sladek (Rob); Y.S. Aulchenko (Yurii); D.M. Evans (David); G. Waeber (Gérard); M.S. Burnett; N. Sattar (Naveed); J. Devaney (Joseph); C. Willenborg (Christina); A. Hingorani (Aroon); J.C.M. Witteman (Jacqueline); P. Vollenweider (Peter); B. Glaser (Beate); C. Hengstenberg (Christian); L. Ferrucci (Luigi); D. Melzer (David); K. Stark (Klaus); J. Deanfield (John); J. Winogradow (Janina); M. Grassl (Martina); A.S. Hall (Alistair); J.M. Egan (Josephine); J.R. Thompson (John); S.L. Ricketts (Sally); I.R. König (Inke); W. Reinhard (Wibke); S.M. Grundy (Scott); H.E. Wichmann (Heinz Erich); P. Barter (Phil); R. Mahley (Robert); Y.A. Kesaniemi (Antero); D.J. Rader (Daniel); M.P. Reilly (Muredach); S.E. Epstein (Stephen); A.F.R. Stewart (Alexandre); P. Tikka-Kleemola (Päivi); H. Schunkert (Heribert); K.A. Burling (Keith); J. Erdmann (Jeanette); P. Deloukas (Panagiotis); T. Pastinen (Tomi); N.J. Samani (Nilesh); R. McPherson (Ruth); G.D. Smith; T.M. Frayling (Timothy); N.J. Wareham (Nick); J.B. Meigs (James); V. Mooser (Vincent); T.D. Spector (Timothy)

    2009-01-01

    textabstractThe adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of

  19. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy

    DEFF Research Database (Denmark)

    Luca, Gianina; Haba-Rubio, José; Dauvilliers, Yves

    2013-01-01

    diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women...

  20. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  1. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    NARCIS (Netherlands)

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E Hulshoff; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously

  2. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  3. Genome-Wide Association Study for Response to Eimeria maxima Challenge in Broilers

    DEFF Research Database (Denmark)

    Hamzic, Edin; Bed'hom, Bertrand; Hérault, Frédéric

    Use of genetic tools for improvement of host’s response is considered as a promising complementary approach for coccidiosis control. Therefore, we performed genome wide association study (GWAS) for response to Eimeria maxima challenge in broilers. The challenge was done on 2024 Cobb500 broilers. We...

  4. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  5. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  6. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,...

  7. A genome-wide association study reveals a novel candidate gene for sperm motility in pigs

    NARCIS (Netherlands)

    Diniz, D.B.; Lopes, M.S.; Broekhuijse, M.L.W.J.; Lopes, P.S.; Harlizius, B.; Guimaraes, S.E.F.; Duijvesteijn, N.; Knol, E.F.; Silva, F.F.

    2014-01-01

    Sperm motility is one of the most widely used parameters in order to evaluate boar semen quality. However, this trait can only be measured after puberty. Thus, the use of genomic information appears as an appealing alternative to evaluate and improve selection for boar fertility traits earlier in

  8. Genome-wide analysis yields new loci associating with aortic valve stenosis

    DEFF Research Database (Denmark)

    Helgadottir, Anna; Thorleifsson, Gudmar; Gretarsdottir, Solveig

    2018-01-01

    Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls...

  9. Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region

    NARCIS (Netherlands)

    Skibola, Christine F.; Berndt, Sonja I.; Vijai, Joseph; Conde, Lucia; Wang, Zhaoming; Yeager, Meredith; de Bakker, Paul I. W.; Birmann, Brenda M.; Vajdic, Claire M.; Foo, Jia-Nee; Bracci, Paige M.; Vermeulen, Roel C. H.; Slager, Susan L.; de Sanjose, Silvia; Wang, Sophia S.; Linet, Martha S.; Salles, Gilles; Lan, Qing; Severi, Gianluca; Hjalgrim, Henrik; Lightfoot, Tracy; Melbye, Mads; Gu, Jian; Ghesquieres, Herve; Link, Brian K.; Morton, Lindsay M.; Holly, Elizabeth A.; Smith, Alex; Tinker, Lesley F.; Teras, Lauren R.; Kricker, Anne; Becker, Nikolaus; Purdue, Mark P.; Spinelli, John J.; Zhang, Yawei; Giles, Graham G.; Vineis, Paolo; Monnereau, Alain; Bertrand, Kimberly A.; Albanes, Demetrius; Zeleniuch-Jacquotte, Anne; Gabbas, Attilio; Chung, Charles C.; Burdett, Laurie; Hutchinson, Amy; Lawrence, Charles; Montalvan, Rebecca; Liang, Liming; Huang, Jinyan; Ma, Baoshan; Liu, Jianjun; Adami, Hans-Olov; Glimelius, Bengt; Ye, Yuanqing; Nowakowski, Grzegorz S.; Dogan, Ahmet; Thompson, Carrie A.; Habermann, Thomas M.; Novak, Anne J.; Liebow, Mark; Witzig, Thomas E.; Weiner, George J.; Schenk, Maryjean; Hartge, Patricia; De Roos, Anneclaire J.; Cozen, Wendy; Zhi, Degui; Akers, Nicholas K.; Riby, Jacques; Smith, Martyn T.; Lacher, Mortimer; Villano, Danylo J.; Maria, Ann; Roman, Eve; Kane, Eleanor; Jackson, Rebecca D.; North, Kari E.; Diver, W. Ryan; Turner, Jenny; Armstrong, Bruce K.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; McKay, James; Brooks-Wilson, Angela R.; Zheng, Tongzhang; Holford, Theodore R.; Chamosa, Saioa; Kaaks, Rudolph; Kelly, Rachel S.; Ohlsson, Bodil; Travis, Ruth C.; Weiderpass, Elisabete; Clave, Jacqueline; Giovannucci, Edward; Kraft, Peter; Virtamo, Jarmo; Mazza, Patrizio; Cocco, Pierluigi; Ennas, Maria Grazia; Chiu, Brian C. H.; Fraumeni, Joseph R.; Nieters, Alexandra; Offit, Kenneth; Wu, Xifeng; Cerhan, James R.; Smedby, Karin E.; Chanock, Stephen J.; Rothman, Nathaniel

    2014-01-01

    Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European

  10. A genome wide association study links glutamate receptor pathway to sporadic Creutzfeldt-Jakob disease risk

    NARCIS (Netherlands)

    P. Sanchez-Juan (Pascual); M.T. Bishop (Matthew); G.G. Kovacs (Gabor); M. Calero (Miguel); Y.S. Aulchenko (Yurii); A. Ladogana (Anna); A. Boyd (Alison); V. Lewis (Victoria); C. Ponto (Claudia); Calero, O. (Olga); A. Poleggi (Anna); A. Carracedo (Angel); S.J. van der Lee (Sven); T. Ströbel (Thomas); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); S. Haik; O. Combarros (Onofre); J. Berciano (José); A.G. Uitterlinden (André); S.J. Collins (Steven); H. Budka (Herbert); J-P. Brandel (Jean-Philippe); J.-L. Laplanche (Jean-Louis); M. Pocchiari (Maurizio); I. Zerr (Inga); R. Knight (Richard); R.G. Will (Robert); C.M. van Duijn (Cornelia)

    2015-01-01

    textabstractWe performed a genome-wide association (GWA) study in 434 sporadic Creutzfeldt-Jakob disease (sCJD) patients and 1939 controls from the United Kingdom, Germany and The Netherlands. The findings were replicated in an independent sample of 1109 sCJD and 2264 controls provided by a

  11. Genome-wide association mapping for female fertility traits in Danish and Swedish Holstein cattle

    DEFF Research Database (Denmark)

    Sahana, G; Guldbrandtsen, B; Bendixen, C

    2010-01-01

    A genome-wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were ana...

  12. Genome-wide Association Study for Calving Traits in Danish and Swedish Holstein Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2011-01-01

    A total of 22 quantitative trait loci (QTL) were detected on 19 chromosomes for direct and maternal calving traits in cattle using a genome-wide association study. Calving performance is affected by the genotypes of both the calf (direct effect) and dam (maternal effect). To identify the QTL cont...

  13. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  14. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  15. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; Medland, S.E.; Todt, U.; McArdle, W.L.; Quaye, L.; Koiranen, M.; Ikram, M.A.; Lehtimäki, T.; Stam, A.H.; Ligthart, R.S.L.; Wedenoja, J.; Dunham, I.; Neale, B. M.; Palta, P.; Hamalainen, E.; Schürks, M.; Rose, L.M.; Buring, J.E.; Ridker, P.M.; Steinberg, S.; Stefansson, H.; Jakobsson, F.; Lawlor, D.A.; Evans, D.M.; Ring, S.M.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Freilinger, T.; Schoenen, J.; Frants, R.R.; Pelzer, N.; Weller, C.M.; Zielman, R.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Borck, G.; Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Williams, F.M.; Hartikainen, A.-L.; Pouta, A.; van den Ende, J..; Uitterlinden, A.G.; Hofman, A.; Amin, N.; Hottenga, J.J.; Vink, J.M.; Heikkilä, K.; Alexander, M.; Muller-Myhsok, B.; Schreiber, S; Meitinger, T.; Wichmann, H. E.; Aromaa, A.; Eriksson, J.G.; Traynor, B.J.; Trabzuni, D.; Rossin, E.; Lage, K.; Jacobs, S.B.; Gibbs, J.R.; Birney, E.; Kaprio, J.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Raitakari, O.; Jarvelin, M.-R.; Zwart, J.A.; Cherkas, L.; Strachan, D.P.; Kubisch, C.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M.; Dichgans, M.; Wessman, M.; Smith, G.D.; Stefansson, K.; Daly, M.J.; Nyholt, DR; Chasman, D.I.; Palotie, A.

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  16. Genome-wide ancestry of 17th-century enslaved Africans from the Caribbean

    DEFF Research Database (Denmark)

    Schroeder, Hannes; Avila-Arcos, Maria C.; Malaspinas, Anna-Sapfo

    2015-01-01

    Between 1500 and 1850, more than 12 million enslaved Africans were transported to the New World. The vast majority were shipped from West and West-Central Africa, but their precise origins are largely unknown. We used genome-wide ancient DNA analyses to investigate the genetic origins of three en...

  17. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah E.; Collins, Ann L.; Crowley, James J.; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K. E.; Sanchez, Nick; Stahl, Eli A.; Williams, Stephanie; Wray, Naomi R.; Xia, Kai; Bettella, Francesco; Borglum, Anders D.; Bulik-Sullivan, Brendan K.; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L.; Holmans, Peter; Hougaard, David M.; Kendler, Kenneth S.; Lin, Kuang; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Neale, Benjamin M.; O'Neill, Francis A.; Owen, Michael J.; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L.; Riley, Brien P.; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B.; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T.; Levinson, Douglas F.; Gejman, Pablo V.; Laurent, Claudine; Mowry, Bryan J.; O'Donovan, Michael C.; Pulver, Ann E.; Schwab, Sibylle G.; Wildenauer, Dieter B.; Dudbridge, Frank; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F. Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A.; Nestadt, Gerald; Norton, Nadine; Papadimitriou, George N.; Ribble, Robert; Sanders, Alan R.; Silverman, Jeremy M.; Walsh, Dermot; Williams, Nigel M.; Wormley, Brandon; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S.; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M.; Linszen, Don H.; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M.; Ophoff, Roel A.; van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden P.; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D.; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J.; Weston, Paul; Widaa, Sara; Whittaker, Pamela; McCarthy, Mark I.; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A.; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with

  18. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations

    DEFF Research Database (Denmark)

    Demirkan, Ayşe; van Duijn, Cornelia M; Ugocsai, Peter

    2012-01-01

    , and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57...

  19. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease

    NARCIS (Netherlands)

    Khor, Chiea Chuen; Davila, Sonia; Breunis, Willemijn B.; Lee, Yi-Ching; Shimizu, Chisato; Wright, Victoria J.; Yeung, Rae S. M.; Tan, Dennis E. K.; Sim, Kar Seng; Wang, Jie Jin; Wong, Tien Yin; Pang, Junxiong; Mitchell, Paul; Cimaz, Rolando; Dahdah, Nagib; Cheung, Yiu-Fai; Huang, Guo-Ying; Yang, Wanling; Park, In-Sook; Lee, Jong-Keuk; Wu, Jer-Yuarn; Levin, Michael; Burns, Jane C.; Burgner, David; Kuijpers, Taco W.; Hibberd, Martin L.; Lau, Yu-Lung; Zhang, Jing; Ma, Xiao-Jing; Liu, Fang; Wu, Lin; Yoo, Jeong-Jin; Hong, Soo-Jong; Kim, Kwi-Joo; Kim, Jae-Jung; Park, Young-Mi; Mi Hong, Young; Sohn, Sejung; Young Jang, Gi; Ha, Kee-Soo; Nam, Hyo-Kyoung; Byeon, Jung-Hye; Weon Yun, Sin; Ki Han, Myung; Lee, Kyung-Yil; Hwang, Ja-Young; Kuipers, Irene M.; Ottenkamp, Jaap J.; Biezeveld, Maarten; Tacke, Carline

    2011-01-01

    Kawasaki disease is a systemic vasculitis of unknown etiology, with clinical observations suggesting a substantial genetic contribution to disease susceptibility. We conducted a genome-wide association study and replication analysis in 2,173 individuals with Kawasaki disease and 9,383 controls from

  20. Connecting the dots, genome-wide association studies in substance use

    NARCIS (Netherlands)

    Nivard, M.G.; Verweij, K.J.H.; Minica, C.C.; Treur, J.L.; Vink, J.M.; Boomsma, D.I.

    2016-01-01

    The recent genome-wide association (GWA) meta-analysis of lifetime cannabis use by the International Cannabis Consortium marks a milestone in the study of the genetics of cannabis use. Similar milestones for the genetics of substance use were the GWA meta-analyses of four smoking related traits, of

  1. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq

    NARCIS (Netherlands)

    Johannes, F.; Wardenaar, R.; Colome-Tatche, M.; Mousson, F.; de Graaf, P.; Mokry, M.; Guryev, V.; Timmers, H.T.; Cuppen, E.; Jansen, R.

    2010-01-01

    MOTIVATION: ChIP-chip and ChIP-seq technologies provide genome-wide measurements of various types of chromatin marks at an unprecedented resolution. With ChIP samples collected from different tissue types and/or individuals, we can now begin to characterize stochastic or systematic changes in

  2. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  3. Genome-wide association study for ovarian cancer susceptibility using pooled DNA.

    NARCIS (Netherlands)

    Lu, Y.; Chen, X.; Beesley, J.; Johnatty, S.E.; Defazio, A.; Lambrechts, S.; Lambrechts, D.; Despierre, E.; Vergotes, I.; Chang-Claude, J.; Hein, R.; Nickels, S.; Wang-Gohrke, S.; Dork, T.; Durst, M.; Antonenkova, N.; Bogdanova, N.; Goodman, M.T.; Lurie, G.; Wilkens, L.R.; Carney, M.E.; Butzow, R.; Nevanlinna, H.; Heikkinen, T.; Leminen, A.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kjaer, S.K.; Hogdall, E.; Jensen, A.; Brooks-Wilson, A.; Le, N.; Cook, L.; Earp, M.; Kelemen, L.; Easton, D.; Pharoah, P.; Song, H.; Tyrer, J.; Ramus, S.; Menon, U.; Gentry-Maharaj, A.; Gayther, S.A.; Bandera, E.V.; Olson, S.H.; Orlow, I.; Rodriguez-Rodriguez, L.; MacGregor, S.; Chenevix-Trench, G.

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used in

  4. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  5. Meta-analysis of genome-wide association studies for personality

    NARCIS (Netherlands)

    M.H.M. de Moor; P.T. Costa Jr; A. Terracciano; R.F. Krueger; E.J.C. de Geus (Eco); T. Toshiko; B.W.J.H. Penninx (Brenda); T. Esko; P.A.F. Madden (Pamela); J. Derringer; N. Amin (Najaf); G.A.H.M. Willemsen (Gonneke); J.J. Hottenga (Jouke Jan); M.A. Distel (Marijn); M. Uda (Manuela); S. Sanna (Serena); P. Spinhoven; C.A. Hartman; P.F. Sullivan (Patrick); A. Realo; J. Allik; A.C. Heath; M.L. Pergadia; P. Lin; R. Grucza; T. Nutile; M. Ciullo; D. Rujescu (Dan); I. Giegling (Ina); B. Konte; E. Widen (Elisabeth); D.L. Cousminer (Diana); J.G. Eriksson; A. Palotie; L. Peltonen; M. Luciano (Michelle); A. Tenesa (Albert); G. Davies; L.M. Lopez; N.K. Hansell (Narelle); S.E. Medland (Sarah Elizabeth); L. Ferrucci; D. Schlessinger; G.W. Montgomery; M.J. Wright (Margaret); Y.S. Aulchenko (Yurii); A.C.J.W. Janssens (Cécile); B.A. Oostra (Ben); A. Metspalu (Andres); I.J. Deary; K. Räikkönen (Katri); L.J. Bierut (Laura); N.G. Martin; C.M. van Duijn (Cornelia); D.I. Boomsma (Dorret); G.R. Abecasis (Gonçalo); A. Agrawal (Arpana)

    2012-01-01

    textabstractPersonality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide

  6. Detection of gene-environment interaction in pedigree data using genome-wide genotypes

    NARCIS (Netherlands)

    Nivard, Michel G.; Middeldorp, Christel M.; Lubke, Gitta; Hottenga, Jouke-Jan; Abdellaoui, Abdel; Boomsma, Dorret I.; Dolan, Conor V.

    2016-01-01

    Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen et al and extended this model to include

  7. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    NARCIS (Netherlands)

    Nicolas, Aude; Kenna, Kevin P.; Renton, Alan E.; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A.; Kenna, Brendan J.; Nalls, Mike A.; Keagle, Pamela; Rivera, Alberto M.; van Rheenen, Wouter; Murphy, Natalie A.; van Vugt, Joke J.F.A.; Geiger, Joshua T.; van der Spek, Rick; Pliner, Hannah A.; Smith, Bradley N.; Marangi, Giuseppe; Topp, Simon D.; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D.; Kenna, Aoife; Logullo, Francesco O.; Simone, Isabella L.; Logroscino, Giancarlo; Salvi, Fabrizio; Bartolomei, Ilaria; Borghero, Giuseppe; Murru, Maria Rita; Costantino, Emanuela; Pani, Carla; Puddu, Roberta; Caredda, Carla; Piras, Valeria; Tranquilli, Stefania; Cuccu, Stefania; Corongiu, Daniela; Melis, Maurizio; Milia, Antonio; Marrosu, Francesco; Marrosu, Maria Giovanna; Floris, Gianluca; Cannas, Antonino; Capasso, Margherita; Caponnetto, Claudia; Mancardi, Gianluigi; Origone, Paola; Mandich, Paola; Conforti, Francesca L.; Cavallaro, Sebastiano; Mora, Gabriele; Marinou, Kalliopi; Sideri, Riccardo; Penco, Silvana; Mosca, Lorena; Lunetta, Christian; Pinter, Giuseppe Lauria; Corbo, Massimo; Riva, Nilo; Carrera, Paola; Volanti, Paolo; Mandrioli, Jessica; Fini, Nicola; Fasano, Antonio; Tremolizzo, Lucio; Arosio, Alessandro; Ferrarese, Carlo; Trojsi, Francesca; Tedeschi, Gioacchino; Monsurrò, Maria Rosaria; Piccirillo, Giovanni; Femiano, Cinzia; Ticca, Anna; Ortu, Enzo; La Bella, Vincenzo; Spataro, Rossella; Colletti, Tiziana; Sabatelli, Mario; Zollino, Marcella; Conte, Amelia; Luigetti, Marco; Lattante, Serena; Marangi, Giuseppe; Santarelli, Marialuisa; Petrucci, Antonio; Pugliatti, Maura; Pirisi, Angelo; Parish, Leslie D.; Occhineri, Patrizia; Giannini, Fabio; Battistini, Stefania; Ricci, Claudia; Benigni, Michele; Cau, Tea B.; Loi, Daniela; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella; Casale, Federico; Marrali, Giuseppe; Fuda, Giuseppe; Ossola, Irene; Cammarosano, Stefania; Canosa, Antonio; Ilardi, Antonio; Manera, Umberto; Grassano, Maurizio; Tanel, Raffaella; Pisano, Fabrizio; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L.; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L.; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O.; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Harms, Matthew B.; Goldstein, David B.; Shneider, Neil A.; Goutman, Stephen A.; Simmons, Zachary; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Manousakis, George; Appel, Stanley H.; Simpson, Ericka; Wang, Leo; Baloh, Robert H.; Gibson, Summer B.; Bedlack, Richard; Lacomis, David; Sareen, Dhruv; Sherman, Alexander; Bruijn, Lucie; Penny, Michelle; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B.; Allen, Andrew S.; Appel, Stanley; Baloh, Robert H.; Bedlack, Richard S.; Boone, Braden E.; Brown, Robert; Carulli, John P.; Chesi, Alessandra; Chung, Wendy K.; Cirulli, Elizabeth T.; Cooper, Gregory M.; Couthouis, Julien; Day-Williams, Aaron G.; Dion, Patrick A.; Gibson, Summer B.; Gitler, Aaron D.; Glass, Jonathan D.; Goldstein, David B.; Han, Yujun; Harms, Matthew B.; Harris, Tim; Hayes, Sebastian D.; Jones, Angela L.; Keebler, Jonathan; Krueger, Brian J.; Lasseigne, Brittany N.; Levy, Shawn E.; Lu, Yi Fan; Maniatis, Tom; McKenna-Yasek, Diane; Miller, Timothy M.; Myers, Richard M.; Petrovski, Slavé; Pulst, Stefan M.; Raphael, Alya R.; Ravits, John M.; Ren, Zhong; Rouleau, Guy A.; Sapp, Peter C.; Shneider, Neil A.; Simpson, Ericka; Sims, Katherine B.; Staropoli, John F.; Waite, Lindsay L.; Wang, Quanli; Wimbish, Jack R.; Xin, Winnie W.; Gitler, Aaron D.; Harris, Tim; Myers, Richard M.; Phatnani, Hemali; Kwan, Justin; Sareen, Dhruv; Broach, James R.; Simmons, Zachary; Arcila-Londono, Ximena; Lee, Edward B.; Van Deerlin, Vivianna M.; Shneider, Neil A.; Fraenkel, Ernest; Ostrow, Lyle W.; Baas, Frank; Zaitlen, Noah; Berry, James D.; Malaspina, Andrea; Fratta, Pietro; Cox, Gregory A.; Thompson, Leslie M.; Finkbeiner, Steve; Dardiotis, Efthimios; Miller, Timothy M.; Chandran, Siddharthan; Pal, Suvankar; Hornstein, Eran; MacGowan, Daniel J.L.; Heiman-Patterson, Terry D.; Hammell, Molly G.; Patsopoulos, Nikolaos A.; Dubnau, Joshua; Nath, Avindra; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C.; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; LeNail, Alexander; Lima, Leandro; Fraenkel, Ernest; Rothstein, Jeffrey D.; Svendsen, Clive N.; Thompson, Leslie M.; Van Eyk, Jenny; Maragakis, Nicholas J.; Berry, James D.; Glass, Jonathan D.; Miller, Timothy M.; Kolb, Stephen J.; Baloh, Robert H.; Cudkowicz, Merit; Baxi, Emily; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K.; Finkbeiner, Steven; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Fraenkel, Ernest; Svendsen, Clive N.; Svendsen, Clive N.; Thompson, Leslie M.; Thompson, Leslie M.; Van Eyk, Jennifer E.; Berry, James D.; Berry, James D.; Miller, Timothy M.; Kolb, Stephen J.; Cudkowicz, Merit; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J. Paul; Wu, Gang; Rampersaud, Evadnie; Wuu, Joanne; Rademakers, Rosa; Züchner, Stephan; Schule, Rebecca; McCauley, Jacob; Hussain, Sumaira; Cooley, Anne; Wallace, Marielle; Clayman, Christine; Barohn, Richard; Statland, Jeffrey; Ravits, John M.; Swenson, Andrea; Jackson, Carlayne; Trivedi, Jaya; Khan, Shaida; Katz, Jonathan; Jenkins, Liberty; Burns, Ted; Gwathmey, Kelly; Caress, James; McMillan, Corey; Elman, Lauren; Pioro, Erik P.; Heckmann, Jeannine; So, Yuen; Walk, David; Maiser, Samuel; Zhang, Jinghui; Benatar, Michael; Taylor, J. Paul; Taylor, J. Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Silani, Vincenzo; Ticozzi, Nicola; Gellera, Cinzia; Ratti, Antonia; Taroni, Franco; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; D'Alfonso, Sandra; Corrado, Lucia; De Marchi, Fabiola; Corti, Stefania; Ceroni, Mauro; Mazzini, Letizia; Siciliano, Gabriele; Filosto, Massimiliano; Inghilleri, Maurizio; Peverelli, Silvia; Colombrita, Claudia; Poletti, Barbara; Maderna, Luca; Del Bo, Roberto; Gagliardi, Stella; Querin, Giorgia; Bertolin, Cinzia; Pensato, Viviana; Castellotti, Barbara; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Fogh, Isabella; Comi, Giacomo P.; Sorarù, Gianni; Cereda, Cristina; Camu, William; Mouzat, Kevin; Lumbroso, Serge; Corcia, Philippe; Meininger, Vincent; Besson, Gérard; Lagrange, Emmeline; Clavelou, Pierre; Guy, Nathalie; Couratier, Philippe; Vourch, Patrick; Danel, Véronique; Bernard, Emilien; Lemasson, Gwendal; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W.; Sidle, Katie C.; Malaspina, Andrea; Hardy, John; Singleton, Andrew B.; Johnson, Janel O.; Arepalli, Sampath; Sapp, Peter C.; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L.M.A.; Muñoz-Blanco, José Luis; Hernandez, Dena G.; Ding, Jinhui; Gibbs, J. Raphael; Scholz, Sonja W.; Scholz, Sonja W.; Floeter, Mary Kay; Campbell, Roy H.; Landi, Francesco; Bowser, Robert; Pulst, Stefan M.; Ravits, John M.; MacGowan, Daniel J.L.; Kirby, Janine; Pioro, Erik P.; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L.; Brady, Christopher B.; Brady, Christopher B.; Kowall, Neil W.; Troncoso, Juan C.; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D.; Heiman-Patterson, Terry D.; Kamel, Freya; Van Den Bosch, Ludo; Van Den Bosch, Ludo; Baloh, Robert H.; Strom, Tim M.; Meitinger, Thomas; Strom, Tim M.; Shatunov, Aleksey; Van Eijk, Kristel R.; de Carvalho, Mamede; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell; Van Es, Michael A.; Weber, Markus; Boylan, Kevin B.; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen; Basak, A. Nazli; Mora, Jesús S.; Drory, Vivian; Shaw, Pamela; Turner, Martin R.; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L.; Fifita, Jennifer A.; Nicholson, Garth A.; Blair, Ian P.; Nicholson, Garth A.; Rouleau, Guy A.; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Al Kheifat, Ahmad; Al-Chalabi, Ammar; Andersen, Peter M.; Basak, A. Nazli; Blair, Ian P.; Chio, Adriano; Cooper-Knock, Jonathan; Corcia, Philippe; Couratier, Philippe; de Carvalho, Mamede; Dekker, Annelot; Drory, Vivian; Redondo, Alberto Garcia; Gotkine, Marc; Hardiman, Orla; Hide, Winston; Iacoangeli, Alfredo; Glass, Jonathan D.; Kenna, Kevin P.; Kiernan, Matthew; Kooyman, Maarten; Landers, John E.; McLaughlin, Russell; Middelkoop, Bas; Mill, Jonathan; Neto, Miguel Mitne; Moisse, Matthieu; Pardina, Jesus Mora; Morrison, Karen; Newhouse, Stephen; Pinto, Susana; Pulit, Sara; Robberecht, Wim; Shatunov, Aleksey; Shaw, Pamela; Shaw, Chris; Silani, Vincenzo; Sproviero, William; Tazelaar, Gijs; Ticozzi, Nicola; Van Damme, Philip; van den Berg, Leonard; van der Spek, Rick; Van Eijk, Kristel R.; Van Es, Michael A.; van Rheenen, Wouter; van Vugt, Joke J.F.A.; Veldink, Jan H.; Weber, Markus; Williams, Kelly L.; Van Damme, Philip; Robberecht, Wim; Zatz, Mayana; Robberecht, Wim; Bauer, Denis C.; Twine, Natalie A.; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W.; Maragakis, Nicholas J.; Rothstein, Jeffrey D.; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A.; Feldman, Eva L.; Gibson, Summer B.; Taroni, Franco; Ratti, Antonia; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C.; Andersen, Peter M.; Weishaupt, Jochen H.; Camu, William; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Brown, Robert H.; van den Berg, Leonard; Veldink, Jan H.; Harms, Matthew B.; Glass, Jonathan D.; Stone, David J.; Tienari, Pentti; Silani, Vincenzo; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E.; Chiò, Adriano; Traynor, Bryan J.; Landers, John E.; Traynor, Bryan J.

    2018-01-01

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494

  8. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility

    NARCIS (Netherlands)

    Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun

    2015-01-01

    Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We

  9. Genome-wide identification of breed-informative single-nucleotide ...

    African Journals Online (AJOL)

    This is because the SNPs on BovineSNP50 and GGP-80K assays were ascertained as being common in European taurine breeds. Lower MAF and SNP informativeness observed in this study limits the application of these assays in breed assignment, and could have other implications for genome-wide studies in South ...

  10. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao (Jing Hua); S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I.E. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  11. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Kottgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O'Seaghdha, C.M.; Haller, T.; Yang, Q.; Johnson, A.D.; Kutalik, Z.; Smith, A.V.; Shi, J.L.; Struchalin, M.; Middelberg, R.P.S.; Brown, M.J.; Gaffo, A.L.; Pirastu, N.; Li, G.; Hayward, C.; Zemunik, T.; Huffman, J.; Yengo, L.; Zhao, J.H.; Demirkan, A.; Feitosa, M.F.; Liu, X.; Malerba, G.; Lopez, L.M.; van der Harst, P.; Li, X.Z.; Kleber, M.E.; Hicks, A.A.; Nolte, I.M.; Johansson, A.; Murgia, F.; Wild, S.H.; Bakker, S.J.L.; Peden, J.F.; Dehghan, A.; Steri, M.; Tenesa, A.; Lagou, V.; Salo, P.; Mangino, M.; Rose, L.M.; Lehtimaki, T.; Woodward, O.M.; Okada, Y.; Tin, A.; Muller, C.; Oldmeadow, C.; Putku, M.; Czamara, D.; Kraft, P.; Frogheri, L.; Thun, G.A.; Grotevendt, A.; Gislason, G.K.; Harris, T.B.; Launer, L.J.; McArdle, P.; Shuldiner, A.R.; Boerwinkle, E.; Coresh, J.; Schmidt, H.; Schallert, M.; Martin, N.G.; Montgomery, G.W.; Kubo, M.; Nakamura, Y.; Tanaka, T.; Munroe, P.B.; Samani, N.J.; Jacobs, D.R.; Liu, K.; d'Adamo, P.; Ulivi, S.; Rotter, J.I.; Psaty, B.M.; Vollenweider, P.; Waeber, G.; Campbell, S.; Devuyst, O.; Navarro, P.; Kolcic, I.; Hastie, N.; Balkau, B.; Froguel, P.; Esko, T.; Salumets, A.; Khaw, K.T.; Langenberg, C.; Wareham, N.J.; Isaacs, A.; Kraja, A.; Zhang, Q.Y.; Penninx, B.W.J.H.; Smit, J.H.; Bochud, M.; Gieger, C.

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  12. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Bakker, Stephan J L; Lagou, Vasiliki; Bruinenberg, Marcel; Stolk, Ronald P; Penninx, Brenda W; Mateo Leach, Irene; van Gilst, Wiek H; Hillege, Hans L; Wolffenbuttel, Bruce H R; Snieder, Harold; Navis, Gerjan

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  13. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    NARCIS (Netherlands)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Acha, Moshe Ray; Newton-Cheh, Christopher; Pfeufer, Arne; Lyneh, Stacey N.; Olesen, Soren-Peter; Brunak, Soren; Ellinor, Patrick T.; Jukema, J. Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Ikea W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I. W.; Lage, Kasper; Olsen, Jesper V.

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes

  14. Genome-wide association study for claw disorders and trimming status in dairy cattle

    NARCIS (Netherlands)

    Spek, van der D.; Arendonk, van J.A.M.; Bovenhuis, H.

    2015-01-01

    Performing a genome-wide association study (GWAS) might add to a better understanding of the development of claw disorders and the need for trimming. Therefore, the aim of the current study was to perform a GWAS on claw disorders and trimming status and to validate the results for claw disorders

  15. Genome-wide association analyses identify variants in developmental genes associated with hypospadias

    DEFF Research Database (Denmark)

    Geller, Frank; Feenstra, Bjarke; Carstensen, Lisbeth

    2014-01-01

    Hypospadias is a common congenital condition in boys in which the urethra opens on the underside of the penis. We performed a genome-wide association study on 1,006 surgery-confirmed hypospadias cases and 5,486 controls from Denmark. After replication genotyping of an additional 1,972 cases and 1...

  16. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  17. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    NARCIS (Netherlands)

    Postmus, Iris; Warren, Helen R.; Trompet, Stella; Arsenault, Benoit J.; Avery, Christy L.; Bis, Joshua C.; Chasman, Daniel I.; de Keyser, Catherine E.; Deshmukh, Harshal A.; Evans, Daniel S.; Feng, QiPing; Li, Xiaohui; Smit, Roelof A. J.; Smith, Albert V.; Sun, Fangui; Taylor, Kent D.; Arnold, Alice M.; Barnes, Michael R.; Barratt, Bryan J.; Betteridge, John; Boekholdt, S. Matthijs; Boerwinkle, Eric; Buckley, Brendan M.; Chen, Y.-D. Ida; de Craen, Anton J. M.; Cummings, Steven R.; Denny, Joshua C.; Dubé, Marie Pierre; Durrington, Paul N.; Eiriksdottir, Gudny; Ford, Ian; Guo, Xiuqing; Harris, Tamara B.; Heckbert, Susan R.; Hofman, Albert; Hovingh, G. Kees; Kastelein, John J. P.; Launer, Leonore J.; Liu, Ching-Ti; Liu, Yongmei; Lumley, Thomas; McKeigue, Paul M.; Munroe, Patricia B.; Neil, Andrew; Nickerson, Deborah A.; Nyberg, Fredrik; O'Brien, Eoin; O'Donnell, Christopher J.; Post, Wendy; Poulter, Neil; Vasan, Ramachandran S.; Rice, Kenneth; Rich, Stephen S.; Rivadeneira, Fernando; Sattar, Naveed; Sever, Peter; Shaw-Hawkins, Sue; Shields, Denis C.; Slagboom, P. Eline; Smith, Nicholas L.; Smith, Joshua D.; Sotoodehnia, Nona; Stanton, Alice; Stott, David J.; Stricker, Bruno H.; Stürmer, Til; Uitterlinden, André G.; Wei, Wei-Qi; Westendorp, Rudi G. J.; Whitsel, Eric A.; Wiggins, Kerri L.; Wilke, Russell A.; Ballantyne, Christie M.; Colhoun, Helen M.; Cupples, L. Adrienne; Franco, Oscar H.; Gudnason, Vilmundur; Hitman, Graham; Palmer, Colin N. A.; Psaty, Bruce M.; Ridker, Paul M.; Stafford, Jeanette M.; Stein, Charles M.; Tardif, Jean-Claude; Caulfield, Mark J.; Jukema, J. Wouter; Rotter, Jerome I.; Krauss, Ronald M.

    2016-01-01

    In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. We performed a meta-analysis of genome-wide

  18. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  19. Genome-Wide Association Uncovers Shared Genetic Effects Among Personality Traits and Mood States

    NARCIS (Netherlands)

    Luciano, Michelle; Huffman, Jennifer E.; Arias-Vásquez, Alejandro; Vinkhuyzen, Anna A. E.; Middeldorp, Christel M.; Giegling, Ina; Payton, Antony; Davies, Gail; Zgaga, Lina; Janzing, Joost; Ke, Xiayi; Galesloot, Tessel; Hartmann, Annette M.; Ollier, William; Tenesa, Albert; Hayward, Caroline; Verhagen, Maaike; Montgomery, Grant W.; Hottenga, Jouke-Jan; Konte, Bettina; Starr, John M.; Vitart, Veronique; Vos, Pieter E.; Madden, Pamela A. F.; Willemsen, Gonneke; Konnerth, Heike; Horan, Michael A.; Porteous, David J.; Campbell, Harry; Vermeulen, Sita H.; Heath, Andrew C.; Wright, Alan; Polasek, Ozren; Kovacevic, Sanja B.; Hastie, Nicholas D.; Franke, Barbara; Boomsma, Dorret I.; Martin, Nicholas G.; Rujescu, Dan; Wilson, James F.; Buitelaar, Jan; Pendleton, Neil; Rudan, Igor; Deary, Ian J.

    2012-01-01

    Measures of personality and psychological distress are correlated and exhibit genetic covariance. We conducted univariate genome-wide SNP (similar to 2.5 million) and gene-based association analyses of these traits and examined the overlap in results across traits, including a prediction analysis of

  20. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    A. Okbay (Aysu); J.P. Beauchamp (Jonathan); Fontana, M.A. (Mark Alan); J.J. Lee (James J.); T.H. Pers (Tune); Rietveld, C.A. (Cornelius A.); P. Turley (Patrick); Chen, G.-B. (Guo-Bo); V. Emilsson (Valur); Meddens, S.F.W. (S. Fleur W.); Oskarsson, S. (Sven); Pickrell, J.K. (Joseph K.); Thom, K. (Kevin); Timshel, P. (Pascal); R. de Vlaming (Ronald); A. Abdellaoui (Abdel); T.S. Ahluwalia (Tarunveer Singh); J. Bacelis (Jonas); C. Baumbach (Clemens); Bjornsdottir, G. (Gyda); J.H. Brandsma (Johan); Pina Concas, M. (Maria); J. Derringer; Furlotte, N.A. (Nicholas A.); T.E. Galesloot (Tessel); S. Girotto; Gupta, R. (Richa); L.M. Hall (Leanne M.); S.E. Harris (Sarah); E. Hofer; Horikoshi, M. (Momoko); J.E. Huffman (Jennifer E.); Kaasik, K. (Kadri); I.-P. Kalafati (Ioanna-Panagiota); R. Karlsson (Robert); A. Kong (Augustine); J. Lahti (Jari); S.J. van der Lee (Sven); Deleeuw, C. (Christiaan); P.A. Lind (Penelope); Lindgren, K.-O. (Karl-Oskar); Liu, T. (Tian); M. Mangino (Massimo); J. Marten (Jonathan); E. Mihailov (Evelin); M. Miller (Mike); P.J. van der Most (Peter); C. Oldmeadow (Christopher); A. Payton (Antony); N. Pervjakova (Natalia); W.J. Peyrot (Wouter ); Qian, Y. (Yong); O. Raitakari (Olli); Rueedi, R. (Rico); Salvi, E. (Erika); Schmidt, B. (Börge); Schraut, K.E. (Katharina E.); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); R.A. Poot (Raymond); B. St Pourcain (Beate); A. Teumer (Alexander); G. Thorleifsson (Gudmar); N. Verweij (Niek); D. Vuckovic (Dragana); Wellmann, J. (Juergen); H.J. Westra (Harm-Jan); Yang, J. (Jingyun); Zhao, W. (Wei); Zhu, Z. (Zhihong); B.Z. Alizadeh (Behrooz); N. Amin (Najaf); Bakshi, A. (Andrew); S.E. Baumeister (Sebastian); G. Biino (Ginevra); K. Bønnelykke (Klaus); P.A. Boyle (Patricia); H. Campbell (Harry); Cappuccio, F.P. (Francesco P.); G. Davies (Gail); J.E. de Neve (Jan-Emmanuel); P. Deloukas (Panagiotis); I. Demuth (Ilja); Ding, J. (Jun); Eibich, P. (Peter); Eisele, L. (Lewin); N. Eklund (Niina); D.M. Evans (David); J.D. Faul (Jessica D.); M.F. Feitosa (Mary Furlan); A.J. Forstner (Andreas); I. Gandin (Ilaria); Gunnarsson, B. (Bjarni); B.V. Halldorsson (Bjarni); T.B. Harris (Tamara); E.G. Holliday (Elizabeth); A.C. Heath (Andrew C.); L.J. Hocking; G. Homuth (Georg); M. Horan (Mike); J.J. Hottenga (Jouke Jan); P.L. de Jager (Philip); P.K. Joshi (Peter); A. Juqessur (Astanand); M. Kaakinen (Marika); M. Kähönen (Mika); S. Kanoni (Stavroula); Keltigangas-Järvinen, L. (Liisa); L.A.L.M. Kiemeney (Bart); I. Kolcic (Ivana); Koskinen, S. (Seppo); A. Kraja (Aldi); Kroh, M. (Martin); Z. Kutalik (Zoltán); A. Latvala (Antti); L.J. Launer (Lenore); Lebreton, M.P. (Maël P.); D.F. Levinson (Douglas F.); P. Lichtenstein (Paul); P. Lichtner (Peter); D.C. Liewald (David C.); A. Loukola (Anu); P.A. Madden (Pamela); R. Mägi (Reedik); Mäki-Opas, T. (Tomi); R.E. Marioni (Riccardo); P. Marques-Vidal; Meddens, G.A. (Gerardus A.); G. Mcmahon (George); C. Meisinger (Christa); T. Meitinger (Thomas); Milaneschi, Y. (Yusplitri); L. Milani (Lili); G.W. Montgomery (Grant); R. Myhre (Ronny); C.P. Nelson (Christopher P.); D.R. Nyholt (Dale); W.E.R. Ollier (William); A. Palotie (Aarno); L. Paternoster (Lavinia); N.L. Pedersen (Nancy); K. Petrovic (Katja); D.J. Porteous (David J.); K. Räikkönen (Katri); Ring, S.M. (Susan M.); A. Robino (Antonietta); O. Rostapshova (Olga); I. Rudan (Igor); A. Rustichini (Aldo); V. Salomaa (Veikko); Sanders, A.R. (Alan R.); A.-P. Sarin; R. Schmidt (Reinhold); R.J. Scott (Rodney); B.H. Smith (Blair); J.A. Smith (Jennifer A); J.A. Staessen (Jan); E. Steinhagen-Thiessen (Elisabeth); K. Strauch (Konstantin); A. Terracciano; M.D. Tobin (Martin); S. Ulivi (Shelia); S. Vaccargiu (Simona); L. Quaye (Lydia); F.J.A. van Rooij (Frank); C. Venturini (Cristina); A.A.E. Vinkhuyzen (Anna A.); U. Völker (Uwe); Völzke, H. (Henry); J.M. Vonk (Judith); D. Vozzi (Diego); J. Waage (Johannes); E.B. Ware (Erin B.); G.A.H.M. Willemsen (Gonneke); J. Attia (John); D.A. Bennett (David A.); Berger, K. (Klaus); L. Bertram (Lars); H. Bisgaard (Hans); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); U. Bültmann (Ute); C.F. Chabris (Christopher F.); F. Cucca (Francesco); D. Cusi (Daniele); I.J. Deary (Ian J.); G.V. Dedoussis (George); C.M. van Duijn (Cornelia); K. Hagen (Knut); B. Franke (Barbara); L. Franke (Lude); P. Gasparini (Paolo); P.V. Gejman (Pablo); C. Gieger (Christian); H.J. Grabe (Hans Jörgen); J. Gratten (Jacob); P.J.F. Groenen (Patrick); V. Gudnason (Vilmundur); P. van der Harst (Pim); C. Hayward (Caroline); D.A. Hinds (David A.); W. Hoffmann (Wolfgang); E. Hypponen (Elina); W.G. Iacono (William); B. Jacobsson (Bo); M.-R. Jarvelin (Marjo-Riitta); K.-H. JöCkel (Karl-Heinz); J. Kaprio (Jaakko); S.L.R. Kardia (Sharon); T. Lehtimäki (Terho); Lehrer, S.F. (Steven F.); P.K. Magnusson (Patrik); N.G. Martin (Nicholas); M. McGue (Matt); A. Metspalu (Andres); N. Pendleton (Neil); B.W.J.H. Penninx (Brenda); M. Perola (Markus); N. Pirastu (Nicola); M. Pirastu (Mario); O. Polasek (Ozren); D. Posthuma (Danielle); C. Power (Christopher); M.A. Province (Mike); N.J. Samani (Nilesh); Schlessinger, D. (David); R. Schmidt (Reinhold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); J-A. Zwart (John-Anker); U. Thorsteinsdottir (Unnur); A.R. Thurik (Roy); Timpson, N.J. (Nicholas J.); H.W. Tiemeier (Henning); J.Y. Tung (Joyce Y.); A.G. Uitterlinden (André); Vitart, V. (Veronique); P. Vollenweider (Peter); D.R. Weir (David); J.F. Wilson (James F.); A.F. Wright (Alan); Conley, D.C. (Dalton C.); R.F. Krueger; G.D. Smith; Hofman, A. (Albert); D. Laibson (David); S.E. Medland (Sarah Elizabeth); M.N. Meyer (Michelle N.); J. Yang (Joanna); M. Johannesson (Magnus); P.M. Visscher (Peter); T. Esko (Tõnu); Ph.D. Koellinger (Philipp); D. Cesarini (David); D.J. Benjamin (Daniel J.)

    2016-01-01

    textabstractEducational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that

  1. Using rice genome-wide association studies to identify DNA markers for marker-assisted selection

    Science.gov (United States)

    Rice association mapping panels are collections of rice (Oryza sativa L.) accessions developed for genome-wide association (GWA) studies. One of these panels, the Rice Diversity Panel 1 (RDP1) was phenotyped by various research groups for several traits of interest, and more recently, genotyped with...

  2. Genome-wide association study for behavior, type traits, and muscular development in Charolais beef cattle

    NARCIS (Netherlands)

    Vallée, A.; Daures, J.; Arendonk, van J.A.M.; Bovenhuis, H.

    2016-01-01

    Behavior, type traits, and muscular development are of interest for beef cattle breeding. Genome-wide association studies (GWAS) enable the identification of candidate genes, which enables genebased selection and provides insight in the genetic architecture of these traits. The objective of the

  3. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, S.; O'Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; Kim, Y.; Lee, S.H.; Magnusson, P.K.; Sanchez, N.; Stahl, E.A.; Williams, S.; Wray, N.R.; Xia, K.; Bettella, F.; Borglum, A. D.; Bulik-Sullivan, B.K.; Cormican, P.; Craddock, N.; de Leeuw, C.A.; Durmishi, N.; Gill, M.; Golimbet, V.; Hamshere, M.L.; Holmans, P.; Hougaard, D. M.; Kendler, K.S.; Lin, K.; Morris, D. W.; Mors, O.; Mortensen, P.B.; Neale, B. M.; O'Neill, F. A.; Owen, M.J.; Milovancevic, M.P.; Posthuma, D.; Powell, J.; Richards, A.L.; Riley, B.P.; Ruderfer, D.; Rujescu, D.; Sigurdsson, E.; Silagadze, T.; Smit, A.B.; Stefansson, H.; Steinberg, S.; Suvisaari, J.; Tosato, S.; Verhage, M.; Walters, T.J.; Levinson, D.F.; Gejman, P.V.; Laurent, C.; Mowry, B. J.; O'Donovan, M.C.; Pulver, A. E.; Schwab, S.G.; Wildenauer, D. B.; Dudbridge, F.; Shi, J.; Albus, M.; Alexander, M.; Campion, D.; Cohen, D.; Dikeos, D.; Duan, J.; Eichhammer, P.; Godard, S.; Hansen, M.; Lerer, F.B.; Liang, K.Y.; Maier, W.; Mallet, J.; Nertney, D. A.; Nestadt, G.; Norton, N.; O'Neill, F.A.; Papadimitriou, G.N.; Ribble, R.; Sanders, A.R.; Silverman, J.M.; Wormley, B.; Arranz, M.J.; Bakker, S.; Bender, S.; Bramon, E.; Collier, D.; Crespo-Facorro, B.; Hall, J.; Iyegbe, C.; Jablensky, A.; Kahn, R.S.; Kalaydjieva, L.; Lawrie, S.M.; Lewis, C.M.; Linszen, D.H.; Mata, I.; McIntosh, A.; Murray, R.M.; Ophoff, R.A.; van Os, J.; Walshe, M.; Weisbrod, M.; Wiersma, D.; Donnely, P.; Barasso, I.; Blackwell, J.M.; Brown, M.A.; Casas, J.P.; Corvin, A.P.; Deloukas, P.; Duncanson, A.; Jankowski, J.; Markus, H.S.; Mathew, C.G.; Palmer, C.N.; Plomin, R.; Rautanen, A.; Sawcer, S.J.; Trembath, R.C.; Viswanathan, A.C.; Wood, N.W.; Spencer, C. C.; Band, G.; Bellenguez, C.; Freeman, C.; Hellenthal, G.; Giannoulatou, E.; Pirinen, M.; Pearson, R.D.; Strange, A.; Su, Z.; Vukcevic, D.; Langford, C.; Hunt, S.E.; Edkins, S.; Gwilliam, R.; Blackburn, H.; Bumpstead, S.; Dronov, S.; Gillman, M.; Gray, E.; Hammond, N.; Jayakumar, A.; McCann, O.T.; Liddle, J.; Potter, S.C.; Ravindrarajah, R.; Ricketts, M.; Tashakkori-Ghanbaria, A.; Waller, M.J.; Weston, P.; Widaa, S.; Whittaker, P.; Barrroso, I.; McCarthy, M.I.; Spencer, C.C.; Stefansson, K.; Scolnick, E.; Purcell, S.; McCarroll, S.A.; Sklar, P.; Hultman, C. M.; Sullivan, P.F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with

  4. Software engineering the mixed model for genome-wide association studies on large samples

    Science.gov (United States)

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample siz...

  5. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world

    DEFF Research Database (Denmark)

    Vrieze, S. I.; Iacono, W. G.; McGue, M.

    2012-01-01

    This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations...

  6. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  7. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci

    NARCIS (Netherlands)

    A.D. Børglum; D. Demontis; J. Grove (Jakob); J. Pallesen (J.); M.V. Hollegaard (Mads V); C.B. Pedersen (C.); A. Hedemand (A.); M. Mattheisen (Manuel); A.G. Uitterlinden (André); M. Nyegaard (M.); T.F. Orntoft (Torben); C. Wiuf (Carsten); M. Didriksen (Michael); M. Nordentoft (M.); M.M. Nö then (M.); M. Rietschel (Marcella); R.A. Ophoff (Roel); S. Cichon (Sven); R.H. Yolken (Robert); D.M. Hougaard (David); P.B. Mortensen; O. Mors

    2014-01-01

    textabstractGenetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all

  8. Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study

    NARCIS (Netherlands)

    Gottlieb, D.J.; Hek, K.; Chen, T.H.; Watson, N.F.; Eiriksdottir, G.; Byrne, E.M.; Cornelis, M.; Warby, S.C.; Bandinelli, S.; Cherkas, L.; Evans, D.S.; Grabe, H.J.; Lahti, J.; Li, M.; Lehtimäki, T.; Lumley, T.; Marciante, K.; Pérusse, L.; Psaty, B.M.; Robbins, J.; Tranah, G.; Vink, J.M.; Wilk, J.B.; Stafford, J.M.; Bellis, M.; Biffar, R.; Bouchard, C.; Cade, B.; Curhan, G.C.; Eriksson, J.G.; Ewert, R.; Ferrucci, L.; Fülöp, T.; Gehrman, P.R.; Goodloe, R.; Harris, T.B.; Heath, A.C.; Hernandez, D.; Hofman, A.; Hottenga, J.J.; Hunter, D.J.; Jensen, M.K.; Johnson, A.D.; Kähönen, M.; Kao, L.; Kraft, P.; Larkin, E.K.; Lauderdale, D.S.; Luik, A.I.; Medici, M.; Montgomery, G.W.; Palotie, A.; Patel, S.R.; Pistis, G.; Porcu, E.; Quaye, L.; Raitakari, O.; Redline, S.; Rimm, E.B.; Rotter, J.I.; Smith, A.V.; Spector, T.D.; Teumer, A.; Uitterlinden, A.G.; Vohl, M.-C.; Widén, E.; Willemsen, G.; Young, T.; Zhang, X.; Liu, Y.; Blanger, J.; Boomsma, D.I.; Gudnason, V.; Hu, F.; Mangino, M.; Martin, N.G.; O'Connor, G.T.; Stone, K.L.; Tanaka, T.; Viikari, J.; Gharib, S.A.; Punjabi, N.M.; Räikkönen, K.; Völzke, H.; Mignot, E.; Tiemeier, H.

    2015-01-01

    Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based

  9. Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study

    NARCIS (Netherlands)

    D.J. Gottlieb (Daniel J); K. Hek (Karin); T.-H. Chen; N.F. Watson; G. Eiriksdottir (Gudny); E.M. Byrne; M. Cornelis (Marilyn); S.C. Warby; S. Bandinelli; L. Cherkas (Lynn); D.S. Evans (Daniel); H.J. Grabe (Hans Jörgen); J. Lahti (Jari); M. Li (Man); T. Lehtimäki (Terho); T. Lumley (Thomas); K. Marciante (Kristin); L. Perusse (Louis); B.M. Psaty (Bruce); J. Robbins; G.J. Tranah (Gregory); J.M. Vink; J.B. Wilk; J.M. Stafford; C. Bellis (Claire); R. Biffar; C. Bouchard (Claude); B. Cade; G.C. Curhan (Gary); J. Eriksson; R. Ewert; L. Ferrucci (Luigi); T. Fülöp; P.R. Gehrman (Philip); R. Goodloe (Robert); T.B. Harris (Tamara); A.C. Heath (Andrew C.); D.G. Hernandez (Dena); A. Hofman (Albert); J.J. Hottenga (Jouke Jan); D. Hunter (David); M.K. Jensen (Majken K.); A.D. Johnson (Andrew); M. Kähönen (Mika); W.H.L. Kao (Wen); P. Kraft (Peter); E.K. Larkin; D.S. Lauderdale; A.I. Luik (Annemarie I); M. Medici; G.W. Montgomery (Grant W.); A. Palotie; S.R. Patel (Sanjay); G. Pistis (Giorgio); E. Porcu; L. Quaye (Lydia); O. Raitakari (Olli); S. Redline (Susan); E.B. Rimm (Eric B.); J.I. Rotter; A.V. Smith; T.D. Spector (Timothy); A. Teumer (Alexander); A.G. Uitterlinden (André); M.-C. Vohl (Marie-Claude); E. Widen; G.A.H.M. Willemsen (Gonneke); T.L. Young (Terri L.); X. Zhang; Y. Liu; J. Blangero (John); D.I. Boomsma (Dorret); V. Gudnason (Vilmundur); F. Hu; M. Mangino; N.G. Martin (Nicholas); G.T. O'Connor (George); K.L. Stone (Katie L); T. Tanaka; J. Viikari (Jorma); S.A. Gharib (Sina); N.M. Punjabi (Naresh); K. Räikkönen (Katri); H. Völzke (Henry); E. Mignot; H.W. Tiemeier (Henning)

    2015-01-01

    textabstractUsual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18

  10. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and

  11. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, A.; Beauchamp, J.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.B.; Emilsson, V.; Meddens, S.F.W.; de Vlaming, R.; Abdellaoui, A.; Peyrot, W.; Vinkhuyzen, A.A.E.; Hottenga, J.J.; Willemsen, G.; Boomsma, D.I.; Penninx, B.W.J.H.; Laibson, D.; Medland, S.E.; Meyer, M.N.; Yang, J.; Johannesson, M.; Visscher, P.M.; Esko, T.; Koellinger, P.D.; Cesarini, D.; Benjamin, D.J.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our

  12. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; de Haan, Lieuwe; Linszen, Don H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  13. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis

    DEFF Research Database (Denmark)

    Yuan, Xiao Long; Zhang, Zhe; Li, Bin

    2017-01-01

    Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) contexts plays a critical role in biological functions of different tissues. However, the genome-wide DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually unex...

  14. Genome-Wide Polygenic Scores Predict Reading Performance throughout the School Years

    Science.gov (United States)

    Selzam, Saskia; Dale, Philip S.; Wagner, Richard K.; DeFries, John C.; Cederlöf, Martin; O'Reilly, Paul F.; Krapohl, Eva; Plomin, Robert

    2017-01-01

    It is now possible to create individual-specific genetic scores, called genome-wide polygenic scores (GPS). We used a GPS for years of education ("EduYears") to predict reading performance assessed at UK National Curriculum Key Stages 1 (age 7), 2 (age 12) and 3 (age 14) and on reading tests administered at ages 7 and 12 in a UK sample…

  15. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  16. Genome-wide association study identifies three novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly g...

  17. A genome-wide association study of heparin-induced thrombocytopenia using an electronic medical record

    DEFF Research Database (Denmark)

    Karnes, Jason H; Cronin, Robert M; Rollin, Jerome

    2015-01-01

    Heparin-induced thrombocytopenia (HIT) is an unpredictable, potentially catastrophic adverse effect of heparin treatment resulting from an immune response to platelet factor 4 (PF4)/heparin complexes. No genome-wide evaluations have been performed to identify potential genetic influences on HIT. ...

  18. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    Science.gov (United States)

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  19. Genome-Wide Association Study of Receptive Language Ability of 12-Year-Olds

    Science.gov (United States)

    Harlaar, Nicole; Meaburn, Emma L.; Hayiou-Thomas, Marianna E.; Davis, Oliver S. P.; Docherty, Sophia; Hanscombe, Ken B.; Haworth, Claire M. A.; Price, Thomas S.; Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert

    2014-01-01

    Purpose: Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a "genome-wide association" approach. Method: The…

  20. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark Alan; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; van der Most, Peter J.; Verweij, Niek; Alizadeh, Behrooz Z.; Vonk, Judith M.; Bultmann, Ute; Franke, Lude; van der Harst, Pim; Penninx, Brenda W. J. H.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends

  1. Genome-wide association of meat quality traits and tenderness in swine

    Science.gov (United States)

    Pork quality has a large impact on consumer preference and perception of eating quality. A genome-wide association was performed for pork quality traits [intramuscular fat (IMF)], slice shear force (SSF), color attributes, purge, cooking loss, and pH] from 531 to 1,237 records on barrows and gilts o...

  2. Genome-wide association studies in economics and entrepreneurship research: promises and limitations

    NARCIS (Netherlands)

    Ph.D. Koellinger (Philipp); M.J.H.M. van der Loos (Matthijs); P.J.F. Groenen (Patrick); A.R. Thurik (Roy); F. Rivadeneira Ramirez (Fernando); F.J.A. van Rooij (Frank)

    2010-01-01

    textabstractThe recently developed genome-wide association study (GWAS) design enables the identification of genes specifically associated with economic outcomes such as occupational and other choices. This is a promising new approach for economics research which we aim to apply to the choice for

  3. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  4. Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Chuanju Dong

    Full Text Available Aquaporins (Aqps are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. Among vertebrate species, Aqps are highly conserved in both gene structure and amino acid sequence. These proteins are vital for maintaining water homeostasis in living organisms, especially for aquatic animals such as teleost fish. Studies on teleost Aqps are mainly limited to several model species with diploid genomes. Common carp, which has a tetraploidized genome, is one of the most common aquaculture species being adapted to a wide range of aquatic environments. The complete common carp genome has recently been released, providing us the possibility for gene evolution of aqp gene family after whole genome duplication.In this study, we identified a total of 37 aqp genes from common carp genome. Phylogenetic analysis revealed that most of aqps are highly conserved. Comparative analysis was performed across five typical vertebrate genomes. We found that almost all of the aqp genes in common carp were duplicated in the evolution of the gene family. We postulated that the expansion of the aqp gene family in common carp was the result of an additional whole genome duplication event and that the aqp gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Expression patterns were assessed in various tissues, including brain, heart, spleen, liver, intestine, gill, muscle, and skin, which demonstrated the comprehensive expression profiles of aqp genes in the tetraploidized genome. Significant gene expression divergences have been observed, revealing substantial expression divergences or functional divergences in those duplicated aqp genes post the latest WGD event.To some extent, the gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp aqp gene family provides an

  5. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.

    Science.gov (United States)

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-08-01

    Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.

  6. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    Science.gov (United States)

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  7. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  9. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  10. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    Directory of Open Access Journals (Sweden)

    Kevin C. Deitz

    2016-09-01

    Full Text Available Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  11. Evidence for gene-environment interaction in a genome wide study of isolated, non-syndromic cleft palate

    Science.gov (United States)

    Beaty, Terri H.; Ruczinski, Ingo; Murray, Jeffrey C.; Marazita, Mary L.; Munger, Ronald G.; Hetmanski, Jacqueline B.; Murray, Tanda; Redett, Richard J.; Fallin, M. Daniele; Liang, Kung Yee; Wu, Tao; Patel, Poorav J.; Jin, Sheng C.; Zhang, Tian Xiao; Schwender, Holger; Wu-Chou, Yah Huei; Chen, Philip K; Chong, Samuel S; Cheah, Felicia; Yeow, Vincent; Ye, Xiaoqian; Wang, Hong; Huang, Shangzhi; Jabs, Ethylin W.; Shi, Bing; Wilcox, Allen J.; Lie, Rolv T.; Jee, Sun Ha; Christensen, Kaare; Doheny, Kimberley F.; Pugh, Elizabeth W.; Ling, Hua; Scott, Alan F.

    2011-01-01

    Non-syndromic cleft palate (CP) is a common birth defect with a complex and heterogeneous etiology involving both genetic and environmental risk factors. We conducted a genome wide association study (GWAS) using 550 case-parent trios, ascertained through a CP case collected in an international consortium. Family based association tests of single nucleotide polymorphisms (SNP) and three common maternal exposures (maternal smoking, alcohol consumption and multivitamin supplementation) were used in a combined 2 df test for gene (G) and gene-environment (G×E) interaction simultaneously, plus a separate 1 df test for G×E interaction alone. Conditional logistic regression models were used to estimate effects on risk to exposed and unexposed children. While no SNP achieved genome wide significance when considered alone, markers in several genes attained or approached genome wide significance when G×E interaction was included. Among these, MLLT3 and SMC2 on chromosome 9 showed multiple SNPs resulting in increased risk if the mother consumed alcohol during the peri-conceptual period (3 months prior to conception through the first trimester). TBK1 on chr. 12 and ZNF236 on chr. 18 showed multiple SNPs associated with higher risk of CP in the presence of maternal smoking. Additional evidence of reduced risk due to G×E interaction in the presence of multivitamin supplementation was observed for SNPs in BAALC on chr. 8. These results emphasize the need to consider G×E interaction when searching for genes influencing risk to complex and heterogeneous disorders, such as non-syndromic CP. PMID:21618603

  12. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  13. Imputation and quality control steps for combining multiple genome-wide datasets

    Directory of Open Access Journals (Sweden)

    Shefali S Verma

    2014-12-01

    Full Text Available The electronic MEdical Records and GEnomics (eMERGE network brings together DNA biobanks linked to electronic health records (EHRs from multiple institutions. Approximately 52,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes, and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2 were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR.

  14. Data analysis in the post-genome-wide association study era

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Wang

    2016-12-01

    Full Text Available Since the first report of a genome-wide association study (GWAS on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications. Keywords: Genome-wide association study, Data mining, Integrative data analysis, Polymorphism, Copy number variation

  15. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points.

    Science.gov (United States)

    DeVilbiss, Andrew W; Sanalkumar, Rajendran; Johnson, Kirby D; Keles, Sunduz; Bresnick, Emery H

    2014-08-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

    DEFF Research Database (Denmark)

    Scott, Robert A; Scott, Laura J; Mägi, Reedik

    2017-01-01

    To characterise type 2 diabetes (T2D) associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes multi-ethnic reference panel. Promi...... secretion, and in adipocytes, monocytes and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology....

  17. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  18. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    Science.gov (United States)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  19. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    Science.gov (United States)

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  20. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    Science.gov (United States)

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  1. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  2. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  3. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  4. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies

    Directory of Open Access Journals (Sweden)

    Petersen Ann-Kristin

    2012-06-01

    Full Text Available Abstract Background Genome-wide association studies (GWAS with metabolic traits and metabolome-wide association studies (MWAS with traits of biomedical relevance are powerful tools to identify the contribution of genetic, environmental and lifestyle factors to the etiology of complex diseases. Hypothesis-free testing of ratios between all possible metabolite pairs in GWAS and MWAS has proven to be an innovative approach in the discovery of new biologically meaningful associations. The p-gain statistic was introduced as an ad-hoc measure to determine whether a ratio between two metabolite concentrations carries more information than the two corresponding metabolite concentrations alone. So far, only a rule of thumb was applied to determine the significance of the p-gain. Results Here we explore the statistical properties of the p-gain through simulation of its density and by sampling of experimental data. We derive critical values of the p-gain for different levels of correlation between metabolite pairs and show that B/(2*α is a conservative critical value for the p-gain, where α is the level of significance and B the number of tested metabolite pairs. Conclusions We show that the p-gain is a well defined measure that can be used to identify statistically significant metabolite ratios in association studies and provide a conservative significance cut-off for the p-gain for use in future association studies with metabolic traits.

  5. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  6. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner

    2015-01-01

    . These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D......Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution...

  7. Genome-wide association study for milking speed in French Holstein cows

    DEFF Research Database (Denmark)

    Marete, Andrew Gitahi; Sahana, Goutam; Fritz, Sebastian

    2018-01-01

    Using a combination of data from the BovineSNP50 BeadChip SNP array (Illumina, San Diego, CA) and a EuroGenomics (Amsterdam, the Netherlands) custom single nucleotide polymorphism (SNP) chip with SNP pre-selected from whole genome sequence data, we carried out an association study of milking speed...... associated with milking speed. As clinical mastitis and somatic cell score have an unfavorable genetic correlation with milking speed, we tested whether the most significant SNP on these 22 chromosomes associated with milking speed were also associated with clinical mastitis or somatic cell score. Nine...... hundred seventy-one genome-wide significant SNP were associated with milking speed. Of these, 86 were associated with clinical mastitis and 198 with somatic cell score. The most significant association signals for milking speed were observed on chromosomes 7, 8, 10, 14, and 18. The most significant signal...

  8. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Zhang, Na; Huang, Xing; Bao, Yaning; Wang, Bo; Zeng, Hongxia; Cheng, Weishun; Tang, Mi; Li, Yuhua; Ren, Jian; Sun, Yuhong

    2017-07-01

    The early auxin responsive SAUR family is an important gene family in auxin signal transduction. We here present the first report of a genome-wide identification of SAUR genes in watermelon genome. We successfully identified 65 ClaSAURs and provide a genomic framework for future study on these genes. Phylogenetic result revealed a Cucurbitaceae-specific SAUR subfamily and contribute to understanding of the evolutionary pattern of SAUR genes in plants. Quantitative RT-PCR analysis demonstrates the existed expression of 11 randomly selected SAUR genes in watermelon tissues. ClaSAUR36 was highly expressed in fruit, for which further study might bring a new prospective for watermelon fruit development. Moreover, correlation analysis revealed the similar expression profiles of SAUR genes between watermelon and Arabidopsis during shoot organogenesis. This work gives us a new support for the conserved auxin machinery in plants.

  9. GST-PRIME: an algorithm for genome-wide primer design.

    Science.gov (United States)

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  10. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  11. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    Science.gov (United States)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik

    2014-01-01

    Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607

  12. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  13. Nature-inspired novel Cuckoo Search Algorithm for genome ...

    Indian Academy of Sciences (India)

    compared their results with other methods such as the genetic algorithm. ... It is a population-based search procedure used as an optimization tool, in ... In this section, the problem formulation, fitness evaluation, flowchart and implementation of the ..... Machine Learning 21: 11–33 ... Numerical Optimization 1: 330–343.

  14. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  15. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Science.gov (United States)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe

    2015-05-10

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

  16. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia

    2015-01-01

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10 −6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10 −5 , we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10 −5 ), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  17. Genome-wide identification and characterization of WRKY gene family in peanut

    Directory of Open Access Journals (Sweden)

    Hui eSong

    2016-04-01

    Full Text Available WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA and jasmonic acid (JA treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  18. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  19. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.).

    Science.gov (United States)

    Covelo-Soto, L; Leunda, P M; Pérez-Figueroa, A; Morán, P

    2015-06-01

    The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes. © 2015 Stichting International Foundation for Animal Genetics.

  20. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.

    Science.gov (United States)

    Wang, Richard J; Payseur, Bret A

    2017-08-01

    Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.

  1. Genome-wide association study of the four-constitution medicine.

    Science.gov (United States)

    Yin, Chang Shik; Park, Hi Joon; Chung, Joo-Ho; Lee, Hye-Jung; Lee, Byung-Cheol

    2009-12-01

    Four-constitution medicine (FCM), also known as Sasang constitutional medicine, and the heritage of the long history of individualized acupuncture medicine tradition, is one of the holistic and traditional systems of constitution to appraise and categorize individual differences into four major types. This study first reports a genome-wide association study on FCM, to explore the genetic basis of FCM and facilitate the integration of FCM with conventional individual differences research. Healthy individuals of the Korean population were classified into the four constitutional types (FCTs). A total of 353,202 single nucleotide polymorphisms (SNPs) were typed using whole genome amplified samples, and six-way comparison of FCM types provided lists of significantly differential SNPs. In one-to-one FCT comparisons, 15,944 SNPs were significantly differential, and 5 SNPs were commonly significant in all of the three comparisons. In one-to-two FCT comparisons, 22,616 SNPs were significantly differential, and 20 SNPs were commonly significant in all of the three comparison groups. This study presents the association between genome-wide SNP profiles and the categorization of the FCM, and it could further provide a starting point of genome-based identification and research of the constitutions of FCM.

  2. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    Science.gov (United States)

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  3. Signatures of selection in the Iberian honey bee: a genome wide approach using single nucleotide polymorphisms (SNPs)

    OpenAIRE

    Chavez-Galarza, Julio; Johnston, J. Spencer; Azevedo, João; Muñoz, Irene; De la Rúa, Pilar; Patton, John C.; Pinto, M. Alice

    2011-01-01

    Dissecting genome-wide (expansions, contractions, admixture) from genome-specific effects (selection) is a goal of central importance in evolutionary biology because it leads to more robust inferences of demographic history and to identification of adaptive divergence. The publication of the honey bee genome and the development of high-density SNPs genotyping, provide us with powerful tools, allowing us to identify signatures of selection in the honey bee genome. These signatur...

  4. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    NARCIS (Netherlands)

    Li, Dong; Chang, Xiao; Connolly, John J.; Tian, Lifeng; Liu, Yichuan; Bhoj, Elizabeth J.; Robinson, Nora; Abrams, Debra; Li, Yun R.; Bradfield, Jonathan P.; Kim, Cecilia E.; Li, Jin; Wang, Fengxiang; Snyder, James; Lemma, Maria; Hou, Cuiping; Wei, Zhi; Guo, Yiran; Qiu, Haijun; Mentch, Frank D.; Thomas, Kelly A.; Chiavacci, Rosetta M.; Cone, Roger; Li, Bingshan; Sleiman, Patrick A.; Hakonarson, Hakon; Perica, Vesna Boraska; Franklin, Christopher S.; Floyd, James A.B.; Thornton, Laura M.; Huckins, Laura M.; Southam, Lorraine; Rayner, William N; Tachmazidou, Ioanna; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger A.H.; Kas, Martien J.H.; Favaro, Angela; Santonastaso, Paolo; Fernánde-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori-Helkamaa, Anu; Furth, Eric F.Van; Slof-Opt Landt, Margarita C.T.; Hudson, James I.; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S.; Monteleone, Palmiero; Karwautz, Andreas; Berrettini, Wade H.; Schork, Nicholas J.; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Toñu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H.; DeSocio, Janiece E.; Hilliard, Christopher E.; O'Toole, Julie K.; Pantel, Jacques; Szatkiewicz, Jin P.; Zerwas, Stephanie; Davis, Oliver S P; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; De Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Danner, Unna N.; Hendriks, Judith; Koeleman, Bobby P.C.; Ophoff, Roel A.; Strengman, Eric; van Elburg, Annemarie A.; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P. Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; DIkeos, DImitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; DIck, Danielle M.; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A.; Espeseth, Thomas; Lundervold, Astri J; Reinvang, Ivar; Steen, Vidar M.; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen W.; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Barrett, Jeff C.; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Zeggini, Eleftheria; Bulik, Cynthia M.; Brandt, Harry; Crawford, Steve; Crow, Scott; Fichter, Manfred M.; Halmi, Katherine A.; Johnson, Craig; Kaplan, Allan S.; La Via, Maria C.; Mitchell, James R.; Strober, Michael; Rotondo, Alessandro; Treasure, Janet; Woodside, D. Blake; Keel, Pamela K.; Klump, Kelly L.; Lilenfeld, Lisa; Bergen, Andrew W.; Kaye, Walter; Magistretti, Pierre

    2017-01-01

    We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P =

  5. Genome-wide population-based association study of extremely overweight young adults--the GOYA study

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Evans, David M; Nohr, Ellen Aagaard

    2011-01-01

    Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ∼1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight...

  6. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

    NARCIS (Netherlands)

    Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Plagnol, Vincent; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner- Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Conley, Emily Drabant; Dorfman, Elizabeth; Tung, Joyce Y.; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lew, M.; Klein, C.; Golbe, L.; Growdon, J.; Wooten, G. F.; Watts, R.; Guttman, M.; Goldwurm, S.; Saint-Hilaire, M. H.; Baker, K.; Litvan, I.; Nicholson, G.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Sherman, S.; Roxburgh, R.; Slevin, J.; Perlmutter, J.; Mark, M. H.; Huggins, N.; Pezzoli, G.; Massood, T.; Itin, I.; Corbett, A.; Chinnery, P.; Ostergaard, K.; Snow, B.; Cambi, F.; Kay, D.; Samii, A.; Agarwal, P.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Montimurro, J.; Martinez, E.; Griffith, A.; Kusel, V.; Yearout, D.; Zabetian, C.; Clark, L. N.; Liu, X.; Lee, J. H.; Taub, R. Cheng; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; van Duijn, Cornelia M.; Verlinden, Vincent J.; Koudstaal, Peter J.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2014-01-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were

  7. Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci

    DEFF Research Database (Denmark)

    Børglum, A D; Demontis, D; Grove, J

    2014-01-01

    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals...... born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases...... was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies....

  8. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  9. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population

    DEFF Research Database (Denmark)

    Wu, Xiaoping; Fang, Ming; Liu, Lin

    2013-01-01

    .Results: The Illumina BovineSNP50 BeadChip was used to identify single nucleotide polymorphisms (SNPs) that are associated with body conformation traits. A least absolute shrinkage and selection operator (LASSO) was applied to detect multiple SNPs simultaneously for 29 body conformation traits with 1,314 Chinese...... Holstein cattle and 52,166 SNPs. Totally, 59 genome-wide significant SNPs associated with 26 conformation traits were detected by genome-wide association analysis; five SNPs were within previously reported QTL regions (Animal Quantitative Trait Loci (QTL) database) and 11 were very close to the reported...... SNPs. Twenty-two SNPs were located within annotated gene regions, while the remainder were 0.6-826 kb away from known genes. Some of the genes had clear biological functions related to conformation traits. By combining information about the previously reported QTL regions and the biological functions...

  10. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy...

  11. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  12. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  13. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda

    Directory of Open Access Journals (Sweden)

    Andrea Gloria-Soria

    2016-06-01

    Full Text Available The tsetse fly Glossina fuscipes fuscipes (Gff is the insect vector of the two forms of Human African Trypanosomiasis (HAT that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r2max/2 between 1359 and 2429 bp. The overall LD estimated for the species reaches r2max/2 at 708 bp, an order of magnitude slower than in Drosophila. Using 53 infected (Trypanosoma spp. and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.

  14. Genome-Wide Association Study of Major Agronomic Traits Related to Domestication in Peanut

    Directory of Open Access Journals (Sweden)

    Xingguo Zhang

    2017-09-01

    Full Text Available Peanut (Arachis hypogaea consists of two subspecies, hypogaea and fastigiata, and has been cultivated worldwide for hundreds of years. Here, 158 peanut accessions were selected to dissect the molecular footprint of agronomic traits related to domestication using specific-locus amplified fragment sequencing (SLAF-seq method. Then, a total of 17,338 high-quality single nucleotide polymorphisms (SNPs in the whole peanut genome were revealed. Eleven agronomic traits in 158 peanut accessions were subsequently analyzed using genome-wide association studies (GWAS. Candidate genes responsible for corresponding traits were then analyzed in genomic regions surrounding the peak SNPs, and 1,429 genes were found within 200 kb windows centerd on GWAS-identified peak SNPs related to domestication. Highly differentiated genomic regions were observed between hypogaea and fastigiata accessions using FST values and sequence diversity (π ratios. Among the 1,429 genes, 662 were located on chromosome A3, suggesting the presence of major selective sweeps caused by artificial selection during long domestication. These findings provide a promising insight into the complicated genetic architecture of domestication-related traits in peanut, and reveal whole-genome SNP markers of beneficial candidate genes for marker-assisted selection (MAS in future breeding programs.

  15. Genome-wide evolutionary dynamics of influenza B viruses on a global scale.

    Directory of Open Access Journals (Sweden)

    Pinky Langat

    2017-12-01

    Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.

  16. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Science.gov (United States)

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  17. Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption.

    Science.gov (United States)

    Lu, Wen-Jie; Yamada, Yoshiji; Sakuma, Jun

    2015-01-01

    Developed sequencing techniques are yielding large-scale genomic data at low cost. A genome-wide association study (GWAS) targeting genetic variations that are significantly associated with a particular disease offers great potential for medical improvement. However, subjects who volunteer their genomic data expose themselves to the risk of privacy invasion; these privacy concerns prevent efficient genomic data sharing. Our goal is to presents a cryptographic solution to this problem. To maintain the privacy of subjects, we propose encryption of all genotype and phenotype data. To allow the cloud to perform meaningful computation in relation to the encrypted data, we use a fully homomorphic encryption scheme. Noting that we can evaluate typical statistics for GWAS from a frequency table, our solution evaluates frequency tables with encrypted genomic and clinical data as input. We propose to use a packing technique for efficient evaluation of these frequency tables. Our solution supports evaluation of the D' measure of linkage disequilibrium, the Hardy-Weinberg Equilibrium, the χ2 test, etc. In this paper, we take χ2 test and linkage disequilibrium as examples and demonstrate how we can conduct these algorithms securely and efficiently in an outsourcing setting. We demonstrate with experimentation that secure outsourcing computation of one χ2 test with 10, 000 subjects requires about 35 ms and evaluation of one linkage disequilibrium with 10, 000 subjects requires about 80 ms. With appropriate encoding and packing technique, cryptographic solutions based on fully homomorphic encryption for secure computations of GWAS can be practical.

  18. Evaluation of different sources of DNA for use in genome wide studies and forensic application.

    Science.gov (United States)

    Al Safar, Habiba S; Abidi, Fatima H; Khazanehdari, Kamal A; Dadour, Ian R; Tay, Guan K

    2011-02-01

    In the field of epidemiology, Genome-Wide Association Studies (GWAS) are commonly used to identify genetic predispositions of many human diseases. Large repositories housing biological specimens for clinical and genetic investigations have been established to store material and data for these studies. The logistics of specimen collection and sample storage can be onerous, and new strategies have to be explored. This study examines three different DNA sources (namely, degraded genomic DNA, amplified degraded genomic DNA and amplified extracted DNA from FTA card) for GWAS using the Illumina platform. No significant difference in call rate was detected between amplified degraded genomic DNA extracted from whole blood and amplified DNA retrieved from FTA™ cards. However, using unamplified-degraded genomic DNA reduced the call rate to a mean of 42.6% compared to amplified DNA extracted from FTA card (mean of 96.6%). This study establishes the utility of FTA™ cards as a viable storage matrix for cells from which DNA can be extracted to perform GWAS analysis.

  19. Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies.

    Science.gov (United States)

    Xu, P; Wu, X; Wang, B; Luo, J; Liu, Y; Ehlers, J D; Close, T J; Roberts, P A; Lu, Z; Wang, S; Li, G

    2012-07-01

    Association mapping of important traits of crop plants relies on first understanding the extent and patterns of linkage disequilibrium (LD) in the particular germplasm being investigated. We characterize here the genetic diversity, population structure and genome wide LD patterns in a set of asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm from China. A diverse collection of 99 asparagus bean and normal cowpea accessions were genotyped with 1127 expressed sequence tag-derived single nucleotide polymorphism markers (SNPs). The proportion of polymorphic SNPs across the collection was relatively low (39%), with an average number of SNPs per locus of 1.33. Bayesian population structure analysis indicated two subdivisions within the collection sampled that generally represented the 'standard vegetable' type (subgroup SV) and the 'non-standard vegetable' type (subgroup NSV), respectively. Level of LD (r(2)) was higher and extent of LD persisted longer in subgroup SV than in subgroup NSV, whereas LD decayed rapidly (0-2 cM) in both subgroups. LD decay distance varied among chromosomes, with the longest (≈ 5 cM) five times longer than the shortest (≈ 1 cM). Partitioning of LD variance into within- and between-subgroup components coupled with comparative LD decay analysis suggested that linkage group 5, 7 and 10 may have undergone the most intensive epistatic selection toward traits favorable for vegetable use. This work provides a first population genetic insight into domestication history of asparagus bean and demonstrates the feasibility of mapping complex traits by genome wide association study in asparagus bean using a currently available cowpea SNPs marker platform.

  20. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    DEFF Research Database (Denmark)

    Postmus, Iris; Warren, Helen R; Trompet, Stella

    2016-01-01

    BACKGROUND: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. METHODS AND RESULTS: We performed...... a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p

  1. Genome-wide association study identifies four loci associated with eruption of permanent teeth

    DEFF Research Database (Denmark)

    Geller, Frank; Feenstra, Bjarke; Zhang, Hao

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years......, analyzed as age-adjusted standard deviation score averaged over multiple time points, based on childhood records for 5,104 women from the Danish National Birth Cohort. Four loci showed association at P...

  2. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  3. Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome

    OpenAIRE

    Shen, Hao-ran; Qiu, Li-hua; Zhang, Zhi-qing; Qin, Yuan-yuan; Cao, Cong; Di, Wen

    2013-01-01

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous disorder of uncertain etiology. Recent studies suggested that insulin resistance (IR) plays an important role in the development of PCOS. In the current study, we aimed to investigate the molecular mechanism of IR in PCOS. We employed genome-wide methylated DNA immunoprecipitation (MeDIP) analysis to characterize genes that are differentially methylated in PCOS patients vs. healthy controls. Besides, we also identified the different...

  4. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  5. Genome-wide Meta-analysis on the Sense of Smell Among US Older Adults

    OpenAIRE

    Dong, Jing; Yang, Jingyun; Tranah, Greg; Franceschini, Nora; Parimi, Neeta; Alkorta-Aranburu, Gorka; Xu, Zongli; Alonso, Alvaro; Cummings, Steven R.; Fornage, Myriam; Huang, Xuemei; Kritchevsky, Stephen; Liu, Yongmei; London, Stephanie; Niu, Liang

    2015-01-01

    Abstract Olfactory dysfunction is common among older adults and affects their safety, nutrition, quality of life, and mortality. More importantly, the decreased sense of smell is an early symptom of neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer disease. However, the genetic determinants for the sense of smell have been poorly investigated. We here performed the first genome-wide meta-analysis on the sense of smell among 6252 US older adults of European descent from t...

  6. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    OpenAIRE

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Renter��a, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivi��res, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjus...

  7. Genome-Wide Association Analysis of Ischemic Stroke in Young Adults

    OpenAIRE

    Cheng, Yu-Ching; O’Connell, Jeffrey R.; Cole, John W.; Stine, O. Colin; Dueker, Nicole; McArdle, Patrick F.; Sparks, Mary J.; Shen, Jess; Laurie, Cathy C.; Nelson, Sarah; Doheny, Kimberly F.; Ling, Hua; Pugh, Elizabeth W.; Brott, Thomas G.; Brown, Robert D.

    2011-01-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases...

  8. Genome-wide association study identifies 74 loci associated with educational attainment

    OpenAIRE

    Okbay, Aysu; Beauchamp, Jonathan; Fontana, M.A. (Mark Alan); Lee, James J.; Pers, Tune; Rietveld, C.A. (Cornelius A.); Turley, Patrick; Chen, G.-B. (Guo-Bo); Emilsson, Valur; Meddens, S.F.W. (S. Fleur W.); Oskarsson, S. (Sven); Pickrell, J.K. (Joseph K.); Thom, K. (Kevin); Timshel, P. (Pascal); Vlaming, Ronald

    2016-01-01

    textabstractEducational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 geno...

  9. Genome wide association study identifies KCNMA1 contributing to human obesity

    DEFF Research Database (Denmark)

    Jiao, Hong; Arner, Peter; Hoffstedt, Johan

    2011-01-01

    Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population....... Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity....

  10. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    DEFF Research Database (Denmark)

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A

    2016-01-01

    . Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching PFTO....... Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown...

  11. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing...... in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing...

  12. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster

    OpenAIRE

    Vonesch, Sibylle; Mackay, Trudy; Lamparter, David; Hafen, Ernst; Bergmann, Sven

    2015-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequen...

  13. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs and an online database.

    Directory of Open Access Journals (Sweden)

    Christopher A Raistrick

    2010-10-01

    Full Text Available Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs. 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.

  14. Nencki Genomics Database--Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs.

    Science.gov (United States)

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.

  15. Genome Wide Allele Frequency Fingerprints (GWAFFs) of populations via genotyping by sequencing

    DEFF Research Database (Denmark)

    Byrne, Stephen; Czaban, Adrian; Studer, Bruno

    2013-01-01

    -wide scale would be very powerful, examples include the breeding of outbreeding species, varietal protection in outbreeding species, monitoring changes in population allele frequencies. This motivated us to test the potential to use GBS to evaluate allele frequencies within populations. Perennial ryegrass...... these fingerprints can be used to distinguish between plant populations. Even at current costs and throughput, using sequencing to directly evaluate populations on a genome-wide scale is viable. GWAFFs should find many applications, from varietal development in outbreeding species right through to playing a role...... in protecting plant breeders’ rights....

  16. Genome-wide association scan for variants associated with early-onset prostate cancer.

    Directory of Open Access Journals (Sweden)

    Ethan M Lange

    Full Text Available Prostate cancer is the most common non-skin cancer and the second leading cause of cancer related mortality for men in the United States. There is strong empirical and epidemiological evidence supporting a stronger role of genetics in early-onset prostate cancer. We performed a genome-wide association scan for early-onset prostate cancer. Novel aspects of this study include the focus on early-onset disease (defined as men with prostate cancer diagnosed before age 56 years and use of publically available control genotype data from previous genome-wide association studies. We found genome-wide significant (p<5×10(-8 evidence for variants at 8q24 and 11p15 and strong supportive evidence for a number of previously reported loci. We found little evidence for individual or systematic inflated association findings resulting from using public controls, demonstrating the utility of using public control data in large-scale genetic association studies of common variants. Taken together, these results demonstrate the importance of established common genetic variants for early-onset prostate cancer and the power of including early-onset prostate cancer cases in genetic association studies.

  17. NSD1 mutations generate a genome-wide DNA methylation signature.

    LENUS (Irish Health Repository)

    Choufani, S

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth\\/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+\\/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+\\/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  18. Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Jorim J Tielbeek

    Full Text Available Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10(-5 was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies.

  19. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  20. Investigation of Maternal Genotype Effects in Autism by Genome-Wide Association

    Science.gov (United States)

    Yuan, Han; Dougherty, Joseph D.

    2014-01-01

    Lay Abstract Autism spectrum disorders (ASDs) are pervasive developmental disorders which have both a genetic and environmental component. One source of the environmental component is the in utero (prenatal) environment. The maternal genome can potentially contribute to the risk of autism in children by altering this prenatal environment. In this study, the possibility of maternal genotype effects was explored by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. We performed a case/control genome-wide association study (GWAS) using mothers of probands as cases and either fathers of probands or normal females as controls, using two collections of families with autism. We did not identify any SNP that reached significance and thus a common variant of large effect is unlikely. However, there was evidence for the possibility of a large number of alleles each carrying a small effect. This suggested that if there is a contribution to autism risk through common-variant maternal genetic effects, it may be the result of multiple loci of small effects. We did not investigate rare variants in this study. Scientific Abstract Like most psychiatric disorders, autism spectrum disorders have both a genetic and an environmental component. While previous studies have clearly demonstrated the contribution of in utero (prenatal) environment on autism risk, most of them focused on transient environmental factors. Based on a recent sibling study, we hypothesized that environmental factors could also come from the maternal genome, which would result in persistent effects across siblings. In this study, the possibility of maternal genotype effects was examined by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. A case/control genome-wide association study (GWAS) was performed using mothers of

  1. Genome wide gene expression regulation by HIP1 Protein Interactor, HIPPI: Prediction and validation

    Directory of Open Access Journals (Sweden)

    Lahiri Ansuman

    2011-09-01

    Full Text Available Abstract Background HIP1 Protein Interactor (HIPPI is a pro-apoptotic protein that induces Caspase8 mediated apoptosis in cell. We have shown earlier that HIPPI could interact with a specific 9 bp sequence motif, defined as the HIPPI binding site (HBS, present in the upstream promoter of Caspase1 gene and regulate its expression. We also have shown that HIPPI, without any known nuclear localization signal, could be transported to the nucleus by HIP1, a NLS containing nucleo-cytoplasmic shuttling protein. Thus our present work aims at the investigation of the role of HIPPI as a global transcription regulator. Results We carried out genome wide search for the presence of HBS in the upstream sequences of genes. Our result suggests that HBS was predominantly located within 2 Kb upstream from transcription start site. Transcription factors like CREBP1, TBP, OCT1, EVI1 and P53 half site were significantly enriched in the 100 bp vicinity of HBS indicating that they might co-operate with HIPPI for transcription regulation. To illustrate the role of HIPPI on transcriptome, we performed gene expression profiling by microarray. Exogenous expression of HIPPI in HeLa cells resulted in up-regulation of 580 genes (p HIP1 was knocked down. HIPPI-P53 interaction was necessary for HIPPI mediated up-regulation of Caspase1 gene. Finally, we analyzed published microarray data obtained with post mortem brains of Huntington's disease (HD patients to investigate the possible involvement of HIPPI in HD pathogenesis. We observed that along with the transcription factors like CREB, P300, SREBP1, Sp1 etc. which are already known to be involved in HD, HIPPI binding site was also significantly over-represented in the upstream sequences of genes altered in HD. Conclusions Taken together, the results suggest that HIPPI could act as an important transcription regulator in cell regulating a vast array of genes, particularly transcription factors and at least, in part, play a

  2. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max).

    Science.gov (United States)

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Jiang, Guo-Liang

    2016-01-01

    Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the molecular mechanism underlying the trait and explore marker-based breeding approaches, we conducted a genome-wide association study in a population of 309 soybean germplasm accessions using 31,045 single nucleotide polymorphisms (SNPs), and estimated the prediction accuracy of genomic selection (GS) and marker-assisted selection (MAS) for SW. Twenty-two loci of minor effect associated with SW were identified, including hotspots on Gm04 and Gm19. The mixed model containing these loci explained 83.4% of phenotypic variation. Candidate genes with Arabidopsis orthologs conditioning SW were also proposed. The prediction accuracies of GS and MAS by cross-validation were 0.75-0.87 and 0.62-0.75, respectively, depending on the number of SNPs used and the size of training population. GS also outperformed MAS when the validation was performed using unrelated panels across a wide range of maturities, with an average prediction accuracy of 0.74 versus 0.53. This study convincingly demonstrated that soybean SW is controlled by numerous minor-effect loci. It greatly enhances our understanding of the genetic basis of SW in soybean and facilitates the identification of genes controlling the trait. It also suggests that GS holds promise for accelerating soybean breeding progress. The results are helpful for genetic improvement and genomic prediction of yield in soybean.

  3. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Paul S de Vries

    Full Text Available An increasing number of genome-wide association (GWA studies are now using the higher resolution 1000 Genomes Project reference panel (1000G for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In order to assess the improvement of 1000G over HapMap imputation in identifying associated loci, we compared the results of GWA studies of circulating fibrinogen based on the two reference panels. Using both HapMap and 1000G imputation we performed a meta-analysis of 22 studies comprising the same 91,953 individuals. We identified six additional signals using 1000G imputation, while 29 loci were associated using both HapMap and 1000G imputation. One locus identified using HapMap imputation was not significant using 1000G imputation. The genome-wide significance threshold of 5×10-8 is based on the number of independent statistical tests using HapMap imputation, and 1000G imputation may lead to further independent tests that should be corrected for. When using a stricter Bonferroni correction for the 1000G GWA study (P-value < 2.5×10-8, the number of loci significant only using HapMap imputation increased to 4 while the number of loci significant only using 1000G decreased to 5. In conclusion, 1000G imputation enabled the identification of 20% more loci than HapMap imputation, although the advantage of 1000G imputation became less clear when a stricter Bonferroni correction was used. More generally, our results provide insights that are applicable to the implementation of other dense reference panels that are under development.

  4. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    Science.gov (United States)

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  5. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  6. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    Science.gov (United States)

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  7. Genome-wide analysis of disease progression in age-related macular degeneration.

    Science.gov (United States)

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  8. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    Science.gov (United States)

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  9. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study.

    Science.gov (United States)

    Kasperaviciūte, Dalia; Catarino, Claudia B; Heinzen, Erin L; Depondt, Chantal; Cavalleri, Gianpiero L; Caboclo, Luis O; Tate, Sarah K; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M S; Shianna, Kevin V; Radtke, Rodney A; Mikati, Mohamad A; Gallentine, William B; Husain, Aatif M; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G; Eriksson, Kai J; Kälviäinen, Reetta K; Doherty, Colin P; Wood, Nicholas W; Pandolfo, Massimo; Duncan, John S; Sander, Josemir W; Delanty, Norman; Goldstein, David B; Sisodiya, Sanjay M

    2010-07-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.

  10. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    Science.gov (United States)

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  11. Genome-wide association study identified CNP12587 region underlying height variation in Chinese females.

    Directory of Open Access Journals (Sweden)

    Yin-Ping Zhang

    Full Text Available Human height is a highly heritable trait considered as an important factor for health. There has been limited success in identifying the genetic factors underlying height variation. We aim to identify sequence variants associated with adult height by a genome-wide association study of copy number variants (CNVs in Chinese.Genome-wide CNV association analyses were conducted in 1,625 unrelated Chinese adults and sex specific subgroup for height variation, respectively. Height was measured with a stadiometer. Affymetrix SNP6.0 genotyping platform was used to identify copy number polymorphisms (CNPs. We constructed a genomic map containing 1,009 CNPs in Chinese individuals and performed a genome-wide association study of CNPs with height.We detected 10 significant association signals for height (p<0.05 in the whole population, 9 and 11 association signals for Chinese female and male population, respectively. A copy number polymorphism (CNP12587, chr18:54081842-54086942, p = 2.41 × 10(-4 was found to be significantly associated with height variation in Chinese females even after strict Bonferroni correction (p = 0.048. Confirmatory real time PCR experiments lent further support for CNV validation. Compared to female subjects with two copies of the CNP, carriers of three copies had an average of 8.1% decrease in height. An important candidate gene, ubiquitin-protein ligase NEDD4-like (NEDD4L, was detected at this region, which plays important roles in bone metabolism by binding to bone formation regulators.Our findings suggest the important genetic variants underlying height variation in Chinese.

  12. Genome-wide association study of insect bite hypersensitivity in two horse populations in the Netherlands

    Directory of Open Access Journals (Sweden)

    Schurink Anouk

    2012-10-01

    Full Text Available Abstract Background Insect bite hypersensitivity is a common allergic disease in horse populations worldwide. Insect bite hypersensitivity is affected by both environmental and genetic factors. However, little is known about genes contributing to the genetic variance associated with insect bite hypersensitivity. Therefore, the aim of our study was to identify and quantify genomic associations with insect bite hypersensitivity in Shetland pony mares and Icelandic horses in the Netherlands. Methods Data on 200 Shetland pony mares and 146 Icelandic horses were collected according to a matched case–control design. Cases and controls were matched on various factors (e.g. region, sire to minimize effects of population stratification. Breed-specific genome-wide association studies were performed using 70 k single nucleotide polymorphisms genotypes. Bayesian variable selection method Bayes-C with a threshold model implemented in GenSel software was applied. A 1 Mb non-overlapping window approach that accumulated contributions of adjacent single nucleotide polymorphisms was used to identify associated genomic regions. Results The percentage of variance explained by all single nucleotide polymorphisms was 13% in Shetland pony mares and 28% in Icelandic horses. The 20 non-overlapping windows explaining the largest percentages of genetic variance were found on nine chromosomes in Shetland pony mares and on 14 chromosomes in Icelandic horses. Overlap in identified associated genomic regions between breeds would suggest interesting candidate regions to follow-up on. Such regions common to both breeds (within 15 Mb were found on chromosomes 3, 7, 11, 20 and 23. Positional candidate genes within 2 Mb from the associated windows were identified on chromosome 20 in both breeds. Candidate genes are within the equine lymphocyte antigen class II region, which evokes an immune response by recognizing many foreign molecules. Conclusions The genome-wide association

  13. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  14. PReMod: a database of genome-wide mammalian cis-regulatory module predictions.

    Science.gov (United States)

    Ferretti, Vincent; Poitras, Christian; Bergeron, Dominique; Coulombe, Benoit; Robert, François; Blanchette, Mathieu

    2007-01-01

    We describe PReMod, a new database of genome-wide cis-regulatory module (CRM) predictions for both the human and the mouse genomes. The prediction algorithm, described previously in Blanchette et al. (2006) Genome Res., 16, 656-668, exploits the fact that many known CRMs are made of clusters of phylogenetically conserved and repeated transcription factors (TF) binding sites. Contrary to other existing databases, PReMod is not restricted to modules located proximal to genes, but in fact mostly contains distal predicted CRMs (pCRMs). Through its web interface, PReMod allows users to (i) identify pCRMs around a gene of interest; (ii) identify pCRMs that have binding sites for a given TF (or a set of TFs) or (iii) download the entire dataset for local analyses. Queries can also be refined by filtering for specific chromosomal regions, for specific regions relative to genes or for the presence of CpG islands. The output includes information about the binding sites predicted within the selected pCRMs, and a graphical display of their distribution within the pCRMs. It also provides a visual depiction of the chromosomal context of the selected pCRMs in terms of neighboring pCRMs and genes, all of which are linked to the UCSC Genome Browser and the NCBI. PReMod: http://genomequebec.mcgill.ca/PReMod.

  15. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  16. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  17. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Science.gov (United States)

    Bastide, Héloïse; Betancourt, Andrea; Nolte, Viola; Tobler, Raymond; Stöbe, Petra; Futschik, Andreas; Schlötterer, Christian

    2013-06-01

    Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  18. Genome-Wide Prediction of the Performance of Three-Way Hybrids in Barley

    Directory of Open Access Journals (Sweden)

    Zuo Li

    2017-03-01

    Full Text Available Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L. and maize ( L. adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP. Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.

  19. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  20. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  1. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (number data, and causal mechanisms of the five pathways require further study.

  2. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum).

    Science.gov (United States)

    Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K

    2017-04-27

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.

  3. Genome-wide association scan in HIV-1-infected individuals identifying variants influencing disease course.

    Directory of Open Access Journals (Sweden)

    Daniëlle van Manen

    Full Text Available BACKGROUND: AIDS develops typically after 7-11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (15 years. To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODS: The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints. RESULTS: Multiple, not previously identified SNPs, were identified to be strongly associated with disease progression after HIV-1 infection, albeit not genome-wide significant. However, three independent SNPs in the top ten associations between SNP genotypes and time between seroconversion and AIDS-diagnosis, and one from the top ten associations between SNP genotypes and time between seroconversion and AIDS-related death, had P-values smaller than 0.05 in the French Genomics of Resistance to Immunodeficiency Virus cohort on disease progression. CONCLUSIONS: Our study emphasizes that the use of different phenotypes in GWAS may be useful to unravel the full spectrum of host genetic factors that may be associated with the clinical course of HIV-1 infection.

  4. Genome-Wide Association Scan in HIV-1-Infected Individuals Identifying Variants Influencing Disease Course

    Science.gov (United States)

    van Manen, Daniëlle; Delaneau, Olivier; Kootstra, Neeltje A.; Boeser-Nunnink, Brigitte D.; Limou, Sophie; Bol, Sebastiaan M.; Burger, Judith A.; Zwinderman, Aeilko H.; Moerland, Perry D.; van 't Slot, Ruben; Zagury, Jean-François; van 't Wout, Angélique B.; Schuitemaker, Hanneke

    2011-01-01

    Background AIDS develops typically after 7–11 years of untreated HIV-1 infection, with extremes of very rapid disease progression (15 years). To reveal additional host genetic factors that may impact on the clinical course of HIV-1 infection, we designed a genome-wide association study (GWAS) in 404 participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. Methods The association of SNP genotypes with the clinical course of HIV-1 infection was tested in Cox regression survival analyses using AIDS-diagnosis and AIDS-related death as endpoints. Results Multiple, not previously identified SNPs, were identified to be strongly associated with disease progression after HIV-1 infection, albeit not genome-wide significant. However, three independent SNPs in the top ten associations between SNP genotypes and time between seroconversion and AIDS-diagnosis, and one from the top ten associations between SNP genotypes and time between seroconversion and AIDS-related death, had P-values smaller than 0.05 in the French Genomics of Resistance to Immunodeficiency Virus cohort on disease progression. Conclusions Our study emphasizes that the use of different phenotypes in GWAS may be useful to unravel the full spectrum of host genetic factors that may be associated with the clinical course of HIV-1 infection. PMID:21811574

  5. Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type.

    Science.gov (United States)

    Green, Elaine K; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Grozeva, Detelina; Fraser, Christine; Richards, Alexander L; Moran, Jennifer L; Purcell, Shaun; Sklar, Pamela; Kirov, George; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick; Jones, Lisa; Jones, Ian R

    2017-12-01

    Studies have suggested that Research Diagnostic Criteria for Schizoaffective Disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP, we have performed a replication study using independent RDC-SABP cases (n = 144) and controls (n = 6,559), focusing on the 10 loci that reached a p-value bipolar disorder sample. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n = 423, controls, n = 9,494), we observed genome-wide significant association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31 (p-value, 4.37 × 10 -8 ). This locus did not reach genome-wide significance in bipolar disorder or schizophrenia large Psychiatric Genomic Consortium datasets, suggesting that it may represent a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder. © 2017 Wiley Periodicals, Inc.

  6. Preliminary genome-wide association study of bipolar disorder in the Japanese population.

    Science.gov (United States)

    Hattori, Eiji; Toyota, Tomoko; Ishitsuka, Yuichi; Iwayama, Yoshimi; Yamada, Kazuo; Ujike, Hiroshi; Morita, Yukitaka; Kodama, Masafumi; Nakata, Kenji; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Takei, Nori; Mori, Norio; Naitoh, Hiroshi; Yamanouchi, Yoshio; Iwata, Nakao; Ozaki, Norio; Kato, Tadafumi; Nishikawa, Toru; Kashiwa, Atsushi; Suzuki, Mika; Shioe, Kunihiko; Shinohara, Manabu; Hirano, Masami; Nanko, Shinichiro; Akahane, Akihisa; Ueno, Mikako; Kaneko, Naoshi; Watanabe, Yuichiro; Someya, Toshiyuki; Hashimoto, Kenji; Iyo, Masaomi; Itokawa, Masanari; Arai, Makoto; Nankai, Masahiro; Inada, Toshiya; Yoshida, Sumiko; Kunugi, Hiroshi; Nakamura, Michiko; Iijima, Yoshimi; Okazaki, Yuji; Higuchi, Teruhiko; Yoshikawa, Takeo

    2009-12-05

    Recent progress in genotyping technology and the development of public databases has enabled large-scale genome-wide association tests with diseases. We performed a two-stage genome-wide association study (GWAS) of bipolar disorder (BD) in Japanese cohorts. First we used Affymetrix 100K GeneChip arrays in the analysis of 107 cases with bipolar I disorder and 107 controls, and selected markers that were nominally significant (P < 0.01) in at least one of the three models (1,577 markers in total). In the follow-up stage, we analyzed these markers using an Illumina platform (1,526 markers; 51 markers were not designable for the platform) and an independent sample set, which consisted of 395 cases (bipolar I + II) and 409 controls. We also assessed the population stratification of current samples using principal components analysis. After the two-stage analysis, 89 markers remained nominally significant (allelic P < 0.05) with the same allele being consistently over-represented in both the first and the follow-up stages. However, none of these were significant after correction for multiple-testing by false discovery rates. Sample stratification was virtually negligible. Collectively, this is the first GWAS of BD in the Japanese population. But given the small sample size and the limited genomic coverage, these results should be taken as preliminary. 2009 Wiley-Liss, Inc.

  7. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  8. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  9. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  10. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  11. Genome-Wide Association Study Identifies Four Loci Associated with Eruption of Permanent Teeth

    Science.gov (United States)

    Zhang, Hao; Shaffer, John R.; Hansen, Thomas; Esserlind, Ann-Louise; Boyd, Heather A.; Nohr, Ellen A.; Timpson, Nicholas J.; Fatemifar, Ghazaleh; Paternoster, Lavinia; Evans, David M.; Weyant, Robert J.; Levy, Steven M.; Lathrop, Mark; Smith, George Davey; Murray, Jeffrey C.; Olesen, Jes; Werge, Thomas; Marazita, Mary L.; Sørensen, Thorkild I. A.; Melbye, Mads

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years, analyzed as age-adjusted standard deviation score averaged over multiple time points, based on childhood records for 5,104 women from the Danish National Birth Cohort. Four loci showed association at Peruption and were also known to influence height and breast cancer, respectively. The two other loci pointed to genomic regions without any previous significant genome-wide association study results. The intronic SNP rs7924176 in ADK could be linked to gene expression in monocytes. The combined effect of the four genetic variants was most pronounced between age 10 and 12 years, where children with 6 to 8 delayed tooth eruption alleles had on average 3.5 (95% confidence interval: 2.9–4.1) fewer permanent teeth than children with 0 or 1 of these alleles. PMID:21931568

  12. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genetic determinants of cardiovascular events among women with migraine: a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Markus Schürks

    Full Text Available Migraine is associated with an increased risk for cardiovascular disease (CVD. Both migraine and CVD are highly heritable. However, the genetic liability for CVD among migraineurs is unclear.We performed a genome-wide association study for incident CVD events during 12 years of follow-up among 5,122 migraineurs participating in the population-based Women's Genome Health Study. Migraine was self-reported and CVD events were confirmed after medical records review. We calculated odds ratios (OR and 95% confidence intervals (CI and considered a genome-wide p-value <5×10(-8 as significant.Among the 5,122 women with migraine 164 incident CVD events occurred during follow-up. No SNP was associated with major CVD, ischemic stroke, myocardial infarction, or CVD death at the genome-wide level; however, five SNPs showed association with p<5×10(-6. Among migraineurs with aura rs7698623 in MEPE (OR = 6.37; 95% CI 3.15-12.90; p = 2.7×10(-7 and rs4975709 in IRX4 (OR = 5.06; 95% CI 2.66-9.62; p = 7.7×10(-7 appeared to be associated with ischemic stroke, rs2143678 located close to MDF1 with major CVD (OR = 3.05; 95% CI 1.98-4.69; p = 4.3×10(-7, and the intergenic rs1406961 with CVD death (OR = 12.33; 95% CI 4.62-32.87; p = 5.2×10(-7. Further, rs1047964 in BACE1 appeared to be associated with CVD death among women with any migraine (OR = 4.67; 95% CI 2.53-8.62; p = 8.0×10(-7.Our results provide some suggestion for an association of five SNPs with CVD events among women with migraine; none of the results was genome-wide significant. Four associations appeared among migraineurs with aura, two of those with ischemic stroke. Although our population is among the largest with migraine and incident CVD information, these results must be treated with caution, given the limited number of CVD events among women with migraine and the low minor allele frequencies for three of the SNPs. Our results await independent replication

  14. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  15. Genome-wide estimates of coancestry and inbreeding in a closed herd of ancient Iberian pigs.

    Directory of Open Access Journals (Sweden)

    María Saura

    Full Text Available Maintaining genetic variation and controlling the increase in inbreeding are crucial requirements in animal conservation programs. The most widely accepted strategy for achieving these objectives is to maximize the effective population size by minimizing the global coancestry obtained from a particular pedigree. However, for most natural or captive populations genealogical information is absent. In this situation, microsatellites have been traditionally the markers of choice to characterize genetic variation, and several estimators of genealogical coefficients have been developed using marker data, with unsatisfactory results. The development of high-throughput genotyping techniques states the necessity of reviewing the paradigm that genealogical coancestry is the best parameter for measuring genetic diversity. In this study, the Illumina PorcineSNP60 BeadChip was used to obtain genome-wide estimates of rates of coancestry and inbreeding and effective population size for an ancient strain of Iberian pigs that is now in serious danger of extinction and for which very accurate genealogical information is available (the Guadyerbas strain. Genome-wide estimates were compared with those obtained from microsatellite and from pedigree data. Estimates of coancestry and inbreeding computed from the SNP chip were strongly correlated with genealogical estimates and these correlations were substantially higher than those between microsatellite and genealogical coefficients. Also, molecular coancestry computed from SNP information was a better predictor of genealogical coancestry than coancestry computed from microsatellites. Rates of change in coancestry and inbreeding and effective population size estimated from molecular data were very similar to those estimated from genealogical data. However, estimates of effective population size obtained from changes in coancestry or inbreeding differed. Our results indicate that genome-wide information represents a

  16. Cardiac Resynchronization Therapy Online: What Patients Find when Searching the World Wide Web.

    Science.gov (United States)

    Modi, Minal; Laskar, Nabila; Modi, Bhavik N

    2016-06-01

    To objectively assess the quality of information available on the World Wide Web on cardi